predicates.md 9.7 KB

;; Predicate definitions for Renesas RX. ;; Copyright (C) 2008-2015 Free Software Foundation, Inc. ;; Contributed by Red Hat. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; Check that the operand is suitable for a call insn. ;; Only registers and symbol refs are allowed.

(define_predicate "rx_call_operand" (match_code "symbol_ref,reg") )

;; For sibcall operations we can only use a symbolic address.

(define_predicate "rx_symbolic_call_operand" (match_code "symbol_ref") )

;; Check that the operand is suitable for a shift insn ;; Only small integers or a value in a register are permitted.

(define_predicate "rx_shift_operand" (ior (match_operand 0 "register_operand")

   (and (match_code "const_int")
    (match_test "IN_RANGE (INTVAL (op), 0, 31)")))

)

(define_predicate "rx_constshift_operand" (and (match_code "const_int")

   (match_test "IN_RANGE (INTVAL (op), 0, 31)"))

)

(define_predicate "rx_restricted_mem_operand" (and (match_code "mem")

   (match_test "rx_is_restricted_memory_address (XEXP (op, 0), mode)"))

)

;; Check that the operand is suitable as the source operand ;; for a logic or arithmeitc instruction. Registers, integers ;; and a restricted subset of memory addresses are allowed.

(define_predicate "rx_source_operand" (ior (match_operand 0 "register_operand")

   (match_operand 0 "immediate_operand")
   (match_operand 0 "rx_restricted_mem_operand"))

)

;; Check that the operand is suitable as the source operand ;; for a comparison instruction. This is the same as ;; rx_source_operand except that SUBREGs are allowed but ;; CONST_INTs are not.

(define_predicate "rx_compare_operand" (ior (match_operand 0 "register_operand")

   (match_operand 0 "rx_restricted_mem_operand"))

)

;; Check that the operand is suitable as the source operand ;; for a min/max instruction. This is the same as ;; rx_source_operand except that CONST_INTs are allowed but ;; REGs and SUBREGs are not.

(define_predicate "rx_minmaxex_operand" (ior (match_operand 0 "immediate_operand")

   (match_operand 0 "rx_restricted_mem_operand"))

)

;; Return true if OP is a store multiple operation. This looks like: ;; ;; [(set (SP) (MINUS (SP) (INT))) ;; (set (MEM (SP)) (REG)) ;; (set (MEM (MINUS (SP) (INT))) (REG)) {optionally repeated} ;; ]

(define_special_predicate "rx_store_multiple_vector" (match_code "parallel") { int count = XVECLEN (op, 0); unsigned int src_regno; rtx element; int i;

/* Perform a quick check so we don't blow up below. */ if (count <= 2)

return false;

/* Check that the first element of the vector is the stack adjust. */ element = XVECEXP (op, 0, 0); if ( ! SET_P (element)

  || ! REG_P (SET_DEST (element))
  ||   REGNO (SET_DEST (element)) != SP_REG
  ||   GET_CODE (SET_SRC (element)) != MINUS
  || ! REG_P (XEXP (SET_SRC (element), 0))
  ||   REGNO (XEXP (SET_SRC (element), 0)) != SP_REG
  || ! CONST_INT_P (XEXP (SET_SRC (element), 1)))
return false;

/* Check that the next element is the first push. */ element = XVECEXP (op, 0, 1); if ( ! SET_P (element)

  || ! REG_P (SET_SRC (element))
  || GET_MODE (SET_SRC (element)) != SImode
  || ! MEM_P (SET_DEST (element))
  || GET_MODE (SET_DEST (element)) != SImode
  || GET_CODE (XEXP (SET_DEST (element), 0)) != MINUS
  || ! REG_P (XEXP (XEXP (SET_DEST (element), 0), 0))
  ||   REGNO (XEXP (XEXP (SET_DEST (element), 0), 0)) != SP_REG
  || ! CONST_INT_P (XEXP (XEXP (SET_DEST (element), 0), 1))
  || INTVAL (XEXP (XEXP (SET_DEST (element), 0), 1))
    != GET_MODE_SIZE (SImode))
return false;

src_regno = REGNO (SET_SRC (element));

/* Check that the remaining elements use SP-

 addressing and decreasing register numbers.  */

for (i = 2; i < count; i++)

{
  element = XVECEXP (op, 0, i);

  if (   ! SET_P (element)
  || ! REG_P (SET_SRC (element))
  || GET_MODE (SET_SRC (element)) != SImode
  || REGNO (SET_SRC (element)) != src_regno - (i - 1)
  || ! MEM_P (SET_DEST (element))
  || GET_MODE (SET_DEST (element)) != SImode
  || GET_CODE (XEXP (SET_DEST (element), 0)) != MINUS
      || ! REG_P (XEXP (XEXP (SET_DEST (element), 0), 0))
      ||   REGNO (XEXP (XEXP (SET_DEST (element), 0), 0)) != SP_REG
  || ! CONST_INT_P (XEXP (XEXP (SET_DEST (element), 0), 1))
  || INTVAL (XEXP (XEXP (SET_DEST (element), 0), 1))
     != i * GET_MODE_SIZE (SImode))
return false;
}

return true; })

;; Return true if OP is a load multiple operation. ;; This looks like: ;; [(set (SP) (PLUS (SP) (INT))) ;; (set (REG) (MEM (SP))) ;; (set (REG) (MEM (PLUS (SP) (INT)))) {optionally repeated} ;; ]

(define_special_predicate "rx_load_multiple_vector" (match_code "parallel") { int count = XVECLEN (op, 0); unsigned int dest_regno; rtx element; int i;

/* Perform a quick check so we don't blow up below. */ if (count <= 2)

return false;

/* Check that the first element of the vector is the stack adjust. */ element = XVECEXP (op, 0, 0); if ( ! SET_P (element)

  || ! REG_P (SET_DEST (element))
  ||   REGNO (SET_DEST (element)) != SP_REG
  ||   GET_CODE (SET_SRC (element)) != PLUS
  || ! REG_P (XEXP (SET_SRC (element), 0))
  ||   REGNO (XEXP (SET_SRC (element), 0)) != SP_REG
  || ! CONST_INT_P (XEXP (SET_SRC (element), 1)))
return false;

/* Check that the next element is the first push. */ element = XVECEXP (op, 0, 1); if ( ! SET_P (element)

  || ! REG_P (SET_DEST (element))
  || ! MEM_P (SET_SRC (element))
  || ! REG_P (XEXP (SET_SRC (element), 0))
  ||   REGNO (XEXP (SET_SRC (element), 0)) != SP_REG)
return false;

dest_regno = REGNO (SET_DEST (element));

/* Check that the remaining elements use SP+

 addressing and incremental register numbers.  */

for (i = 2; i < count; i++)

{
  element = XVECEXP (op, 0, i);

  if (   ! SET_P (element)
  || ! REG_P (SET_DEST (element))
  || GET_MODE (SET_DEST (element)) != SImode
  || REGNO (SET_DEST (element)) != dest_regno + (i - 1)
  || ! MEM_P (SET_SRC (element))
  || GET_MODE (SET_SRC (element)) != SImode
  || GET_CODE (XEXP (SET_SRC (element), 0)) != PLUS
      || ! REG_P (XEXP (XEXP (SET_SRC (element), 0), 0))
      ||   REGNO (XEXP (XEXP (SET_SRC (element), 0), 0)) != SP_REG
  || ! CONST_INT_P (XEXP (XEXP (SET_SRC (element), 0), 1))
  || INTVAL (XEXP (XEXP (SET_SRC (element), 0), 1))
     != (i - 1) * GET_MODE_SIZE (SImode))
return false;
}

return true; })

;; Return true if OP is a pop-and-return load multiple operation. ;; This looks like: ;; [(set (SP) (PLUS (SP) (INT))) ;; (set (REG) (MEM (SP))) ;; (set (REG) (MEM (PLUS (SP) (INT)))) {optional and possibly repeated} ;; (return) ;; ]

(define_special_predicate "rx_rtsd_vector" (match_code "parallel") { int count = XVECLEN (op, 0); unsigned int dest_regno; rtx element; int i;

/* Perform a quick check so we don't blow up below. */ if (count <= 2)

return false;

/* Check that the first element of the vector is the stack adjust. */ element = XVECEXP (op, 0, 0); if ( ! SET_P (element)

  || ! REG_P (SET_DEST (element))
  ||   REGNO (SET_DEST (element)) != SP_REG
  ||   GET_CODE (SET_SRC (element)) != PLUS
  || ! REG_P (XEXP (SET_SRC (element), 0))
  ||   REGNO (XEXP (SET_SRC (element), 0)) != SP_REG
  || ! CONST_INT_P (XEXP (SET_SRC (element), 1)))
return false;

/* Check that the next element is the first push. */ element = XVECEXP (op, 0, 1); if ( ! SET_P (element)

  || ! REG_P (SET_DEST (element))
  || ! MEM_P (SET_SRC (element))
  || ! REG_P (XEXP (SET_SRC (element), 0))
  ||   REGNO (XEXP (SET_SRC (element), 0)) != SP_REG)
return false;

dest_regno = REGNO (SET_DEST (element));

/* Check that the remaining elements, if any, and except

 for the last one, use SP+<disp> addressing and incremental
 register numbers.  */

for (i = 2; i < count - 1; i++)

{
  element = XVECEXP (op, 0, i);

  if (   ! SET_P (element)
  || ! REG_P (SET_DEST (element))
  || GET_MODE (SET_DEST (element)) != SImode
  || REGNO (SET_DEST (element)) != dest_regno + (i - 1)
  || ! MEM_P (SET_SRC (element))
  || GET_MODE (SET_SRC (element)) != SImode
  || GET_CODE (XEXP (SET_SRC (element), 0)) != PLUS
      || ! REG_P (XEXP (XEXP (SET_SRC (element), 0), 0))
      ||   REGNO (XEXP (XEXP (SET_SRC (element), 0), 0)) != SP_REG
  || ! CONST_INT_P (XEXP (XEXP (SET_SRC (element), 0), 1))
  || INTVAL (XEXP (XEXP (SET_SRC (element), 0), 1))
     != (i - 1) * GET_MODE_SIZE (SImode))
return false;
}

/* The last element must be a RETURN. */
element = XVECEXP (op, 0, count - 1); return GET_CODE (element) == RETURN; })

(define_predicate "label_ref_operand" (match_code "label_ref") )

(define_predicate "rx_z_comparison_operator" (match_code "eq,ne") )

(define_predicate "rx_zs_comparison_operator" (match_code "eq,ne,lt,ge") )

;; GT and LE omitted due to operand swap required. (define_predicate "rx_fp_comparison_operator" (match_code "eq,ne,lt,ge,ordered,unordered") )

(define_predicate "rshift_operator" (match_code "ashiftrt,lshiftrt") )