mn10300.h 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /* Definitions of target machine for GNU compiler.
  2. Matsushita MN10300 series
  3. Copyright (C) 1996-2015 Free Software Foundation, Inc.
  4. Contributed by Jeff Law (law@cygnus.com).
  5. This file is part of GCC.
  6. GCC is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 3, or (at your option)
  9. any later version.
  10. GCC is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with GCC; see the file COPYING3. If not see
  16. <http://www.gnu.org/licenses/>. */
  17. #undef ASM_SPEC
  18. #undef LIB_SPEC
  19. #undef ENDFILE_SPEC
  20. #undef LINK_SPEC
  21. #define LINK_SPEC "%{mrelax:%{!r:--relax}}"
  22. #undef STARTFILE_SPEC
  23. #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
  24. /* Names to predefine in the preprocessor for this target machine. */
  25. #define TARGET_CPU_CPP_BUILTINS() \
  26. do \
  27. { \
  28. builtin_define ("__mn10300__"); \
  29. builtin_define ("__MN10300__"); \
  30. builtin_assert ("cpu=mn10300"); \
  31. builtin_assert ("machine=mn10300"); \
  32. \
  33. if (TARGET_AM34) \
  34. { \
  35. builtin_define ("__AM33__=4"); \
  36. builtin_define ("__AM34__"); \
  37. } \
  38. else if (TARGET_AM33_2) \
  39. { \
  40. builtin_define ("__AM33__=2"); \
  41. builtin_define ("__AM33_2__"); \
  42. } \
  43. else if (TARGET_AM33) \
  44. builtin_define ("__AM33__=1"); \
  45. \
  46. builtin_define (TARGET_ALLOW_LIW ? \
  47. "__LIW__" : "__NO_LIW__");\
  48. \
  49. builtin_define (TARGET_ALLOW_SETLB ? \
  50. "__SETLB__" : "__NO_SETLB__");\
  51. } \
  52. while (0)
  53. #ifndef MN10300_OPTS_H
  54. #include "config/mn10300/mn10300-opts.h"
  55. #endif
  56. extern enum processor_type mn10300_tune_cpu;
  57. #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
  58. #define TARGET_AM33_2 (mn10300_processor >= PROCESSOR_AM33_2)
  59. #define TARGET_AM34 (mn10300_processor >= PROCESSOR_AM34)
  60. #ifndef PROCESSOR_DEFAULT
  61. #define PROCESSOR_DEFAULT PROCESSOR_MN10300
  62. #endif
  63. /* Target machine storage layout */
  64. /* Define this if most significant bit is lowest numbered
  65. in instructions that operate on numbered bit-fields.
  66. This is not true on the Matsushita MN1003. */
  67. #define BITS_BIG_ENDIAN 0
  68. /* Define this if most significant byte of a word is the lowest numbered. */
  69. /* This is not true on the Matsushita MN10300. */
  70. #define BYTES_BIG_ENDIAN 0
  71. /* Define this if most significant word of a multiword number is lowest
  72. numbered.
  73. This is not true on the Matsushita MN10300. */
  74. #define WORDS_BIG_ENDIAN 0
  75. /* Width of a word, in units (bytes). */
  76. #define UNITS_PER_WORD 4
  77. /* Allocation boundary (in *bits*) for storing arguments in argument list. */
  78. #define PARM_BOUNDARY 32
  79. /* The stack goes in 32-bit lumps. */
  80. #define STACK_BOUNDARY 32
  81. /* Allocation boundary (in *bits*) for the code of a function.
  82. 8 is the minimum boundary; it's unclear if bigger alignments
  83. would improve performance. */
  84. #define FUNCTION_BOUNDARY 8
  85. /* No data type wants to be aligned rounder than this. */
  86. #define BIGGEST_ALIGNMENT 32
  87. /* Alignment of field after `int : 0' in a structure. */
  88. #define EMPTY_FIELD_BOUNDARY 32
  89. /* Define this if move instructions will actually fail to work
  90. when given unaligned data. */
  91. #define STRICT_ALIGNMENT 1
  92. /* Define this as 1 if `char' should by default be signed; else as 0. */
  93. #define DEFAULT_SIGNED_CHAR 0
  94. #undef SIZE_TYPE
  95. #define SIZE_TYPE "unsigned int"
  96. #undef PTRDIFF_TYPE
  97. #define PTRDIFF_TYPE "int"
  98. #undef WCHAR_TYPE
  99. #define WCHAR_TYPE "long int"
  100. #undef WCHAR_TYPE_SIZE
  101. #define WCHAR_TYPE_SIZE BITS_PER_WORD
  102. /* Standard register usage. */
  103. /* Number of actual hardware registers.
  104. The hardware registers are assigned numbers for the compiler
  105. from 0 to just below FIRST_PSEUDO_REGISTER.
  106. All registers that the compiler knows about must be given numbers,
  107. even those that are not normally considered general registers. */
  108. #define FIRST_PSEUDO_REGISTER 52
  109. /* Specify machine-specific register numbers. The commented out entries
  110. are defined in mn10300.md. */
  111. #define FIRST_DATA_REGNUM 0
  112. #define LAST_DATA_REGNUM 3
  113. #define FIRST_ADDRESS_REGNUM 4
  114. /* #define PIC_REG 6 */
  115. #define LAST_ADDRESS_REGNUM 8
  116. /* #define SP_REG 9 */
  117. #define FIRST_EXTENDED_REGNUM 10
  118. #define LAST_EXTENDED_REGNUM 17
  119. #define FIRST_FP_REGNUM 18
  120. #define LAST_FP_REGNUM 49
  121. /* #define MDR_REG 50 */
  122. /* #define CC_REG 51 */
  123. #define FIRST_ARGUMENT_REGNUM 0
  124. /* Specify the registers used for certain standard purposes.
  125. The values of these macros are register numbers. */
  126. /* Register to use for pushing function arguments. */
  127. #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
  128. /* Base register for access to local variables of the function. */
  129. #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
  130. /* Base register for access to arguments of the function. This
  131. is a fake register and will be eliminated into either the frame
  132. pointer or stack pointer. */
  133. #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
  134. /* Register in which static-chain is passed to a function. */
  135. #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
  136. /* 1 for registers that have pervasive standard uses
  137. and are not available for the register allocator. */
  138. #define FIXED_REGISTERS \
  139. { 0, 0, 0, 0, /* data regs */ \
  140. 0, 0, 0, 0, /* addr regs */ \
  141. 1, /* arg reg */ \
  142. 1, /* sp reg */ \
  143. 0, 0, 0, 0, 0, 0, 0, 0, /* extended regs */ \
  144. 0, 0, /* fp regs (18-19) */ \
  145. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
  146. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (30-39) */ \
  147. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (40-49) */ \
  148. 0, /* mdr reg */ \
  149. 1 /* cc reg */ \
  150. }
  151. /* 1 for registers not available across function calls.
  152. These must include the FIXED_REGISTERS and also any
  153. registers that can be used without being saved.
  154. The latter must include the registers where values are returned
  155. and the register where structure-value addresses are passed.
  156. Aside from that, you can include as many other registers as you
  157. like. */
  158. #define CALL_USED_REGISTERS \
  159. { 1, 1, 0, 0, /* data regs */ \
  160. 1, 1, 0, 0, /* addr regs */ \
  161. 1, /* arg reg */ \
  162. 1, /* sp reg */ \
  163. 1, 1, 1, 1, 0, 0, 0, 0, /* extended regs */ \
  164. 1, 1, /* fp regs (18-19) */ \
  165. 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
  166. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, /* fp regs (30-39) */ \
  167. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* fp regs (40-49) */ \
  168. 1, /* mdr reg */ \
  169. 1 /* cc reg */ \
  170. }
  171. /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
  172. redundant. It is needed when compiling in PIC mode because
  173. the a2 register becomes fixed (and hence must be marked as
  174. call_used) but in order to preserve the ABI it is not marked
  175. as call_really_used. */
  176. #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
  177. #define REG_ALLOC_ORDER \
  178. { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
  179. , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
  180. , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
  181. }
  182. /* Return number of consecutive hard regs needed starting at reg REGNO
  183. to hold something of mode MODE.
  184. This is ordinarily the length in words of a value of mode MODE
  185. but can be less for certain modes in special long registers. */
  186. #define HARD_REGNO_NREGS(REGNO, MODE) \
  187. ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
  188. /* Value is 1 if hard register REGNO can hold a value of machine-mode
  189. MODE. */
  190. #define HARD_REGNO_MODE_OK(REGNO, MODE) \
  191. mn10300_hard_regno_mode_ok ((REGNO), (MODE))
  192. /* Value is 1 if it is a good idea to tie two pseudo registers
  193. when one has mode MODE1 and one has mode MODE2.
  194. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
  195. for any hard reg, then this must be 0 for correct output. */
  196. #define MODES_TIEABLE_P(MODE1, MODE2) \
  197. mn10300_modes_tieable ((MODE1), (MODE2))
  198. /* 4 data, and effectively 3 address registers is small as far as I'm
  199. concerned. */
  200. #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
  201. /* Define the classes of registers for register constraints in the
  202. machine description. Also define ranges of constants.
  203. One of the classes must always be named ALL_REGS and include all hard regs.
  204. If there is more than one class, another class must be named NO_REGS
  205. and contain no registers.
  206. The name GENERAL_REGS must be the name of a class (or an alias for
  207. another name such as ALL_REGS). This is the class of registers
  208. that is allowed by "g" or "r" in a register constraint.
  209. Also, registers outside this class are allocated only when
  210. instructions express preferences for them.
  211. The classes must be numbered in nondecreasing order; that is,
  212. a larger-numbered class must never be contained completely
  213. in a smaller-numbered class.
  214. For any two classes, it is very desirable that there be another
  215. class that represents their union. */
  216. enum reg_class
  217. {
  218. NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
  219. EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
  220. GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
  221. };
  222. #define N_REG_CLASSES (int) LIM_REG_CLASSES
  223. /* Give names of register classes as strings for dump file. */
  224. #define REG_CLASS_NAMES \
  225. { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
  226. "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS", \
  227. "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
  228. }
  229. /* Define which registers fit in which classes.
  230. This is an initializer for a vector of HARD_REG_SET
  231. of length N_REG_CLASSES. */
  232. #define REG_CLASS_CONTENTS \
  233. { { 0, 0 }, /* No regs */ \
  234. { 0x0000000f, 0 }, /* DATA_REGS */ \
  235. { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
  236. { 0x00000200, 0 }, /* SP_REGS */ \
  237. { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
  238. { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
  239. { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
  240. { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
  241. { 0x00000000, 0x80000 },/* CC_REGS */ \
  242. { 0x00000000, 0x40000 },/* MDR_REGS */ \
  243. { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
  244. { 0x0003ffff, 0 }, /* SP_OR_GENERAL_REGS */ \
  245. { 0xffffffff, 0xfffff } /* ALL_REGS */ \
  246. }
  247. /* The same information, inverted:
  248. Return the class number of the smallest class containing
  249. reg number REGNO. This could be a conditional expression
  250. or could index an array. */
  251. #define REGNO_REG_CLASS(REGNO) \
  252. ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
  253. (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
  254. (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
  255. (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
  256. (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
  257. (REGNO) == MDR_REG ? MDR_REGS : \
  258. (REGNO) == CC_REG ? CC_REGS : \
  259. NO_REGS)
  260. /* The class value for index registers, and the one for base regs. */
  261. #define INDEX_REG_CLASS \
  262. (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
  263. #define BASE_REG_CLASS \
  264. (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
  265. /* Macros to check register numbers against specific register classes. */
  266. /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
  267. and check its validity for a certain class.
  268. We have two alternate definitions for each of them.
  269. The usual definition accepts all pseudo regs; the other rejects
  270. them unless they have been allocated suitable hard regs.
  271. The symbol REG_OK_STRICT causes the latter definition to be used.
  272. Most source files want to accept pseudo regs in the hope that
  273. they will get allocated to the class that the insn wants them to be in.
  274. Source files for reload pass need to be strict.
  275. After reload, it makes no difference, since pseudo regs have
  276. been eliminated by then. */
  277. /* These assume that REGNO is a hard or pseudo reg number.
  278. They give nonzero only if REGNO is a hard reg of the suitable class
  279. or a pseudo reg currently allocated to a suitable hard reg.
  280. Since they use reg_renumber, they are safe only once reg_renumber
  281. has been allocated, which happens in reginfo.c during register
  282. allocation. */
  283. #ifndef REG_OK_STRICT
  284. # define REG_STRICT 0
  285. #else
  286. # define REG_STRICT 1
  287. #endif
  288. #define REGNO_DATA_P(regno, strict) \
  289. mn10300_regno_in_class_p (regno, DATA_REGS, strict)
  290. #define REGNO_ADDRESS_P(regno, strict) \
  291. mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
  292. #define REGNO_EXTENDED_P(regno, strict) \
  293. mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
  294. #define REGNO_GENERAL_P(regno, strict) \
  295. mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
  296. #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
  297. mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
  298. #define REGNO_OK_FOR_BASE_P(regno) \
  299. (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
  300. #define REG_OK_FOR_BASE_P(X) \
  301. (REGNO_OK_FOR_BASE_P (REGNO (X)))
  302. #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
  303. mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
  304. #define REGNO_OK_FOR_BIT_BASE_P(regno) \
  305. (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
  306. #define REG_OK_FOR_BIT_BASE_P(X) \
  307. (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
  308. #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
  309. mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
  310. #define REGNO_OK_FOR_INDEX_P(regno) \
  311. (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
  312. #define REG_OK_FOR_INDEX_P(X) \
  313. (REGNO_OK_FOR_INDEX_P (REGNO (X)))
  314. #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
  315. (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
  316. /* A class that contains registers which the compiler must always
  317. access in a mode that is the same size as the mode in which it
  318. loaded the register. */
  319. #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
  320. /* Return 1 if VALUE is in the range specified. */
  321. #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
  322. #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
  323. /* Stack layout; function entry, exit and calling. */
  324. /* Define this if pushing a word on the stack
  325. makes the stack pointer a smaller address. */
  326. #define STACK_GROWS_DOWNWARD
  327. /* Define this to nonzero if the nominal address of the stack frame
  328. is at the high-address end of the local variables;
  329. that is, each additional local variable allocated
  330. goes at a more negative offset in the frame. */
  331. #define FRAME_GROWS_DOWNWARD 1
  332. /* Offset within stack frame to start allocating local variables at.
  333. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
  334. first local allocated. Otherwise, it is the offset to the BEGINNING
  335. of the first local allocated. */
  336. #define STARTING_FRAME_OFFSET 0
  337. /* Offset of first parameter from the argument pointer register value. */
  338. /* Is equal to the size of the saved fp + pc, even if an fp isn't
  339. saved since the value is used before we know. */
  340. #define FIRST_PARM_OFFSET(FNDECL) 4
  341. /* But the CFA is at the arg pointer directly, not at the first argument. */
  342. #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
  343. #define ELIMINABLE_REGS \
  344. {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
  345. { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
  346. { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
  347. #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
  348. OFFSET = mn10300_initial_offset (FROM, TO)
  349. /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
  350. for a register flushback area. */
  351. #define REG_PARM_STACK_SPACE(DECL) 8
  352. #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
  353. #define ACCUMULATE_OUTGOING_ARGS 1
  354. /* So we can allocate space for return pointers once for the function
  355. instead of around every call. */
  356. #define STACK_POINTER_OFFSET 4
  357. /* 1 if N is a possible register number for function argument passing.
  358. On the MN10300, d0 and d1 are used in this way. */
  359. #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
  360. /* Define a data type for recording info about an argument list
  361. during the scan of that argument list. This data type should
  362. hold all necessary information about the function itself
  363. and about the args processed so far, enough to enable macros
  364. such as FUNCTION_ARG to determine where the next arg should go.
  365. On the MN10300, this is a single integer, which is a number of bytes
  366. of arguments scanned so far. */
  367. #define CUMULATIVE_ARGS struct cum_arg
  368. struct cum_arg
  369. {
  370. int nbytes;
  371. };
  372. /* Initialize a variable CUM of type CUMULATIVE_ARGS
  373. for a call to a function whose data type is FNTYPE.
  374. For a library call, FNTYPE is 0.
  375. On the MN10300, the offset starts at 0. */
  376. #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
  377. ((CUM).nbytes = 0)
  378. #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
  379. #define DEFAULT_PCC_STRUCT_RETURN 0
  380. /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
  381. the stack pointer does not matter. The value is tested only in
  382. functions that have frame pointers.
  383. No definition is equivalent to always zero. */
  384. #define EXIT_IGNORE_STACK 1
  385. /* Output assembler code to FILE to increment profiler label # LABELNO
  386. for profiling a function entry. */
  387. #define FUNCTION_PROFILER(FILE, LABELNO) ;
  388. /* Length in units of the trampoline for entering a nested function. */
  389. #define TRAMPOLINE_SIZE 16
  390. #define TRAMPOLINE_ALIGNMENT 32
  391. /* A C expression whose value is RTL representing the value of the return
  392. address for the frame COUNT steps up from the current frame.
  393. On the mn10300, the return address is not at a constant location
  394. due to the frame layout. Luckily, it is at a constant offset from
  395. the argument pointer, so we define RETURN_ADDR_RTX to return a
  396. MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
  397. with a reference to the stack/frame pointer + an appropriate offset. */
  398. #define RETURN_ADDR_RTX(COUNT, FRAME) \
  399. ((COUNT == 0) \
  400. ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
  401. : (rtx) 0)
  402. /* The return address is saved both in the stack and in MDR. Using
  403. the stack location is handiest for what unwinding needs. */
  404. #define INCOMING_RETURN_ADDR_RTX \
  405. gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
  406. /* Maximum number of registers that can appear in a valid memory address. */
  407. #define MAX_REGS_PER_ADDRESS 2
  408. /* We have post-increments. */
  409. #define HAVE_POST_INCREMENT TARGET_AM33
  410. #define HAVE_POST_MODIFY_DISP TARGET_AM33
  411. /* ... But we don't want to use them for block moves. Small offsets are
  412. just as effective, at least for inline block move sizes, and appears
  413. to produce cleaner code. */
  414. #define USE_LOAD_POST_INCREMENT(M) 0
  415. #define USE_STORE_POST_INCREMENT(M) 0
  416. /* Accept either REG or SUBREG where a register is valid. */
  417. #define RTX_OK_FOR_BASE_P(X, strict) \
  418. ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
  419. (strict))) \
  420. || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
  421. && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
  422. (strict))))
  423. #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
  424. do { \
  425. rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
  426. if (new_x) \
  427. { \
  428. X = new_x; \
  429. goto WIN; \
  430. } \
  431. } while (0)
  432. /* Zero if this needs fixing up to become PIC. */
  433. #define LEGITIMATE_PIC_OPERAND_P(X) \
  434. mn10300_legitimate_pic_operand_p (X)
  435. /* Register to hold the addressing base for
  436. position independent code access to data items. */
  437. #define PIC_OFFSET_TABLE_REGNUM PIC_REG
  438. /* The name of the pseudo-symbol representing the Global Offset Table. */
  439. #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
  440. #define SYMBOLIC_CONST_P(X) \
  441. ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
  442. && ! LEGITIMATE_PIC_OPERAND_P (X))
  443. /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
  444. #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
  445. #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (OP, X, Y)
  446. #define REVERSIBLE_CC_MODE(MODE) 0
  447. /* Nonzero if access to memory by bytes or half words is no faster
  448. than accessing full words. */
  449. #define SLOW_BYTE_ACCESS 1
  450. #define NO_FUNCTION_CSE
  451. /* According expr.c, a value of around 6 should minimize code size, and
  452. for the MN10300 series, that's our primary concern. */
  453. #define MOVE_RATIO(speed) 6
  454. #define TEXT_SECTION_ASM_OP "\t.section .text"
  455. #define DATA_SECTION_ASM_OP "\t.section .data"
  456. #define BSS_SECTION_ASM_OP "\t.section .bss"
  457. #define ASM_COMMENT_START "#"
  458. /* Output to assembler file text saying following lines
  459. may contain character constants, extra white space, comments, etc. */
  460. #define ASM_APP_ON "#APP\n"
  461. /* Output to assembler file text saying following lines
  462. no longer contain unusual constructs. */
  463. #define ASM_APP_OFF "#NO_APP\n"
  464. #undef USER_LABEL_PREFIX
  465. #define USER_LABEL_PREFIX "_"
  466. /* This says how to output the assembler to define a global
  467. uninitialized but not common symbol.
  468. Try to use asm_output_bss to implement this macro. */
  469. #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
  470. asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
  471. /* Globalizing directive for a label. */
  472. #define GLOBAL_ASM_OP "\t.global "
  473. /* This is how to output a reference to a user-level label named NAME.
  474. `assemble_name' uses this. */
  475. #undef ASM_OUTPUT_LABELREF
  476. #define ASM_OUTPUT_LABELREF(FILE, NAME) \
  477. asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
  478. /* This is how we tell the assembler that two symbols have the same value. */
  479. #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
  480. do \
  481. { \
  482. assemble_name (FILE, NAME1); \
  483. fputs (" = ", FILE); \
  484. assemble_name (FILE, NAME2); \
  485. fputc ('\n', FILE); \
  486. } \
  487. while (0)
  488. /* How to refer to registers in assembler output.
  489. This sequence is indexed by compiler's hard-register-number (see above). */
  490. #define REGISTER_NAMES \
  491. { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
  492. "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
  493. , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
  494. , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
  495. , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
  496. , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
  497. , "mdr", "EPSW" \
  498. }
  499. #define ADDITIONAL_REGISTER_NAMES \
  500. { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
  501. {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
  502. {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
  503. {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
  504. , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
  505. , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
  506. , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
  507. , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
  508. , {"cc", CC_REG} \
  509. }
  510. /* Print an instruction operand X on file FILE.
  511. look in mn10300.c for details */
  512. #define PRINT_OPERAND(FILE, X, CODE) \
  513. mn10300_print_operand (FILE, X, CODE)
  514. /* Print a memory operand whose address is X, on file FILE.
  515. This uses a function in output-vax.c. */
  516. #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
  517. mn10300_print_operand_address (FILE, ADDR)
  518. /* This is how to output an element of a case-vector that is absolute. */
  519. #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
  520. fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
  521. /* This is how to output an element of a case-vector that is relative. */
  522. #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
  523. fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
  524. #define ASM_OUTPUT_ALIGN(FILE,LOG) \
  525. if ((LOG) != 0) \
  526. fprintf (FILE, "\t.align %d\n", (LOG))
  527. /* We don't have to worry about dbx compatibility for the mn10300. */
  528. #define DEFAULT_GDB_EXTENSIONS 1
  529. /* Use dwarf2 debugging info by default. */
  530. #undef PREFERRED_DEBUGGING_TYPE
  531. #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
  532. #define DWARF2_DEBUGGING_INFO 1
  533. #define DWARF2_ASM_LINE_DEBUG_INFO 1
  534. /* Specify the machine mode that this machine uses
  535. for the index in the tablejump instruction. */
  536. #define CASE_VECTOR_MODE Pmode
  537. /* Define if operations between registers always perform the operation
  538. on the full register even if a narrower mode is specified. */
  539. #define WORD_REGISTER_OPERATIONS
  540. #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
  541. /* Max number of bytes we can move from memory to memory
  542. in one reasonably fast instruction. */
  543. #define MOVE_MAX 4
  544. /* Define if shifts truncate the shift count
  545. which implies one can omit a sign-extension or zero-extension
  546. of a shift count. */
  547. #define SHIFT_COUNT_TRUNCATED 1
  548. /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
  549. is done just by pretending it is already truncated. */
  550. #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
  551. /* Specify the machine mode that pointers have.
  552. After generation of rtl, the compiler makes no further distinction
  553. between pointers and any other objects of this machine mode. */
  554. #define Pmode SImode
  555. /* A function address in a call instruction
  556. is a byte address (for indexing purposes)
  557. so give the MEM rtx a byte's mode. */
  558. #define FUNCTION_MODE QImode
  559. /* The assembler op to get a word. */
  560. #define FILE_ASM_OP "\t.file\n"