1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564 |
- /* Control flow graph analysis code for GNU compiler.
- Copyright (C) 1987-2015 Free Software Foundation, Inc.
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- /* This file contains various simple utilities to analyze the CFG. */
- #include "config.h"
- #include "system.h"
- #include "coretypes.h"
- #include "predict.h"
- #include "vec.h"
- #include "hashtab.h"
- #include "hash-set.h"
- #include "machmode.h"
- #include "tm.h"
- #include "hard-reg-set.h"
- #include "input.h"
- #include "function.h"
- #include "dominance.h"
- #include "cfg.h"
- #include "cfganal.h"
- #include "basic-block.h"
- #include "bitmap.h"
- #include "sbitmap.h"
- #include "timevar.h"
- /* Store the data structures necessary for depth-first search. */
- struct depth_first_search_dsS {
- /* stack for backtracking during the algorithm */
- basic_block *stack;
- /* number of edges in the stack. That is, positions 0, ..., sp-1
- have edges. */
- unsigned int sp;
- /* record of basic blocks already seen by depth-first search */
- sbitmap visited_blocks;
- };
- typedef struct depth_first_search_dsS *depth_first_search_ds;
- static void flow_dfs_compute_reverse_init (depth_first_search_ds);
- static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
- basic_block);
- static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
- basic_block);
- static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
- /* Mark the back edges in DFS traversal.
- Return nonzero if a loop (natural or otherwise) is present.
- Inspired by Depth_First_Search_PP described in:
- Advanced Compiler Design and Implementation
- Steven Muchnick
- Morgan Kaufmann, 1997
- and heavily borrowed from pre_and_rev_post_order_compute. */
- bool
- mark_dfs_back_edges (void)
- {
- edge_iterator *stack;
- int *pre;
- int *post;
- int sp;
- int prenum = 1;
- int postnum = 1;
- sbitmap visited;
- bool found = false;
- /* Allocate the preorder and postorder number arrays. */
- pre = XCNEWVEC (int, last_basic_block_for_fn (cfun));
- post = XCNEWVEC (int, last_basic_block_for_fn (cfun));
- /* Allocate stack for back-tracking up CFG. */
- stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
- sp = 0;
- /* Allocate bitmap to track nodes that have been visited. */
- visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
- /* None of the nodes in the CFG have been visited yet. */
- bitmap_clear (visited);
- /* Push the first edge on to the stack. */
- stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
- while (sp)
- {
- edge_iterator ei;
- basic_block src;
- basic_block dest;
- /* Look at the edge on the top of the stack. */
- ei = stack[sp - 1];
- src = ei_edge (ei)->src;
- dest = ei_edge (ei)->dest;
- ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
- /* Check if the edge destination has been visited yet. */
- if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited,
- dest->index))
- {
- /* Mark that we have visited the destination. */
- bitmap_set_bit (visited, dest->index);
- pre[dest->index] = prenum++;
- if (EDGE_COUNT (dest->succs) > 0)
- {
- /* Since the DEST node has been visited for the first
- time, check its successors. */
- stack[sp++] = ei_start (dest->succs);
- }
- else
- post[dest->index] = postnum++;
- }
- else
- {
- if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
- && src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
- && pre[src->index] >= pre[dest->index]
- && post[dest->index] == 0)
- ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
- if (ei_one_before_end_p (ei)
- && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
- post[src->index] = postnum++;
- if (!ei_one_before_end_p (ei))
- ei_next (&stack[sp - 1]);
- else
- sp--;
- }
- }
- free (pre);
- free (post);
- free (stack);
- sbitmap_free (visited);
- return found;
- }
- /* Find unreachable blocks. An unreachable block will have 0 in
- the reachable bit in block->flags. A nonzero value indicates the
- block is reachable. */
- void
- find_unreachable_blocks (void)
- {
- edge e;
- edge_iterator ei;
- basic_block *tos, *worklist, bb;
- tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
- /* Clear all the reachability flags. */
- FOR_EACH_BB_FN (bb, cfun)
- bb->flags &= ~BB_REACHABLE;
- /* Add our starting points to the worklist. Almost always there will
- be only one. It isn't inconceivable that we might one day directly
- support Fortran alternate entry points. */
- FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
- {
- *tos++ = e->dest;
- /* Mark the block reachable. */
- e->dest->flags |= BB_REACHABLE;
- }
- /* Iterate: find everything reachable from what we've already seen. */
- while (tos != worklist)
- {
- basic_block b = *--tos;
- FOR_EACH_EDGE (e, ei, b->succs)
- {
- basic_block dest = e->dest;
- if (!(dest->flags & BB_REACHABLE))
- {
- *tos++ = dest;
- dest->flags |= BB_REACHABLE;
- }
- }
- }
- free (worklist);
- }
- /* Functions to access an edge list with a vector representation.
- Enough data is kept such that given an index number, the
- pred and succ that edge represents can be determined, or
- given a pred and a succ, its index number can be returned.
- This allows algorithms which consume a lot of memory to
- represent the normally full matrix of edge (pred,succ) with a
- single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
- wasted space in the client code due to sparse flow graphs. */
- /* This functions initializes the edge list. Basically the entire
- flowgraph is processed, and all edges are assigned a number,
- and the data structure is filled in. */
- struct edge_list *
- create_edge_list (void)
- {
- struct edge_list *elist;
- edge e;
- int num_edges;
- basic_block bb;
- edge_iterator ei;
- /* Determine the number of edges in the flow graph by counting successor
- edges on each basic block. */
- num_edges = 0;
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
- EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
- {
- num_edges += EDGE_COUNT (bb->succs);
- }
- elist = XNEW (struct edge_list);
- elist->num_edges = num_edges;
- elist->index_to_edge = XNEWVEC (edge, num_edges);
- num_edges = 0;
- /* Follow successors of blocks, and register these edges. */
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
- EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
- FOR_EACH_EDGE (e, ei, bb->succs)
- elist->index_to_edge[num_edges++] = e;
- return elist;
- }
- /* This function free's memory associated with an edge list. */
- void
- free_edge_list (struct edge_list *elist)
- {
- if (elist)
- {
- free (elist->index_to_edge);
- free (elist);
- }
- }
- /* This function provides debug output showing an edge list. */
- DEBUG_FUNCTION void
- print_edge_list (FILE *f, struct edge_list *elist)
- {
- int x;
- fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
- n_basic_blocks_for_fn (cfun), elist->num_edges);
- for (x = 0; x < elist->num_edges; x++)
- {
- fprintf (f, " %-4d - edge(", x);
- if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
- fprintf (f, "entry,");
- else
- fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
- if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun))
- fprintf (f, "exit)\n");
- else
- fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
- }
- }
- /* This function provides an internal consistency check of an edge list,
- verifying that all edges are present, and that there are no
- extra edges. */
- DEBUG_FUNCTION void
- verify_edge_list (FILE *f, struct edge_list *elist)
- {
- int pred, succ, index;
- edge e;
- basic_block bb, p, s;
- edge_iterator ei;
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
- EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
- {
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- pred = e->src->index;
- succ = e->dest->index;
- index = EDGE_INDEX (elist, e->src, e->dest);
- if (index == EDGE_INDEX_NO_EDGE)
- {
- fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
- continue;
- }
- if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
- fprintf (f, "*p* Pred for index %d should be %d not %d\n",
- index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
- if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
- fprintf (f, "*p* Succ for index %d should be %d not %d\n",
- index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
- }
- }
- /* We've verified that all the edges are in the list, now lets make sure
- there are no spurious edges in the list. This is an expensive check! */
- FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun),
- EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
- FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
- {
- int found_edge = 0;
- FOR_EACH_EDGE (e, ei, p->succs)
- if (e->dest == s)
- {
- found_edge = 1;
- break;
- }
- FOR_EACH_EDGE (e, ei, s->preds)
- if (e->src == p)
- {
- found_edge = 1;
- break;
- }
- if (EDGE_INDEX (elist, p, s)
- == EDGE_INDEX_NO_EDGE && found_edge != 0)
- fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
- p->index, s->index);
- if (EDGE_INDEX (elist, p, s)
- != EDGE_INDEX_NO_EDGE && found_edge == 0)
- fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
- p->index, s->index, EDGE_INDEX (elist, p, s));
- }
- }
- /* Functions to compute control dependences. */
- /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
- void
- control_dependences::set_control_dependence_map_bit (basic_block bb,
- int edge_index)
- {
- if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
- return;
- gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
- bitmap_set_bit (control_dependence_map[bb->index], edge_index);
- }
- /* Clear all control dependences for block BB. */
- void
- control_dependences::clear_control_dependence_bitmap (basic_block bb)
- {
- bitmap_clear (control_dependence_map[bb->index]);
- }
- /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
- This function is necessary because some blocks have negative numbers. */
- static inline basic_block
- find_pdom (basic_block block)
- {
- gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun));
- if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
- return EXIT_BLOCK_PTR_FOR_FN (cfun);
- else
- {
- basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
- if (! bb)
- return EXIT_BLOCK_PTR_FOR_FN (cfun);
- return bb;
- }
- }
- /* Determine all blocks' control dependences on the given edge with edge_list
- EL index EDGE_INDEX, ala Morgan, Section 3.6. */
- void
- control_dependences::find_control_dependence (int edge_index)
- {
- basic_block current_block;
- basic_block ending_block;
- gcc_assert (INDEX_EDGE_PRED_BB (m_el, edge_index)
- != EXIT_BLOCK_PTR_FOR_FN (cfun));
- if (INDEX_EDGE_PRED_BB (m_el, edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
- ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
- else
- ending_block = find_pdom (INDEX_EDGE_PRED_BB (m_el, edge_index));
- for (current_block = INDEX_EDGE_SUCC_BB (m_el, edge_index);
- current_block != ending_block
- && current_block != EXIT_BLOCK_PTR_FOR_FN (cfun);
- current_block = find_pdom (current_block))
- {
- edge e = INDEX_EDGE (m_el, edge_index);
- /* For abnormal edges, we don't make current_block control
- dependent because instructions that throw are always necessary
- anyway. */
- if (e->flags & EDGE_ABNORMAL)
- continue;
- set_control_dependence_map_bit (current_block, edge_index);
- }
- }
- /* Record all blocks' control dependences on all edges in the edge
- list EL, ala Morgan, Section 3.6. */
- control_dependences::control_dependences (struct edge_list *edges)
- : m_el (edges)
- {
- timevar_push (TV_CONTROL_DEPENDENCES);
- control_dependence_map.create (last_basic_block_for_fn (cfun));
- for (int i = 0; i < last_basic_block_for_fn (cfun); ++i)
- control_dependence_map.quick_push (BITMAP_ALLOC (NULL));
- for (int i = 0; i < NUM_EDGES (m_el); ++i)
- find_control_dependence (i);
- timevar_pop (TV_CONTROL_DEPENDENCES);
- }
- /* Free control dependences and the associated edge list. */
- control_dependences::~control_dependences ()
- {
- for (unsigned i = 0; i < control_dependence_map.length (); ++i)
- BITMAP_FREE (control_dependence_map[i]);
- control_dependence_map.release ();
- free_edge_list (m_el);
- }
- /* Returns the bitmap of edges the basic-block I is dependent on. */
- bitmap
- control_dependences::get_edges_dependent_on (int i)
- {
- return control_dependence_map[i];
- }
- /* Returns the edge with index I from the edge list. */
- edge
- control_dependences::get_edge (int i)
- {
- return INDEX_EDGE (m_el, i);
- }
- /* Given PRED and SUCC blocks, return the edge which connects the blocks.
- If no such edge exists, return NULL. */
- edge
- find_edge (basic_block pred, basic_block succ)
- {
- edge e;
- edge_iterator ei;
- if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
- {
- FOR_EACH_EDGE (e, ei, pred->succs)
- if (e->dest == succ)
- return e;
- }
- else
- {
- FOR_EACH_EDGE (e, ei, succ->preds)
- if (e->src == pred)
- return e;
- }
- return NULL;
- }
- /* This routine will determine what, if any, edge there is between
- a specified predecessor and successor. */
- int
- find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
- {
- int x;
- for (x = 0; x < NUM_EDGES (edge_list); x++)
- if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
- && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
- return x;
- return (EDGE_INDEX_NO_EDGE);
- }
- /* This routine will remove any fake predecessor edges for a basic block.
- When the edge is removed, it is also removed from whatever successor
- list it is in. */
- static void
- remove_fake_predecessors (basic_block bb)
- {
- edge e;
- edge_iterator ei;
- for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
- {
- if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
- remove_edge (e);
- else
- ei_next (&ei);
- }
- }
- /* This routine will remove all fake edges from the flow graph. If
- we remove all fake successors, it will automatically remove all
- fake predecessors. */
- void
- remove_fake_edges (void)
- {
- basic_block bb;
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
- remove_fake_predecessors (bb);
- }
- /* This routine will remove all fake edges to the EXIT_BLOCK. */
- void
- remove_fake_exit_edges (void)
- {
- remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun));
- }
- /* This function will add a fake edge between any block which has no
- successors, and the exit block. Some data flow equations require these
- edges to exist. */
- void
- add_noreturn_fake_exit_edges (void)
- {
- basic_block bb;
- FOR_EACH_BB_FN (bb, cfun)
- if (EDGE_COUNT (bb->succs) == 0)
- make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
- }
- /* This function adds a fake edge between any infinite loops to the
- exit block. Some optimizations require a path from each node to
- the exit node.
- See also Morgan, Figure 3.10, pp. 82-83.
- The current implementation is ugly, not attempting to minimize the
- number of inserted fake edges. To reduce the number of fake edges
- to insert, add fake edges from _innermost_ loops containing only
- nodes not reachable from the exit block. */
- void
- connect_infinite_loops_to_exit (void)
- {
- basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
- basic_block deadend_block;
- struct depth_first_search_dsS dfs_ds;
- /* Perform depth-first search in the reverse graph to find nodes
- reachable from the exit block. */
- flow_dfs_compute_reverse_init (&dfs_ds);
- flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR_FOR_FN (cfun));
- /* Repeatedly add fake edges, updating the unreachable nodes. */
- while (1)
- {
- unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
- unvisited_block);
- if (!unvisited_block)
- break;
- deadend_block = dfs_find_deadend (unvisited_block);
- make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
- flow_dfs_compute_reverse_add_bb (&dfs_ds, deadend_block);
- }
- flow_dfs_compute_reverse_finish (&dfs_ds);
- return;
- }
- /* Compute reverse top sort order. This is computing a post order
- numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
- ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
- true, unreachable blocks are deleted. */
- int
- post_order_compute (int *post_order, bool include_entry_exit,
- bool delete_unreachable)
- {
- edge_iterator *stack;
- int sp;
- int post_order_num = 0;
- sbitmap visited;
- int count;
- if (include_entry_exit)
- post_order[post_order_num++] = EXIT_BLOCK;
- /* Allocate stack for back-tracking up CFG. */
- stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
- sp = 0;
- /* Allocate bitmap to track nodes that have been visited. */
- visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
- /* None of the nodes in the CFG have been visited yet. */
- bitmap_clear (visited);
- /* Push the first edge on to the stack. */
- stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
- while (sp)
- {
- edge_iterator ei;
- basic_block src;
- basic_block dest;
- /* Look at the edge on the top of the stack. */
- ei = stack[sp - 1];
- src = ei_edge (ei)->src;
- dest = ei_edge (ei)->dest;
- /* Check if the edge destination has been visited yet. */
- if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
- && ! bitmap_bit_p (visited, dest->index))
- {
- /* Mark that we have visited the destination. */
- bitmap_set_bit (visited, dest->index);
- if (EDGE_COUNT (dest->succs) > 0)
- /* Since the DEST node has been visited for the first
- time, check its successors. */
- stack[sp++] = ei_start (dest->succs);
- else
- post_order[post_order_num++] = dest->index;
- }
- else
- {
- if (ei_one_before_end_p (ei)
- && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
- post_order[post_order_num++] = src->index;
- if (!ei_one_before_end_p (ei))
- ei_next (&stack[sp - 1]);
- else
- sp--;
- }
- }
- if (include_entry_exit)
- {
- post_order[post_order_num++] = ENTRY_BLOCK;
- count = post_order_num;
- }
- else
- count = post_order_num + 2;
- /* Delete the unreachable blocks if some were found and we are
- supposed to do it. */
- if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun)))
- {
- basic_block b;
- basic_block next_bb;
- for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
- != EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
- {
- next_bb = b->next_bb;
- if (!(bitmap_bit_p (visited, b->index)))
- delete_basic_block (b);
- }
- tidy_fallthru_edges ();
- }
- free (stack);
- sbitmap_free (visited);
- return post_order_num;
- }
- /* Helper routine for inverted_post_order_compute
- flow_dfs_compute_reverse_execute, and the reverse-CFG
- deapth first search in dominance.c.
- BB has to belong to a region of CFG
- unreachable by inverted traversal from the exit.
- i.e. there's no control flow path from ENTRY to EXIT
- that contains this BB.
- This can happen in two cases - if there's an infinite loop
- or if there's a block that has no successor
- (call to a function with no return).
- Some RTL passes deal with this condition by
- calling connect_infinite_loops_to_exit () and/or
- add_noreturn_fake_exit_edges ().
- However, those methods involve modifying the CFG itself
- which may not be desirable.
- Hence, we deal with the infinite loop/no return cases
- by identifying a unique basic block that can reach all blocks
- in such a region by inverted traversal.
- This function returns a basic block that guarantees
- that all blocks in the region are reachable
- by starting an inverted traversal from the returned block. */
- basic_block
- dfs_find_deadend (basic_block bb)
- {
- bitmap visited = BITMAP_ALLOC (NULL);
- for (;;)
- {
- if (EDGE_COUNT (bb->succs) == 0
- || ! bitmap_set_bit (visited, bb->index))
- {
- BITMAP_FREE (visited);
- return bb;
- }
- bb = EDGE_SUCC (bb, 0)->dest;
- }
- gcc_unreachable ();
- }
- /* Compute the reverse top sort order of the inverted CFG
- i.e. starting from the exit block and following the edges backward
- (from successors to predecessors).
- This ordering can be used for forward dataflow problems among others.
- This function assumes that all blocks in the CFG are reachable
- from the ENTRY (but not necessarily from EXIT).
- If there's an infinite loop,
- a simple inverted traversal starting from the blocks
- with no successors can't visit all blocks.
- To solve this problem, we first do inverted traversal
- starting from the blocks with no successor.
- And if there's any block left that's not visited by the regular
- inverted traversal from EXIT,
- those blocks are in such problematic region.
- Among those, we find one block that has
- any visited predecessor (which is an entry into such a region),
- and start looking for a "dead end" from that block
- and do another inverted traversal from that block. */
- int
- inverted_post_order_compute (int *post_order)
- {
- basic_block bb;
- edge_iterator *stack;
- int sp;
- int post_order_num = 0;
- sbitmap visited;
- /* Allocate stack for back-tracking up CFG. */
- stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
- sp = 0;
- /* Allocate bitmap to track nodes that have been visited. */
- visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
- /* None of the nodes in the CFG have been visited yet. */
- bitmap_clear (visited);
- /* Put all blocks that have no successor into the initial work list. */
- FOR_ALL_BB_FN (bb, cfun)
- if (EDGE_COUNT (bb->succs) == 0)
- {
- /* Push the initial edge on to the stack. */
- if (EDGE_COUNT (bb->preds) > 0)
- {
- stack[sp++] = ei_start (bb->preds);
- bitmap_set_bit (visited, bb->index);
- }
- }
- do
- {
- bool has_unvisited_bb = false;
- /* The inverted traversal loop. */
- while (sp)
- {
- edge_iterator ei;
- basic_block pred;
- /* Look at the edge on the top of the stack. */
- ei = stack[sp - 1];
- bb = ei_edge (ei)->dest;
- pred = ei_edge (ei)->src;
- /* Check if the predecessor has been visited yet. */
- if (! bitmap_bit_p (visited, pred->index))
- {
- /* Mark that we have visited the destination. */
- bitmap_set_bit (visited, pred->index);
- if (EDGE_COUNT (pred->preds) > 0)
- /* Since the predecessor node has been visited for the first
- time, check its predecessors. */
- stack[sp++] = ei_start (pred->preds);
- else
- post_order[post_order_num++] = pred->index;
- }
- else
- {
- if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
- && ei_one_before_end_p (ei))
- post_order[post_order_num++] = bb->index;
- if (!ei_one_before_end_p (ei))
- ei_next (&stack[sp - 1]);
- else
- sp--;
- }
- }
- /* Detect any infinite loop and activate the kludge.
- Note that this doesn't check EXIT_BLOCK itself
- since EXIT_BLOCK is always added after the outer do-while loop. */
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
- EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
- if (!bitmap_bit_p (visited, bb->index))
- {
- has_unvisited_bb = true;
- if (EDGE_COUNT (bb->preds) > 0)
- {
- edge_iterator ei;
- edge e;
- basic_block visited_pred = NULL;
- /* Find an already visited predecessor. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- if (bitmap_bit_p (visited, e->src->index))
- visited_pred = e->src;
- }
- if (visited_pred)
- {
- basic_block be = dfs_find_deadend (bb);
- gcc_assert (be != NULL);
- bitmap_set_bit (visited, be->index);
- stack[sp++] = ei_start (be->preds);
- break;
- }
- }
- }
- if (has_unvisited_bb && sp == 0)
- {
- /* No blocks are reachable from EXIT at all.
- Find a dead-end from the ENTRY, and restart the iteration. */
- basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun));
- gcc_assert (be != NULL);
- bitmap_set_bit (visited, be->index);
- stack[sp++] = ei_start (be->preds);
- }
- /* The only case the below while fires is
- when there's an infinite loop. */
- }
- while (sp);
- /* EXIT_BLOCK is always included. */
- post_order[post_order_num++] = EXIT_BLOCK;
- free (stack);
- sbitmap_free (visited);
- return post_order_num;
- }
- /* Compute the depth first search order of FN and store in the array
- PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
- reverse completion number for each node. Returns the number of nodes
- visited. A depth first search tries to get as far away from the starting
- point as quickly as possible.
- In case the function has unreachable blocks the number of nodes
- visited does not include them.
- pre_order is a really a preorder numbering of the graph.
- rev_post_order is really a reverse postorder numbering of the graph. */
- int
- pre_and_rev_post_order_compute_fn (struct function *fn,
- int *pre_order, int *rev_post_order,
- bool include_entry_exit)
- {
- edge_iterator *stack;
- int sp;
- int pre_order_num = 0;
- int rev_post_order_num = n_basic_blocks_for_fn (cfun) - 1;
- sbitmap visited;
- /* Allocate stack for back-tracking up CFG. */
- stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
- sp = 0;
- if (include_entry_exit)
- {
- if (pre_order)
- pre_order[pre_order_num] = ENTRY_BLOCK;
- pre_order_num++;
- if (rev_post_order)
- rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
- }
- else
- rev_post_order_num -= NUM_FIXED_BLOCKS;
- /* Allocate bitmap to track nodes that have been visited. */
- visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
- /* None of the nodes in the CFG have been visited yet. */
- bitmap_clear (visited);
- /* Push the first edge on to the stack. */
- stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs);
- while (sp)
- {
- edge_iterator ei;
- basic_block src;
- basic_block dest;
- /* Look at the edge on the top of the stack. */
- ei = stack[sp - 1];
- src = ei_edge (ei)->src;
- dest = ei_edge (ei)->dest;
- /* Check if the edge destination has been visited yet. */
- if (dest != EXIT_BLOCK_PTR_FOR_FN (fn)
- && ! bitmap_bit_p (visited, dest->index))
- {
- /* Mark that we have visited the destination. */
- bitmap_set_bit (visited, dest->index);
- if (pre_order)
- pre_order[pre_order_num] = dest->index;
- pre_order_num++;
- if (EDGE_COUNT (dest->succs) > 0)
- /* Since the DEST node has been visited for the first
- time, check its successors. */
- stack[sp++] = ei_start (dest->succs);
- else if (rev_post_order)
- /* There are no successors for the DEST node so assign
- its reverse completion number. */
- rev_post_order[rev_post_order_num--] = dest->index;
- }
- else
- {
- if (ei_one_before_end_p (ei)
- && src != ENTRY_BLOCK_PTR_FOR_FN (fn)
- && rev_post_order)
- /* There are no more successors for the SRC node
- so assign its reverse completion number. */
- rev_post_order[rev_post_order_num--] = src->index;
- if (!ei_one_before_end_p (ei))
- ei_next (&stack[sp - 1]);
- else
- sp--;
- }
- }
- free (stack);
- sbitmap_free (visited);
- if (include_entry_exit)
- {
- if (pre_order)
- pre_order[pre_order_num] = EXIT_BLOCK;
- pre_order_num++;
- if (rev_post_order)
- rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
- }
- return pre_order_num;
- }
- /* Like pre_and_rev_post_order_compute_fn but operating on the
- current function and asserting that all nodes were visited. */
- int
- pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
- bool include_entry_exit)
- {
- int pre_order_num
- = pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order,
- include_entry_exit);
- if (include_entry_exit)
- /* The number of nodes visited should be the number of blocks. */
- gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun));
- else
- /* The number of nodes visited should be the number of blocks minus
- the entry and exit blocks which are not visited here. */
- gcc_assert (pre_order_num
- == (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS));
- return pre_order_num;
- }
- /* Compute the depth first search order on the _reverse_ graph and
- store in the array DFS_ORDER, marking the nodes visited in VISITED.
- Returns the number of nodes visited.
- The computation is split into three pieces:
- flow_dfs_compute_reverse_init () creates the necessary data
- structures.
- flow_dfs_compute_reverse_add_bb () adds a basic block to the data
- structures. The block will start the search.
- flow_dfs_compute_reverse_execute () continues (or starts) the
- search using the block on the top of the stack, stopping when the
- stack is empty.
- flow_dfs_compute_reverse_finish () destroys the necessary data
- structures.
- Thus, the user will probably call ..._init(), call ..._add_bb() to
- add a beginning basic block to the stack, call ..._execute(),
- possibly add another bb to the stack and again call ..._execute(),
- ..., and finally call _finish(). */
- /* Initialize the data structures used for depth-first search on the
- reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
- added to the basic block stack. DATA is the current depth-first
- search context. If INITIALIZE_STACK is nonzero, there is an
- element on the stack. */
- static void
- flow_dfs_compute_reverse_init (depth_first_search_ds data)
- {
- /* Allocate stack for back-tracking up CFG. */
- data->stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
- data->sp = 0;
- /* Allocate bitmap to track nodes that have been visited. */
- data->visited_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
- /* None of the nodes in the CFG have been visited yet. */
- bitmap_clear (data->visited_blocks);
- return;
- }
- /* Add the specified basic block to the top of the dfs data
- structures. When the search continues, it will start at the
- block. */
- static void
- flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
- {
- data->stack[data->sp++] = bb;
- bitmap_set_bit (data->visited_blocks, bb->index);
- }
- /* Continue the depth-first search through the reverse graph starting with the
- block at the stack's top and ending when the stack is empty. Visited nodes
- are marked. Returns an unvisited basic block, or NULL if there is none
- available. */
- static basic_block
- flow_dfs_compute_reverse_execute (depth_first_search_ds data,
- basic_block last_unvisited)
- {
- basic_block bb;
- edge e;
- edge_iterator ei;
- while (data->sp > 0)
- {
- bb = data->stack[--data->sp];
- /* Perform depth-first search on adjacent vertices. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (!bitmap_bit_p (data->visited_blocks, e->src->index))
- flow_dfs_compute_reverse_add_bb (data, e->src);
- }
- /* Determine if there are unvisited basic blocks. */
- FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
- if (!bitmap_bit_p (data->visited_blocks, bb->index))
- return bb;
- return NULL;
- }
- /* Destroy the data structures needed for depth-first search on the
- reverse graph. */
- static void
- flow_dfs_compute_reverse_finish (depth_first_search_ds data)
- {
- free (data->stack);
- sbitmap_free (data->visited_blocks);
- }
- /* Performs dfs search from BB over vertices satisfying PREDICATE;
- if REVERSE, go against direction of edges. Returns number of blocks
- found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
- int
- dfs_enumerate_from (basic_block bb, int reverse,
- bool (*predicate) (const_basic_block, const void *),
- basic_block *rslt, int rslt_max, const void *data)
- {
- basic_block *st, lbb;
- int sp = 0, tv = 0;
- unsigned size;
- /* A bitmap to keep track of visited blocks. Allocating it each time
- this function is called is not possible, since dfs_enumerate_from
- is often used on small (almost) disjoint parts of cfg (bodies of
- loops), and allocating a large sbitmap would lead to quadratic
- behavior. */
- static sbitmap visited;
- static unsigned v_size;
- #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
- #define UNMARK_VISITED(BB) (bitmap_clear_bit (visited, (BB)->index))
- #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
- /* Resize the VISITED sbitmap if necessary. */
- size = last_basic_block_for_fn (cfun);
- if (size < 10)
- size = 10;
- if (!visited)
- {
- visited = sbitmap_alloc (size);
- bitmap_clear (visited);
- v_size = size;
- }
- else if (v_size < size)
- {
- /* Ensure that we increase the size of the sbitmap exponentially. */
- if (2 * v_size > size)
- size = 2 * v_size;
- visited = sbitmap_resize (visited, size, 0);
- v_size = size;
- }
- st = XNEWVEC (basic_block, rslt_max);
- rslt[tv++] = st[sp++] = bb;
- MARK_VISITED (bb);
- while (sp)
- {
- edge e;
- edge_iterator ei;
- lbb = st[--sp];
- if (reverse)
- {
- FOR_EACH_EDGE (e, ei, lbb->preds)
- if (!VISITED_P (e->src) && predicate (e->src, data))
- {
- gcc_assert (tv != rslt_max);
- rslt[tv++] = st[sp++] = e->src;
- MARK_VISITED (e->src);
- }
- }
- else
- {
- FOR_EACH_EDGE (e, ei, lbb->succs)
- if (!VISITED_P (e->dest) && predicate (e->dest, data))
- {
- gcc_assert (tv != rslt_max);
- rslt[tv++] = st[sp++] = e->dest;
- MARK_VISITED (e->dest);
- }
- }
- }
- free (st);
- for (sp = 0; sp < tv; sp++)
- UNMARK_VISITED (rslt[sp]);
- return tv;
- #undef MARK_VISITED
- #undef UNMARK_VISITED
- #undef VISITED_P
- }
- /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
- This algorithm can be found in Timothy Harvey's PhD thesis, at
- http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
- dominance algorithms.
- First, we identify each join point, j (any node with more than one
- incoming edge is a join point).
- We then examine each predecessor, p, of j and walk up the dominator tree
- starting at p.
- We stop the walk when we reach j's immediate dominator - j is in the
- dominance frontier of each of the nodes in the walk, except for j's
- immediate dominator. Intuitively, all of the rest of j's dominators are
- shared by j's predecessors as well.
- Since they dominate j, they will not have j in their dominance frontiers.
- The number of nodes touched by this algorithm is equal to the size
- of the dominance frontiers, no more, no less.
- */
- static void
- compute_dominance_frontiers_1 (bitmap_head *frontiers)
- {
- edge p;
- edge_iterator ei;
- basic_block b;
- FOR_EACH_BB_FN (b, cfun)
- {
- if (EDGE_COUNT (b->preds) >= 2)
- {
- FOR_EACH_EDGE (p, ei, b->preds)
- {
- basic_block runner = p->src;
- basic_block domsb;
- if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun))
- continue;
- domsb = get_immediate_dominator (CDI_DOMINATORS, b);
- while (runner != domsb)
- {
- if (!bitmap_set_bit (&frontiers[runner->index],
- b->index))
- break;
- runner = get_immediate_dominator (CDI_DOMINATORS,
- runner);
- }
- }
- }
- }
- }
- void
- compute_dominance_frontiers (bitmap_head *frontiers)
- {
- timevar_push (TV_DOM_FRONTIERS);
- compute_dominance_frontiers_1 (frontiers);
- timevar_pop (TV_DOM_FRONTIERS);
- }
- /* Given a set of blocks with variable definitions (DEF_BLOCKS),
- return a bitmap with all the blocks in the iterated dominance
- frontier of the blocks in DEF_BLOCKS. DFS contains dominance
- frontier information as returned by compute_dominance_frontiers.
- The resulting set of blocks are the potential sites where PHI nodes
- are needed. The caller is responsible for freeing the memory
- allocated for the return value. */
- bitmap
- compute_idf (bitmap def_blocks, bitmap_head *dfs)
- {
- bitmap_iterator bi;
- unsigned bb_index, i;
- bitmap phi_insertion_points;
- /* Each block can appear at most twice on the work-stack. */
- auto_vec<int> work_stack (2 * n_basic_blocks_for_fn (cfun));
- phi_insertion_points = BITMAP_ALLOC (NULL);
- /* Seed the work list with all the blocks in DEF_BLOCKS. We use
- vec::quick_push here for speed. This is safe because we know that
- the number of definition blocks is no greater than the number of
- basic blocks, which is the initial capacity of WORK_STACK. */
- EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
- work_stack.quick_push (bb_index);
- /* Pop a block off the worklist, add every block that appears in
- the original block's DF that we have not already processed to
- the worklist. Iterate until the worklist is empty. Blocks
- which are added to the worklist are potential sites for
- PHI nodes. */
- while (work_stack.length () > 0)
- {
- bb_index = work_stack.pop ();
- /* Since the registration of NEW -> OLD name mappings is done
- separately from the call to update_ssa, when updating the SSA
- form, the basic blocks where new and/or old names are defined
- may have disappeared by CFG cleanup calls. In this case,
- we may pull a non-existing block from the work stack. */
- gcc_checking_assert (bb_index
- < (unsigned) last_basic_block_for_fn (cfun));
- EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
- 0, i, bi)
- {
- work_stack.quick_push (i);
- bitmap_set_bit (phi_insertion_points, i);
- }
- }
- return phi_insertion_points;
- }
- /* Intersection and union of preds/succs for sbitmap based data flow
- solvers. All four functions defined below take the same arguments:
- B is the basic block to perform the operation for. DST is the
- target sbitmap, i.e. the result. SRC is an sbitmap vector of size
- last_basic_block so that it can be indexed with basic block indices.
- DST may be (but does not have to be) SRC[B->index]. */
- /* Set the bitmap DST to the intersection of SRC of successors of
- basic block B. */
- void
- bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b)
- {
- unsigned int set_size = dst->size;
- edge e;
- unsigned ix;
- gcc_assert (!dst->popcount);
- for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
- {
- e = EDGE_SUCC (b, ix);
- if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
- continue;
- bitmap_copy (dst, src[e->dest->index]);
- break;
- }
- if (e == 0)
- bitmap_ones (dst);
- else
- for (++ix; ix < EDGE_COUNT (b->succs); ix++)
- {
- unsigned int i;
- SBITMAP_ELT_TYPE *p, *r;
- e = EDGE_SUCC (b, ix);
- if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
- continue;
- p = src[e->dest->index]->elms;
- r = dst->elms;
- for (i = 0; i < set_size; i++)
- *r++ &= *p++;
- }
- }
- /* Set the bitmap DST to the intersection of SRC of predecessors of
- basic block B. */
- void
- bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b)
- {
- unsigned int set_size = dst->size;
- edge e;
- unsigned ix;
- gcc_assert (!dst->popcount);
- for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
- {
- e = EDGE_PRED (b, ix);
- if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
- continue;
- bitmap_copy (dst, src[e->src->index]);
- break;
- }
- if (e == 0)
- bitmap_ones (dst);
- else
- for (++ix; ix < EDGE_COUNT (b->preds); ix++)
- {
- unsigned int i;
- SBITMAP_ELT_TYPE *p, *r;
- e = EDGE_PRED (b, ix);
- if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
- continue;
- p = src[e->src->index]->elms;
- r = dst->elms;
- for (i = 0; i < set_size; i++)
- *r++ &= *p++;
- }
- }
- /* Set the bitmap DST to the union of SRC of successors of
- basic block B. */
- void
- bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b)
- {
- unsigned int set_size = dst->size;
- edge e;
- unsigned ix;
- gcc_assert (!dst->popcount);
- for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
- {
- e = EDGE_SUCC (b, ix);
- if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
- continue;
- bitmap_copy (dst, src[e->dest->index]);
- break;
- }
- if (ix == EDGE_COUNT (b->succs))
- bitmap_clear (dst);
- else
- for (ix++; ix < EDGE_COUNT (b->succs); ix++)
- {
- unsigned int i;
- SBITMAP_ELT_TYPE *p, *r;
- e = EDGE_SUCC (b, ix);
- if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
- continue;
- p = src[e->dest->index]->elms;
- r = dst->elms;
- for (i = 0; i < set_size; i++)
- *r++ |= *p++;
- }
- }
- /* Set the bitmap DST to the union of SRC of predecessors of
- basic block B. */
- void
- bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b)
- {
- unsigned int set_size = dst->size;
- edge e;
- unsigned ix;
- gcc_assert (!dst->popcount);
- for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
- {
- e = EDGE_PRED (b, ix);
- if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun))
- continue;
- bitmap_copy (dst, src[e->src->index]);
- break;
- }
- if (ix == EDGE_COUNT (b->preds))
- bitmap_clear (dst);
- else
- for (ix++; ix < EDGE_COUNT (b->preds); ix++)
- {
- unsigned int i;
- SBITMAP_ELT_TYPE *p, *r;
- e = EDGE_PRED (b, ix);
- if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
- continue;
- p = src[e->src->index]->elms;
- r = dst->elms;
- for (i = 0; i < set_size; i++)
- *r++ |= *p++;
- }
- }
- /* Returns the list of basic blocks in the function in an order that guarantees
- that if a block X has just a single predecessor Y, then Y is after X in the
- ordering. */
- basic_block *
- single_pred_before_succ_order (void)
- {
- basic_block x, y;
- basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
- unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
- unsigned np, i;
- sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
- #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
- #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
- bitmap_clear (visited);
- MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun));
- FOR_EACH_BB_FN (x, cfun)
- {
- if (VISITED_P (x))
- continue;
- /* Walk the predecessors of x as long as they have precisely one
- predecessor and add them to the list, so that they get stored
- after x. */
- for (y = x, np = 1;
- single_pred_p (y) && !VISITED_P (single_pred (y));
- y = single_pred (y))
- np++;
- for (y = x, i = n - np;
- single_pred_p (y) && !VISITED_P (single_pred (y));
- y = single_pred (y), i++)
- {
- order[i] = y;
- MARK_VISITED (y);
- }
- order[i] = y;
- MARK_VISITED (y);
- gcc_assert (i == n - 1);
- n -= np;
- }
- sbitmap_free (visited);
- gcc_assert (n == 0);
- return order;
- #undef MARK_VISITED
- #undef VISITED_P
- }
|