123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056 |
- /* Utility routines for data type conversion for GCC.
- Copyright (C) 1987-2015 Free Software Foundation, Inc.
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- /* These routines are somewhat language-independent utility function
- intended to be called by the language-specific convert () functions. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "tm.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "vec.h"
- #include "double-int.h"
- #include "input.h"
- #include "alias.h"
- #include "symtab.h"
- #include "wide-int.h"
- #include "inchash.h"
- #include "real.h"
- #include "fixed-value.h"
- #include "tree.h"
- #include "fold-const.h"
- #include "stor-layout.h"
- #include "flags.h"
- #include "convert.h"
- #include "diagnostic-core.h"
- #include "target.h"
- #include "langhooks.h"
- #include "builtins.h"
- #include "ubsan.h"
- /* Convert EXPR to some pointer or reference type TYPE.
- EXPR must be pointer, reference, integer, enumeral, or literal zero;
- in other cases error is called. */
- tree
- convert_to_pointer (tree type, tree expr)
- {
- location_t loc = EXPR_LOCATION (expr);
- if (TREE_TYPE (expr) == type)
- return expr;
- switch (TREE_CODE (TREE_TYPE (expr)))
- {
- case POINTER_TYPE:
- case REFERENCE_TYPE:
- {
- /* If the pointers point to different address spaces, conversion needs
- to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
- addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type));
- addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
- if (to_as == from_as)
- return fold_build1_loc (loc, NOP_EXPR, type, expr);
- else
- return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, expr);
- }
- case INTEGER_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- {
- /* If the input precision differs from the target pointer type
- precision, first convert the input expression to an integer type of
- the target precision. Some targets, e.g. VMS, need several pointer
- sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
- unsigned int pprec = TYPE_PRECISION (type);
- unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr));
- if (eprec != pprec)
- expr = fold_build1_loc (loc, NOP_EXPR,
- lang_hooks.types.type_for_size (pprec, 0),
- expr);
- }
- return fold_build1_loc (loc, CONVERT_EXPR, type, expr);
- default:
- error ("cannot convert to a pointer type");
- return convert_to_pointer (type, integer_zero_node);
- }
- }
- /* Convert EXPR to some floating-point type TYPE.
- EXPR must be float, fixed-point, integer, or enumeral;
- in other cases error is called. */
- tree
- convert_to_real (tree type, tree expr)
- {
- enum built_in_function fcode = builtin_mathfn_code (expr);
- tree itype = TREE_TYPE (expr);
- if (TREE_CODE (expr) == COMPOUND_EXPR)
- {
- tree t = convert_to_real (type, TREE_OPERAND (expr, 1));
- if (t == TREE_OPERAND (expr, 1))
- return expr;
- return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
- TREE_OPERAND (expr, 0), t);
- }
- /* Disable until we figure out how to decide whether the functions are
- present in runtime. */
- /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
- if (optimize
- && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
- || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
- {
- switch (fcode)
- {
- #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
- CASE_MATHFN (COSH)
- CASE_MATHFN (EXP)
- CASE_MATHFN (EXP10)
- CASE_MATHFN (EXP2)
- CASE_MATHFN (EXPM1)
- CASE_MATHFN (GAMMA)
- CASE_MATHFN (J0)
- CASE_MATHFN (J1)
- CASE_MATHFN (LGAMMA)
- CASE_MATHFN (POW10)
- CASE_MATHFN (SINH)
- CASE_MATHFN (TGAMMA)
- CASE_MATHFN (Y0)
- CASE_MATHFN (Y1)
- /* The above functions may set errno differently with float
- input or output so this transformation is not safe with
- -fmath-errno. */
- if (flag_errno_math)
- break;
- CASE_MATHFN (ACOS)
- CASE_MATHFN (ACOSH)
- CASE_MATHFN (ASIN)
- CASE_MATHFN (ASINH)
- CASE_MATHFN (ATAN)
- CASE_MATHFN (ATANH)
- CASE_MATHFN (CBRT)
- CASE_MATHFN (COS)
- CASE_MATHFN (ERF)
- CASE_MATHFN (ERFC)
- CASE_MATHFN (LOG)
- CASE_MATHFN (LOG10)
- CASE_MATHFN (LOG2)
- CASE_MATHFN (LOG1P)
- CASE_MATHFN (SIN)
- CASE_MATHFN (TAN)
- CASE_MATHFN (TANH)
- /* The above functions are not safe to do this conversion. */
- if (!flag_unsafe_math_optimizations)
- break;
- CASE_MATHFN (SQRT)
- CASE_MATHFN (FABS)
- CASE_MATHFN (LOGB)
- #undef CASE_MATHFN
- {
- tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
- tree newtype = type;
- /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
- the both as the safe type for operation. */
- if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
- newtype = TREE_TYPE (arg0);
- /* We consider to convert
- (T1) sqrtT2 ((T2) exprT3)
- to
- (T1) sqrtT4 ((T4) exprT3)
- , where T1 is TYPE, T2 is ITYPE, T3 is TREE_TYPE (ARG0),
- and T4 is NEWTYPE. All those types are of floating point types.
- T4 (NEWTYPE) should be narrower than T2 (ITYPE). This conversion
- is safe only if P1 >= P2*2+2, where P1 and P2 are precisions of
- T2 and T4. See the following URL for a reference:
- http://stackoverflow.com/questions/9235456/determining-
- floating-point-square-root
- */
- if ((fcode == BUILT_IN_SQRT || fcode == BUILT_IN_SQRTL)
- && !flag_unsafe_math_optimizations)
- {
- /* The following conversion is unsafe even the precision condition
- below is satisfied:
- (float) sqrtl ((long double) double_val) -> (float) sqrt (double_val)
- */
- if (TYPE_MODE (type) != TYPE_MODE (newtype))
- break;
- int p1 = REAL_MODE_FORMAT (TYPE_MODE (itype))->p;
- int p2 = REAL_MODE_FORMAT (TYPE_MODE (newtype))->p;
- if (p1 < p2 * 2 + 2)
- break;
- }
- /* Be careful about integer to fp conversions.
- These may overflow still. */
- if (FLOAT_TYPE_P (TREE_TYPE (arg0))
- && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
- && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
- || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
- {
- tree fn = mathfn_built_in (newtype, fcode);
- if (fn)
- {
- tree arg = fold (convert_to_real (newtype, arg0));
- expr = build_call_expr (fn, 1, arg);
- if (newtype == type)
- return expr;
- }
- }
- }
- default:
- break;
- }
- }
- if (optimize
- && (((fcode == BUILT_IN_FLOORL
- || fcode == BUILT_IN_CEILL
- || fcode == BUILT_IN_ROUNDL
- || fcode == BUILT_IN_RINTL
- || fcode == BUILT_IN_TRUNCL
- || fcode == BUILT_IN_NEARBYINTL)
- && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
- || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
- || ((fcode == BUILT_IN_FLOOR
- || fcode == BUILT_IN_CEIL
- || fcode == BUILT_IN_ROUND
- || fcode == BUILT_IN_RINT
- || fcode == BUILT_IN_TRUNC
- || fcode == BUILT_IN_NEARBYINT)
- && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
- {
- tree fn = mathfn_built_in (type, fcode);
- if (fn)
- {
- tree arg = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
- /* Make sure (type)arg0 is an extension, otherwise we could end up
- changing (float)floor(double d) into floorf((float)d), which is
- incorrect because (float)d uses round-to-nearest and can round
- up to the next integer. */
- if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
- return build_call_expr (fn, 1, fold (convert_to_real (type, arg)));
- }
- }
- /* Propagate the cast into the operation. */
- if (itype != type && FLOAT_TYPE_P (type))
- switch (TREE_CODE (expr))
- {
- /* Convert (float)-x into -(float)x. This is safe for
- round-to-nearest rounding mode when the inner type is float. */
- case ABS_EXPR:
- case NEGATE_EXPR:
- if (!flag_rounding_math
- && FLOAT_TYPE_P (itype)
- && TYPE_PRECISION (type) < TYPE_PRECISION (itype))
- return build1 (TREE_CODE (expr), type,
- fold (convert_to_real (type,
- TREE_OPERAND (expr, 0))));
- break;
- /* Convert (outertype)((innertype0)a+(innertype1)b)
- into ((newtype)a+(newtype)b) where newtype
- is the widest mode from all of these. */
- case PLUS_EXPR:
- case MINUS_EXPR:
- case MULT_EXPR:
- case RDIV_EXPR:
- {
- tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
- tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
- if (FLOAT_TYPE_P (TREE_TYPE (arg0))
- && FLOAT_TYPE_P (TREE_TYPE (arg1))
- && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type))
- {
- tree newtype = type;
- if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
- || TYPE_MODE (TREE_TYPE (arg1)) == SDmode
- || TYPE_MODE (type) == SDmode)
- newtype = dfloat32_type_node;
- if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
- || TYPE_MODE (TREE_TYPE (arg1)) == DDmode
- || TYPE_MODE (type) == DDmode)
- newtype = dfloat64_type_node;
- if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
- || TYPE_MODE (TREE_TYPE (arg1)) == TDmode
- || TYPE_MODE (type) == TDmode)
- newtype = dfloat128_type_node;
- if (newtype == dfloat32_type_node
- || newtype == dfloat64_type_node
- || newtype == dfloat128_type_node)
- {
- expr = build2 (TREE_CODE (expr), newtype,
- fold (convert_to_real (newtype, arg0)),
- fold (convert_to_real (newtype, arg1)));
- if (newtype == type)
- return expr;
- break;
- }
- if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
- newtype = TREE_TYPE (arg0);
- if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
- newtype = TREE_TYPE (arg1);
- /* Sometimes this transformation is safe (cannot
- change results through affecting double rounding
- cases) and sometimes it is not. If NEWTYPE is
- wider than TYPE, e.g. (float)((long double)double
- + (long double)double) converted to
- (float)(double + double), the transformation is
- unsafe regardless of the details of the types
- involved; double rounding can arise if the result
- of NEWTYPE arithmetic is a NEWTYPE value half way
- between two representable TYPE values but the
- exact value is sufficiently different (in the
- right direction) for this difference to be
- visible in ITYPE arithmetic. If NEWTYPE is the
- same as TYPE, however, the transformation may be
- safe depending on the types involved: it is safe
- if the ITYPE has strictly more than twice as many
- mantissa bits as TYPE, can represent infinities
- and NaNs if the TYPE can, and has sufficient
- exponent range for the product or ratio of two
- values representable in the TYPE to be within the
- range of normal values of ITYPE. */
- if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
- && (flag_unsafe_math_optimizations
- || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
- && real_can_shorten_arithmetic (TYPE_MODE (itype),
- TYPE_MODE (type))
- && !excess_precision_type (newtype))))
- {
- expr = build2 (TREE_CODE (expr), newtype,
- fold (convert_to_real (newtype, arg0)),
- fold (convert_to_real (newtype, arg1)));
- if (newtype == type)
- return expr;
- }
- }
- }
- break;
- default:
- break;
- }
- switch (TREE_CODE (TREE_TYPE (expr)))
- {
- case REAL_TYPE:
- /* Ignore the conversion if we don't need to store intermediate
- results and neither type is a decimal float. */
- return build1 ((flag_float_store
- || DECIMAL_FLOAT_TYPE_P (type)
- || DECIMAL_FLOAT_TYPE_P (itype))
- ? CONVERT_EXPR : NOP_EXPR, type, expr);
- case INTEGER_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- return build1 (FLOAT_EXPR, type, expr);
- case FIXED_POINT_TYPE:
- return build1 (FIXED_CONVERT_EXPR, type, expr);
- case COMPLEX_TYPE:
- return convert (type,
- fold_build1 (REALPART_EXPR,
- TREE_TYPE (TREE_TYPE (expr)), expr));
- case POINTER_TYPE:
- case REFERENCE_TYPE:
- error ("pointer value used where a floating point value was expected");
- return convert_to_real (type, integer_zero_node);
- default:
- error ("aggregate value used where a float was expected");
- return convert_to_real (type, integer_zero_node);
- }
- }
- /* Convert EXPR to some integer (or enum) type TYPE.
- EXPR must be pointer, integer, discrete (enum, char, or bool), float,
- fixed-point or vector; in other cases error is called.
- The result of this is always supposed to be a newly created tree node
- not in use in any existing structure. */
- tree
- convert_to_integer (tree type, tree expr)
- {
- enum tree_code ex_form = TREE_CODE (expr);
- tree intype = TREE_TYPE (expr);
- unsigned int inprec = element_precision (intype);
- unsigned int outprec = element_precision (type);
- location_t loc = EXPR_LOCATION (expr);
- /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
- be. Consider `enum E = { a, b = (enum E) 3 };'. */
- if (!COMPLETE_TYPE_P (type))
- {
- error ("conversion to incomplete type");
- return error_mark_node;
- }
- if (ex_form == COMPOUND_EXPR)
- {
- tree t = convert_to_integer (type, TREE_OPERAND (expr, 1));
- if (t == TREE_OPERAND (expr, 1))
- return expr;
- return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
- TREE_OPERAND (expr, 0), t);
- }
- /* Convert e.g. (long)round(d) -> lround(d). */
- /* If we're converting to char, we may encounter differing behavior
- between converting from double->char vs double->long->char.
- We're in "undefined" territory but we prefer to be conservative,
- so only proceed in "unsafe" math mode. */
- if (optimize
- && (flag_unsafe_math_optimizations
- || (long_integer_type_node
- && outprec >= TYPE_PRECISION (long_integer_type_node))))
- {
- tree s_expr = strip_float_extensions (expr);
- tree s_intype = TREE_TYPE (s_expr);
- const enum built_in_function fcode = builtin_mathfn_code (s_expr);
- tree fn = 0;
- switch (fcode)
- {
- CASE_FLT_FN (BUILT_IN_CEIL):
- /* Only convert in ISO C99 mode. */
- if (!targetm.libc_has_function (function_c99_misc))
- break;
- if (outprec < TYPE_PRECISION (integer_type_node)
- || (outprec == TYPE_PRECISION (integer_type_node)
- && !TYPE_UNSIGNED (type)))
- fn = mathfn_built_in (s_intype, BUILT_IN_ICEIL);
- else if (outprec == TYPE_PRECISION (long_integer_type_node)
- && !TYPE_UNSIGNED (type))
- fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
- else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
- && !TYPE_UNSIGNED (type))
- fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
- break;
- CASE_FLT_FN (BUILT_IN_FLOOR):
- /* Only convert in ISO C99 mode. */
- if (!targetm.libc_has_function (function_c99_misc))
- break;
- if (outprec < TYPE_PRECISION (integer_type_node)
- || (outprec == TYPE_PRECISION (integer_type_node)
- && !TYPE_UNSIGNED (type)))
- fn = mathfn_built_in (s_intype, BUILT_IN_IFLOOR);
- else if (outprec == TYPE_PRECISION (long_integer_type_node)
- && !TYPE_UNSIGNED (type))
- fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
- else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
- && !TYPE_UNSIGNED (type))
- fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
- break;
- CASE_FLT_FN (BUILT_IN_ROUND):
- /* Only convert in ISO C99 mode and with -fno-math-errno. */
- if (!targetm.libc_has_function (function_c99_misc) || flag_errno_math)
- break;
- if (outprec < TYPE_PRECISION (integer_type_node)
- || (outprec == TYPE_PRECISION (integer_type_node)
- && !TYPE_UNSIGNED (type)))
- fn = mathfn_built_in (s_intype, BUILT_IN_IROUND);
- else if (outprec == TYPE_PRECISION (long_integer_type_node)
- && !TYPE_UNSIGNED (type))
- fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
- else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
- && !TYPE_UNSIGNED (type))
- fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
- break;
- CASE_FLT_FN (BUILT_IN_NEARBYINT):
- /* Only convert nearbyint* if we can ignore math exceptions. */
- if (flag_trapping_math)
- break;
- /* ... Fall through ... */
- CASE_FLT_FN (BUILT_IN_RINT):
- /* Only convert in ISO C99 mode and with -fno-math-errno. */
- if (!targetm.libc_has_function (function_c99_misc) || flag_errno_math)
- break;
- if (outprec < TYPE_PRECISION (integer_type_node)
- || (outprec == TYPE_PRECISION (integer_type_node)
- && !TYPE_UNSIGNED (type)))
- fn = mathfn_built_in (s_intype, BUILT_IN_IRINT);
- else if (outprec == TYPE_PRECISION (long_integer_type_node)
- && !TYPE_UNSIGNED (type))
- fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
- else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
- && !TYPE_UNSIGNED (type))
- fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
- break;
- CASE_FLT_FN (BUILT_IN_TRUNC):
- return convert_to_integer (type, CALL_EXPR_ARG (s_expr, 0));
- default:
- break;
- }
- if (fn)
- {
- tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
- return convert_to_integer (type, newexpr);
- }
- }
- /* Convert (int)logb(d) -> ilogb(d). */
- if (optimize
- && flag_unsafe_math_optimizations
- && !flag_trapping_math && !flag_errno_math && flag_finite_math_only
- && integer_type_node
- && (outprec > TYPE_PRECISION (integer_type_node)
- || (outprec == TYPE_PRECISION (integer_type_node)
- && !TYPE_UNSIGNED (type))))
- {
- tree s_expr = strip_float_extensions (expr);
- tree s_intype = TREE_TYPE (s_expr);
- const enum built_in_function fcode = builtin_mathfn_code (s_expr);
- tree fn = 0;
- switch (fcode)
- {
- CASE_FLT_FN (BUILT_IN_LOGB):
- fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB);
- break;
- default:
- break;
- }
- if (fn)
- {
- tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
- return convert_to_integer (type, newexpr);
- }
- }
- switch (TREE_CODE (intype))
- {
- case POINTER_TYPE:
- case REFERENCE_TYPE:
- if (integer_zerop (expr))
- return build_int_cst (type, 0);
- /* Convert to an unsigned integer of the correct width first, and from
- there widen/truncate to the required type. Some targets support the
- coexistence of multiple valid pointer sizes, so fetch the one we need
- from the type. */
- expr = fold_build1 (CONVERT_EXPR,
- lang_hooks.types.type_for_size
- (TYPE_PRECISION (intype), 0),
- expr);
- return fold_convert (type, expr);
- case INTEGER_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- case OFFSET_TYPE:
- /* If this is a logical operation, which just returns 0 or 1, we can
- change the type of the expression. */
- if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
- {
- expr = copy_node (expr);
- TREE_TYPE (expr) = type;
- return expr;
- }
- /* If we are widening the type, put in an explicit conversion.
- Similarly if we are not changing the width. After this, we know
- we are truncating EXPR. */
- else if (outprec >= inprec)
- {
- enum tree_code code;
- /* If the precision of the EXPR's type is K bits and the
- destination mode has more bits, and the sign is changing,
- it is not safe to use a NOP_EXPR. For example, suppose
- that EXPR's type is a 3-bit unsigned integer type, the
- TYPE is a 3-bit signed integer type, and the machine mode
- for the types is 8-bit QImode. In that case, the
- conversion necessitates an explicit sign-extension. In
- the signed-to-unsigned case the high-order bits have to
- be cleared. */
- if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
- && (TYPE_PRECISION (TREE_TYPE (expr))
- != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (expr)))))
- code = CONVERT_EXPR;
- else
- code = NOP_EXPR;
- return fold_build1 (code, type, expr);
- }
- /* If TYPE is an enumeral type or a type with a precision less
- than the number of bits in its mode, do the conversion to the
- type corresponding to its mode, then do a nop conversion
- to TYPE. */
- else if (TREE_CODE (type) == ENUMERAL_TYPE
- || outprec != GET_MODE_PRECISION (TYPE_MODE (type)))
- return build1 (NOP_EXPR, type,
- convert (lang_hooks.types.type_for_mode
- (TYPE_MODE (type), TYPE_UNSIGNED (type)),
- expr));
- /* Here detect when we can distribute the truncation down past some
- arithmetic. For example, if adding two longs and converting to an
- int, we can equally well convert both to ints and then add.
- For the operations handled here, such truncation distribution
- is always safe.
- It is desirable in these cases:
- 1) when truncating down to full-word from a larger size
- 2) when truncating takes no work.
- 3) when at least one operand of the arithmetic has been extended
- (as by C's default conversions). In this case we need two conversions
- if we do the arithmetic as already requested, so we might as well
- truncate both and then combine. Perhaps that way we need only one.
- Note that in general we cannot do the arithmetic in a type
- shorter than the desired result of conversion, even if the operands
- are both extended from a shorter type, because they might overflow
- if combined in that type. The exceptions to this--the times when
- two narrow values can be combined in their narrow type even to
- make a wider result--are handled by "shorten" in build_binary_op. */
- switch (ex_form)
- {
- case RSHIFT_EXPR:
- /* We can pass truncation down through right shifting
- when the shift count is a nonpositive constant. */
- if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
- && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
- goto trunc1;
- break;
- case LSHIFT_EXPR:
- /* We can pass truncation down through left shifting
- when the shift count is a nonnegative constant and
- the target type is unsigned. */
- if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
- && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
- && TYPE_UNSIGNED (type)
- && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
- {
- /* If shift count is less than the width of the truncated type,
- really shift. */
- if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
- /* In this case, shifting is like multiplication. */
- goto trunc1;
- else
- {
- /* If it is >= that width, result is zero.
- Handling this with trunc1 would give the wrong result:
- (int) ((long long) a << 32) is well defined (as 0)
- but (int) a << 32 is undefined and would get a
- warning. */
- tree t = build_int_cst (type, 0);
- /* If the original expression had side-effects, we must
- preserve it. */
- if (TREE_SIDE_EFFECTS (expr))
- return build2 (COMPOUND_EXPR, type, expr, t);
- else
- return t;
- }
- }
- break;
- case TRUNC_DIV_EXPR:
- {
- tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
- tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
- /* Don't distribute unless the output precision is at least as big
- as the actual inputs and it has the same signedness. */
- if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
- && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
- /* If signedness of arg0 and arg1 don't match,
- we can't necessarily find a type to compare them in. */
- && (TYPE_UNSIGNED (TREE_TYPE (arg0))
- == TYPE_UNSIGNED (TREE_TYPE (arg1)))
- /* Do not change the sign of the division. */
- && (TYPE_UNSIGNED (TREE_TYPE (expr))
- == TYPE_UNSIGNED (TREE_TYPE (arg0)))
- /* Either require unsigned division or a division by
- a constant that is not -1. */
- && (TYPE_UNSIGNED (TREE_TYPE (arg0))
- || (TREE_CODE (arg1) == INTEGER_CST
- && !integer_all_onesp (arg1))))
- goto trunc1;
- break;
- }
- case MAX_EXPR:
- case MIN_EXPR:
- case MULT_EXPR:
- {
- tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
- tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
- /* Don't distribute unless the output precision is at least as big
- as the actual inputs. Otherwise, the comparison of the
- truncated values will be wrong. */
- if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
- && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
- /* If signedness of arg0 and arg1 don't match,
- we can't necessarily find a type to compare them in. */
- && (TYPE_UNSIGNED (TREE_TYPE (arg0))
- == TYPE_UNSIGNED (TREE_TYPE (arg1))))
- goto trunc1;
- break;
- }
- case PLUS_EXPR:
- case MINUS_EXPR:
- case BIT_AND_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- trunc1:
- {
- tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
- tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
- /* Do not try to narrow operands of pointer subtraction;
- that will interfere with other folding. */
- if (ex_form == MINUS_EXPR
- && CONVERT_EXPR_P (arg0)
- && CONVERT_EXPR_P (arg1)
- && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
- && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))))
- break;
- if (outprec >= BITS_PER_WORD
- || TRULY_NOOP_TRUNCATION (outprec, inprec)
- || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
- || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
- {
- /* Do the arithmetic in type TYPEX,
- then convert result to TYPE. */
- tree typex = type;
- /* Can't do arithmetic in enumeral types
- so use an integer type that will hold the values. */
- if (TREE_CODE (typex) == ENUMERAL_TYPE)
- typex
- = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
- TYPE_UNSIGNED (typex));
- /* But now perhaps TYPEX is as wide as INPREC.
- In that case, do nothing special here.
- (Otherwise would recurse infinitely in convert. */
- if (TYPE_PRECISION (typex) != inprec)
- {
- /* Don't do unsigned arithmetic where signed was wanted,
- or vice versa.
- Exception: if both of the original operands were
- unsigned then we can safely do the work as unsigned.
- Exception: shift operations take their type solely
- from the first argument.
- Exception: the LSHIFT_EXPR case above requires that
- we perform this operation unsigned lest we produce
- signed-overflow undefinedness.
- And we may need to do it as unsigned
- if we truncate to the original size. */
- if (TYPE_UNSIGNED (TREE_TYPE (expr))
- || (TYPE_UNSIGNED (TREE_TYPE (arg0))
- && (TYPE_UNSIGNED (TREE_TYPE (arg1))
- || ex_form == LSHIFT_EXPR
- || ex_form == RSHIFT_EXPR
- || ex_form == LROTATE_EXPR
- || ex_form == RROTATE_EXPR))
- || ex_form == LSHIFT_EXPR
- /* If we have !flag_wrapv, and either ARG0 or
- ARG1 is of a signed type, we have to do
- PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
- type in case the operation in outprec precision
- could overflow. Otherwise, we would introduce
- signed-overflow undefinedness. */
- || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
- || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
- && ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u
- > outprec)
- || (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u
- > outprec))
- && (ex_form == PLUS_EXPR
- || ex_form == MINUS_EXPR
- || ex_form == MULT_EXPR)))
- {
- if (!TYPE_UNSIGNED (typex))
- typex = unsigned_type_for (typex);
- }
- else
- {
- if (TYPE_UNSIGNED (typex))
- typex = signed_type_for (typex);
- }
- return convert (type,
- fold_build2 (ex_form, typex,
- convert (typex, arg0),
- convert (typex, arg1)));
- }
- }
- }
- break;
- case NEGATE_EXPR:
- case BIT_NOT_EXPR:
- /* This is not correct for ABS_EXPR,
- since we must test the sign before truncation. */
- {
- /* Do the arithmetic in type TYPEX,
- then convert result to TYPE. */
- tree typex = type;
- /* Can't do arithmetic in enumeral types
- so use an integer type that will hold the values. */
- if (TREE_CODE (typex) == ENUMERAL_TYPE)
- typex
- = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
- TYPE_UNSIGNED (typex));
- if (!TYPE_UNSIGNED (typex))
- typex = unsigned_type_for (typex);
- return convert (type,
- fold_build1 (ex_form, typex,
- convert (typex,
- TREE_OPERAND (expr, 0))));
- }
- CASE_CONVERT:
- /* Don't introduce a
- "can't convert between vector values of different size" error. */
- if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
- && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
- != GET_MODE_SIZE (TYPE_MODE (type))))
- break;
- /* If truncating after truncating, might as well do all at once.
- If truncating after extending, we may get rid of wasted work. */
- return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
- case COND_EXPR:
- /* It is sometimes worthwhile to push the narrowing down through
- the conditional and never loses. A COND_EXPR may have a throw
- as one operand, which then has void type. Just leave void
- operands as they are. */
- return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
- VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))
- ? TREE_OPERAND (expr, 1)
- : convert (type, TREE_OPERAND (expr, 1)),
- VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2)))
- ? TREE_OPERAND (expr, 2)
- : convert (type, TREE_OPERAND (expr, 2)));
- default:
- break;
- }
- /* When parsing long initializers, we might end up with a lot of casts.
- Shortcut this. */
- if (TREE_CODE (expr) == INTEGER_CST)
- return fold_convert (type, expr);
- return build1 (CONVERT_EXPR, type, expr);
- case REAL_TYPE:
- if (flag_sanitize & SANITIZE_FLOAT_CAST
- && do_ubsan_in_current_function ())
- {
- expr = save_expr (expr);
- tree check = ubsan_instrument_float_cast (loc, type, expr, expr);
- expr = build1 (FIX_TRUNC_EXPR, type, expr);
- if (check == NULL)
- return expr;
- return fold_build2 (COMPOUND_EXPR, TREE_TYPE (expr), check, expr);
- }
- else
- return build1 (FIX_TRUNC_EXPR, type, expr);
- case FIXED_POINT_TYPE:
- return build1 (FIXED_CONVERT_EXPR, type, expr);
- case COMPLEX_TYPE:
- return convert (type,
- fold_build1 (REALPART_EXPR,
- TREE_TYPE (TREE_TYPE (expr)), expr));
- case VECTOR_TYPE:
- if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
- {
- error ("can%'t convert between vector values of different size");
- return error_mark_node;
- }
- return build1 (VIEW_CONVERT_EXPR, type, expr);
- default:
- error ("aggregate value used where an integer was expected");
- return convert (type, integer_zero_node);
- }
- }
- /* Convert EXPR to the complex type TYPE in the usual ways. */
- tree
- convert_to_complex (tree type, tree expr)
- {
- tree subtype = TREE_TYPE (type);
- switch (TREE_CODE (TREE_TYPE (expr)))
- {
- case REAL_TYPE:
- case FIXED_POINT_TYPE:
- case INTEGER_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
- convert (subtype, integer_zero_node));
- case COMPLEX_TYPE:
- {
- tree elt_type = TREE_TYPE (TREE_TYPE (expr));
- if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
- return expr;
- else if (TREE_CODE (expr) == COMPOUND_EXPR)
- {
- tree t = convert_to_complex (type, TREE_OPERAND (expr, 1));
- if (t == TREE_OPERAND (expr, 1))
- return expr;
- return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR,
- TREE_TYPE (t), TREE_OPERAND (expr, 0), t);
- }
- else if (TREE_CODE (expr) == COMPLEX_EXPR)
- return fold_build2 (COMPLEX_EXPR, type,
- convert (subtype, TREE_OPERAND (expr, 0)),
- convert (subtype, TREE_OPERAND (expr, 1)));
- else
- {
- expr = save_expr (expr);
- return
- fold_build2 (COMPLEX_EXPR, type,
- convert (subtype,
- fold_build1 (REALPART_EXPR,
- TREE_TYPE (TREE_TYPE (expr)),
- expr)),
- convert (subtype,
- fold_build1 (IMAGPART_EXPR,
- TREE_TYPE (TREE_TYPE (expr)),
- expr)));
- }
- }
- case POINTER_TYPE:
- case REFERENCE_TYPE:
- error ("pointer value used where a complex was expected");
- return convert_to_complex (type, integer_zero_node);
- default:
- error ("aggregate value used where a complex was expected");
- return convert_to_complex (type, integer_zero_node);
- }
- }
- /* Convert EXPR to the vector type TYPE in the usual ways. */
- tree
- convert_to_vector (tree type, tree expr)
- {
- switch (TREE_CODE (TREE_TYPE (expr)))
- {
- case INTEGER_TYPE:
- case VECTOR_TYPE:
- if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
- {
- error ("can%'t convert between vector values of different size");
- return error_mark_node;
- }
- return build1 (VIEW_CONVERT_EXPR, type, expr);
- default:
- error ("can%'t convert value to a vector");
- return error_mark_node;
- }
- }
- /* Convert EXPR to some fixed-point type TYPE.
- EXPR must be fixed-point, float, integer, or enumeral;
- in other cases error is called. */
- tree
- convert_to_fixed (tree type, tree expr)
- {
- if (integer_zerop (expr))
- {
- tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type)));
- return fixed_zero_node;
- }
- else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)))
- {
- tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type)));
- return fixed_one_node;
- }
- switch (TREE_CODE (TREE_TYPE (expr)))
- {
- case FIXED_POINT_TYPE:
- case INTEGER_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- case REAL_TYPE:
- return build1 (FIXED_CONVERT_EXPR, type, expr);
- case COMPLEX_TYPE:
- return convert (type,
- fold_build1 (REALPART_EXPR,
- TREE_TYPE (TREE_TYPE (expr)), expr));
- default:
- error ("aggregate value used where a fixed-point was expected");
- return error_mark_node;
- }
- }
|