123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606 |
- #!/usr/bin/python
- # Script to statistically compare two sets of log files with -ftime-report
- # output embedded within them.
- # Contributed by Lawrence Crowl <crowl@google.com>
- #
- # Copyright (C) 2012 Free Software Foundation, Inc.
- #
- # This file is part of GCC.
- #
- # GCC is free software; you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation; either version 3, or (at your option)
- # any later version.
- #
- # GCC is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # You should have received a copy of the GNU General Public License
- # along with GCC; see the file COPYING. If not, write to
- # the Free Software Foundation, 51 Franklin Street, Fifth Floor,
- # Boston, MA 02110-1301, USA.
- """ Compare two sets of compile-time performance numbers.
- The intent of this script is to compare compile-time performance of two
- different versions of the compiler. Each version of the compiler must be
- run at least three times with the -ftime-report option. Each log file
- represents a data point, or trial. The set of trials for each compiler
- version constitutes a sample. The ouput of the script is a description
- of the statistically significant difference between the two version of
- the compiler.
- The parameters to the script are:
- Two file patterns that each match a set of log files. You will probably
- need to quote the patterns before passing them to the script.
- Each pattern corresponds to a version of the compiler.
- A regular expression that finds interesting lines in the log files.
- If you want to match the beginning of the line, you will need to add
- the ^ operator. The filtering uses Python regular expression syntax.
- The default is "TOTAL".
- All of the interesting lines in a single log file are summed to produce
- a single trial (data point).
- A desired statistical confidence within the range 60% to 99.9%. Due to
- the implementation, this confidence will be rounded down to one of 60%,
- 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, 99.8%, and 99.9%.
- The default is 95.
- If the computed confidence is lower than desired, the script will
- estimate the number of trials needed to meet the desired confidence.
- This estimate is not very good, as the variance tends to change as
- you increase the number of trials.
- The most common use of the script is total compile-time comparison between
- logfiles stored in different directories.
- compare_two_ftime_report_sets "Log1/*perf" "Log2/*perf"
- One can also look at parsing time, but expecting a lower confidence.
- compare_two_ftime_report_sets "Log1/*perf" "Log2/*perf" "^phase parsing" 75
- """
- import os
- import sys
- import fnmatch
- import glob
- import re
- import math
- ####################################################################### Utility
- def divide(dividend, divisor):
- """ Return the quotient, avoiding division by zero.
- """
- if divisor == 0:
- return sys.float_info.max
- else:
- return dividend / divisor
- ################################################################# File and Line
- # Should you repurpose this script, this code might help.
- #
- #def find_files(topdir, filepat):
- # """ Find a set of file names, under a given directory,
- # matching a Unix shell file pattern.
- # Returns an iterator over the file names.
- # """
- # for path, dirlist, filelist in os.walk(topdir):
- # for name in fnmatch.filter(filelist, filepat):
- # yield os.path.join(path, name)
- def match_files(fileglob):
- """ Find a set of file names matching a Unix shell glob pattern.
- Returns an iterator over the file names.
- """
- return glob.iglob(os.path.expanduser(fileglob))
- def lines_in_file(filename):
- """ Return an iterator over lines in the named file. """
- filedesc = open(filename, "r")
- for line in filedesc:
- yield line
- filedesc.close()
- def lines_containing_pattern(pattern, lines):
- """ Find lines by a Python regular-expression.
- Returns an iterator over lines containing the expression.
- """
- parser = re.compile(pattern)
- for line in lines:
- if parser.search(line):
- yield line
- ############################################################# Number Formatting
- def strip_redundant_digits(numrep):
- if numrep.find(".") == -1:
- return numrep
- return numrep.rstrip("0").rstrip(".")
- def text_number(number):
- return strip_redundant_digits("%g" % number)
- def round_significant(digits, number):
- if number == 0:
- return 0
- magnitude = abs(number)
- significance = math.floor(math.log10(magnitude))
- least_position = int(significance - digits + 1)
- return round(number, -least_position)
- def text_significant(digits, number):
- return text_number(round_significant(digits, number))
- def text_percent(number):
- return text_significant(3, number*100) + "%"
- ################################################################ T-Distribution
- # This section of code provides functions for using Student's t-distribution.
- # The functions are implemented using table lookup
- # to facilitate implementation of inverse functions.
- # The table is comprised of row 0 listing the alpha values,
- # column 0 listing the degree-of-freedom values,
- # and the other entries listing the corresponding t-distribution values.
- t_dist_table = [
- [ 0, 0.200, 0.150, 0.100, 0.050, 0.025, 0.010, 0.005, .0025, 0.001, .0005],
- [ 1, 1.376, 1.963, 3.078, 6.314, 12.71, 31.82, 63.66, 127.3, 318.3, 636.6],
- [ 2, 1.061, 1.386, 1.886, 2.920, 4.303, 6.965, 9.925, 14.09, 22.33, 31.60],
- [ 3, 0.978, 1.250, 1.638, 2.353, 3.182, 4.541, 5.841, 7.453, 10.21, 12.92],
- [ 4, 0.941, 1.190, 1.533, 2.132, 2.776, 3.747, 4.604, 5.598, 7.173, 8.610],
- [ 5, 0.920, 1.156, 1.476, 2.015, 2.571, 3.365, 4.032, 4.773, 5.894, 6.869],
- [ 6, 0.906, 1.134, 1.440, 1.943, 2.447, 3.143, 3.707, 4.317, 5.208, 5.959],
- [ 7, 0.896, 1.119, 1.415, 1.895, 2.365, 2.998, 3.499, 4.029, 4.785, 5.408],
- [ 8, 0.889, 1.108, 1.397, 1.860, 2.306, 2.896, 3.355, 3.833, 4.501, 5.041],
- [ 9, 0.883, 1.100, 1.383, 1.833, 2.262, 2.821, 3.250, 3.690, 4.297, 4.781],
- [ 10, 0.879, 1.093, 1.372, 1.812, 2.228, 2.764, 3.169, 3.581, 4.144, 4.587],
- [ 11, 0.876, 1.088, 1.363, 1.796, 2.201, 2.718, 3.106, 3.497, 4.025, 4.437],
- [ 12, 0.873, 1.083, 1.356, 1.782, 2.179, 2.681, 3.055, 3.428, 3.930, 4.318],
- [ 13, 0.870, 1.079, 1.350, 1.771, 2.160, 2.650, 3.012, 3.372, 3.852, 4.221],
- [ 14, 0.868, 1.076, 1.345, 1.761, 2.145, 2.624, 2.977, 3.326, 3.787, 4.140],
- [ 15, 0.866, 1.074, 1.341, 1.753, 2.131, 2.602, 2.947, 3.286, 3.733, 4.073],
- [ 16, 0.865, 1.071, 1.337, 1.746, 2.120, 2.583, 2.921, 3.252, 3.686, 4.015],
- [ 17, 0.863, 1.069, 1.333, 1.740, 2.110, 2.567, 2.898, 3.222, 3.646, 3.965],
- [ 18, 0.862, 1.067, 1.330, 1.734, 2.101, 2.552, 2.878, 3.197, 3.610, 3.922],
- [ 19, 0.861, 1.066, 1.328, 1.729, 2.093, 2.539, 2.861, 3.174, 3.579, 3.883],
- [ 20, 0.860, 1.064, 1.325, 1.725, 2.086, 2.528, 2.845, 3.153, 3.552, 3.850],
- [ 21, 0.859, 1.063, 1.323, 1.721, 2.080, 2.518, 2.831, 3.135, 3.527, 3.819],
- [ 22, 0.858, 1.061, 1.321, 1.717, 2.074, 2.508, 2.819, 3.119, 3.505, 3.792],
- [ 23, 0.858, 1.060, 1.319, 1.714, 2.069, 2.500, 2.807, 3.104, 3.485, 3.768],
- [ 24, 0.857, 1.059, 1.318, 1.711, 2.064, 2.492, 2.797, 3.091, 3.467, 3.745],
- [ 25, 0.856, 1.058, 1.316, 1.708, 2.060, 2.485, 2.787, 3.078, 3.450, 3.725],
- [ 26, 0.856, 1.058, 1.315, 1.706, 2.056, 2.479, 2.779, 3.067, 3.435, 3.707],
- [ 27, 0.855, 1.057, 1.314, 1.703, 2.052, 2.473, 2.771, 3.057, 3.421, 3.689],
- [ 28, 0.855, 1.056, 1.313, 1.701, 2.048, 2.467, 2.763, 3.047, 3.408, 3.674],
- [ 29, 0.854, 1.055, 1.311, 1.699, 2.045, 2.462, 2.756, 3.038, 3.396, 3.660],
- [ 30, 0.854, 1.055, 1.310, 1.697, 2.042, 2.457, 2.750, 3.030, 3.385, 3.646],
- [ 31, 0.853, 1.054, 1.309, 1.696, 2.040, 2.453, 2.744, 3.022, 3.375, 3.633],
- [ 32, 0.853, 1.054, 1.309, 1.694, 2.037, 2.449, 2.738, 3.015, 3.365, 3.622],
- [ 33, 0.853, 1.053, 1.308, 1.692, 2.035, 2.445, 2.733, 3.008, 3.356, 3.611],
- [ 34, 0.852, 1.052, 1.307, 1.691, 2.032, 2.441, 2.728, 3.002, 3.348, 3.601],
- [ 35, 0.852, 1.052, 1.306, 1.690, 2.030, 2.438, 2.724, 2.996, 3.340, 3.591],
- [ 36, 0.852, 1.052, 1.306, 1.688, 2.028, 2.434, 2.719, 2.990, 3.333, 3.582],
- [ 37, 0.851, 1.051, 1.305, 1.687, 2.026, 2.431, 2.715, 2.985, 3.326, 3.574],
- [ 38, 0.851, 1.051, 1.304, 1.686, 2.024, 2.429, 2.712, 2.980, 3.319, 3.566],
- [ 39, 0.851, 1.050, 1.304, 1.685, 2.023, 2.426, 2.708, 2.976, 3.313, 3.558],
- [ 40, 0.851, 1.050, 1.303, 1.684, 2.021, 2.423, 2.704, 2.971, 3.307, 3.551],
- [ 50, 0.849, 1.047, 1.299, 1.676, 2.009, 2.403, 2.678, 2.937, 3.261, 3.496],
- [ 60, 0.848, 1.045, 1.296, 1.671, 2.000, 2.390, 2.660, 2.915, 3.232, 3.460],
- [ 80, 0.846, 1.043, 1.292, 1.664, 1.990, 2.374, 2.639, 2.887, 3.195, 3.416],
- [100, 0.845, 1.042, 1.290, 1.660, 1.984, 2.364, 2.626, 2.871, 3.174, 3.390],
- [150, 0.844, 1.040, 1.287, 1.655, 1.976, 2.351, 2.609, 2.849, 3.145, 3.357] ]
- # The functions use the following parameter name conventions:
- # alpha - the alpha parameter
- # degree - the degree-of-freedom parameter
- # value - the t-distribution value for some alpha and degree
- # deviations - a confidence interval radius,
- # expressed as a multiple of the standard deviation of the sample
- # ax - the alpha parameter index
- # dx - the degree-of-freedom parameter index
- # The interface to this section of code is the last three functions,
- # find_t_dist_value, find_t_dist_alpha, and find_t_dist_degree.
- def t_dist_alpha_at_index(ax):
- if ax == 0:
- return .25 # effectively no confidence
- else:
- return t_dist_table[0][ax]
- def t_dist_degree_at_index(dx):
- return t_dist_table[dx][0]
- def t_dist_value_at_index(ax, dx):
- return t_dist_table[dx][ax]
- def t_dist_index_of_degree(degree):
- limit = len(t_dist_table) - 1
- dx = 0
- while dx < limit and t_dist_degree_at_index(dx+1) <= degree:
- dx += 1
- return dx
- def t_dist_index_of_alpha(alpha):
- limit = len(t_dist_table[0]) - 1
- ax = 0
- while ax < limit and t_dist_alpha_at_index(ax+1) >= alpha:
- ax += 1
- return ax
- def t_dist_index_of_value(dx, value):
- limit = len(t_dist_table[dx]) - 1
- ax = 0
- while ax < limit and t_dist_value_at_index(ax+1, dx) < value:
- ax += 1
- return ax
- def t_dist_value_within_deviations(dx, ax, deviations):
- degree = t_dist_degree_at_index(dx)
- count = degree + 1
- root = math.sqrt(count)
- value = t_dist_value_at_index(ax, dx)
- nominal = value / root
- comparison = nominal <= deviations
- return comparison
- def t_dist_index_of_degree_for_deviations(ax, deviations):
- limit = len(t_dist_table) - 1
- dx = 1
- while dx < limit and not t_dist_value_within_deviations(dx, ax, deviations):
- dx += 1
- return dx
- def find_t_dist_value(alpha, degree):
- """ Return the t-distribution value.
- The parameters are alpha and degree of freedom.
- """
- dx = t_dist_index_of_degree(degree)
- ax = t_dist_index_of_alpha(alpha)
- return t_dist_value_at_index(ax, dx)
- def find_t_dist_alpha(value, degree):
- """ Return the alpha.
- The parameters are the t-distribution value for a given degree of freedom.
- """
- dx = t_dist_index_of_degree(degree)
- ax = t_dist_index_of_value(dx, value)
- return t_dist_alpha_at_index(ax)
- def find_t_dist_degree(alpha, deviations):
- """ Return the degree-of-freedom.
- The parameters are the desired alpha and the number of standard deviations
- away from the mean that the degree should handle.
- """
- ax = t_dist_index_of_alpha(alpha)
- dx = t_dist_index_of_degree_for_deviations(ax, deviations)
- return t_dist_degree_at_index(dx)
- ############################################################## Core Statistical
- # This section provides the core statistical classes and functions.
- class Accumulator:
- """ An accumulator for statistical information using arithmetic mean. """
- def __init__(self):
- self.count = 0
- self.mean = 0
- self.sumsqdiff = 0
- def insert(self, value):
- self.count += 1
- diff = value - self.mean
- self.mean += diff / self.count
- self.sumsqdiff += (self.count - 1) * diff * diff / self.count
- def fill_accumulator_from_values(values):
- accumulator = Accumulator()
- for value in values:
- accumulator.insert(value)
- return accumulator
- def alpha_from_confidence(confidence):
- scrubbed = min(99.99, max(confidence, 60))
- return (100.0 - scrubbed) / 200.0
- def confidence_from_alpha(alpha):
- return 100 - 200 * alpha
- class Sample:
- """ A description of a sample using an arithmetic mean. """
- def __init__(self, accumulator, alpha):
- if accumulator.count < 3:
- sys.exit("Samples must contain three trials.")
- self.count = accumulator.count
- self.mean = accumulator.mean
- variance = accumulator.sumsqdiff / (self.count - 1)
- self.deviation = math.sqrt(variance)
- self.error = self.deviation / math.sqrt(self.count)
- self.alpha = alpha
- self.radius = find_t_dist_value(alpha, self.count - 1) * self.error
- def alpha_for_radius(self, radius):
- return find_t_dist_alpha(divide(radius, self.error), self.count)
- def degree_for_radius(self, radius):
- return find_t_dist_degree(self.alpha, divide(radius, self.deviation))
- def __str__(self):
- text = "trial count is " + text_number(self.count)
- text += ", mean is " + text_number(self.mean)
- text += " (" + text_number(confidence_from_alpha(self.alpha)) +"%"
- text += " confidence in " + text_number(self.mean - self.radius)
- text += " to " + text_number(self.mean + self.radius) + ")"
- text += ",\nstd.deviation is " + text_number(self.deviation)
- text += ", std.error is " + text_number(self.error)
- return text
- def sample_from_values(values, alpha):
- accumulator = fill_accumulator_from_values(values)
- return Sample(accumulator, alpha)
- class Comparison:
- """ A comparison of two samples using arithmetic means. """
- def __init__(self, first, second, alpha):
- if first.mean > second.mean:
- self.upper = first
- self.lower = second
- self.larger = "first"
- else:
- self.upper = second
- self.lower = first
- self.larger = "second"
- self.a_wanted = alpha
- radius = self.upper.mean - self.lower.mean
- rising = self.lower.alpha_for_radius(radius)
- falling = self.upper.alpha_for_radius(radius)
- self.a_actual = max(rising, falling)
- rising = self.lower.degree_for_radius(radius)
- falling = self.upper.degree_for_radius(radius)
- self.count = max(rising, falling) + 1
- def __str__(self):
- message = "The " + self.larger + " sample appears to be "
- change = divide(self.upper.mean, self.lower.mean) - 1
- message += text_percent(change) + " larger,\n"
- confidence = confidence_from_alpha(self.a_actual)
- if confidence >= 60:
- message += "with " + text_number(confidence) + "% confidence"
- message += " of being larger."
- else:
- message += "but with no confidence of actually being larger."
- if self.a_actual > self.a_wanted:
- confidence = confidence_from_alpha(self.a_wanted)
- message += "\nTo reach " + text_number(confidence) + "% confidence,"
- if self.count < 100:
- message += " you need roughly " + text_number(self.count) + " trials,\n"
- message += "assuming the standard deviation is stable, which is iffy."
- else:
- message += "\nyou need to reduce the larger deviation"
- message += " or increase the number of trials."
- return message
- ############################################################ Single Value Files
- # This section provides functions to compare two raw data files,
- # each containing a whole sample consisting of single number per line.
- # Should you repurpose this script, this code might help.
- #
- #def values_from_data_file(filename):
- # for line in lines_in_file(filename):
- # yield float(line)
- # Should you repurpose this script, this code might help.
- #
- #def sample_from_data_file(filename, alpha):
- # confidence = confidence_from_alpha(alpha)
- # text = "\nArithmetic sample for data file\n\"" + filename + "\""
- # text += " with desired confidence " + text_number(confidence) + " is "
- # print text
- # values = values_from_data_file(filename)
- # sample = sample_from_values(values, alpha)
- # print sample
- # return sample
- # Should you repurpose this script, this code might help.
- #
- #def compare_two_data_files(filename1, filename2, confidence):
- # alpha = alpha_from_confidence(confidence)
- # sample1 = sample_from_data_file(filename1, alpha)
- # sample2 = sample_from_data_file(filename2, alpha)
- # print
- # print Comparison(sample1, sample2, alpha)
- # Should you repurpose this script, this code might help.
- #
- #def command_two_data_files():
- # argc = len(sys.argv)
- # if argc < 2 or 4 < argc:
- # message = "usage: " + sys.argv[0]
- # message += " file-name file-name [confidence]"
- # print message
- # else:
- # filename1 = sys.argv[1]
- # filename2 = sys.argv[2]
- # if len(sys.argv) >= 4:
- # confidence = int(sys.argv[3])
- # else:
- # confidence = 95
- # compare_two_data_files(filename1, filename2, confidence)
- ############################################### -ftime-report TimeVar Log Files
- # This section provides functions to compare two sets of -ftime-report log
- # files. Each set is a sample, where each data point is derived from the
- # sum of values in a single log file.
- label = r"^ *([^:]*[^: ]) *:"
- number = r" *([0-9.]*) *"
- percent = r"\( *[0-9]*\%\)"
- numpct = number + percent
- total_format = label + number + number + number + number + " kB\n"
- total_parser = re.compile(total_format)
- tmvar_format = label + numpct + " usr" + numpct + " sys"
- tmvar_format += numpct + " wall" + number + " kB " + percent + " ggc\n"
- tmvar_parser = re.compile(tmvar_format)
- replace = r"\2\t\3\t\4\t\5\t\1"
- def split_time_report(lines, pattern):
- if pattern == "TOTAL":
- parser = total_parser
- else:
- parser = tmvar_parser
- for line in lines:
- modified = parser.sub(replace, line)
- if modified != line:
- yield re.split("\t", modified)
- def extract_cpu_time(tvtuples):
- for tuple in tvtuples:
- yield float(tuple[0]) + float(tuple[1])
- def sum_values(values):
- sum = 0
- for value in values:
- sum += value
- return sum
- def extract_time_for_timevar_log(filename, pattern):
- lines = lines_in_file(filename)
- tmvars = lines_containing_pattern(pattern, lines)
- tuples = split_time_report(tmvars, pattern)
- times = extract_cpu_time(tuples)
- return sum_values(times)
- def extract_times_for_timevar_logs(filelist, pattern):
- for filename in filelist:
- yield extract_time_for_timevar_log(filename, pattern)
- def sample_from_timevar_logs(fileglob, pattern, alpha):
- confidence = confidence_from_alpha(alpha)
- text = "\nArithmetic sample for timevar log files\n\"" + fileglob + "\""
- text += "\nand selecting lines containing \"" + pattern + "\""
- text += " with desired confidence " + text_number(confidence) + " is "
- print text
- filelist = match_files(fileglob)
- values = extract_times_for_timevar_logs(filelist, pattern)
- sample = sample_from_values(values, alpha)
- print sample
- return sample
- def compare_two_timevar_logs(fileglob1, fileglob2, pattern, confidence):
- alpha = alpha_from_confidence(confidence)
- sample1 = sample_from_timevar_logs(fileglob1, pattern, alpha)
- sample2 = sample_from_timevar_logs(fileglob2, pattern, alpha)
- print
- print Comparison(sample1, sample2, alpha)
- def command_two_timevar_logs():
- argc = len(sys.argv)
- if argc < 3 or 5 < argc:
- message = "usage: " + sys.argv[0]
- message += " file-pattern file-pattern [line-pattern [confidence]]"
- print message
- else:
- filepat1 = sys.argv[1]
- filepat2 = sys.argv[2]
- if len(sys.argv) >= 5:
- confidence = int(sys.argv[4])
- else:
- confidence = 95
- if len(sys.argv) >= 4:
- linepat = sys.argv[3]
- else:
- linepat = "TOTAL"
- compare_two_timevar_logs(filepat1, filepat2, linepat, confidence)
- ########################################################################## Main
- # This section is the main code, implementing the command.
- command_two_timevar_logs()
|