123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675 |
- /* Interchange heuristics and transform for loop interchange on
- polyhedral representation.
- Copyright (C) 2009-2015 Free Software Foundation, Inc.
- Contributed by Sebastian Pop <sebastian.pop@amd.com> and
- Harsha Jagasia <harsha.jagasia@amd.com>.
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3, or (at your option)
- any later version.
- GCC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #ifdef HAVE_isl
- #include <isl/aff.h>
- #include <isl/set.h>
- #include <isl/map.h>
- #include <isl/union_map.h>
- #include <isl/ilp.h>
- #include <isl/val.h>
- /* Since ISL-0.13, the extern is in val_gmp.h. */
- #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
- extern "C" {
- #endif
- #include <isl/val_gmp.h>
- #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
- }
- #endif
- #endif
- #include "system.h"
- #include "coretypes.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "options.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "tree.h"
- #include "fold-const.h"
- #include "predict.h"
- #include "tm.h"
- #include "hard-reg-set.h"
- #include "input.h"
- #include "function.h"
- #include "dominance.h"
- #include "cfg.h"
- #include "basic-block.h"
- #include "tree-ssa-alias.h"
- #include "internal-fn.h"
- #include "gimple-expr.h"
- #include "is-a.h"
- #include "gimple.h"
- #include "gimple-iterator.h"
- #include "tree-ssa-loop.h"
- #include "dumpfile.h"
- #include "cfgloop.h"
- #include "tree-chrec.h"
- #include "tree-data-ref.h"
- #include "tree-scalar-evolution.h"
- #include "sese.h"
- #ifdef HAVE_isl
- #include "graphite-poly.h"
- /* XXX isl rewrite following comment */
- /* Builds a linear expression, of dimension DIM, representing PDR's
- memory access:
- L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
- For an array A[10][20] with two subscript locations s0 and s1, the
- linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
- corresponds to a memory stride of 20.
- OFFSET is a number of dimensions to prepend before the
- subscript dimensions: s_0, s_1, ..., s_n.
- Thus, the final linear expression has the following format:
- 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
- where the expression itself is:
- c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
- static isl_constraint *
- build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
- {
- isl_constraint *res;
- isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
- unsigned offset, nsubs;
- int i;
- isl_ctx *ctx;
- isl_val *size, *subsize, *size1;
- res = isl_equality_alloc (ls);
- ctx = isl_local_space_get_ctx (ls);
- size = isl_val_int_from_ui (ctx, 1);
- nsubs = isl_set_dim (pdr->extent, isl_dim_set);
- /* -1 for the already included L dimension. */
- offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
- res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
- /* Go through all subscripts from last to first. First dimension
- is the alias set, ignore it. */
- for (i = nsubs - 1; i >= 1; i--)
- {
- isl_space *dc;
- isl_aff *aff;
- size1 = isl_val_copy (size);
- res = isl_constraint_set_coefficient_val (res, isl_dim_out, offset + i, size);
- dc = isl_set_get_space (pdr->extent);
- aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
- aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
- subsize = isl_set_max_val (pdr->extent, aff);
- isl_aff_free (aff);
- size = isl_val_mul (size1, subsize);
- }
- isl_val_free (size);
- return res;
- }
- /* Set STRIDE to the stride of PDR in memory by advancing by one in
- the loop at DEPTH. */
- static void
- pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
- {
- poly_bb_p pbb = PDR_PBB (pdr);
- isl_map *map;
- isl_set *set;
- isl_aff *aff;
- isl_space *dc;
- isl_constraint *lma, *c;
- isl_val *islstride;
- graphite_dim_t time_depth;
- unsigned offset, nt;
- unsigned i;
- /* XXX isl rewrite following comments. */
- /* Builds a partial difference equations and inserts them
- into pointset powerset polyhedron P. Polyhedron is assumed
- to have the format: T|I|T'|I'|G|S|S'|l1|l2.
- TIME_DEPTH is the time dimension w.r.t. which we are
- differentiating.
- OFFSET represents the number of dimensions between
- columns t_{time_depth} and t'_{time_depth}.
- DIM_SCTR is the number of scattering dimensions. It is
- essentially the dimensionality of the T vector.
- The following equations are inserted into the polyhedron P:
- | t_1 = t_1'
- | ...
- | t_{time_depth-1} = t'_{time_depth-1}
- | t_{time_depth} = t'_{time_depth} + 1
- | t_{time_depth+1} = t'_{time_depth + 1}
- | ...
- | t_{dim_sctr} = t'_{dim_sctr}. */
- /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
- This is the core part of this alogrithm, since this
- constraint asks for the memory access stride (difference)
- between two consecutive points in time dimensions. */
- /* Add equalities:
- | t1 = t1'
- | ...
- | t_{time_depth-1} = t'_{time_depth-1}
- | t_{time_depth+1} = t'_{time_depth+1}
- | ...
- | t_{dim_sctr} = t'_{dim_sctr}
- This means that all the time dimensions are equal except for
- time_depth, where the constraint is t_{depth} = t'_{depth} + 1
- step. More to this: we should be careful not to add equalities
- to the 'coupled' dimensions, which happens when the one dimension
- is stripmined dimension, and the other dimension corresponds
- to the point loop inside stripmined dimension. */
- /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
- ??? [P] not used for PDRs?
- pdr->extent: [a,S1..nb_subscript]
- pbb->domain: [P1..nb_param,I1..nb_domain]
- pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
- [T] includes local vars (currently unused)
-
- First we create [P,I] -> [T,a,S]. */
-
- map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
- isl_map_copy (pdr->accesses));
- /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
- map = isl_map_add_dims (map, isl_dim_out, 1);
- /* Build a constraint for "lma[S] - L == 0", effectively calculating
- L in terms of subscripts. */
- lma = build_linearized_memory_access (map, pdr);
- /* And add it to the map, so we now have:
- [P,I] -> [T,a,S,L] : lma([S]) == L. */
- map = isl_map_add_constraint (map, lma);
- /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
- map = isl_map_flat_product (map, isl_map_copy (map));
- /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
- force L' to be the linear address at T[time_depth] + 1. */
- time_depth = psct_dynamic_dim (pbb, depth);
- /* Length of [a,S] plus [L] ... */
- offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
- /* ... plus [T]. */
- offset += isl_map_dim (pbb->transformed, isl_dim_out);
- c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
- c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
- c = isl_constraint_set_coefficient_si (c, isl_dim_out,
- offset + time_depth, -1);
- c = isl_constraint_set_constant_si (c, 1);
- map = isl_map_add_constraint (map, c);
- /* Now we equate most of the T/T' elements (making PITaSL nearly
- the same is (PITaSL)', except for one dimension, namely for 'depth'
- (an index into [I]), after translating to index into [T]. Take care
- to not produce an empty map, which indicates we wanted to equate
- two dimensions that are already coupled via the above time_depth
- dimension. Happens with strip mining where several scatter dimension
- are interdependend. */
- /* Length of [T]. */
- nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
- for (i = 0; i < nt; i++)
- if (i != time_depth)
- {
- isl_map *temp = isl_map_equate (isl_map_copy (map),
- isl_dim_out, i,
- isl_dim_out, offset + i);
- if (isl_map_is_empty (temp))
- isl_map_free (temp);
- else
- {
- isl_map_free (map);
- map = temp;
- }
- }
- /* Now maximize the expression L' - L. */
- set = isl_map_range (map);
- dc = isl_set_get_space (set);
- aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
- aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
- aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
- islstride = isl_set_max_val (set, aff);
- isl_val_get_num_gmp (islstride, stride);
- isl_val_free (islstride);
- isl_aff_free (aff);
- isl_set_free (set);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
- pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
- }
- }
- /* Sets STRIDES to the sum of all the strides of the data references
- accessed in LOOP at DEPTH. */
- static void
- memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
- {
- int i, j;
- lst_p l;
- poly_dr_p pdr;
- mpz_t s, n;
- mpz_init (s);
- mpz_init (n);
- FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
- if (LST_LOOP_P (l))
- memory_strides_in_loop_1 (l, depth, strides);
- else
- FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
- {
- pdr_stride_in_loop (s, depth, pdr);
- mpz_set_si (n, PDR_NB_REFS (pdr));
- mpz_mul (s, s, n);
- mpz_add (strides, strides, s);
- }
- mpz_clear (s);
- mpz_clear (n);
- }
- /* Sets STRIDES to the sum of all the strides of the data references
- accessed in LOOP at DEPTH. */
- static void
- memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
- {
- if (mpz_cmp_si (loop->memory_strides, -1) == 0)
- {
- mpz_set_si (strides, 0);
- memory_strides_in_loop_1 (loop, depth, strides);
- }
- else
- mpz_set (strides, loop->memory_strides);
- }
- /* Return true when the interchange of loops LOOP1 and LOOP2 is
- profitable.
- Example:
- | int a[100][100];
- |
- | int
- | foo (int N)
- | {
- | int j;
- | int i;
- |
- | for (i = 0; i < N; i++)
- | for (j = 0; j < N; j++)
- | a[j][2 * i] += 1;
- |
- | return a[N][12];
- | }
- The data access A[j][i] is described like this:
- | i j N a s0 s1 1
- | 0 0 0 1 0 0 -5 = 0
- | 0 -1 0 0 1 0 0 = 0
- |-2 0 0 0 0 1 0 = 0
- | 0 0 0 0 1 0 0 >= 0
- | 0 0 0 0 0 1 0 >= 0
- | 0 0 0 0 -1 0 100 >= 0
- | 0 0 0 0 0 -1 100 >= 0
- The linearized memory access L to A[100][100] is:
- | i j N a s0 s1 1
- | 0 0 0 0 100 1 0
- TODO: the shown format is not valid as it does not show the fact
- that the iteration domain "i j" is transformed using the scattering.
- Next, to measure the impact of iterating once in loop "i", we build
- a maximization problem: first, we add to DR accesses the dimensions
- k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
- L1 and L2 are the linearized memory access functions.
- | i j N a s0 s1 k s2 s3 L1 L2 D1 1
- | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
- | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
- |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
- | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
- | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
- | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
- | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
- | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
- Then, we generate the polyhedron P2 by interchanging the dimensions
- (s0, s2), (s1, s3), (L1, L2), (k, i)
- | i j N a s0 s1 k s2 s3 L1 L2 D1 1
- | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
- | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
- | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
- | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
- | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
- | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
- | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
- | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
- then we add to P2 the equality k = i + 1:
- |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
- and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
- Similarly, to determine the impact of one iteration on loop "j", we
- interchange (k, j), we add "k = j + 1", and we compute D2 the
- maximal value of the difference.
- Finally, the profitability test is D1 < D2: if in the outer loop
- the strides are smaller than in the inner loop, then it is
- profitable to interchange the loops at DEPTH1 and DEPTH2. */
- static bool
- lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
- {
- mpz_t d1, d2;
- bool res;
- gcc_assert (depth1 < depth2);
- mpz_init (d1);
- mpz_init (d2);
- memory_strides_in_loop (nest, depth1, d1);
- memory_strides_in_loop (nest, depth2, d2);
- res = mpz_cmp (d1, d2) < 0;
- mpz_clear (d1);
- mpz_clear (d2);
- return res;
- }
- /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
- scattering and assigns the resulting polyhedron to the transformed
- scattering. */
- static void
- pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
- poly_bb_p pbb)
- {
- unsigned i;
- unsigned dim1 = psct_dynamic_dim (pbb, depth1);
- unsigned dim2 = psct_dynamic_dim (pbb, depth2);
- isl_space *d = isl_map_get_space (pbb->transformed);
- isl_space *d1 = isl_space_range (d);
- unsigned n = isl_space_dim (d1, isl_dim_out);
- isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
- isl_map *x = isl_map_universe (d2);
- x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
- x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
- for (i = 0; i < n; i++)
- if (i != dim1 && i != dim2)
- x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
- pbb->transformed = isl_map_apply_range (pbb->transformed, x);
- }
- /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
- the statements below LST. */
- static void
- lst_apply_interchange (lst_p lst, int depth1, int depth2)
- {
- if (!lst)
- return;
- if (LST_LOOP_P (lst))
- {
- int i;
- lst_p l;
- FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
- lst_apply_interchange (l, depth1, depth2);
- }
- else
- pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
- }
- /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
- perfect: i.e. there are no sequence of statements. */
- static bool
- lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
- {
- if (loop1 == loop2)
- return true;
- if (!LST_LOOP_P (loop1))
- return false;
- return LST_SEQ (loop1).length () == 1
- && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
- }
- /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
- nest. To continue the naming tradition, this function is called
- after perfect_nestify. NEST is set to the perfectly nested loop
- that is created. BEFORE/AFTER are set to the loops distributed
- before/after the loop NEST. */
- static void
- lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
- lst_p *nest, lst_p *after)
- {
- poly_bb_p first, last;
- gcc_assert (loop1 && loop2
- && loop1 != loop2
- && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
- first = LST_PBB (lst_find_first_pbb (loop2));
- last = LST_PBB (lst_find_last_pbb (loop2));
- *before = copy_lst (loop1);
- *nest = copy_lst (loop1);
- *after = copy_lst (loop1);
- lst_remove_all_before_including_pbb (*before, first, false);
- lst_remove_all_before_including_pbb (*after, last, true);
- lst_remove_all_before_excluding_pbb (*nest, first, true);
- lst_remove_all_before_excluding_pbb (*nest, last, false);
- if (lst_empty_p (*before))
- {
- free_lst (*before);
- *before = NULL;
- }
- if (lst_empty_p (*after))
- {
- free_lst (*after);
- *after = NULL;
- }
- if (lst_empty_p (*nest))
- {
- free_lst (*nest);
- *nest = NULL;
- }
- }
- /* Try to interchange LOOP1 with LOOP2 for all the statements of the
- body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
- interchange. */
- static bool
- lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
- {
- int depth1 = lst_depth (loop1);
- int depth2 = lst_depth (loop2);
- lst_p transformed;
- lst_p before = NULL, nest = NULL, after = NULL;
- if (!lst_perfectly_nested_p (loop1, loop2))
- lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
- if (!lst_interchange_profitable_p (loop2, depth1, depth2))
- return false;
- lst_apply_interchange (loop2, depth1, depth2);
- /* Sync the transformed LST information and the PBB scatterings
- before using the scatterings in the data dependence analysis. */
- if (before || nest || after)
- {
- transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
- before, nest, after);
- lst_update_scattering (transformed);
- free_lst (transformed);
- }
- if (graphite_legal_transform (scop))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Loops at depths %d and %d will be interchanged.\n",
- depth1, depth2);
- /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
- lst_insert_in_sequence (before, loop1, true);
- lst_insert_in_sequence (after, loop1, false);
- if (nest)
- {
- lst_replace (loop1, nest);
- free_lst (loop1);
- }
- return true;
- }
- /* Undo the transform. */
- free_lst (before);
- free_lst (nest);
- free_lst (after);
- lst_apply_interchange (loop2, depth2, depth1);
- return false;
- }
- /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
- with the loop OUTER in LST_SEQ (OUTER_FATHER). */
- static bool
- lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
- lst_p inner_father)
- {
- int inner;
- lst_p loop1, loop2;
- gcc_assert (outer_father
- && LST_LOOP_P (outer_father)
- && LST_LOOP_P (LST_SEQ (outer_father)[outer])
- && inner_father
- && LST_LOOP_P (inner_father));
- loop1 = LST_SEQ (outer_father)[outer];
- FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
- if (LST_LOOP_P (loop2)
- && (lst_try_interchange_loops (scop, loop1, loop2)
- || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
- return true;
- return false;
- }
- /* Interchanges all the loops of LOOP and the loops of its body that
- are considered profitable to interchange. Return the number of
- interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
- points to the next outer loop to be considered for interchange. */
- static int
- lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
- {
- lst_p l;
- int res = 0;
- int i = 0;
- lst_p father;
- if (!loop || !LST_LOOP_P (loop))
- return 0;
- father = LST_LOOP_FATHER (loop);
- if (father)
- {
- while (lst_interchange_select_inner (scop, father, outer, loop))
- {
- res++;
- loop = LST_SEQ (father)[outer];
- }
- }
- if (LST_LOOP_P (loop))
- FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
- if (LST_LOOP_P (l))
- res += lst_interchange_select_outer (scop, l, i);
- return res;
- }
- /* Interchanges all the loop depths that are considered profitable for
- SCOP. Return the number of interchanged loops. */
- int
- scop_do_interchange (scop_p scop)
- {
- int res = lst_interchange_select_outer
- (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
- lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
- return res;
- }
- #endif
|