1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582 |
- /* Operations with long integers.
- Copyright (C) 2006-2015 Free Software Foundation, Inc.
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 3, or (at your option) any
- later version.
- GCC is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "real.h"
- #include "tree.h"
- static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
- unsigned HOST_WIDE_INT, HOST_WIDE_INT,
- unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
- bool);
- #define add_double(l1,h1,l2,h2,lv,hv) \
- add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
- static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
- unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
- static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
- unsigned HOST_WIDE_INT, HOST_WIDE_INT,
- unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
- unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
- bool);
- #define mul_double(l1,h1,l2,h2,lv,hv) \
- mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
- static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
- HOST_WIDE_INT, unsigned HOST_WIDE_INT,
- HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
- HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
- HOST_WIDE_INT *);
- /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
- overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
- and SUM1. Then this yields nonzero if overflow occurred during the
- addition.
- Overflow occurs if A and B have the same sign, but A and SUM differ in
- sign. Use `^' to test whether signs differ, and `< 0' to isolate the
- sign. */
- #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
- /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
- We do that by representing the two-word integer in 4 words, with only
- HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
- number. The value of the word is LOWPART + HIGHPART * BASE. */
- #define LOWPART(x) \
- ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
- #define HIGHPART(x) \
- ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
- #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
- /* Unpack a two-word integer into 4 words.
- LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
- WORDS points to the array of HOST_WIDE_INTs. */
- static void
- encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
- {
- words[0] = LOWPART (low);
- words[1] = HIGHPART (low);
- words[2] = LOWPART (hi);
- words[3] = HIGHPART (hi);
- }
- /* Pack an array of 4 words into a two-word integer.
- WORDS points to the array of words.
- The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
- static void
- decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
- HOST_WIDE_INT *hi)
- {
- *low = words[0] + words[1] * BASE;
- *hi = words[2] + words[3] * BASE;
- }
- /* Add two doubleword integers with doubleword result.
- Return nonzero if the operation overflows according to UNSIGNED_P.
- Each argument is given as two `HOST_WIDE_INT' pieces.
- One argument is L1 and H1; the other, L2 and H2.
- The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
- static int
- add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
- bool unsigned_p)
- {
- unsigned HOST_WIDE_INT l;
- HOST_WIDE_INT h;
- l = l1 + l2;
- h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
- + (unsigned HOST_WIDE_INT) h2
- + (l < l1));
- *lv = l;
- *hv = h;
- if (unsigned_p)
- return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
- || (h == h1
- && l < l1));
- else
- return OVERFLOW_SUM_SIGN (h1, h2, h);
- }
- /* Negate a doubleword integer with doubleword result.
- Return nonzero if the operation overflows, assuming it's signed.
- The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
- The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
- static int
- neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
- {
- if (l1 == 0)
- {
- *lv = 0;
- *hv = - (unsigned HOST_WIDE_INT) h1;
- return (*hv & h1) < 0;
- }
- else
- {
- *lv = -l1;
- *hv = ~h1;
- return 0;
- }
- }
- /* Multiply two doubleword integers with quadword result.
- Return nonzero if the operation overflows according to UNSIGNED_P.
- Each argument is given as two `HOST_WIDE_INT' pieces.
- One argument is L1 and H1; the other, L2 and H2.
- The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
- *LW and *HW.
- If lw is NULL then only the low part and no overflow is computed. */
- static int
- mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
- unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
- bool unsigned_p)
- {
- HOST_WIDE_INT arg1[4];
- HOST_WIDE_INT arg2[4];
- HOST_WIDE_INT prod[4 * 2];
- unsigned HOST_WIDE_INT carry;
- int i, j, k;
- unsigned HOST_WIDE_INT neglow;
- HOST_WIDE_INT neghigh;
- encode (arg1, l1, h1);
- encode (arg2, l2, h2);
- memset (prod, 0, sizeof prod);
- for (i = 0; i < 4; i++)
- {
- carry = 0;
- for (j = 0; j < 4; j++)
- {
- k = i + j;
- /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
- carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
- /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
- carry += prod[k];
- prod[k] = LOWPART (carry);
- carry = HIGHPART (carry);
- }
- prod[i + 4] = carry;
- }
- decode (prod, lv, hv);
- /* We are not interested in the wide part nor in overflow. */
- if (lw == NULL)
- return 0;
- decode (prod + 4, lw, hw);
- /* Unsigned overflow is immediate. */
- if (unsigned_p)
- return (*lw | *hw) != 0;
- /* Check for signed overflow by calculating the signed representation of the
- top half of the result; it should agree with the low half's sign bit. */
- if (h1 < 0)
- {
- neg_double (l2, h2, &neglow, &neghigh);
- add_double (neglow, neghigh, *lw, *hw, lw, hw);
- }
- if (h2 < 0)
- {
- neg_double (l1, h1, &neglow, &neghigh);
- add_double (neglow, neghigh, *lw, *hw, lw, hw);
- }
- return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
- }
- /* Shift the doubleword integer in L1, H1 right by COUNT places
- keeping only PREC bits of result. ARITH nonzero specifies
- arithmetic shifting; otherwise use logical shift.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
- static void
- rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT count, unsigned int prec,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
- bool arith)
- {
- unsigned HOST_WIDE_INT signmask;
- signmask = (arith
- ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
- : 0);
- if (count >= HOST_BITS_PER_DOUBLE_INT)
- {
- /* Shifting by the host word size is undefined according to the
- ANSI standard, so we must handle this as a special case. */
- *hv = 0;
- *lv = 0;
- }
- else if (count >= HOST_BITS_PER_WIDE_INT)
- {
- *hv = 0;
- *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
- }
- else
- {
- *hv = (unsigned HOST_WIDE_INT) h1 >> count;
- *lv = ((l1 >> count)
- | ((unsigned HOST_WIDE_INT) h1
- << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
- }
- /* Zero / sign extend all bits that are beyond the precision. */
- if (count >= prec)
- {
- *hv = signmask;
- *lv = signmask;
- }
- else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
- ;
- else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
- {
- *hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
- *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
- }
- else
- {
- *hv = signmask;
- *lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
- *lv |= signmask << (prec - count);
- }
- }
- /* Shift the doubleword integer in L1, H1 left by COUNT places
- keeping only PREC bits of result.
- Shift right if COUNT is negative.
- ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
- static void
- lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT count, unsigned int prec,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
- {
- unsigned HOST_WIDE_INT signmask;
- if (count >= HOST_BITS_PER_DOUBLE_INT)
- {
- /* Shifting by the host word size is undefined according to the
- ANSI standard, so we must handle this as a special case. */
- *hv = 0;
- *lv = 0;
- }
- else if (count >= HOST_BITS_PER_WIDE_INT)
- {
- *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
- *lv = 0;
- }
- else
- {
- *hv = (((unsigned HOST_WIDE_INT) h1 << count)
- | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
- *lv = l1 << count;
- }
- /* Sign extend all bits that are beyond the precision. */
- signmask = -((prec > HOST_BITS_PER_WIDE_INT
- ? ((unsigned HOST_WIDE_INT) *hv
- >> (prec - HOST_BITS_PER_WIDE_INT - 1))
- : (*lv >> (prec - 1))) & 1);
- if (prec >= HOST_BITS_PER_DOUBLE_INT)
- ;
- else if (prec >= HOST_BITS_PER_WIDE_INT)
- {
- *hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
- *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
- }
- else
- {
- *hv = signmask;
- *lv &= ~(HOST_WIDE_INT_M1U << prec);
- *lv |= signmask << prec;
- }
- }
- /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
- for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
- CODE is a tree code for a kind of division, one of
- TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
- or EXACT_DIV_EXPR
- It controls how the quotient is rounded to an integer.
- Return nonzero if the operation overflows.
- UNS nonzero says do unsigned division. */
- static int
- div_and_round_double (unsigned code, int uns,
- /* num == numerator == dividend */
- unsigned HOST_WIDE_INT lnum_orig,
- HOST_WIDE_INT hnum_orig,
- /* den == denominator == divisor */
- unsigned HOST_WIDE_INT lden_orig,
- HOST_WIDE_INT hden_orig,
- unsigned HOST_WIDE_INT *lquo,
- HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
- HOST_WIDE_INT *hrem)
- {
- int quo_neg = 0;
- HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
- HOST_WIDE_INT den[4], quo[4];
- int i, j;
- unsigned HOST_WIDE_INT work;
- unsigned HOST_WIDE_INT carry = 0;
- unsigned HOST_WIDE_INT lnum = lnum_orig;
- HOST_WIDE_INT hnum = hnum_orig;
- unsigned HOST_WIDE_INT lden = lden_orig;
- HOST_WIDE_INT hden = hden_orig;
- int overflow = 0;
- if (hden == 0 && lden == 0)
- overflow = 1, lden = 1;
- /* Calculate quotient sign and convert operands to unsigned. */
- if (!uns)
- {
- if (hnum < 0)
- {
- quo_neg = ~ quo_neg;
- /* (minimum integer) / (-1) is the only overflow case. */
- if (neg_double (lnum, hnum, &lnum, &hnum)
- && ((HOST_WIDE_INT) lden & hden) == -1)
- overflow = 1;
- }
- if (hden < 0)
- {
- quo_neg = ~ quo_neg;
- neg_double (lden, hden, &lden, &hden);
- }
- }
- if (hnum == 0 && hden == 0)
- { /* single precision */
- *hquo = *hrem = 0;
- /* This unsigned division rounds toward zero. */
- *lquo = lnum / lden;
- goto finish_up;
- }
- if (hnum == 0)
- { /* trivial case: dividend < divisor */
- /* hden != 0 already checked. */
- *hquo = *lquo = 0;
- *hrem = hnum;
- *lrem = lnum;
- goto finish_up;
- }
- memset (quo, 0, sizeof quo);
- memset (num, 0, sizeof num); /* to zero 9th element */
- memset (den, 0, sizeof den);
- encode (num, lnum, hnum);
- encode (den, lden, hden);
- /* Special code for when the divisor < BASE. */
- if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
- {
- /* hnum != 0 already checked. */
- for (i = 4 - 1; i >= 0; i--)
- {
- work = num[i] + carry * BASE;
- quo[i] = work / lden;
- carry = work % lden;
- }
- }
- else
- {
- /* Full double precision division,
- with thanks to Don Knuth's "Seminumerical Algorithms". */
- int num_hi_sig, den_hi_sig;
- unsigned HOST_WIDE_INT quo_est, scale;
- /* Find the highest nonzero divisor digit. */
- for (i = 4 - 1;; i--)
- if (den[i] != 0)
- {
- den_hi_sig = i;
- break;
- }
- /* Insure that the first digit of the divisor is at least BASE/2.
- This is required by the quotient digit estimation algorithm. */
- scale = BASE / (den[den_hi_sig] + 1);
- if (scale > 1)
- { /* scale divisor and dividend */
- carry = 0;
- for (i = 0; i <= 4 - 1; i++)
- {
- work = (num[i] * scale) + carry;
- num[i] = LOWPART (work);
- carry = HIGHPART (work);
- }
- num[4] = carry;
- carry = 0;
- for (i = 0; i <= 4 - 1; i++)
- {
- work = (den[i] * scale) + carry;
- den[i] = LOWPART (work);
- carry = HIGHPART (work);
- if (den[i] != 0) den_hi_sig = i;
- }
- }
- num_hi_sig = 4;
- /* Main loop */
- for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
- {
- /* Guess the next quotient digit, quo_est, by dividing the first
- two remaining dividend digits by the high order quotient digit.
- quo_est is never low and is at most 2 high. */
- unsigned HOST_WIDE_INT tmp;
- num_hi_sig = i + den_hi_sig + 1;
- work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
- if (num[num_hi_sig] != den[den_hi_sig])
- quo_est = work / den[den_hi_sig];
- else
- quo_est = BASE - 1;
- /* Refine quo_est so it's usually correct, and at most one high. */
- tmp = work - quo_est * den[den_hi_sig];
- if (tmp < BASE
- && (den[den_hi_sig - 1] * quo_est
- > (tmp * BASE + num[num_hi_sig - 2])))
- quo_est--;
- /* Try QUO_EST as the quotient digit, by multiplying the
- divisor by QUO_EST and subtracting from the remaining dividend.
- Keep in mind that QUO_EST is the I - 1st digit. */
- carry = 0;
- for (j = 0; j <= den_hi_sig; j++)
- {
- work = quo_est * den[j] + carry;
- carry = HIGHPART (work);
- work = num[i + j] - LOWPART (work);
- num[i + j] = LOWPART (work);
- carry += HIGHPART (work) != 0;
- }
- /* If quo_est was high by one, then num[i] went negative and
- we need to correct things. */
- if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
- {
- quo_est--;
- carry = 0; /* add divisor back in */
- for (j = 0; j <= den_hi_sig; j++)
- {
- work = num[i + j] + den[j] + carry;
- carry = HIGHPART (work);
- num[i + j] = LOWPART (work);
- }
- num [num_hi_sig] += carry;
- }
- /* Store the quotient digit. */
- quo[i] = quo_est;
- }
- }
- decode (quo, lquo, hquo);
- finish_up:
- /* If result is negative, make it so. */
- if (quo_neg)
- neg_double (*lquo, *hquo, lquo, hquo);
- /* Compute trial remainder: rem = num - (quo * den) */
- mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
- neg_double (*lrem, *hrem, lrem, hrem);
- add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
- switch (code)
- {
- case TRUNC_DIV_EXPR:
- case TRUNC_MOD_EXPR: /* round toward zero */
- case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
- return overflow;
- case FLOOR_DIV_EXPR:
- case FLOOR_MOD_EXPR: /* round toward negative infinity */
- if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
- {
- /* quo = quo - 1; */
- add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
- lquo, hquo);
- }
- else
- return overflow;
- break;
- case CEIL_DIV_EXPR:
- case CEIL_MOD_EXPR: /* round toward positive infinity */
- if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
- {
- add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
- lquo, hquo);
- }
- else
- return overflow;
- break;
- case ROUND_DIV_EXPR:
- case ROUND_MOD_EXPR: /* round to closest integer */
- {
- unsigned HOST_WIDE_INT labs_rem = *lrem;
- HOST_WIDE_INT habs_rem = *hrem;
- unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff;
- HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff;
- /* Get absolute values. */
- if (!uns && *hrem < 0)
- neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
- if (!uns && hden < 0)
- neg_double (lden, hden, &labs_den, &habs_den);
- /* If abs(rem) >= abs(den) - abs(rem), adjust the quotient. */
- neg_double (labs_rem, habs_rem, &lnegabs_rem, &hnegabs_rem);
- add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem,
- &ldiff, &hdiff);
- if (((unsigned HOST_WIDE_INT) habs_rem
- > (unsigned HOST_WIDE_INT) hdiff)
- || (habs_rem == hdiff && labs_rem >= ldiff))
- {
- if (quo_neg)
- /* quo = quo - 1; */
- add_double (*lquo, *hquo,
- (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
- else
- /* quo = quo + 1; */
- add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
- lquo, hquo);
- }
- else
- return overflow;
- }
- break;
- default:
- gcc_unreachable ();
- }
- /* Compute true remainder: rem = num - (quo * den) */
- mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
- neg_double (*lrem, *hrem, lrem, hrem);
- add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
- return overflow;
- }
- /* Construct from a buffer of length LEN. BUFFER will be read according
- to byte endianess and word endianess. Only the lower LEN bytes
- of the result are set; the remaining high bytes are cleared. */
- double_int
- double_int::from_buffer (const unsigned char *buffer, int len)
- {
- double_int result = double_int_zero;
- int words = len / UNITS_PER_WORD;
- gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
- for (int byte = 0; byte < len; byte++)
- {
- int offset;
- int bitpos = byte * BITS_PER_UNIT;
- unsigned HOST_WIDE_INT value;
- if (len > UNITS_PER_WORD)
- {
- int word = byte / UNITS_PER_WORD;
- if (WORDS_BIG_ENDIAN)
- word = (words - 1) - word;
- offset = word * UNITS_PER_WORD;
- if (BYTES_BIG_ENDIAN)
- offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
- else
- offset += byte % UNITS_PER_WORD;
- }
- else
- offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
- value = (unsigned HOST_WIDE_INT) buffer[offset];
- if (bitpos < HOST_BITS_PER_WIDE_INT)
- result.low |= value << bitpos;
- else
- result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
- }
- return result;
- }
- /* Returns mask for PREC bits. */
- double_int
- double_int::mask (unsigned prec)
- {
- unsigned HOST_WIDE_INT m;
- double_int mask;
- if (prec > HOST_BITS_PER_WIDE_INT)
- {
- prec -= HOST_BITS_PER_WIDE_INT;
- m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
- mask.high = (HOST_WIDE_INT) m;
- mask.low = ALL_ONES;
- }
- else
- {
- mask.high = 0;
- mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
- }
- return mask;
- }
- /* Returns a maximum value for signed or unsigned integer
- of precision PREC. */
- double_int
- double_int::max_value (unsigned int prec, bool uns)
- {
- return double_int::mask (prec - (uns ? 0 : 1));
- }
- /* Returns a minimum value for signed or unsigned integer
- of precision PREC. */
- double_int
- double_int::min_value (unsigned int prec, bool uns)
- {
- if (uns)
- return double_int_zero;
- return double_int_one.lshift (prec - 1, prec, false);
- }
- /* Clears the bits of CST over the precision PREC. If UNS is false, the bits
- outside of the precision are set to the sign bit (i.e., the PREC-th one),
- otherwise they are set to zero.
- This corresponds to returning the value represented by PREC lowermost bits
- of CST, with the given signedness. */
- double_int
- double_int::ext (unsigned prec, bool uns) const
- {
- if (uns)
- return this->zext (prec);
- else
- return this->sext (prec);
- }
- /* The same as double_int::ext with UNS = true. */
- double_int
- double_int::zext (unsigned prec) const
- {
- const double_int &cst = *this;
- double_int mask = double_int::mask (prec);
- double_int r;
- r.low = cst.low & mask.low;
- r.high = cst.high & mask.high;
- return r;
- }
- /* The same as double_int::ext with UNS = false. */
- double_int
- double_int::sext (unsigned prec) const
- {
- const double_int &cst = *this;
- double_int mask = double_int::mask (prec);
- double_int r;
- unsigned HOST_WIDE_INT snum;
- if (prec <= HOST_BITS_PER_WIDE_INT)
- snum = cst.low;
- else
- {
- prec -= HOST_BITS_PER_WIDE_INT;
- snum = (unsigned HOST_WIDE_INT) cst.high;
- }
- if (((snum >> (prec - 1)) & 1) == 1)
- {
- r.low = cst.low | ~mask.low;
- r.high = cst.high | ~mask.high;
- }
- else
- {
- r.low = cst.low & mask.low;
- r.high = cst.high & mask.high;
- }
- return r;
- }
- /* Returns true if CST fits in signed HOST_WIDE_INT. */
- bool
- double_int::fits_shwi () const
- {
- const double_int &cst = *this;
- if (cst.high == 0)
- return (HOST_WIDE_INT) cst.low >= 0;
- else if (cst.high == -1)
- return (HOST_WIDE_INT) cst.low < 0;
- else
- return false;
- }
- /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
- unsigned HOST_WIDE_INT if UNS is true. */
- bool
- double_int::fits_hwi (bool uns) const
- {
- if (uns)
- return this->fits_uhwi ();
- else
- return this->fits_shwi ();
- }
- /* Returns A * B. */
- double_int
- double_int::operator * (double_int b) const
- {
- const double_int &a = *this;
- double_int ret;
- mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
- return ret;
- }
- /* Multiplies *this with B and returns a reference to *this. */
- double_int &
- double_int::operator *= (double_int b)
- {
- mul_double (low, high, b.low, b.high, &low, &high);
- return *this;
- }
- /* Returns A * B. If the operation overflows according to UNSIGNED_P,
- *OVERFLOW is set to nonzero. */
- double_int
- double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
- {
- const double_int &a = *this;
- double_int ret, tem;
- *overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
- &ret.low, &ret.high,
- &tem.low, &tem.high, unsigned_p);
- return ret;
- }
- double_int
- double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
- double_int *higher, bool *overflow) const
- {
- double_int lower;
- *overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
- &lower.low, &lower.high,
- &higher->low, &higher->high,
- unsigned_p);
- return lower;
- }
- /* Returns A + B. */
- double_int
- double_int::operator + (double_int b) const
- {
- const double_int &a = *this;
- double_int ret;
- add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
- return ret;
- }
- /* Adds B to *this and returns a reference to *this. */
- double_int &
- double_int::operator += (double_int b)
- {
- add_double (low, high, b.low, b.high, &low, &high);
- return *this;
- }
- /* Returns A + B. If the operation overflows according to UNSIGNED_P,
- *OVERFLOW is set to nonzero. */
- double_int
- double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
- {
- const double_int &a = *this;
- double_int ret;
- *overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
- &ret.low, &ret.high, unsigned_p);
- return ret;
- }
- /* Returns A - B. */
- double_int
- double_int::operator - (double_int b) const
- {
- const double_int &a = *this;
- double_int ret;
- neg_double (b.low, b.high, &b.low, &b.high);
- add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
- return ret;
- }
- /* Subtracts B from *this and returns a reference to *this. */
- double_int &
- double_int::operator -= (double_int b)
- {
- neg_double (b.low, b.high, &b.low, &b.high);
- add_double (low, high, b.low, b.high, &low, &high);
- return *this;
- }
- /* Returns A - B. If the operation overflows via inconsistent sign bits,
- *OVERFLOW is set to nonzero. */
- double_int
- double_int::sub_with_overflow (double_int b, bool *overflow) const
- {
- double_int ret;
- neg_double (b.low, b.high, &ret.low, &ret.high);
- add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
- *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
- return ret;
- }
- /* Returns -A. */
- double_int
- double_int::operator - () const
- {
- const double_int &a = *this;
- double_int ret;
- neg_double (a.low, a.high, &ret.low, &ret.high);
- return ret;
- }
- double_int
- double_int::neg_with_overflow (bool *overflow) const
- {
- double_int ret;
- *overflow = neg_double (low, high, &ret.low, &ret.high);
- return ret;
- }
- /* Returns A / B (computed as unsigned depending on UNS, and rounded as
- specified by CODE). CODE is enum tree_code in fact, but double_int.h
- must be included before tree.h. The remainder after the division is
- stored to MOD. */
- double_int
- double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
- double_int *mod, bool *overflow) const
- {
- const double_int &a = *this;
- double_int ret;
- *overflow = div_and_round_double (code, uns, a.low, a.high,
- b.low, b.high, &ret.low, &ret.high,
- &mod->low, &mod->high);
- return ret;
- }
- double_int
- double_int::divmod (double_int b, bool uns, unsigned code,
- double_int *mod) const
- {
- const double_int &a = *this;
- double_int ret;
- div_and_round_double (code, uns, a.low, a.high,
- b.low, b.high, &ret.low, &ret.high,
- &mod->low, &mod->high);
- return ret;
- }
- /* The same as double_int::divmod with UNS = false. */
- double_int
- double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
- {
- return this->divmod (b, false, code, mod);
- }
- /* The same as double_int::divmod with UNS = true. */
- double_int
- double_int::udivmod (double_int b, unsigned code, double_int *mod) const
- {
- return this->divmod (b, true, code, mod);
- }
- /* Returns A / B (computed as unsigned depending on UNS, and rounded as
- specified by CODE). CODE is enum tree_code in fact, but double_int.h
- must be included before tree.h. */
- double_int
- double_int::div (double_int b, bool uns, unsigned code) const
- {
- double_int mod;
- return this->divmod (b, uns, code, &mod);
- }
- /* The same as double_int::div with UNS = false. */
- double_int
- double_int::sdiv (double_int b, unsigned code) const
- {
- return this->div (b, false, code);
- }
- /* The same as double_int::div with UNS = true. */
- double_int
- double_int::udiv (double_int b, unsigned code) const
- {
- return this->div (b, true, code);
- }
- /* Returns A % B (computed as unsigned depending on UNS, and rounded as
- specified by CODE). CODE is enum tree_code in fact, but double_int.h
- must be included before tree.h. */
- double_int
- double_int::mod (double_int b, bool uns, unsigned code) const
- {
- double_int mod;
- this->divmod (b, uns, code, &mod);
- return mod;
- }
- /* The same as double_int::mod with UNS = false. */
- double_int
- double_int::smod (double_int b, unsigned code) const
- {
- return this->mod (b, false, code);
- }
- /* The same as double_int::mod with UNS = true. */
- double_int
- double_int::umod (double_int b, unsigned code) const
- {
- return this->mod (b, true, code);
- }
- /* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
- the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
- unchanged. */
- bool
- double_int::multiple_of (double_int factor,
- bool unsigned_p, double_int *multiple) const
- {
- double_int remainder;
- double_int quotient = this->divmod (factor, unsigned_p,
- TRUNC_DIV_EXPR, &remainder);
- if (remainder.is_zero ())
- {
- *multiple = quotient;
- return true;
- }
- return false;
- }
- /* Set BITPOS bit in A. */
- double_int
- double_int::set_bit (unsigned bitpos) const
- {
- double_int a = *this;
- if (bitpos < HOST_BITS_PER_WIDE_INT)
- a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
- else
- a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
-
- return a;
- }
- /* Count trailing zeros in A. */
- int
- double_int::trailing_zeros () const
- {
- const double_int &a = *this;
- unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
- unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
- if (!w)
- return HOST_BITS_PER_DOUBLE_INT;
- bits += ctz_hwi (w);
- return bits;
- }
- /* Shift A left by COUNT places. */
- double_int
- double_int::lshift (HOST_WIDE_INT count) const
- {
- double_int ret;
- gcc_checking_assert (count >= 0);
- if (count >= HOST_BITS_PER_DOUBLE_INT)
- {
- /* Shifting by the host word size is undefined according to the
- ANSI standard, so we must handle this as a special case. */
- ret.high = 0;
- ret.low = 0;
- }
- else if (count >= HOST_BITS_PER_WIDE_INT)
- {
- ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
- ret.low = 0;
- }
- else
- {
- ret.high = (((unsigned HOST_WIDE_INT) high << count)
- | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
- ret.low = low << count;
- }
- return ret;
- }
- /* Shift A right by COUNT places. */
- double_int
- double_int::rshift (HOST_WIDE_INT count) const
- {
- double_int ret;
- gcc_checking_assert (count >= 0);
- if (count >= HOST_BITS_PER_DOUBLE_INT)
- {
- /* Shifting by the host word size is undefined according to the
- ANSI standard, so we must handle this as a special case. */
- ret.high = 0;
- ret.low = 0;
- }
- else if (count >= HOST_BITS_PER_WIDE_INT)
- {
- ret.high = 0;
- ret.low
- = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
- }
- else
- {
- ret.high = high >> count;
- ret.low = ((low >> count)
- | ((unsigned HOST_WIDE_INT) high
- << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
- }
- return ret;
- }
- /* Shift A left by COUNT places keeping only PREC bits of result. Shift
- right if COUNT is negative. ARITH true specifies arithmetic shifting;
- otherwise use logical shift. */
- double_int
- double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
- {
- double_int ret;
- if (count > 0)
- lshift_double (low, high, count, prec, &ret.low, &ret.high);
- else
- rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
- return ret;
- }
- /* Shift A right by COUNT places keeping only PREC bits of result. Shift
- left if COUNT is negative. ARITH true specifies arithmetic shifting;
- otherwise use logical shift. */
- double_int
- double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
- {
- double_int ret;
- if (count > 0)
- rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
- else
- lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
- return ret;
- }
- /* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
- Shift right if COUNT is negative. */
- double_int
- double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
- {
- double_int r;
- if (count > 0)
- lshift_double (low, high, count, prec, &r.low, &r.high);
- else
- rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
- return r;
- }
- /* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
- Shift left if COUNT is negative. */
- double_int
- double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
- {
- double_int r;
- if (count > 0)
- rshift_double (low, high, count, prec, &r.low, &r.high, true);
- else
- lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
- return r;
- }
- /* Logical shift A left by COUNT places keeping only PREC bits of result.
- Shift right if COUNT is negative. */
- double_int
- double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
- {
- double_int r;
- if (count > 0)
- lshift_double (low, high, count, prec, &r.low, &r.high);
- else
- rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
- return r;
- }
- /* Logical shift A right by COUNT places keeping only PREC bits of result.
- Shift left if COUNT is negative. */
- double_int
- double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
- {
- double_int r;
- if (count > 0)
- rshift_double (low, high, count, prec, &r.low, &r.high, false);
- else
- lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
- return r;
- }
- /* Rotate A left by COUNT places keeping only PREC bits of result.
- Rotate right if COUNT is negative. */
- double_int
- double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
- {
- double_int t1, t2;
- count %= prec;
- if (count < 0)
- count += prec;
- t1 = this->llshift (count, prec);
- t2 = this->lrshift (prec - count, prec);
- return t1 | t2;
- }
- /* Rotate A rigth by COUNT places keeping only PREC bits of result.
- Rotate right if COUNT is negative. */
- double_int
- double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
- {
- double_int t1, t2;
- count %= prec;
- if (count < 0)
- count += prec;
- t1 = this->lrshift (count, prec);
- t2 = this->llshift (prec - count, prec);
- return t1 | t2;
- }
- /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
- comparison is given by UNS. */
- int
- double_int::cmp (double_int b, bool uns) const
- {
- if (uns)
- return this->ucmp (b);
- else
- return this->scmp (b);
- }
- /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
- and 1 if A > B. */
- int
- double_int::ucmp (double_int b) const
- {
- const double_int &a = *this;
- if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
- return -1;
- if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
- return 1;
- if (a.low < b.low)
- return -1;
- if (a.low > b.low)
- return 1;
- return 0;
- }
- /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
- and 1 if A > B. */
- int
- double_int::scmp (double_int b) const
- {
- const double_int &a = *this;
- if (a.high < b.high)
- return -1;
- if (a.high > b.high)
- return 1;
- if (a.low < b.low)
- return -1;
- if (a.low > b.low)
- return 1;
- return 0;
- }
- /* Compares two unsigned values A and B for less-than. */
- bool
- double_int::ult (double_int b) const
- {
- if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
- return true;
- if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
- return false;
- if (low < b.low)
- return true;
- return false;
- }
- /* Compares two unsigned values A and B for less-than or equal-to. */
- bool
- double_int::ule (double_int b) const
- {
- if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
- return true;
- if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
- return false;
- if (low <= b.low)
- return true;
- return false;
- }
- /* Compares two unsigned values A and B for greater-than. */
- bool
- double_int::ugt (double_int b) const
- {
- if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
- return true;
- if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
- return false;
- if (low > b.low)
- return true;
- return false;
- }
- /* Compares two signed values A and B for less-than. */
- bool
- double_int::slt (double_int b) const
- {
- if (high < b.high)
- return true;
- if (high > b.high)
- return false;
- if (low < b.low)
- return true;
- return false;
- }
- /* Compares two signed values A and B for less-than or equal-to. */
- bool
- double_int::sle (double_int b) const
- {
- if (high < b.high)
- return true;
- if (high > b.high)
- return false;
- if (low <= b.low)
- return true;
- return false;
- }
- /* Compares two signed values A and B for greater-than. */
- bool
- double_int::sgt (double_int b) const
- {
- if (high > b.high)
- return true;
- if (high < b.high)
- return false;
- if (low > b.low)
- return true;
- return false;
- }
- /* Compares two values A and B. Returns max value. Signedness of the
- comparison is given by UNS. */
- double_int
- double_int::max (double_int b, bool uns)
- {
- return (this->cmp (b, uns) == 1) ? *this : b;
- }
- /* Compares two signed values A and B. Returns max value. */
- double_int
- double_int::smax (double_int b)
- {
- return (this->scmp (b) == 1) ? *this : b;
- }
- /* Compares two unsigned values A and B. Returns max value. */
- double_int
- double_int::umax (double_int b)
- {
- return (this->ucmp (b) == 1) ? *this : b;
- }
- /* Compares two values A and B. Returns mix value. Signedness of the
- comparison is given by UNS. */
- double_int
- double_int::min (double_int b, bool uns)
- {
- return (this->cmp (b, uns) == -1) ? *this : b;
- }
- /* Compares two signed values A and B. Returns min value. */
- double_int
- double_int::smin (double_int b)
- {
- return (this->scmp (b) == -1) ? *this : b;
- }
- /* Compares two unsigned values A and B. Returns min value. */
- double_int
- double_int::umin (double_int b)
- {
- return (this->ucmp (b) == -1) ? *this : b;
- }
- /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
- static unsigned
- double_int_split_digit (double_int *cst, unsigned base)
- {
- unsigned HOST_WIDE_INT resl, reml;
- HOST_WIDE_INT resh, remh;
- div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
- &resl, &resh, &reml, &remh);
- cst->high = resh;
- cst->low = resl;
- return reml;
- }
- /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
- otherwise it is signed. */
- void
- dump_double_int (FILE *file, double_int cst, bool uns)
- {
- unsigned digits[100], n;
- int i;
- if (cst.is_zero ())
- {
- fprintf (file, "0");
- return;
- }
- if (!uns && cst.is_negative ())
- {
- fprintf (file, "-");
- cst = -cst;
- }
- for (n = 0; !cst.is_zero (); n++)
- digits[n] = double_int_split_digit (&cst, 10);
- for (i = n - 1; i >= 0; i--)
- fprintf (file, "%u", digits[i]);
- }
- /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
- otherwise. */
- void
- mpz_set_double_int (mpz_t result, double_int val, bool uns)
- {
- bool negate = false;
- unsigned HOST_WIDE_INT vp[2];
- if (!uns && val.is_negative ())
- {
- negate = true;
- val = -val;
- }
- vp[0] = val.low;
- vp[1] = (unsigned HOST_WIDE_INT) val.high;
- mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
- if (negate)
- mpz_neg (result, result);
- }
- /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
- values of VAL will be wrapped; otherwise, they will be set to the
- appropriate minimum or maximum TYPE bound. */
- double_int
- mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
- {
- unsigned HOST_WIDE_INT *vp;
- size_t count, numb;
- double_int res;
- if (!wrap)
- {
- mpz_t min, max;
- mpz_init (min);
- mpz_init (max);
- get_type_static_bounds (type, min, max);
- if (mpz_cmp (val, min) < 0)
- mpz_set (val, min);
- else if (mpz_cmp (val, max) > 0)
- mpz_set (val, max);
- mpz_clear (min);
- mpz_clear (max);
- }
- /* Determine the number of unsigned HOST_WIDE_INT that are required
- for representing the value. The code to calculate count is
- extracted from the GMP manual, section "Integer Import and Export":
- http://gmplib.org/manual/Integer-Import-and-Export.html */
- numb = 8 * sizeof (HOST_WIDE_INT);
- count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
- if (count < 2)
- count = 2;
- vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
- vp[0] = 0;
- vp[1] = 0;
- mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
- gcc_assert (wrap || count <= 2);
- res.low = vp[0];
- res.high = (HOST_WIDE_INT) vp[1];
- res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
- if (mpz_sgn (val) < 0)
- res = -res;
- return res;
- }
|