1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424 |
- /* Swing Modulo Scheduling implementation.
- Copyright (C) 2004-2015 Free Software Foundation, Inc.
- Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "tm.h"
- #include "diagnostic-core.h"
- #include "rtl.h"
- #include "tm_p.h"
- #include "hard-reg-set.h"
- #include "regs.h"
- #include "hashtab.h"
- #include "hash-set.h"
- #include "vec.h"
- #include "machmode.h"
- #include "input.h"
- #include "function.h"
- #include "profile.h"
- #include "flags.h"
- #include "insn-config.h"
- #include "insn-attr.h"
- #include "except.h"
- #include "recog.h"
- #include "dominance.h"
- #include "cfg.h"
- #include "cfgrtl.h"
- #include "predict.h"
- #include "basic-block.h"
- #include "sched-int.h"
- #include "target.h"
- #include "cfgloop.h"
- #include "double-int.h"
- #include "alias.h"
- #include "symtab.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "tree.h"
- #include "insn-codes.h"
- #include "optabs.h"
- #include "statistics.h"
- #include "real.h"
- #include "fixed-value.h"
- #include "expmed.h"
- #include "dojump.h"
- #include "explow.h"
- #include "calls.h"
- #include "emit-rtl.h"
- #include "varasm.h"
- #include "stmt.h"
- #include "expr.h"
- #include "params.h"
- #include "gcov-io.h"
- #include "sbitmap.h"
- #include "df.h"
- #include "ddg.h"
- #include "tree-pass.h"
- #include "dbgcnt.h"
- #include "loop-unroll.h"
- #ifdef INSN_SCHEDULING
- /* This file contains the implementation of the Swing Modulo Scheduler,
- described in the following references:
- [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
- Lifetime--sensitive modulo scheduling in a production environment.
- IEEE Trans. on Comps., 50(3), March 2001
- [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
- Swing Modulo Scheduling: A Lifetime Sensitive Approach.
- PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
- The basic structure is:
- 1. Build a data-dependence graph (DDG) for each loop.
- 2. Use the DDG to order the insns of a loop (not in topological order
- necessarily, but rather) trying to place each insn after all its
- predecessors _or_ after all its successors.
- 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
- 4. Use the ordering to perform list-scheduling of the loop:
- 1. Set II = MII. We will try to schedule the loop within II cycles.
- 2. Try to schedule the insns one by one according to the ordering.
- For each insn compute an interval of cycles by considering already-
- scheduled preds and succs (and associated latencies); try to place
- the insn in the cycles of this window checking for potential
- resource conflicts (using the DFA interface).
- Note: this is different from the cycle-scheduling of schedule_insns;
- here the insns are not scheduled monotonically top-down (nor bottom-
- up).
- 3. If failed in scheduling all insns - bump II++ and try again, unless
- II reaches an upper bound MaxII, in which case report failure.
- 5. If we succeeded in scheduling the loop within II cycles, we now
- generate prolog and epilog, decrease the counter of the loop, and
- perform modulo variable expansion for live ranges that span more than
- II cycles (i.e. use register copies to prevent a def from overwriting
- itself before reaching the use).
- SMS works with countable loops (1) whose control part can be easily
- decoupled from the rest of the loop and (2) whose loop count can
- be easily adjusted. This is because we peel a constant number of
- iterations into a prologue and epilogue for which we want to avoid
- emitting the control part, and a kernel which is to iterate that
- constant number of iterations less than the original loop. So the
- control part should be a set of insns clearly identified and having
- its own iv, not otherwise used in the loop (at-least for now), which
- initializes a register before the loop to the number of iterations.
- Currently SMS relies on the do-loop pattern to recognize such loops,
- where (1) the control part comprises of all insns defining and/or
- using a certain 'count' register and (2) the loop count can be
- adjusted by modifying this register prior to the loop.
- TODO: Rely on cfgloop analysis instead. */
- /* This page defines partial-schedule structures and functions for
- modulo scheduling. */
- typedef struct partial_schedule *partial_schedule_ptr;
- typedef struct ps_insn *ps_insn_ptr;
- /* The minimum (absolute) cycle that a node of ps was scheduled in. */
- #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
- /* The maximum (absolute) cycle that a node of ps was scheduled in. */
- #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
- /* Perform signed modulo, always returning a non-negative value. */
- #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
- /* The number of different iterations the nodes in ps span, assuming
- the stage boundaries are placed efficiently. */
- #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
- + 1 + ii - 1) / ii)
- /* The stage count of ps. */
- #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
- /* A single instruction in the partial schedule. */
- struct ps_insn
- {
- /* Identifies the instruction to be scheduled. Values smaller than
- the ddg's num_nodes refer directly to ddg nodes. A value of
- X - num_nodes refers to register move X. */
- int id;
- /* The (absolute) cycle in which the PS instruction is scheduled.
- Same as SCHED_TIME (node). */
- int cycle;
- /* The next/prev PS_INSN in the same row. */
- ps_insn_ptr next_in_row,
- prev_in_row;
- };
- /* Information about a register move that has been added to a partial
- schedule. */
- struct ps_reg_move_info
- {
- /* The source of the move is defined by the ps_insn with id DEF.
- The destination is used by the ps_insns with the ids in USES. */
- int def;
- sbitmap uses;
- /* The original form of USES' instructions used OLD_REG, but they
- should now use NEW_REG. */
- rtx old_reg;
- rtx new_reg;
- /* The number of consecutive stages that the move occupies. */
- int num_consecutive_stages;
- /* An instruction that sets NEW_REG to the correct value. The first
- move associated with DEF will have an rhs of OLD_REG; later moves
- use the result of the previous move. */
- rtx_insn *insn;
- };
- typedef struct ps_reg_move_info ps_reg_move_info;
- /* Holds the partial schedule as an array of II rows. Each entry of the
- array points to a linked list of PS_INSNs, which represents the
- instructions that are scheduled for that row. */
- struct partial_schedule
- {
- int ii; /* Number of rows in the partial schedule. */
- int history; /* Threshold for conflict checking using DFA. */
- /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
- ps_insn_ptr *rows;
- /* All the moves added for this partial schedule. Index X has
- a ps_insn id of X + g->num_nodes. */
- vec<ps_reg_move_info> reg_moves;
- /* rows_length[i] holds the number of instructions in the row.
- It is used only (as an optimization) to back off quickly from
- trying to schedule a node in a full row; that is, to avoid running
- through futile DFA state transitions. */
- int *rows_length;
-
- /* The earliest absolute cycle of an insn in the partial schedule. */
- int min_cycle;
- /* The latest absolute cycle of an insn in the partial schedule. */
- int max_cycle;
- ddg_ptr g; /* The DDG of the insns in the partial schedule. */
- int stage_count; /* The stage count of the partial schedule. */
- };
- static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
- static void free_partial_schedule (partial_schedule_ptr);
- static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
- void print_partial_schedule (partial_schedule_ptr, FILE *);
- static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
- static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
- int, int, sbitmap, sbitmap);
- static void rotate_partial_schedule (partial_schedule_ptr, int);
- void set_row_column_for_ps (partial_schedule_ptr);
- static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
- static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
- /* This page defines constants and structures for the modulo scheduling
- driver. */
- static int sms_order_nodes (ddg_ptr, int, int *, int *);
- static void set_node_sched_params (ddg_ptr);
- static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
- static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
- static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
- rtx, rtx);
- static int calculate_stage_count (partial_schedule_ptr, int);
- static void calculate_must_precede_follow (ddg_node_ptr, int, int,
- int, int, sbitmap, sbitmap, sbitmap);
- static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
- sbitmap, int, int *, int *, int *);
- static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
- sbitmap, int *, sbitmap, sbitmap);
- static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
- #define NODE_ASAP(node) ((node)->aux.count)
- #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
- #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
- #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
- #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
- #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
- /* The scheduling parameters held for each node. */
- typedef struct node_sched_params
- {
- int time; /* The absolute scheduling cycle. */
- int row; /* Holds time % ii. */
- int stage; /* Holds time / ii. */
- /* The column of a node inside the ps. If nodes u, v are on the same row,
- u will precede v if column (u) < column (v). */
- int column;
- } *node_sched_params_ptr;
- typedef struct node_sched_params node_sched_params;
- /* The following three functions are copied from the current scheduler
- code in order to use sched_analyze() for computing the dependencies.
- They are used when initializing the sched_info structure. */
- static const char *
- sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
- {
- static char tmp[80];
- sprintf (tmp, "i%4d", INSN_UID (insn));
- return tmp;
- }
- static void
- compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
- regset used ATTRIBUTE_UNUSED)
- {
- }
- static struct common_sched_info_def sms_common_sched_info;
- static struct sched_deps_info_def sms_sched_deps_info =
- {
- compute_jump_reg_dependencies,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL,
- 0, 0, 0
- };
- static struct haifa_sched_info sms_sched_info =
- {
- NULL,
- NULL,
- NULL,
- NULL,
- NULL,
- sms_print_insn,
- NULL,
- NULL, /* insn_finishes_block_p */
- NULL, NULL,
- NULL, NULL,
- 0, 0,
- NULL, NULL, NULL, NULL,
- NULL, NULL,
- 0
- };
- /* Partial schedule instruction ID in PS is a register move. Return
- information about it. */
- static struct ps_reg_move_info *
- ps_reg_move (partial_schedule_ptr ps, int id)
- {
- gcc_checking_assert (id >= ps->g->num_nodes);
- return &ps->reg_moves[id - ps->g->num_nodes];
- }
- /* Return the rtl instruction that is being scheduled by partial schedule
- instruction ID, which belongs to schedule PS. */
- static rtx_insn *
- ps_rtl_insn (partial_schedule_ptr ps, int id)
- {
- if (id < ps->g->num_nodes)
- return ps->g->nodes[id].insn;
- else
- return ps_reg_move (ps, id)->insn;
- }
- /* Partial schedule instruction ID, which belongs to PS, occurred in
- the original (unscheduled) loop. Return the first instruction
- in the loop that was associated with ps_rtl_insn (PS, ID).
- If the instruction had some notes before it, this is the first
- of those notes. */
- static rtx_insn *
- ps_first_note (partial_schedule_ptr ps, int id)
- {
- gcc_assert (id < ps->g->num_nodes);
- return ps->g->nodes[id].first_note;
- }
- /* Return the number of consecutive stages that are occupied by
- partial schedule instruction ID in PS. */
- static int
- ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
- {
- if (id < ps->g->num_nodes)
- return 1;
- else
- return ps_reg_move (ps, id)->num_consecutive_stages;
- }
- /* Given HEAD and TAIL which are the first and last insns in a loop;
- return the register which controls the loop. Return zero if it has
- more than one occurrence in the loop besides the control part or the
- do-loop pattern is not of the form we expect. */
- static rtx
- doloop_register_get (rtx_insn *head ATTRIBUTE_UNUSED, rtx_insn *tail ATTRIBUTE_UNUSED)
- {
- #ifdef HAVE_doloop_end
- rtx reg, condition;
- rtx_insn *insn, *first_insn_not_to_check;
- if (!JUMP_P (tail))
- return NULL_RTX;
- /* TODO: Free SMS's dependence on doloop_condition_get. */
- condition = doloop_condition_get (tail);
- if (! condition)
- return NULL_RTX;
- if (REG_P (XEXP (condition, 0)))
- reg = XEXP (condition, 0);
- else if (GET_CODE (XEXP (condition, 0)) == PLUS
- && REG_P (XEXP (XEXP (condition, 0), 0)))
- reg = XEXP (XEXP (condition, 0), 0);
- else
- gcc_unreachable ();
- /* Check that the COUNT_REG has no other occurrences in the loop
- until the decrement. We assume the control part consists of
- either a single (parallel) branch-on-count or a (non-parallel)
- branch immediately preceded by a single (decrement) insn. */
- first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
- : prev_nondebug_insn (tail));
- for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
- if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
- {
- if (dump_file)
- {
- fprintf (dump_file, "SMS count_reg found ");
- print_rtl_single (dump_file, reg);
- fprintf (dump_file, " outside control in insn:\n");
- print_rtl_single (dump_file, insn);
- }
- return NULL_RTX;
- }
- return reg;
- #else
- return NULL_RTX;
- #endif
- }
- /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
- that the number of iterations is a compile-time constant. If so,
- return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
- this constant. Otherwise return 0. */
- static rtx_insn *
- const_iteration_count (rtx count_reg, basic_block pre_header,
- int64_t * count)
- {
- rtx_insn *insn;
- rtx_insn *head, *tail;
- if (! pre_header)
- return NULL;
- get_ebb_head_tail (pre_header, pre_header, &head, &tail);
- for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
- if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
- rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
- {
- rtx pat = single_set (insn);
- if (CONST_INT_P (SET_SRC (pat)))
- {
- *count = INTVAL (SET_SRC (pat));
- return insn;
- }
- return NULL;
- }
- return NULL;
- }
- /* A very simple resource-based lower bound on the initiation interval.
- ??? Improve the accuracy of this bound by considering the
- utilization of various units. */
- static int
- res_MII (ddg_ptr g)
- {
- if (targetm.sched.sms_res_mii)
- return targetm.sched.sms_res_mii (g);
- return ((g->num_nodes - g->num_debug) / issue_rate);
- }
- /* A vector that contains the sched data for each ps_insn. */
- static vec<node_sched_params> node_sched_param_vec;
- /* Allocate sched_params for each node and initialize it. */
- static void
- set_node_sched_params (ddg_ptr g)
- {
- node_sched_param_vec.truncate (0);
- node_sched_param_vec.safe_grow_cleared (g->num_nodes);
- }
- /* Make sure that node_sched_param_vec has an entry for every move in PS. */
- static void
- extend_node_sched_params (partial_schedule_ptr ps)
- {
- node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
- + ps->reg_moves.length ());
- }
- /* Update the sched_params (time, row and stage) for node U using the II,
- the CYCLE of U and MIN_CYCLE.
- We're not simply taking the following
- SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
- because the stages may not be aligned on cycle 0. */
- static void
- update_node_sched_params (int u, int ii, int cycle, int min_cycle)
- {
- int sc_until_cycle_zero;
- int stage;
- SCHED_TIME (u) = cycle;
- SCHED_ROW (u) = SMODULO (cycle, ii);
- /* The calculation of stage count is done adding the number
- of stages before cycle zero and after cycle zero. */
- sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
- if (SCHED_TIME (u) < 0)
- {
- stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
- SCHED_STAGE (u) = sc_until_cycle_zero - stage;
- }
- else
- {
- stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
- SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
- }
- }
- static void
- print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
- {
- int i;
- if (! file)
- return;
- for (i = 0; i < num_nodes; i++)
- {
- node_sched_params_ptr nsp = SCHED_PARAMS (i);
- fprintf (file, "Node = %d; INSN = %d\n", i,
- INSN_UID (ps_rtl_insn (ps, i)));
- fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
- fprintf (file, " time = %d:\n", nsp->time);
- fprintf (file, " stage = %d:\n", nsp->stage);
- }
- }
- /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
- static void
- set_columns_for_row (partial_schedule_ptr ps, int row)
- {
- ps_insn_ptr cur_insn;
- int column;
- column = 0;
- for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
- SCHED_COLUMN (cur_insn->id) = column++;
- }
- /* Set SCHED_COLUMN for each instruction in PS. */
- static void
- set_columns_for_ps (partial_schedule_ptr ps)
- {
- int row;
- for (row = 0; row < ps->ii; row++)
- set_columns_for_row (ps, row);
- }
- /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
- Its single predecessor has already been scheduled, as has its
- ddg node successors. (The move may have also another move as its
- successor, in which case that successor will be scheduled later.)
- The move is part of a chain that satisfies register dependencies
- between a producing ddg node and various consuming ddg nodes.
- If some of these dependencies have a distance of 1 (meaning that
- the use is upward-exposed) then DISTANCE1_USES is nonnull and
- contains the set of uses with distance-1 dependencies.
- DISTANCE1_USES is null otherwise.
- MUST_FOLLOW is a scratch bitmap that is big enough to hold
- all current ps_insn ids.
- Return true on success. */
- static bool
- schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
- sbitmap distance1_uses, sbitmap must_follow)
- {
- unsigned int u;
- int this_time, this_distance, this_start, this_end, this_latency;
- int start, end, c, ii;
- sbitmap_iterator sbi;
- ps_reg_move_info *move;
- rtx_insn *this_insn;
- ps_insn_ptr psi;
- move = ps_reg_move (ps, i_reg_move);
- ii = ps->ii;
- if (dump_file)
- {
- fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
- ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
- PS_MIN_CYCLE (ps));
- print_rtl_single (dump_file, move->insn);
- fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
- fprintf (dump_file, "=========== =========== =====\n");
- }
- start = INT_MIN;
- end = INT_MAX;
- /* For dependencies of distance 1 between a producer ddg node A
- and consumer ddg node B, we have a chain of dependencies:
- A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
- where Mi is the ith move. For dependencies of distance 0 between
- a producer ddg node A and consumer ddg node C, we have a chain of
- dependencies:
- A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
- where Mi' occupies the same position as Mi but occurs a stage later.
- We can only schedule each move once, so if we have both types of
- chain, we model the second as:
- A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
- First handle the dependencies between the previously-scheduled
- predecessor and the move. */
- this_insn = ps_rtl_insn (ps, move->def);
- this_latency = insn_latency (this_insn, move->insn);
- this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
- this_time = SCHED_TIME (move->def) - this_distance * ii;
- this_start = this_time + this_latency;
- this_end = this_time + ii;
- if (dump_file)
- fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
- this_start, this_end, SCHED_TIME (move->def),
- INSN_UID (this_insn), this_latency, this_distance,
- INSN_UID (move->insn));
- if (start < this_start)
- start = this_start;
- if (end > this_end)
- end = this_end;
- /* Handle the dependencies between the move and previously-scheduled
- successors. */
- EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
- {
- this_insn = ps_rtl_insn (ps, u);
- this_latency = insn_latency (move->insn, this_insn);
- if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
- this_distance = -1;
- else
- this_distance = 0;
- this_time = SCHED_TIME (u) + this_distance * ii;
- this_start = this_time - ii;
- this_end = this_time - this_latency;
- if (dump_file)
- fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
- this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
- this_latency, this_distance, INSN_UID (this_insn));
- if (start < this_start)
- start = this_start;
- if (end > this_end)
- end = this_end;
- }
- if (dump_file)
- {
- fprintf (dump_file, "----------- ----------- -----\n");
- fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
- }
- bitmap_clear (must_follow);
- bitmap_set_bit (must_follow, move->def);
- start = MAX (start, end - (ii - 1));
- for (c = end; c >= start; c--)
- {
- psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
- move->uses, must_follow);
- if (psi)
- {
- update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
- if (dump_file)
- fprintf (dump_file, "\nScheduled register move INSN %d at"
- " time %d, row %d\n\n", INSN_UID (move->insn), c,
- SCHED_ROW (i_reg_move));
- return true;
- }
- }
- if (dump_file)
- fprintf (dump_file, "\nNo available slot\n\n");
- return false;
- }
- /*
- Breaking intra-loop register anti-dependences:
- Each intra-loop register anti-dependence implies a cross-iteration true
- dependence of distance 1. Therefore, we can remove such false dependencies
- and figure out if the partial schedule broke them by checking if (for a
- true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
- if so generate a register move. The number of such moves is equal to:
- SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
- nreg_moves = ----------------------------------- + 1 - { dependence.
- ii { 1 if not.
- */
- static bool
- schedule_reg_moves (partial_schedule_ptr ps)
- {
- ddg_ptr g = ps->g;
- int ii = ps->ii;
- int i;
- for (i = 0; i < g->num_nodes; i++)
- {
- ddg_node_ptr u = &g->nodes[i];
- ddg_edge_ptr e;
- int nreg_moves = 0, i_reg_move;
- rtx prev_reg, old_reg;
- int first_move;
- int distances[2];
- sbitmap must_follow;
- sbitmap distance1_uses;
- rtx set = single_set (u->insn);
-
- /* Skip instructions that do not set a register. */
- if ((set && !REG_P (SET_DEST (set))))
- continue;
-
- /* Compute the number of reg_moves needed for u, by looking at life
- ranges started at u (excluding self-loops). */
- distances[0] = distances[1] = false;
- for (e = u->out; e; e = e->next_out)
- if (e->type == TRUE_DEP && e->dest != e->src)
- {
- int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
- - SCHED_TIME (e->src->cuid)) / ii;
- if (e->distance == 1)
- nreg_moves4e = (SCHED_TIME (e->dest->cuid)
- - SCHED_TIME (e->src->cuid) + ii) / ii;
- /* If dest precedes src in the schedule of the kernel, then dest
- will read before src writes and we can save one reg_copy. */
- if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
- && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
- nreg_moves4e--;
- if (nreg_moves4e >= 1)
- {
- /* !single_set instructions are not supported yet and
- thus we do not except to encounter them in the loop
- except from the doloop part. For the latter case
- we assume no regmoves are generated as the doloop
- instructions are tied to the branch with an edge. */
- gcc_assert (set);
- /* If the instruction contains auto-inc register then
- validate that the regmov is being generated for the
- target regsiter rather then the inc'ed register. */
- gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
- }
-
- if (nreg_moves4e)
- {
- gcc_assert (e->distance < 2);
- distances[e->distance] = true;
- }
- nreg_moves = MAX (nreg_moves, nreg_moves4e);
- }
- if (nreg_moves == 0)
- continue;
- /* Create NREG_MOVES register moves. */
- first_move = ps->reg_moves.length ();
- ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
- extend_node_sched_params (ps);
- /* Record the moves associated with this node. */
- first_move += ps->g->num_nodes;
- /* Generate each move. */
- old_reg = prev_reg = SET_DEST (single_set (u->insn));
- for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
- {
- ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
- move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
- move->uses = sbitmap_alloc (first_move + nreg_moves);
- move->old_reg = old_reg;
- move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
- move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
- move->insn = as_a <rtx_insn *> (gen_move_insn (move->new_reg,
- copy_rtx (prev_reg)));
- bitmap_clear (move->uses);
- prev_reg = move->new_reg;
- }
- distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
- if (distance1_uses)
- bitmap_clear (distance1_uses);
- /* Every use of the register defined by node may require a different
- copy of this register, depending on the time the use is scheduled.
- Record which uses require which move results. */
- for (e = u->out; e; e = e->next_out)
- if (e->type == TRUE_DEP && e->dest != e->src)
- {
- int dest_copy = (SCHED_TIME (e->dest->cuid)
- - SCHED_TIME (e->src->cuid)) / ii;
- if (e->distance == 1)
- dest_copy = (SCHED_TIME (e->dest->cuid)
- - SCHED_TIME (e->src->cuid) + ii) / ii;
- if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
- && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
- dest_copy--;
- if (dest_copy)
- {
- ps_reg_move_info *move;
- move = ps_reg_move (ps, first_move + dest_copy - 1);
- bitmap_set_bit (move->uses, e->dest->cuid);
- if (e->distance == 1)
- bitmap_set_bit (distance1_uses, e->dest->cuid);
- }
- }
- must_follow = sbitmap_alloc (first_move + nreg_moves);
- for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
- if (!schedule_reg_move (ps, first_move + i_reg_move,
- distance1_uses, must_follow))
- break;
- sbitmap_free (must_follow);
- if (distance1_uses)
- sbitmap_free (distance1_uses);
- if (i_reg_move < nreg_moves)
- return false;
- }
- return true;
- }
- /* Emit the moves associatied with PS. Apply the substitutions
- associated with them. */
- static void
- apply_reg_moves (partial_schedule_ptr ps)
- {
- ps_reg_move_info *move;
- int i;
- FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
- {
- unsigned int i_use;
- sbitmap_iterator sbi;
- EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
- {
- replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
- df_insn_rescan (ps->g->nodes[i_use].insn);
- }
- }
- }
- /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
- SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
- will move to cycle zero. */
- static void
- reset_sched_times (partial_schedule_ptr ps, int amount)
- {
- int row;
- int ii = ps->ii;
- ps_insn_ptr crr_insn;
- for (row = 0; row < ii; row++)
- for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
- {
- int u = crr_insn->id;
- int normalized_time = SCHED_TIME (u) - amount;
- int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
- if (dump_file)
- {
- /* Print the scheduling times after the rotation. */
- rtx_insn *insn = ps_rtl_insn (ps, u);
- fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
- "crr_insn->cycle=%d, min_cycle=%d", u,
- INSN_UID (insn), normalized_time, new_min_cycle);
- if (JUMP_P (insn))
- fprintf (dump_file, " (branch)");
- fprintf (dump_file, "\n");
- }
-
- gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
- gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
- crr_insn->cycle = normalized_time;
- update_node_sched_params (u, ii, normalized_time, new_min_cycle);
- }
- }
-
- /* Permute the insns according to their order in PS, from row 0 to
- row ii-1, and position them right before LAST. This schedules
- the insns of the loop kernel. */
- static void
- permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
- {
- int ii = ps->ii;
- int row;
- ps_insn_ptr ps_ij;
- for (row = 0; row < ii ; row++)
- for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
- {
- rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
- if (PREV_INSN (last) != insn)
- {
- if (ps_ij->id < ps->g->num_nodes)
- reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
- PREV_INSN (last));
- else
- add_insn_before (insn, last, NULL);
- }
- }
- }
- /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
- respectively only if cycle C falls on the border of the scheduling
- window boundaries marked by START and END cycles. STEP is the
- direction of the window. */
- static inline void
- set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
- sbitmap *tmp_precede, sbitmap must_precede, int c,
- int start, int end, int step)
- {
- *tmp_precede = NULL;
- *tmp_follow = NULL;
- if (c == start)
- {
- if (step == 1)
- *tmp_precede = must_precede;
- else /* step == -1. */
- *tmp_follow = must_follow;
- }
- if (c == end - step)
- {
- if (step == 1)
- *tmp_follow = must_follow;
- else /* step == -1. */
- *tmp_precede = must_precede;
- }
- }
- /* Return True if the branch can be moved to row ii-1 while
- normalizing the partial schedule PS to start from cycle zero and thus
- optimize the SC. Otherwise return False. */
- static bool
- optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
- {
- int amount = PS_MIN_CYCLE (ps);
- sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
- int start, end, step;
- int ii = ps->ii;
- bool ok = false;
- int stage_count, stage_count_curr;
- /* Compare the SC after normalization and SC after bringing the branch
- to row ii-1. If they are equal just bail out. */
- stage_count = calculate_stage_count (ps, amount);
- stage_count_curr =
- calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
- if (stage_count == stage_count_curr)
- {
- if (dump_file)
- fprintf (dump_file, "SMS SC already optimized.\n");
- ok = false;
- goto clear;
- }
- if (dump_file)
- {
- fprintf (dump_file, "SMS Trying to optimize branch location\n");
- fprintf (dump_file, "SMS partial schedule before trial:\n");
- print_partial_schedule (ps, dump_file);
- }
- /* First, normalize the partial scheduling. */
- reset_sched_times (ps, amount);
- rotate_partial_schedule (ps, amount);
- if (dump_file)
- {
- fprintf (dump_file,
- "SMS partial schedule after normalization (ii, %d, SC %d):\n",
- ii, stage_count);
- print_partial_schedule (ps, dump_file);
- }
- if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
- {
- ok = true;
- goto clear;
- }
- bitmap_ones (sched_nodes);
- /* Calculate the new placement of the branch. It should be in row
- ii-1 and fall into it's scheduling window. */
- if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
- &step, &end) == 0)
- {
- bool success;
- ps_insn_ptr next_ps_i;
- int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
- int row = SMODULO (branch_cycle, ps->ii);
- int num_splits = 0;
- sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
- int c;
- if (dump_file)
- fprintf (dump_file, "\nTrying to schedule node %d "
- "INSN = %d in (%d .. %d) step %d\n",
- g->closing_branch->cuid,
- (INSN_UID (g->closing_branch->insn)), start, end, step);
- gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
- if (step == 1)
- {
- c = start + ii - SMODULO (start, ii) - 1;
- gcc_assert (c >= start);
- if (c >= end)
- {
- ok = false;
- if (dump_file)
- fprintf (dump_file,
- "SMS failed to schedule branch at cycle: %d\n", c);
- goto clear;
- }
- }
- else
- {
- c = start - SMODULO (start, ii) - 1;
- gcc_assert (c <= start);
- if (c <= end)
- {
- if (dump_file)
- fprintf (dump_file,
- "SMS failed to schedule branch at cycle: %d\n", c);
- ok = false;
- goto clear;
- }
- }
- must_precede = sbitmap_alloc (g->num_nodes);
- must_follow = sbitmap_alloc (g->num_nodes);
- /* Try to schedule the branch is it's new cycle. */
- calculate_must_precede_follow (g->closing_branch, start, end,
- step, ii, sched_nodes,
- must_precede, must_follow);
- set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
- must_precede, c, start, end, step);
- /* Find the element in the partial schedule related to the closing
- branch so we can remove it from it's current cycle. */
- for (next_ps_i = ps->rows[row];
- next_ps_i; next_ps_i = next_ps_i->next_in_row)
- if (next_ps_i->id == g->closing_branch->cuid)
- break;
- remove_node_from_ps (ps, next_ps_i);
- success =
- try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
- sched_nodes, &num_splits,
- tmp_precede, tmp_follow);
- gcc_assert (num_splits == 0);
- if (!success)
- {
- if (dump_file)
- fprintf (dump_file,
- "SMS failed to schedule branch at cycle: %d, "
- "bringing it back to cycle %d\n", c, branch_cycle);
- /* The branch was failed to be placed in row ii - 1.
- Put it back in it's original place in the partial
- schedualing. */
- set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
- must_precede, branch_cycle, start, end,
- step);
- success =
- try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
- branch_cycle, sched_nodes,
- &num_splits, tmp_precede,
- tmp_follow);
- gcc_assert (success && (num_splits == 0));
- ok = false;
- }
- else
- {
- /* The branch is placed in row ii - 1. */
- if (dump_file)
- fprintf (dump_file,
- "SMS success in moving branch to cycle %d\n", c);
- update_node_sched_params (g->closing_branch->cuid, ii, c,
- PS_MIN_CYCLE (ps));
- ok = true;
- }
- free (must_precede);
- free (must_follow);
- }
- clear:
- free (sched_nodes);
- return ok;
- }
- static void
- duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
- int to_stage, rtx count_reg)
- {
- int row;
- ps_insn_ptr ps_ij;
- for (row = 0; row < ps->ii; row++)
- for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
- {
- int u = ps_ij->id;
- int first_u, last_u;
- rtx_insn *u_insn;
- /* Do not duplicate any insn which refers to count_reg as it
- belongs to the control part.
- The closing branch is scheduled as well and thus should
- be ignored.
- TODO: This should be done by analyzing the control part of
- the loop. */
- u_insn = ps_rtl_insn (ps, u);
- if (reg_mentioned_p (count_reg, u_insn)
- || JUMP_P (u_insn))
- continue;
- first_u = SCHED_STAGE (u);
- last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
- if (from_stage <= last_u && to_stage >= first_u)
- {
- if (u < ps->g->num_nodes)
- duplicate_insn_chain (ps_first_note (ps, u), u_insn);
- else
- emit_insn (copy_rtx (PATTERN (u_insn)));
- }
- }
- }
- /* Generate the instructions (including reg_moves) for prolog & epilog. */
- static void
- generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
- rtx count_reg, rtx count_init)
- {
- int i;
- int last_stage = PS_STAGE_COUNT (ps) - 1;
- edge e;
- /* Generate the prolog, inserting its insns on the loop-entry edge. */
- start_sequence ();
- if (!count_init)
- {
- /* Generate instructions at the beginning of the prolog to
- adjust the loop count by STAGE_COUNT. If loop count is constant
- (count_init), this constant is adjusted by STAGE_COUNT in
- generate_prolog_epilog function. */
- rtx sub_reg = NULL_RTX;
- sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
- gen_int_mode (last_stage,
- GET_MODE (count_reg)),
- count_reg, 1, OPTAB_DIRECT);
- gcc_assert (REG_P (sub_reg));
- if (REGNO (sub_reg) != REGNO (count_reg))
- emit_move_insn (count_reg, sub_reg);
- }
- for (i = 0; i < last_stage; i++)
- duplicate_insns_of_cycles (ps, 0, i, count_reg);
- /* Put the prolog on the entry edge. */
- e = loop_preheader_edge (loop);
- split_edge_and_insert (e, get_insns ());
- if (!flag_resched_modulo_sched)
- e->dest->flags |= BB_DISABLE_SCHEDULE;
- end_sequence ();
- /* Generate the epilog, inserting its insns on the loop-exit edge. */
- start_sequence ();
- for (i = 0; i < last_stage; i++)
- duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
- /* Put the epilogue on the exit edge. */
- gcc_assert (single_exit (loop));
- e = single_exit (loop);
- split_edge_and_insert (e, get_insns ());
- if (!flag_resched_modulo_sched)
- e->dest->flags |= BB_DISABLE_SCHEDULE;
- end_sequence ();
- }
- /* Mark LOOP as software pipelined so the later
- scheduling passes don't touch it. */
- static void
- mark_loop_unsched (struct loop *loop)
- {
- unsigned i;
- basic_block *bbs = get_loop_body (loop);
- for (i = 0; i < loop->num_nodes; i++)
- bbs[i]->flags |= BB_DISABLE_SCHEDULE;
- free (bbs);
- }
- /* Return true if all the BBs of the loop are empty except the
- loop header. */
- static bool
- loop_single_full_bb_p (struct loop *loop)
- {
- unsigned i;
- basic_block *bbs = get_loop_body (loop);
- for (i = 0; i < loop->num_nodes ; i++)
- {
- rtx_insn *head, *tail;
- bool empty_bb = true;
- if (bbs[i] == loop->header)
- continue;
- /* Make sure that basic blocks other than the header
- have only notes labels or jumps. */
- get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
- for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
- {
- if (NOTE_P (head) || LABEL_P (head)
- || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
- continue;
- empty_bb = false;
- break;
- }
- if (! empty_bb)
- {
- free (bbs);
- return false;
- }
- }
- free (bbs);
- return true;
- }
- /* Dump file:line from INSN's location info to dump_file. */
- static void
- dump_insn_location (rtx_insn *insn)
- {
- if (dump_file && INSN_HAS_LOCATION (insn))
- {
- expanded_location xloc = insn_location (insn);
- fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
- }
- }
- /* A simple loop from SMS point of view; it is a loop that is composed of
- either a single basic block or two BBs - a header and a latch. */
- #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
- && (EDGE_COUNT (loop->latch->preds) == 1) \
- && (EDGE_COUNT (loop->latch->succs) == 1))
- /* Return true if the loop is in its canonical form and false if not.
- i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
- static bool
- loop_canon_p (struct loop *loop)
- {
- if (loop->inner || !loop_outer (loop))
- {
- if (dump_file)
- fprintf (dump_file, "SMS loop inner or !loop_outer\n");
- return false;
- }
- if (!single_exit (loop))
- {
- if (dump_file)
- {
- rtx_insn *insn = BB_END (loop->header);
- fprintf (dump_file, "SMS loop many exits");
- dump_insn_location (insn);
- fprintf (dump_file, "\n");
- }
- return false;
- }
- if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
- {
- if (dump_file)
- {
- rtx_insn *insn = BB_END (loop->header);
- fprintf (dump_file, "SMS loop many BBs.");
- dump_insn_location (insn);
- fprintf (dump_file, "\n");
- }
- return false;
- }
- return true;
- }
- /* If there are more than one entry for the loop,
- make it one by splitting the first entry edge and
- redirecting the others to the new BB. */
- static void
- canon_loop (struct loop *loop)
- {
- edge e;
- edge_iterator i;
- /* Avoid annoying special cases of edges going to exit
- block. */
- FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
- if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
- split_edge (e);
- if (loop->latch == loop->header
- || EDGE_COUNT (loop->latch->succs) > 1)
- {
- FOR_EACH_EDGE (e, i, loop->header->preds)
- if (e->src == loop->latch)
- break;
- split_edge (e);
- }
- }
- /* Setup infos. */
- static void
- setup_sched_infos (void)
- {
- memcpy (&sms_common_sched_info, &haifa_common_sched_info,
- sizeof (sms_common_sched_info));
- sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
- common_sched_info = &sms_common_sched_info;
- sched_deps_info = &sms_sched_deps_info;
- current_sched_info = &sms_sched_info;
- }
- /* Probability in % that the sms-ed loop rolls enough so that optimized
- version may be entered. Just a guess. */
- #define PROB_SMS_ENOUGH_ITERATIONS 80
- /* Used to calculate the upper bound of ii. */
- #define MAXII_FACTOR 2
- /* Main entry point, perform SMS scheduling on the loops of the function
- that consist of single basic blocks. */
- static void
- sms_schedule (void)
- {
- rtx_insn *insn;
- ddg_ptr *g_arr, g;
- int * node_order;
- int maxii, max_asap;
- partial_schedule_ptr ps;
- basic_block bb = NULL;
- struct loop *loop;
- basic_block condition_bb = NULL;
- edge latch_edge;
- gcov_type trip_count = 0;
- loop_optimizer_init (LOOPS_HAVE_PREHEADERS
- | LOOPS_HAVE_RECORDED_EXITS);
- if (number_of_loops (cfun) <= 1)
- {
- loop_optimizer_finalize ();
- return; /* There are no loops to schedule. */
- }
- /* Initialize issue_rate. */
- if (targetm.sched.issue_rate)
- {
- int temp = reload_completed;
- reload_completed = 1;
- issue_rate = targetm.sched.issue_rate ();
- reload_completed = temp;
- }
- else
- issue_rate = 1;
- /* Initialize the scheduler. */
- setup_sched_infos ();
- haifa_sched_init ();
- /* Allocate memory to hold the DDG array one entry for each loop.
- We use loop->num as index into this array. */
- g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
- if (dump_file)
- {
- fprintf (dump_file, "\n\nSMS analysis phase\n");
- fprintf (dump_file, "===================\n\n");
- }
- /* Build DDGs for all the relevant loops and hold them in G_ARR
- indexed by the loop index. */
- FOR_EACH_LOOP (loop, 0)
- {
- rtx_insn *head, *tail;
- rtx count_reg;
- /* For debugging. */
- if (dbg_cnt (sms_sched_loop) == false)
- {
- if (dump_file)
- fprintf (dump_file, "SMS reached max limit... \n");
- break;
- }
- if (dump_file)
- {
- rtx_insn *insn = BB_END (loop->header);
- fprintf (dump_file, "SMS loop num: %d", loop->num);
- dump_insn_location (insn);
- fprintf (dump_file, "\n");
- }
- if (! loop_canon_p (loop))
- continue;
- if (! loop_single_full_bb_p (loop))
- {
- if (dump_file)
- fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
- continue;
- }
- bb = loop->header;
- get_ebb_head_tail (bb, bb, &head, &tail);
- latch_edge = loop_latch_edge (loop);
- gcc_assert (single_exit (loop));
- if (single_exit (loop)->count)
- trip_count = latch_edge->count / single_exit (loop)->count;
- /* Perform SMS only on loops that their average count is above threshold. */
- if ( latch_edge->count
- && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
- {
- if (dump_file)
- {
- dump_insn_location (tail);
- fprintf (dump_file, "\nSMS single-bb-loop\n");
- if (profile_info && flag_branch_probabilities)
- {
- fprintf (dump_file, "SMS loop-count ");
- fprintf (dump_file, "%"PRId64,
- (int64_t) bb->count);
- fprintf (dump_file, "\n");
- fprintf (dump_file, "SMS trip-count ");
- fprintf (dump_file, "%"PRId64,
- (int64_t) trip_count);
- fprintf (dump_file, "\n");
- fprintf (dump_file, "SMS profile-sum-max ");
- fprintf (dump_file, "%"PRId64,
- (int64_t) profile_info->sum_max);
- fprintf (dump_file, "\n");
- }
- }
- continue;
- }
- /* Make sure this is a doloop. */
- if ( !(count_reg = doloop_register_get (head, tail)))
- {
- if (dump_file)
- fprintf (dump_file, "SMS doloop_register_get failed\n");
- continue;
- }
- /* Don't handle BBs with calls or barriers
- or !single_set with the exception of instructions that include
- count_reg---these instructions are part of the control part
- that do-loop recognizes.
- ??? Should handle insns defining subregs. */
- for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
- {
- rtx set;
- if (CALL_P (insn)
- || BARRIER_P (insn)
- || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
- && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
- && !reg_mentioned_p (count_reg, insn))
- || (INSN_P (insn) && (set = single_set (insn))
- && GET_CODE (SET_DEST (set)) == SUBREG))
- break;
- }
- if (insn != NEXT_INSN (tail))
- {
- if (dump_file)
- {
- if (CALL_P (insn))
- fprintf (dump_file, "SMS loop-with-call\n");
- else if (BARRIER_P (insn))
- fprintf (dump_file, "SMS loop-with-barrier\n");
- else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
- && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
- fprintf (dump_file, "SMS loop-with-not-single-set\n");
- else
- fprintf (dump_file, "SMS loop with subreg in lhs\n");
- print_rtl_single (dump_file, insn);
- }
- continue;
- }
- /* Always schedule the closing branch with the rest of the
- instructions. The branch is rotated to be in row ii-1 at the
- end of the scheduling procedure to make sure it's the last
- instruction in the iteration. */
- if (! (g = create_ddg (bb, 1)))
- {
- if (dump_file)
- fprintf (dump_file, "SMS create_ddg failed\n");
- continue;
- }
- g_arr[loop->num] = g;
- if (dump_file)
- fprintf (dump_file, "...OK\n");
- }
- if (dump_file)
- {
- fprintf (dump_file, "\nSMS transformation phase\n");
- fprintf (dump_file, "=========================\n\n");
- }
- /* We don't want to perform SMS on new loops - created by versioning. */
- FOR_EACH_LOOP (loop, 0)
- {
- rtx_insn *head, *tail;
- rtx count_reg;
- rtx_insn *count_init;
- int mii, rec_mii, stage_count, min_cycle;
- int64_t loop_count = 0;
- bool opt_sc_p;
- if (! (g = g_arr[loop->num]))
- continue;
- if (dump_file)
- {
- rtx_insn *insn = BB_END (loop->header);
- fprintf (dump_file, "SMS loop num: %d", loop->num);
- dump_insn_location (insn);
- fprintf (dump_file, "\n");
- print_ddg (dump_file, g);
- }
- get_ebb_head_tail (loop->header, loop->header, &head, &tail);
- latch_edge = loop_latch_edge (loop);
- gcc_assert (single_exit (loop));
- if (single_exit (loop)->count)
- trip_count = latch_edge->count / single_exit (loop)->count;
- if (dump_file)
- {
- dump_insn_location (tail);
- fprintf (dump_file, "\nSMS single-bb-loop\n");
- if (profile_info && flag_branch_probabilities)
- {
- fprintf (dump_file, "SMS loop-count ");
- fprintf (dump_file, "%"PRId64,
- (int64_t) bb->count);
- fprintf (dump_file, "\n");
- fprintf (dump_file, "SMS profile-sum-max ");
- fprintf (dump_file, "%"PRId64,
- (int64_t) profile_info->sum_max);
- fprintf (dump_file, "\n");
- }
- fprintf (dump_file, "SMS doloop\n");
- fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
- fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
- fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
- }
- /* In case of th loop have doloop register it gets special
- handling. */
- count_init = NULL;
- if ((count_reg = doloop_register_get (head, tail)))
- {
- basic_block pre_header;
- pre_header = loop_preheader_edge (loop)->src;
- count_init = const_iteration_count (count_reg, pre_header,
- &loop_count);
- }
- gcc_assert (count_reg);
- if (dump_file && count_init)
- {
- fprintf (dump_file, "SMS const-doloop ");
- fprintf (dump_file, "%"PRId64,
- loop_count);
- fprintf (dump_file, "\n");
- }
- node_order = XNEWVEC (int, g->num_nodes);
- mii = 1; /* Need to pass some estimate of mii. */
- rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
- mii = MAX (res_MII (g), rec_mii);
- maxii = MAX (max_asap, MAXII_FACTOR * mii);
- if (dump_file)
- fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
- rec_mii, mii, maxii);
- for (;;)
- {
- set_node_sched_params (g);
- stage_count = 0;
- opt_sc_p = false;
- ps = sms_schedule_by_order (g, mii, maxii, node_order);
- if (ps)
- {
- /* Try to achieve optimized SC by normalizing the partial
- schedule (having the cycles start from cycle zero).
- The branch location must be placed in row ii-1 in the
- final scheduling. If failed, shift all instructions to
- position the branch in row ii-1. */
- opt_sc_p = optimize_sc (ps, g);
- if (opt_sc_p)
- stage_count = calculate_stage_count (ps, 0);
- else
- {
- /* Bring the branch to cycle ii-1. */
- int amount = (SCHED_TIME (g->closing_branch->cuid)
- - (ps->ii - 1));
- if (dump_file)
- fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
- stage_count = calculate_stage_count (ps, amount);
- }
- gcc_assert (stage_count >= 1);
- }
- /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
- 1 means that there is no interleaving between iterations thus
- we let the scheduling passes do the job in this case. */
- if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
- || (count_init && (loop_count <= stage_count))
- || (flag_branch_probabilities && (trip_count <= stage_count)))
- {
- if (dump_file)
- {
- fprintf (dump_file, "SMS failed... \n");
- fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
- " loop-count=", stage_count);
- fprintf (dump_file, "%"PRId64, loop_count);
- fprintf (dump_file, ", trip-count=");
- fprintf (dump_file, "%"PRId64, trip_count);
- fprintf (dump_file, ")\n");
- }
- break;
- }
- if (!opt_sc_p)
- {
- /* Rotate the partial schedule to have the branch in row ii-1. */
- int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
-
- reset_sched_times (ps, amount);
- rotate_partial_schedule (ps, amount);
- }
-
- set_columns_for_ps (ps);
- min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
- if (!schedule_reg_moves (ps))
- {
- mii = ps->ii + 1;
- free_partial_schedule (ps);
- continue;
- }
- /* Moves that handle incoming values might have been added
- to a new first stage. Bump the stage count if so.
- ??? Perhaps we could consider rotating the schedule here
- instead? */
- if (PS_MIN_CYCLE (ps) < min_cycle)
- {
- reset_sched_times (ps, 0);
- stage_count++;
- }
- /* The stage count should now be correct without rotation. */
- gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
- PS_STAGE_COUNT (ps) = stage_count;
- canon_loop (loop);
- if (dump_file)
- {
- dump_insn_location (tail);
- fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
- ps->ii, stage_count);
- print_partial_schedule (ps, dump_file);
- }
-
- /* case the BCT count is not known , Do loop-versioning */
- if (count_reg && ! count_init)
- {
- rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
- gen_int_mode (stage_count,
- GET_MODE (count_reg)));
- unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
- * REG_BR_PROB_BASE) / 100;
- loop_version (loop, comp_rtx, &condition_bb,
- prob, prob, REG_BR_PROB_BASE - prob,
- true);
- }
- /* Set new iteration count of loop kernel. */
- if (count_reg && count_init)
- SET_SRC (single_set (count_init)) = GEN_INT (loop_count
- - stage_count + 1);
- /* Now apply the scheduled kernel to the RTL of the loop. */
- permute_partial_schedule (ps, g->closing_branch->first_note);
- /* Mark this loop as software pipelined so the later
- scheduling passes don't touch it. */
- if (! flag_resched_modulo_sched)
- mark_loop_unsched (loop);
-
- /* The life-info is not valid any more. */
- df_set_bb_dirty (g->bb);
- apply_reg_moves (ps);
- if (dump_file)
- print_node_sched_params (dump_file, g->num_nodes, ps);
- /* Generate prolog and epilog. */
- generate_prolog_epilog (ps, loop, count_reg, count_init);
- break;
- }
- free_partial_schedule (ps);
- node_sched_param_vec.release ();
- free (node_order);
- free_ddg (g);
- }
- free (g_arr);
- /* Release scheduler data, needed until now because of DFA. */
- haifa_sched_finish ();
- loop_optimizer_finalize ();
- }
- /* The SMS scheduling algorithm itself
- -----------------------------------
- Input: 'O' an ordered list of insns of a loop.
- Output: A scheduling of the loop - kernel, prolog, and epilogue.
- 'Q' is the empty Set
- 'PS' is the partial schedule; it holds the currently scheduled nodes with
- their cycle/slot.
- 'PSP' previously scheduled predecessors.
- 'PSS' previously scheduled successors.
- 't(u)' the cycle where u is scheduled.
- 'l(u)' is the latency of u.
- 'd(v,u)' is the dependence distance from v to u.
- 'ASAP(u)' the earliest time at which u could be scheduled as computed in
- the node ordering phase.
- 'check_hardware_resources_conflicts(u, PS, c)'
- run a trace around cycle/slot through DFA model
- to check resource conflicts involving instruction u
- at cycle c given the partial schedule PS.
- 'add_to_partial_schedule_at_time(u, PS, c)'
- Add the node/instruction u to the partial schedule
- PS at time c.
- 'calculate_register_pressure(PS)'
- Given a schedule of instructions, calculate the register
- pressure it implies. One implementation could be the
- maximum number of overlapping live ranges.
- 'maxRP' The maximum allowed register pressure, it is usually derived from the number
- registers available in the hardware.
- 1. II = MII.
- 2. PS = empty list
- 3. for each node u in O in pre-computed order
- 4. if (PSP(u) != Q && PSS(u) == Q) then
- 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
- 6. start = Early_start; end = Early_start + II - 1; step = 1
- 11. else if (PSP(u) == Q && PSS(u) != Q) then
- 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
- 13. start = Late_start; end = Late_start - II + 1; step = -1
- 14. else if (PSP(u) != Q && PSS(u) != Q) then
- 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
- 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
- 17. start = Early_start;
- 18. end = min(Early_start + II - 1 , Late_start);
- 19. step = 1
- 20. else "if (PSP(u) == Q && PSS(u) == Q)"
- 21. start = ASAP(u); end = start + II - 1; step = 1
- 22. endif
- 23. success = false
- 24. for (c = start ; c != end ; c += step)
- 25. if check_hardware_resources_conflicts(u, PS, c) then
- 26. add_to_partial_schedule_at_time(u, PS, c)
- 27. success = true
- 28. break
- 29. endif
- 30. endfor
- 31. if (success == false) then
- 32. II = II + 1
- 33. if (II > maxII) then
- 34. finish - failed to schedule
- 35. endif
- 36. goto 2.
- 37. endif
- 38. endfor
- 39. if (calculate_register_pressure(PS) > maxRP) then
- 40. goto 32.
- 41. endif
- 42. compute epilogue & prologue
- 43. finish - succeeded to schedule
- ??? The algorithm restricts the scheduling window to II cycles.
- In rare cases, it may be better to allow windows of II+1 cycles.
- The window would then start and end on the same row, but with
- different "must precede" and "must follow" requirements. */
- /* A limit on the number of cycles that resource conflicts can span. ??? Should
- be provided by DFA, and be dependent on the type of insn scheduled. Currently
- set to 0 to save compile time. */
- #define DFA_HISTORY SMS_DFA_HISTORY
- /* A threshold for the number of repeated unsuccessful attempts to insert
- an empty row, before we flush the partial schedule and start over. */
- #define MAX_SPLIT_NUM 10
- /* Given the partial schedule PS, this function calculates and returns the
- cycles in which we can schedule the node with the given index I.
- NOTE: Here we do the backtracking in SMS, in some special cases. We have
- noticed that there are several cases in which we fail to SMS the loop
- because the sched window of a node is empty due to tight data-deps. In
- such cases we want to unschedule some of the predecessors/successors
- until we get non-empty scheduling window. It returns -1 if the
- scheduling window is empty and zero otherwise. */
- static int
- get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
- sbitmap sched_nodes, int ii, int *start_p, int *step_p,
- int *end_p)
- {
- int start, step, end;
- int early_start, late_start;
- ddg_edge_ptr e;
- sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
- sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
- sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
- sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
- int psp_not_empty;
- int pss_not_empty;
- int count_preds;
- int count_succs;
- /* 1. compute sched window for u (start, end, step). */
- bitmap_clear (psp);
- bitmap_clear (pss);
- psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
- pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
- /* We first compute a forward range (start <= end), then decide whether
- to reverse it. */
- early_start = INT_MIN;
- late_start = INT_MAX;
- start = INT_MIN;
- end = INT_MAX;
- step = 1;
- count_preds = 0;
- count_succs = 0;
- if (dump_file && (psp_not_empty || pss_not_empty))
- {
- fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
- "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
- fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
- "start", "early start", "late start", "end", "time");
- fprintf (dump_file, "=========== =========== =========== ==========="
- " =====\n");
- }
- /* Calculate early_start and limit end. Both bounds are inclusive. */
- if (psp_not_empty)
- for (e = u_node->in; e != 0; e = e->next_in)
- {
- int v = e->src->cuid;
- if (bitmap_bit_p (sched_nodes, v))
- {
- int p_st = SCHED_TIME (v);
- int earliest = p_st + e->latency - (e->distance * ii);
- int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
- if (dump_file)
- {
- fprintf (dump_file, "%11s %11d %11s %11d %5d",
- "", earliest, "", latest, p_st);
- print_ddg_edge (dump_file, e);
- fprintf (dump_file, "\n");
- }
- early_start = MAX (early_start, earliest);
- end = MIN (end, latest);
- if (e->type == TRUE_DEP && e->data_type == REG_DEP)
- count_preds++;
- }
- }
- /* Calculate late_start and limit start. Both bounds are inclusive. */
- if (pss_not_empty)
- for (e = u_node->out; e != 0; e = e->next_out)
- {
- int v = e->dest->cuid;
- if (bitmap_bit_p (sched_nodes, v))
- {
- int s_st = SCHED_TIME (v);
- int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
- int latest = s_st - e->latency + (e->distance * ii);
- if (dump_file)
- {
- fprintf (dump_file, "%11d %11s %11d %11s %5d",
- earliest, "", latest, "", s_st);
- print_ddg_edge (dump_file, e);
- fprintf (dump_file, "\n");
- }
- start = MAX (start, earliest);
- late_start = MIN (late_start, latest);
- if (e->type == TRUE_DEP && e->data_type == REG_DEP)
- count_succs++;
- }
- }
- if (dump_file && (psp_not_empty || pss_not_empty))
- {
- fprintf (dump_file, "----------- ----------- ----------- -----------"
- " -----\n");
- fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
- start, early_start, late_start, end, "",
- "(max, max, min, min)");
- }
- /* Get a target scheduling window no bigger than ii. */
- if (early_start == INT_MIN && late_start == INT_MAX)
- early_start = NODE_ASAP (u_node);
- else if (early_start == INT_MIN)
- early_start = late_start - (ii - 1);
- late_start = MIN (late_start, early_start + (ii - 1));
- /* Apply memory dependence limits. */
- start = MAX (start, early_start);
- end = MIN (end, late_start);
- if (dump_file && (psp_not_empty || pss_not_empty))
- fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
- "", start, end, "", "");
- /* If there are at least as many successors as predecessors, schedule the
- node close to its successors. */
- if (pss_not_empty && count_succs >= count_preds)
- {
- int tmp = end;
- end = start;
- start = tmp;
- step = -1;
- }
- /* Now that we've finalized the window, make END an exclusive rather
- than an inclusive bound. */
- end += step;
- *start_p = start;
- *step_p = step;
- *end_p = end;
- sbitmap_free (psp);
- sbitmap_free (pss);
- if ((start >= end && step == 1) || (start <= end && step == -1))
- {
- if (dump_file)
- fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
- start, end, step);
- return -1;
- }
- return 0;
- }
- /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
- node currently been scheduled. At the end of the calculation
- MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
- U_NODE which are (1) already scheduled in the first/last row of
- U_NODE's scheduling window, (2) whose dependence inequality with U
- becomes an equality when U is scheduled in this same row, and (3)
- whose dependence latency is zero.
- The first and last rows are calculated using the following parameters:
- START/END rows - The cycles that begins/ends the traversal on the window;
- searching for an empty cycle to schedule U_NODE.
- STEP - The direction in which we traverse the window.
- II - The initiation interval. */
- static void
- calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
- int step, int ii, sbitmap sched_nodes,
- sbitmap must_precede, sbitmap must_follow)
- {
- ddg_edge_ptr e;
- int first_cycle_in_window, last_cycle_in_window;
- gcc_assert (must_precede && must_follow);
- /* Consider the following scheduling window:
- {first_cycle_in_window, first_cycle_in_window+1, ...,
- last_cycle_in_window}. If step is 1 then the following will be
- the order we traverse the window: {start=first_cycle_in_window,
- first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
- or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
- end=first_cycle_in_window-1} if step is -1. */
- first_cycle_in_window = (step == 1) ? start : end - step;
- last_cycle_in_window = (step == 1) ? end - step : start;
- bitmap_clear (must_precede);
- bitmap_clear (must_follow);
- if (dump_file)
- fprintf (dump_file, "\nmust_precede: ");
- /* Instead of checking if:
- (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
- && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
- first_cycle_in_window)
- && e->latency == 0
- we use the fact that latency is non-negative:
- SCHED_TIME (e->src) - (e->distance * ii) <=
- SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
- first_cycle_in_window
- and check only if
- SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
- for (e = u_node->in; e != 0; e = e->next_in)
- if (bitmap_bit_p (sched_nodes, e->src->cuid)
- && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
- first_cycle_in_window))
- {
- if (dump_file)
- fprintf (dump_file, "%d ", e->src->cuid);
- bitmap_set_bit (must_precede, e->src->cuid);
- }
- if (dump_file)
- fprintf (dump_file, "\nmust_follow: ");
- /* Instead of checking if:
- (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
- && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
- last_cycle_in_window)
- && e->latency == 0
- we use the fact that latency is non-negative:
- SCHED_TIME (e->dest) + (e->distance * ii) >=
- SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
- last_cycle_in_window
- and check only if
- SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
- for (e = u_node->out; e != 0; e = e->next_out)
- if (bitmap_bit_p (sched_nodes, e->dest->cuid)
- && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
- last_cycle_in_window))
- {
- if (dump_file)
- fprintf (dump_file, "%d ", e->dest->cuid);
- bitmap_set_bit (must_follow, e->dest->cuid);
- }
- if (dump_file)
- fprintf (dump_file, "\n");
- }
- /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
- parameters to decide if that's possible:
- PS - The partial schedule.
- U - The serial number of U_NODE.
- NUM_SPLITS - The number of row splits made so far.
- MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
- the first row of the scheduling window)
- MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
- last row of the scheduling window) */
- static bool
- try_scheduling_node_in_cycle (partial_schedule_ptr ps,
- int u, int cycle, sbitmap sched_nodes,
- int *num_splits, sbitmap must_precede,
- sbitmap must_follow)
- {
- ps_insn_ptr psi;
- bool success = 0;
- verify_partial_schedule (ps, sched_nodes);
- psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
- if (psi)
- {
- SCHED_TIME (u) = cycle;
- bitmap_set_bit (sched_nodes, u);
- success = 1;
- *num_splits = 0;
- if (dump_file)
- fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
- }
- return success;
- }
- /* This function implements the scheduling algorithm for SMS according to the
- above algorithm. */
- static partial_schedule_ptr
- sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
- {
- int ii = mii;
- int i, c, success, num_splits = 0;
- int flush_and_start_over = true;
- int num_nodes = g->num_nodes;
- int start, end, step; /* Place together into one struct? */
- sbitmap sched_nodes = sbitmap_alloc (num_nodes);
- sbitmap must_precede = sbitmap_alloc (num_nodes);
- sbitmap must_follow = sbitmap_alloc (num_nodes);
- sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
- partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
- bitmap_ones (tobe_scheduled);
- bitmap_clear (sched_nodes);
- while (flush_and_start_over && (ii < maxii))
- {
- if (dump_file)
- fprintf (dump_file, "Starting with ii=%d\n", ii);
- flush_and_start_over = false;
- bitmap_clear (sched_nodes);
- for (i = 0; i < num_nodes; i++)
- {
- int u = nodes_order[i];
- ddg_node_ptr u_node = &ps->g->nodes[u];
- rtx insn = u_node->insn;
- if (!NONDEBUG_INSN_P (insn))
- {
- bitmap_clear_bit (tobe_scheduled, u);
- continue;
- }
- if (bitmap_bit_p (sched_nodes, u))
- continue;
- /* Try to get non-empty scheduling window. */
- success = 0;
- if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
- &step, &end) == 0)
- {
- if (dump_file)
- fprintf (dump_file, "\nTrying to schedule node %d "
- "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
- (g->nodes[u].insn)), start, end, step);
- gcc_assert ((step > 0 && start < end)
- || (step < 0 && start > end));
- calculate_must_precede_follow (u_node, start, end, step, ii,
- sched_nodes, must_precede,
- must_follow);
- for (c = start; c != end; c += step)
- {
- sbitmap tmp_precede, tmp_follow;
- set_must_precede_follow (&tmp_follow, must_follow,
- &tmp_precede, must_precede,
- c, start, end, step);
- success =
- try_scheduling_node_in_cycle (ps, u, c,
- sched_nodes,
- &num_splits, tmp_precede,
- tmp_follow);
- if (success)
- break;
- }
- verify_partial_schedule (ps, sched_nodes);
- }
- if (!success)
- {
- int split_row;
- if (ii++ == maxii)
- break;
- if (num_splits >= MAX_SPLIT_NUM)
- {
- num_splits = 0;
- flush_and_start_over = true;
- verify_partial_schedule (ps, sched_nodes);
- reset_partial_schedule (ps, ii);
- verify_partial_schedule (ps, sched_nodes);
- break;
- }
- num_splits++;
- /* The scheduling window is exclusive of 'end'
- whereas compute_split_window() expects an inclusive,
- ordered range. */
- if (step == 1)
- split_row = compute_split_row (sched_nodes, start, end - 1,
- ps->ii, u_node);
- else
- split_row = compute_split_row (sched_nodes, end + 1, start,
- ps->ii, u_node);
- ps_insert_empty_row (ps, split_row, sched_nodes);
- i--; /* Go back and retry node i. */
- if (dump_file)
- fprintf (dump_file, "num_splits=%d\n", num_splits);
- }
- /* ??? If (success), check register pressure estimates. */
- } /* Continue with next node. */
- } /* While flush_and_start_over. */
- if (ii >= maxii)
- {
- free_partial_schedule (ps);
- ps = NULL;
- }
- else
- gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
- sbitmap_free (sched_nodes);
- sbitmap_free (must_precede);
- sbitmap_free (must_follow);
- sbitmap_free (tobe_scheduled);
- return ps;
- }
- /* This function inserts a new empty row into PS at the position
- according to SPLITROW, keeping all already scheduled instructions
- intact and updating their SCHED_TIME and cycle accordingly. */
- static void
- ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
- sbitmap sched_nodes)
- {
- ps_insn_ptr crr_insn;
- ps_insn_ptr *rows_new;
- int ii = ps->ii;
- int new_ii = ii + 1;
- int row;
- int *rows_length_new;
- verify_partial_schedule (ps, sched_nodes);
- /* We normalize sched_time and rotate ps to have only non-negative sched
- times, for simplicity of updating cycles after inserting new row. */
- split_row -= ps->min_cycle;
- split_row = SMODULO (split_row, ii);
- if (dump_file)
- fprintf (dump_file, "split_row=%d\n", split_row);
- reset_sched_times (ps, PS_MIN_CYCLE (ps));
- rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
- rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
- rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
- for (row = 0; row < split_row; row++)
- {
- rows_new[row] = ps->rows[row];
- rows_length_new[row] = ps->rows_length[row];
- ps->rows[row] = NULL;
- for (crr_insn = rows_new[row];
- crr_insn; crr_insn = crr_insn->next_in_row)
- {
- int u = crr_insn->id;
- int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
- SCHED_TIME (u) = new_time;
- crr_insn->cycle = new_time;
- SCHED_ROW (u) = new_time % new_ii;
- SCHED_STAGE (u) = new_time / new_ii;
- }
- }
- rows_new[split_row] = NULL;
- for (row = split_row; row < ii; row++)
- {
- rows_new[row + 1] = ps->rows[row];
- rows_length_new[row + 1] = ps->rows_length[row];
- ps->rows[row] = NULL;
- for (crr_insn = rows_new[row + 1];
- crr_insn; crr_insn = crr_insn->next_in_row)
- {
- int u = crr_insn->id;
- int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
- SCHED_TIME (u) = new_time;
- crr_insn->cycle = new_time;
- SCHED_ROW (u) = new_time % new_ii;
- SCHED_STAGE (u) = new_time / new_ii;
- }
- }
- /* Updating ps. */
- ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
- + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
- ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
- + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
- free (ps->rows);
- ps->rows = rows_new;
- free (ps->rows_length);
- ps->rows_length = rows_length_new;
- ps->ii = new_ii;
- gcc_assert (ps->min_cycle >= 0);
- verify_partial_schedule (ps, sched_nodes);
- if (dump_file)
- fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
- ps->max_cycle);
- }
- /* Given U_NODE which is the node that failed to be scheduled; LOW and
- UP which are the boundaries of it's scheduling window; compute using
- SCHED_NODES and II a row in the partial schedule that can be split
- which will separate a critical predecessor from a critical successor
- thereby expanding the window, and return it. */
- static int
- compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
- ddg_node_ptr u_node)
- {
- ddg_edge_ptr e;
- int lower = INT_MIN, upper = INT_MAX;
- int crit_pred = -1;
- int crit_succ = -1;
- int crit_cycle;
- for (e = u_node->in; e != 0; e = e->next_in)
- {
- int v = e->src->cuid;
- if (bitmap_bit_p (sched_nodes, v)
- && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
- if (SCHED_TIME (v) > lower)
- {
- crit_pred = v;
- lower = SCHED_TIME (v);
- }
- }
- if (crit_pred >= 0)
- {
- crit_cycle = SCHED_TIME (crit_pred) + 1;
- return SMODULO (crit_cycle, ii);
- }
- for (e = u_node->out; e != 0; e = e->next_out)
- {
- int v = e->dest->cuid;
- if (bitmap_bit_p (sched_nodes, v)
- && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
- if (SCHED_TIME (v) < upper)
- {
- crit_succ = v;
- upper = SCHED_TIME (v);
- }
- }
- if (crit_succ >= 0)
- {
- crit_cycle = SCHED_TIME (crit_succ);
- return SMODULO (crit_cycle, ii);
- }
- if (dump_file)
- fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
- return SMODULO ((low + up + 1) / 2, ii);
- }
- static void
- verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
- {
- int row;
- ps_insn_ptr crr_insn;
- for (row = 0; row < ps->ii; row++)
- {
- int length = 0;
-
- for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
- {
- int u = crr_insn->id;
-
- length++;
- gcc_assert (bitmap_bit_p (sched_nodes, u));
- /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
- popcount (sched_nodes) == number of insns in ps. */
- gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
- gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
- }
-
- gcc_assert (ps->rows_length[row] == length);
- }
- }
- /* This page implements the algorithm for ordering the nodes of a DDG
- for modulo scheduling, activated through the
- "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
- #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
- #define ASAP(x) (ORDER_PARAMS ((x))->asap)
- #define ALAP(x) (ORDER_PARAMS ((x))->alap)
- #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
- #define MOB(x) (ALAP ((x)) - ASAP ((x)))
- #define DEPTH(x) (ASAP ((x)))
- typedef struct node_order_params * nopa;
- static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
- static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
- static nopa calculate_order_params (ddg_ptr, int, int *);
- static int find_max_asap (ddg_ptr, sbitmap);
- static int find_max_hv_min_mob (ddg_ptr, sbitmap);
- static int find_max_dv_min_mob (ddg_ptr, sbitmap);
- enum sms_direction {BOTTOMUP, TOPDOWN};
- struct node_order_params
- {
- int asap;
- int alap;
- int height;
- };
- /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
- static void
- check_nodes_order (int *node_order, int num_nodes)
- {
- int i;
- sbitmap tmp = sbitmap_alloc (num_nodes);
- bitmap_clear (tmp);
- if (dump_file)
- fprintf (dump_file, "SMS final nodes order: \n");
- for (i = 0; i < num_nodes; i++)
- {
- int u = node_order[i];
- if (dump_file)
- fprintf (dump_file, "%d ", u);
- gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
- bitmap_set_bit (tmp, u);
- }
- if (dump_file)
- fprintf (dump_file, "\n");
- sbitmap_free (tmp);
- }
- /* Order the nodes of G for scheduling and pass the result in
- NODE_ORDER. Also set aux.count of each node to ASAP.
- Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
- static int
- sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
- {
- int i;
- int rec_mii = 0;
- ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
- nopa nops = calculate_order_params (g, mii, pmax_asap);
- if (dump_file)
- print_sccs (dump_file, sccs, g);
- order_nodes_of_sccs (sccs, node_order);
- if (sccs->num_sccs > 0)
- /* First SCC has the largest recurrence_length. */
- rec_mii = sccs->sccs[0]->recurrence_length;
- /* Save ASAP before destroying node_order_params. */
- for (i = 0; i < g->num_nodes; i++)
- {
- ddg_node_ptr v = &g->nodes[i];
- v->aux.count = ASAP (v);
- }
- free (nops);
- free_ddg_all_sccs (sccs);
- check_nodes_order (node_order, g->num_nodes);
- return rec_mii;
- }
- static void
- order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
- {
- int i, pos = 0;
- ddg_ptr g = all_sccs->ddg;
- int num_nodes = g->num_nodes;
- sbitmap prev_sccs = sbitmap_alloc (num_nodes);
- sbitmap on_path = sbitmap_alloc (num_nodes);
- sbitmap tmp = sbitmap_alloc (num_nodes);
- sbitmap ones = sbitmap_alloc (num_nodes);
- bitmap_clear (prev_sccs);
- bitmap_ones (ones);
- /* Perform the node ordering starting from the SCC with the highest recMII.
- For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
- for (i = 0; i < all_sccs->num_sccs; i++)
- {
- ddg_scc_ptr scc = all_sccs->sccs[i];
- /* Add nodes on paths from previous SCCs to the current SCC. */
- find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
- bitmap_ior (tmp, scc->nodes, on_path);
- /* Add nodes on paths from the current SCC to previous SCCs. */
- find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
- bitmap_ior (tmp, tmp, on_path);
- /* Remove nodes of previous SCCs from current extended SCC. */
- bitmap_and_compl (tmp, tmp, prev_sccs);
- pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
- /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
- }
- /* Handle the remaining nodes that do not belong to any scc. Each call
- to order_nodes_in_scc handles a single connected component. */
- while (pos < g->num_nodes)
- {
- bitmap_and_compl (tmp, ones, prev_sccs);
- pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
- }
- sbitmap_free (prev_sccs);
- sbitmap_free (on_path);
- sbitmap_free (tmp);
- sbitmap_free (ones);
- }
- /* MII is needed if we consider backarcs (that do not close recursive cycles). */
- static struct node_order_params *
- calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
- {
- int u;
- int max_asap;
- int num_nodes = g->num_nodes;
- ddg_edge_ptr e;
- /* Allocate a place to hold ordering params for each node in the DDG. */
- nopa node_order_params_arr;
- /* Initialize of ASAP/ALAP/HEIGHT to zero. */
- node_order_params_arr = (nopa) xcalloc (num_nodes,
- sizeof (struct node_order_params));
- /* Set the aux pointer of each node to point to its order_params structure. */
- for (u = 0; u < num_nodes; u++)
- g->nodes[u].aux.info = &node_order_params_arr[u];
- /* Disregarding a backarc from each recursive cycle to obtain a DAG,
- calculate ASAP, ALAP, mobility, distance, and height for each node
- in the dependence (direct acyclic) graph. */
- /* We assume that the nodes in the array are in topological order. */
- max_asap = 0;
- for (u = 0; u < num_nodes; u++)
- {
- ddg_node_ptr u_node = &g->nodes[u];
- ASAP (u_node) = 0;
- for (e = u_node->in; e; e = e->next_in)
- if (e->distance == 0)
- ASAP (u_node) = MAX (ASAP (u_node),
- ASAP (e->src) + e->latency);
- max_asap = MAX (max_asap, ASAP (u_node));
- }
- for (u = num_nodes - 1; u > -1; u--)
- {
- ddg_node_ptr u_node = &g->nodes[u];
- ALAP (u_node) = max_asap;
- HEIGHT (u_node) = 0;
- for (e = u_node->out; e; e = e->next_out)
- if (e->distance == 0)
- {
- ALAP (u_node) = MIN (ALAP (u_node),
- ALAP (e->dest) - e->latency);
- HEIGHT (u_node) = MAX (HEIGHT (u_node),
- HEIGHT (e->dest) + e->latency);
- }
- }
- if (dump_file)
- {
- fprintf (dump_file, "\nOrder params\n");
- for (u = 0; u < num_nodes; u++)
- {
- ddg_node_ptr u_node = &g->nodes[u];
- fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
- ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
- }
- }
- *pmax_asap = max_asap;
- return node_order_params_arr;
- }
- static int
- find_max_asap (ddg_ptr g, sbitmap nodes)
- {
- unsigned int u = 0;
- int max_asap = -1;
- int result = -1;
- sbitmap_iterator sbi;
- EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
- {
- ddg_node_ptr u_node = &g->nodes[u];
- if (max_asap < ASAP (u_node))
- {
- max_asap = ASAP (u_node);
- result = u;
- }
- }
- return result;
- }
- static int
- find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
- {
- unsigned int u = 0;
- int max_hv = -1;
- int min_mob = INT_MAX;
- int result = -1;
- sbitmap_iterator sbi;
- EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
- {
- ddg_node_ptr u_node = &g->nodes[u];
- if (max_hv < HEIGHT (u_node))
- {
- max_hv = HEIGHT (u_node);
- min_mob = MOB (u_node);
- result = u;
- }
- else if ((max_hv == HEIGHT (u_node))
- && (min_mob > MOB (u_node)))
- {
- min_mob = MOB (u_node);
- result = u;
- }
- }
- return result;
- }
- static int
- find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
- {
- unsigned int u = 0;
- int max_dv = -1;
- int min_mob = INT_MAX;
- int result = -1;
- sbitmap_iterator sbi;
- EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
- {
- ddg_node_ptr u_node = &g->nodes[u];
- if (max_dv < DEPTH (u_node))
- {
- max_dv = DEPTH (u_node);
- min_mob = MOB (u_node);
- result = u;
- }
- else if ((max_dv == DEPTH (u_node))
- && (min_mob > MOB (u_node)))
- {
- min_mob = MOB (u_node);
- result = u;
- }
- }
- return result;
- }
- /* Places the nodes of SCC into the NODE_ORDER array starting
- at position POS, according to the SMS ordering algorithm.
- NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
- the NODE_ORDER array, starting from position zero. */
- static int
- order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
- int * node_order, int pos)
- {
- enum sms_direction dir;
- int num_nodes = g->num_nodes;
- sbitmap workset = sbitmap_alloc (num_nodes);
- sbitmap tmp = sbitmap_alloc (num_nodes);
- sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
- sbitmap predecessors = sbitmap_alloc (num_nodes);
- sbitmap successors = sbitmap_alloc (num_nodes);
- bitmap_clear (predecessors);
- find_predecessors (predecessors, g, nodes_ordered);
- bitmap_clear (successors);
- find_successors (successors, g, nodes_ordered);
- bitmap_clear (tmp);
- if (bitmap_and (tmp, predecessors, scc))
- {
- bitmap_copy (workset, tmp);
- dir = BOTTOMUP;
- }
- else if (bitmap_and (tmp, successors, scc))
- {
- bitmap_copy (workset, tmp);
- dir = TOPDOWN;
- }
- else
- {
- int u;
- bitmap_clear (workset);
- if ((u = find_max_asap (g, scc)) >= 0)
- bitmap_set_bit (workset, u);
- dir = BOTTOMUP;
- }
- bitmap_clear (zero_bitmap);
- while (!bitmap_equal_p (workset, zero_bitmap))
- {
- int v;
- ddg_node_ptr v_node;
- sbitmap v_node_preds;
- sbitmap v_node_succs;
- if (dir == TOPDOWN)
- {
- while (!bitmap_equal_p (workset, zero_bitmap))
- {
- v = find_max_hv_min_mob (g, workset);
- v_node = &g->nodes[v];
- node_order[pos++] = v;
- v_node_succs = NODE_SUCCESSORS (v_node);
- bitmap_and (tmp, v_node_succs, scc);
- /* Don't consider the already ordered successors again. */
- bitmap_and_compl (tmp, tmp, nodes_ordered);
- bitmap_ior (workset, workset, tmp);
- bitmap_clear_bit (workset, v);
- bitmap_set_bit (nodes_ordered, v);
- }
- dir = BOTTOMUP;
- bitmap_clear (predecessors);
- find_predecessors (predecessors, g, nodes_ordered);
- bitmap_and (workset, predecessors, scc);
- }
- else
- {
- while (!bitmap_equal_p (workset, zero_bitmap))
- {
- v = find_max_dv_min_mob (g, workset);
- v_node = &g->nodes[v];
- node_order[pos++] = v;
- v_node_preds = NODE_PREDECESSORS (v_node);
- bitmap_and (tmp, v_node_preds, scc);
- /* Don't consider the already ordered predecessors again. */
- bitmap_and_compl (tmp, tmp, nodes_ordered);
- bitmap_ior (workset, workset, tmp);
- bitmap_clear_bit (workset, v);
- bitmap_set_bit (nodes_ordered, v);
- }
- dir = TOPDOWN;
- bitmap_clear (successors);
- find_successors (successors, g, nodes_ordered);
- bitmap_and (workset, successors, scc);
- }
- }
- sbitmap_free (tmp);
- sbitmap_free (workset);
- sbitmap_free (zero_bitmap);
- sbitmap_free (predecessors);
- sbitmap_free (successors);
- return pos;
- }
- /* This page contains functions for manipulating partial-schedules during
- modulo scheduling. */
- /* Create a partial schedule and allocate a memory to hold II rows. */
- static partial_schedule_ptr
- create_partial_schedule (int ii, ddg_ptr g, int history)
- {
- partial_schedule_ptr ps = XNEW (struct partial_schedule);
- ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
- ps->rows_length = (int *) xcalloc (ii, sizeof (int));
- ps->reg_moves.create (0);
- ps->ii = ii;
- ps->history = history;
- ps->min_cycle = INT_MAX;
- ps->max_cycle = INT_MIN;
- ps->g = g;
- return ps;
- }
- /* Free the PS_INSNs in rows array of the given partial schedule.
- ??? Consider caching the PS_INSN's. */
- static void
- free_ps_insns (partial_schedule_ptr ps)
- {
- int i;
- for (i = 0; i < ps->ii; i++)
- {
- while (ps->rows[i])
- {
- ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
- free (ps->rows[i]);
- ps->rows[i] = ps_insn;
- }
- ps->rows[i] = NULL;
- }
- }
- /* Free all the memory allocated to the partial schedule. */
- static void
- free_partial_schedule (partial_schedule_ptr ps)
- {
- ps_reg_move_info *move;
- unsigned int i;
- if (!ps)
- return;
- FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
- sbitmap_free (move->uses);
- ps->reg_moves.release ();
- free_ps_insns (ps);
- free (ps->rows);
- free (ps->rows_length);
- free (ps);
- }
- /* Clear the rows array with its PS_INSNs, and create a new one with
- NEW_II rows. */
- static void
- reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
- {
- if (!ps)
- return;
- free_ps_insns (ps);
- if (new_ii == ps->ii)
- return;
- ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
- * sizeof (ps_insn_ptr));
- memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
- ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
- memset (ps->rows_length, 0, new_ii * sizeof (int));
- ps->ii = new_ii;
- ps->min_cycle = INT_MAX;
- ps->max_cycle = INT_MIN;
- }
- /* Prints the partial schedule as an ii rows array, for each rows
- print the ids of the insns in it. */
- void
- print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
- {
- int i;
- for (i = 0; i < ps->ii; i++)
- {
- ps_insn_ptr ps_i = ps->rows[i];
- fprintf (dump, "\n[ROW %d ]: ", i);
- while (ps_i)
- {
- rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
- if (JUMP_P (insn))
- fprintf (dump, "%d (branch), ", INSN_UID (insn));
- else
- fprintf (dump, "%d, ", INSN_UID (insn));
-
- ps_i = ps_i->next_in_row;
- }
- }
- }
- /* Creates an object of PS_INSN and initializes it to the given parameters. */
- static ps_insn_ptr
- create_ps_insn (int id, int cycle)
- {
- ps_insn_ptr ps_i = XNEW (struct ps_insn);
- ps_i->id = id;
- ps_i->next_in_row = NULL;
- ps_i->prev_in_row = NULL;
- ps_i->cycle = cycle;
- return ps_i;
- }
- /* Removes the given PS_INSN from the partial schedule. */
- static void
- remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
- {
- int row;
- gcc_assert (ps && ps_i);
-
- row = SMODULO (ps_i->cycle, ps->ii);
- if (! ps_i->prev_in_row)
- {
- gcc_assert (ps_i == ps->rows[row]);
- ps->rows[row] = ps_i->next_in_row;
- if (ps->rows[row])
- ps->rows[row]->prev_in_row = NULL;
- }
- else
- {
- ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
- if (ps_i->next_in_row)
- ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
- }
-
- ps->rows_length[row] -= 1;
- free (ps_i);
- return;
- }
- /* Unlike what literature describes for modulo scheduling (which focuses
- on VLIW machines) the order of the instructions inside a cycle is
- important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
- where the current instruction should go relative to the already
- scheduled instructions in the given cycle. Go over these
- instructions and find the first possible column to put it in. */
- static bool
- ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
- sbitmap must_precede, sbitmap must_follow)
- {
- ps_insn_ptr next_ps_i;
- ps_insn_ptr first_must_follow = NULL;
- ps_insn_ptr last_must_precede = NULL;
- ps_insn_ptr last_in_row = NULL;
- int row;
- if (! ps_i)
- return false;
- row = SMODULO (ps_i->cycle, ps->ii);
- /* Find the first must follow and the last must precede
- and insert the node immediately after the must precede
- but make sure that it there is no must follow after it. */
- for (next_ps_i = ps->rows[row];
- next_ps_i;
- next_ps_i = next_ps_i->next_in_row)
- {
- if (must_follow
- && bitmap_bit_p (must_follow, next_ps_i->id)
- && ! first_must_follow)
- first_must_follow = next_ps_i;
- if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
- {
- /* If we have already met a node that must follow, then
- there is no possible column. */
- if (first_must_follow)
- return false;
- else
- last_must_precede = next_ps_i;
- }
- /* The closing branch must be the last in the row. */
- if (must_precede
- && bitmap_bit_p (must_precede, next_ps_i->id)
- && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
- return false;
-
- last_in_row = next_ps_i;
- }
- /* The closing branch is scheduled as well. Make sure there is no
- dependent instruction after it as the branch should be the last
- instruction in the row. */
- if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
- {
- if (first_must_follow)
- return false;
- if (last_in_row)
- {
- /* Make the branch the last in the row. New instructions
- will be inserted at the beginning of the row or after the
- last must_precede instruction thus the branch is guaranteed
- to remain the last instruction in the row. */
- last_in_row->next_in_row = ps_i;
- ps_i->prev_in_row = last_in_row;
- ps_i->next_in_row = NULL;
- }
- else
- ps->rows[row] = ps_i;
- return true;
- }
-
- /* Now insert the node after INSERT_AFTER_PSI. */
- if (! last_must_precede)
- {
- ps_i->next_in_row = ps->rows[row];
- ps_i->prev_in_row = NULL;
- if (ps_i->next_in_row)
- ps_i->next_in_row->prev_in_row = ps_i;
- ps->rows[row] = ps_i;
- }
- else
- {
- ps_i->next_in_row = last_must_precede->next_in_row;
- last_must_precede->next_in_row = ps_i;
- ps_i->prev_in_row = last_must_precede;
- if (ps_i->next_in_row)
- ps_i->next_in_row->prev_in_row = ps_i;
- }
- return true;
- }
- /* Advances the PS_INSN one column in its current row; returns false
- in failure and true in success. Bit N is set in MUST_FOLLOW if
- the node with cuid N must be come after the node pointed to by
- PS_I when scheduled in the same cycle. */
- static int
- ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
- sbitmap must_follow)
- {
- ps_insn_ptr prev, next;
- int row;
- if (!ps || !ps_i)
- return false;
- row = SMODULO (ps_i->cycle, ps->ii);
- if (! ps_i->next_in_row)
- return false;
- /* Check if next_in_row is dependent on ps_i, both having same sched
- times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
- if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
- return false;
- /* Advance PS_I over its next_in_row in the doubly linked list. */
- prev = ps_i->prev_in_row;
- next = ps_i->next_in_row;
- if (ps_i == ps->rows[row])
- ps->rows[row] = next;
- ps_i->next_in_row = next->next_in_row;
- if (next->next_in_row)
- next->next_in_row->prev_in_row = ps_i;
- next->next_in_row = ps_i;
- ps_i->prev_in_row = next;
- next->prev_in_row = prev;
- if (prev)
- prev->next_in_row = next;
- return true;
- }
- /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
- Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
- set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
- before/after (respectively) the node pointed to by PS_I when scheduled
- in the same cycle. */
- static ps_insn_ptr
- add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
- sbitmap must_precede, sbitmap must_follow)
- {
- ps_insn_ptr ps_i;
- int row = SMODULO (cycle, ps->ii);
- if (ps->rows_length[row] >= issue_rate)
- return NULL;
- ps_i = create_ps_insn (id, cycle);
- /* Finds and inserts PS_I according to MUST_FOLLOW and
- MUST_PRECEDE. */
- if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
- {
- free (ps_i);
- return NULL;
- }
- ps->rows_length[row] += 1;
- return ps_i;
- }
- /* Advance time one cycle. Assumes DFA is being used. */
- static void
- advance_one_cycle (void)
- {
- if (targetm.sched.dfa_pre_cycle_insn)
- state_transition (curr_state,
- targetm.sched.dfa_pre_cycle_insn ());
- state_transition (curr_state, NULL);
- if (targetm.sched.dfa_post_cycle_insn)
- state_transition (curr_state,
- targetm.sched.dfa_post_cycle_insn ());
- }
- /* Checks if PS has resource conflicts according to DFA, starting from
- FROM cycle to TO cycle; returns true if there are conflicts and false
- if there are no conflicts. Assumes DFA is being used. */
- static int
- ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
- {
- int cycle;
- state_reset (curr_state);
- for (cycle = from; cycle <= to; cycle++)
- {
- ps_insn_ptr crr_insn;
- /* Holds the remaining issue slots in the current row. */
- int can_issue_more = issue_rate;
- /* Walk through the DFA for the current row. */
- for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
- crr_insn;
- crr_insn = crr_insn->next_in_row)
- {
- rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
- if (!NONDEBUG_INSN_P (insn))
- continue;
- /* Check if there is room for the current insn. */
- if (!can_issue_more || state_dead_lock_p (curr_state))
- return true;
- /* Update the DFA state and return with failure if the DFA found
- resource conflicts. */
- if (state_transition (curr_state, insn) >= 0)
- return true;
- if (targetm.sched.variable_issue)
- can_issue_more =
- targetm.sched.variable_issue (sched_dump, sched_verbose,
- insn, can_issue_more);
- /* A naked CLOBBER or USE generates no instruction, so don't
- let them consume issue slots. */
- else if (GET_CODE (PATTERN (insn)) != USE
- && GET_CODE (PATTERN (insn)) != CLOBBER)
- can_issue_more--;
- }
- /* Advance the DFA to the next cycle. */
- advance_one_cycle ();
- }
- return false;
- }
- /* Checks if the given node causes resource conflicts when added to PS at
- cycle C. If not the node is added to PS and returned; otherwise zero
- is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
- cuid N must be come before/after (respectively) the node pointed to by
- PS_I when scheduled in the same cycle. */
- ps_insn_ptr
- ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
- int c, sbitmap must_precede,
- sbitmap must_follow)
- {
- int has_conflicts = 0;
- ps_insn_ptr ps_i;
- /* First add the node to the PS, if this succeeds check for
- conflicts, trying different issue slots in the same row. */
- if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
- return NULL; /* Failed to insert the node at the given cycle. */
- has_conflicts = ps_has_conflicts (ps, c, c)
- || (ps->history > 0
- && ps_has_conflicts (ps,
- c - ps->history,
- c + ps->history));
- /* Try different issue slots to find one that the given node can be
- scheduled in without conflicts. */
- while (has_conflicts)
- {
- if (! ps_insn_advance_column (ps, ps_i, must_follow))
- break;
- has_conflicts = ps_has_conflicts (ps, c, c)
- || (ps->history > 0
- && ps_has_conflicts (ps,
- c - ps->history,
- c + ps->history));
- }
- if (has_conflicts)
- {
- remove_node_from_ps (ps, ps_i);
- return NULL;
- }
- ps->min_cycle = MIN (ps->min_cycle, c);
- ps->max_cycle = MAX (ps->max_cycle, c);
- return ps_i;
- }
- /* Calculate the stage count of the partial schedule PS. The calculation
- takes into account the rotation amount passed in ROTATION_AMOUNT. */
- int
- calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
- {
- int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
- int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
- int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
- /* The calculation of stage count is done adding the number of stages
- before cycle zero and after cycle zero. */
- stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
- return stage_count;
- }
- /* Rotate the rows of PS such that insns scheduled at time
- START_CYCLE will appear in row 0. Updates max/min_cycles. */
- void
- rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
- {
- int i, row, backward_rotates;
- int last_row = ps->ii - 1;
- if (start_cycle == 0)
- return;
- backward_rotates = SMODULO (start_cycle, ps->ii);
- /* Revisit later and optimize this into a single loop. */
- for (i = 0; i < backward_rotates; i++)
- {
- ps_insn_ptr first_row = ps->rows[0];
- int first_row_length = ps->rows_length[0];
- for (row = 0; row < last_row; row++)
- {
- ps->rows[row] = ps->rows[row + 1];
- ps->rows_length[row] = ps->rows_length[row + 1];
- }
- ps->rows[last_row] = first_row;
- ps->rows_length[last_row] = first_row_length;
- }
- ps->max_cycle -= start_cycle;
- ps->min_cycle -= start_cycle;
- }
- #endif /* INSN_SCHEDULING */
- /* Run instruction scheduler. */
- /* Perform SMS module scheduling. */
- namespace {
- const pass_data pass_data_sms =
- {
- RTL_PASS, /* type */
- "sms", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- TV_SMS, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_df_finish, /* todo_flags_finish */
- };
- class pass_sms : public rtl_opt_pass
- {
- public:
- pass_sms (gcc::context *ctxt)
- : rtl_opt_pass (pass_data_sms, ctxt)
- {}
- /* opt_pass methods: */
- virtual bool gate (function *)
- {
- return (optimize > 0 && flag_modulo_sched);
- }
- virtual unsigned int execute (function *);
- }; // class pass_sms
- unsigned int
- pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
- {
- #ifdef INSN_SCHEDULING
- basic_block bb;
- /* Collect loop information to be used in SMS. */
- cfg_layout_initialize (0);
- sms_schedule ();
- /* Update the life information, because we add pseudos. */
- max_regno = max_reg_num ();
- /* Finalize layout changes. */
- FOR_EACH_BB_FN (bb, fun)
- if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
- bb->aux = bb->next_bb;
- free_dominance_info (CDI_DOMINATORS);
- cfg_layout_finalize ();
- #endif /* INSN_SCHEDULING */
- return 0;
- }
- } // anon namespace
- rtl_opt_pass *
- make_pass_sms (gcc::context *ctxt)
- {
- return new pass_sms (ctxt);
- }
|