mips.h 119 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150
  1. /* Definitions of target machine for GNU compiler. MIPS version.
  2. Copyright (C) 1989-2015 Free Software Foundation, Inc.
  3. Contributed by A. Lichnewsky (lich@inria.inria.fr).
  4. Changed by Michael Meissner (meissner@osf.org).
  5. 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
  6. Brendan Eich (brendan@microunity.com).
  7. This file is part of GCC.
  8. GCC is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 3, or (at your option)
  11. any later version.
  12. GCC is distributed in the hope that it will be useful,
  13. but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. GNU General Public License for more details.
  16. You should have received a copy of the GNU General Public License
  17. along with GCC; see the file COPYING3. If not see
  18. <http://www.gnu.org/licenses/>. */
  19. #include "config/vxworks-dummy.h"
  20. #ifdef GENERATOR_FILE
  21. /* This is used in some insn conditions, so needs to be declared, but
  22. does not need to be defined. */
  23. extern int target_flags_explicit;
  24. #endif
  25. /* MIPS external variables defined in mips.c. */
  26. /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
  27. ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
  28. to work on a 64-bit machine. */
  29. #define ABI_32 0
  30. #define ABI_N32 1
  31. #define ABI_64 2
  32. #define ABI_EABI 3
  33. #define ABI_O64 4
  34. /* Masks that affect tuning.
  35. PTF_AVOID_BRANCHLIKELY
  36. Set if it is usually not profitable to use branch-likely instructions
  37. for this target, typically because the branches are always predicted
  38. taken and so incur a large overhead when not taken.
  39. PTF_AVOID_IMADD
  40. Set if it is usually not profitable to use the integer MADD or MSUB
  41. instructions because of the overhead of getting the result out of
  42. the HI/LO registers. */
  43. #define PTF_AVOID_BRANCHLIKELY 0x1
  44. #define PTF_AVOID_IMADD 0x2
  45. /* Information about one recognized processor. Defined here for the
  46. benefit of TARGET_CPU_CPP_BUILTINS. */
  47. struct mips_cpu_info {
  48. /* The 'canonical' name of the processor as far as GCC is concerned.
  49. It's typically a manufacturer's prefix followed by a numerical
  50. designation. It should be lowercase. */
  51. const char *name;
  52. /* The internal processor number that most closely matches this
  53. entry. Several processors can have the same value, if there's no
  54. difference between them from GCC's point of view. */
  55. enum processor cpu;
  56. /* The ISA level that the processor implements. */
  57. int isa;
  58. /* A mask of PTF_* values. */
  59. unsigned int tune_flags;
  60. };
  61. #include "config/mips/mips-opts.h"
  62. /* Macros to silence warnings about numbers being signed in traditional
  63. C and unsigned in ISO C when compiled on 32-bit hosts. */
  64. #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
  65. #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
  66. #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
  67. /* Run-time compilation parameters selecting different hardware subsets. */
  68. /* True if we are generating position-independent VxWorks RTP code. */
  69. #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
  70. /* True if the output file is marked as ".abicalls; .option pic0"
  71. (-call_nonpic). */
  72. #define TARGET_ABICALLS_PIC0 \
  73. (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
  74. /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
  75. #define TARGET_ABICALLS_PIC2 \
  76. (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
  77. /* True if the call patterns should be split into a jalr followed by
  78. an instruction to restore $gp. It is only safe to split the load
  79. from the call when every use of $gp is explicit.
  80. See mips_must_initialize_gp_p for details about how we manage the
  81. global pointer. */
  82. #define TARGET_SPLIT_CALLS \
  83. (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
  84. /* True if we're generating a form of -mabicalls in which we can use
  85. operators like %hi and %lo to refer to locally-binding symbols.
  86. We can only do this for -mno-shared, and only then if we can use
  87. relocation operations instead of assembly macros. It isn't really
  88. worth using absolute sequences for 64-bit symbols because GOT
  89. accesses are so much shorter. */
  90. #define TARGET_ABSOLUTE_ABICALLS \
  91. (TARGET_ABICALLS \
  92. && !TARGET_SHARED \
  93. && TARGET_EXPLICIT_RELOCS \
  94. && !ABI_HAS_64BIT_SYMBOLS)
  95. /* True if we can optimize sibling calls. For simplicity, we only
  96. handle cases in which call_insn_operand will reject invalid
  97. sibcall addresses. There are two cases in which this isn't true:
  98. - TARGET_MIPS16. call_insn_operand accepts constant addresses
  99. but there is no direct jump instruction. It isn't worth
  100. using sibling calls in this case anyway; they would usually
  101. be longer than normal calls.
  102. - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
  103. accepts global constants, but all sibcalls must be indirect. */
  104. #define TARGET_SIBCALLS \
  105. (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
  106. /* True if we need to use a global offset table to access some symbols. */
  107. #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
  108. /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
  109. #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
  110. /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
  111. #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
  112. /* True if we should use .cprestore to store to the cprestore slot.
  113. We continue to use .cprestore for explicit-reloc code so that JALs
  114. inside inline asms will work correctly. */
  115. #define TARGET_CPRESTORE_DIRECTIVE \
  116. (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
  117. /* True if we can use the J and JAL instructions. */
  118. #define TARGET_ABSOLUTE_JUMPS \
  119. (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
  120. /* True if indirect calls must use register class PIC_FN_ADDR_REG.
  121. This is true for both the PIC and non-PIC VxWorks RTP modes. */
  122. #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
  123. /* True if .gpword or .gpdword should be used for switch tables. */
  124. #define TARGET_GPWORD \
  125. (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
  126. /* True if the output must have a writable .eh_frame.
  127. See ASM_PREFERRED_EH_DATA_FORMAT for details. */
  128. #ifdef HAVE_LD_PERSONALITY_RELAXATION
  129. #define TARGET_WRITABLE_EH_FRAME 0
  130. #else
  131. #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
  132. #endif
  133. /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
  134. #ifdef HAVE_AS_DSPR1_MULT
  135. #define ISA_HAS_DSP_MULT ISA_HAS_DSP
  136. #else
  137. #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
  138. #endif
  139. /* ISA has LSA available. */
  140. #define ISA_HAS_LSA (mips_isa_rev >= 6)
  141. /* ISA has DLSA available. */
  142. #define ISA_HAS_DLSA (TARGET_64BIT && mips_isa_rev >= 6)
  143. /* The ISA compression flags that are currently in effect. */
  144. #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
  145. /* Generate mips16 code */
  146. #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
  147. /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
  148. #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
  149. /* Generate mips16e register save/restore sequences. */
  150. #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
  151. /* True if we're generating a form of MIPS16 code in which general
  152. text loads are allowed. */
  153. #define TARGET_MIPS16_TEXT_LOADS \
  154. (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
  155. /* True if we're generating a form of MIPS16 code in which PC-relative
  156. loads are allowed. */
  157. #define TARGET_MIPS16_PCREL_LOADS \
  158. (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
  159. /* Generic ISA defines. */
  160. #define ISA_MIPS1 (mips_isa == 1)
  161. #define ISA_MIPS2 (mips_isa == 2)
  162. #define ISA_MIPS3 (mips_isa == 3)
  163. #define ISA_MIPS4 (mips_isa == 4)
  164. #define ISA_MIPS32 (mips_isa == 32)
  165. #define ISA_MIPS32R2 (mips_isa == 33)
  166. #define ISA_MIPS32R3 (mips_isa == 34)
  167. #define ISA_MIPS32R5 (mips_isa == 36)
  168. #define ISA_MIPS32R6 (mips_isa == 37)
  169. #define ISA_MIPS64 (mips_isa == 64)
  170. #define ISA_MIPS64R2 (mips_isa == 65)
  171. #define ISA_MIPS64R3 (mips_isa == 66)
  172. #define ISA_MIPS64R5 (mips_isa == 68)
  173. #define ISA_MIPS64R6 (mips_isa == 69)
  174. /* Architecture target defines. */
  175. #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
  176. #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
  177. #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
  178. #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
  179. #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
  180. #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
  181. #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
  182. #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
  183. #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
  184. #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
  185. #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
  186. #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
  187. #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
  188. #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
  189. || mips_arch == PROCESSOR_OCTEON2 \
  190. || mips_arch == PROCESSOR_OCTEON3)
  191. #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \
  192. || mips_arch == PROCESSOR_OCTEON3)
  193. #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
  194. || mips_arch == PROCESSOR_SB1A)
  195. #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
  196. #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
  197. /* Scheduling target defines. */
  198. #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
  199. #define TUNE_24K (mips_tune == PROCESSOR_24KC \
  200. || mips_tune == PROCESSOR_24KF2_1 \
  201. || mips_tune == PROCESSOR_24KF1_1)
  202. #define TUNE_74K (mips_tune == PROCESSOR_74KC \
  203. || mips_tune == PROCESSOR_74KF2_1 \
  204. || mips_tune == PROCESSOR_74KF1_1 \
  205. || mips_tune == PROCESSOR_74KF3_2)
  206. #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
  207. || mips_tune == PROCESSOR_LOONGSON_2F)
  208. #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
  209. #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
  210. #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
  211. #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
  212. #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
  213. #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
  214. #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
  215. #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
  216. #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
  217. #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
  218. #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
  219. #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
  220. #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
  221. || mips_tune == PROCESSOR_OCTEON2 \
  222. || mips_tune == PROCESSOR_OCTEON3)
  223. #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
  224. || mips_tune == PROCESSOR_SB1A)
  225. #define TUNE_P5600 (mips_tune == PROCESSOR_P5600)
  226. /* Whether vector modes and intrinsics for ST Microelectronics
  227. Loongson-2E/2F processors should be enabled. In o32 pairs of
  228. floating-point registers provide 64-bit values. */
  229. #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
  230. && (TARGET_LOONGSON_2EF \
  231. || TARGET_LOONGSON_3A))
  232. /* True if the pre-reload scheduler should try to create chains of
  233. multiply-add or multiply-subtract instructions. For example,
  234. suppose we have:
  235. t1 = a * b
  236. t2 = t1 + c * d
  237. t3 = e * f
  238. t4 = t3 - g * h
  239. t1 will have a higher priority than t2 and t3 will have a higher
  240. priority than t4. However, before reload, there is no dependence
  241. between t1 and t3, and they can often have similar priorities.
  242. The scheduler will then tend to prefer:
  243. t1 = a * b
  244. t3 = e * f
  245. t2 = t1 + c * d
  246. t4 = t3 - g * h
  247. which stops us from making full use of macc/madd-style instructions.
  248. This sort of situation occurs frequently in Fourier transforms and
  249. in unrolled loops.
  250. To counter this, the TUNE_MACC_CHAINS code will reorder the ready
  251. queue so that chained multiply-add and multiply-subtract instructions
  252. appear ahead of any other instruction that is likely to clobber lo.
  253. In the example above, if t2 and t3 become ready at the same time,
  254. the code ensures that t2 is scheduled first.
  255. Multiply-accumulate instructions are a bigger win for some targets
  256. than others, so this macro is defined on an opt-in basis. */
  257. #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
  258. || TUNE_MIPS4120 \
  259. || TUNE_MIPS4130 \
  260. || TUNE_24K \
  261. || TUNE_P5600)
  262. #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
  263. #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
  264. /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
  265. directly accessible, while the command-line options select
  266. TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
  267. in use. */
  268. #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
  269. #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
  270. /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
  271. -mfpxx, derive TARGET_FLOAT32 to represent -mfp32. */
  272. #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
  273. /* TARGET_O32_FP64A_ABI represents all the conditions that form the
  274. o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg). */
  275. #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
  276. && !TARGET_ODD_SPREG)
  277. /* False if SC acts as a memory barrier with respect to itself,
  278. otherwise a SYNC will be emitted after SC for atomic operations
  279. that require ordering between the SC and following loads and
  280. stores. It does not tell anything about ordering of loads and
  281. stores prior to and following the SC, only about the SC itself and
  282. those loads and stores follow it. */
  283. #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
  284. /* Define preprocessor macros for the -march and -mtune options.
  285. PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
  286. processor. If INFO's canonical name is "foo", define PREFIX to
  287. be "foo", and define an additional macro PREFIX_FOO. */
  288. #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
  289. do \
  290. { \
  291. char *macro, *p; \
  292. \
  293. macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
  294. for (p = macro; *p != 0; p++) \
  295. if (*p == '+') \
  296. *p = 'P'; \
  297. else \
  298. *p = TOUPPER (*p); \
  299. \
  300. builtin_define (macro); \
  301. builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
  302. free (macro); \
  303. } \
  304. while (0)
  305. /* Target CPU builtins. */
  306. #define TARGET_CPU_CPP_BUILTINS() \
  307. do \
  308. { \
  309. builtin_assert ("machine=mips"); \
  310. builtin_assert ("cpu=mips"); \
  311. builtin_define ("__mips__"); \
  312. builtin_define ("_mips"); \
  313. \
  314. /* We do this here because __mips is defined below and so we \
  315. can't use builtin_define_std. We don't ever want to define \
  316. "mips" for VxWorks because some of the VxWorks headers \
  317. construct include filenames from a root directory macro, \
  318. an architecture macro and a filename, where the architecture \
  319. macro expands to 'mips'. If we define 'mips' to 1, the \
  320. architecture macro expands to 1 as well. */ \
  321. if (!flag_iso && !TARGET_VXWORKS) \
  322. builtin_define ("mips"); \
  323. \
  324. if (TARGET_64BIT) \
  325. builtin_define ("__mips64"); \
  326. \
  327. /* Treat _R3000 and _R4000 like register-size \
  328. defines, which is how they've historically \
  329. been used. */ \
  330. if (TARGET_64BIT) \
  331. { \
  332. builtin_define_std ("R4000"); \
  333. builtin_define ("_R4000"); \
  334. } \
  335. else \
  336. { \
  337. builtin_define_std ("R3000"); \
  338. builtin_define ("_R3000"); \
  339. } \
  340. \
  341. if (TARGET_FLOAT64) \
  342. builtin_define ("__mips_fpr=64"); \
  343. else if (TARGET_FLOATXX) \
  344. builtin_define ("__mips_fpr=0"); \
  345. else \
  346. builtin_define ("__mips_fpr=32"); \
  347. \
  348. if (mips_base_compression_flags & MASK_MIPS16) \
  349. builtin_define ("__mips16"); \
  350. \
  351. if (TARGET_MIPS3D) \
  352. builtin_define ("__mips3d"); \
  353. \
  354. if (TARGET_SMARTMIPS) \
  355. builtin_define ("__mips_smartmips"); \
  356. \
  357. if (mips_base_compression_flags & MASK_MICROMIPS) \
  358. builtin_define ("__mips_micromips"); \
  359. \
  360. if (TARGET_MCU) \
  361. builtin_define ("__mips_mcu"); \
  362. \
  363. if (TARGET_EVA) \
  364. builtin_define ("__mips_eva"); \
  365. \
  366. if (TARGET_DSP) \
  367. { \
  368. builtin_define ("__mips_dsp"); \
  369. if (TARGET_DSPR2) \
  370. { \
  371. builtin_define ("__mips_dspr2"); \
  372. builtin_define ("__mips_dsp_rev=2"); \
  373. } \
  374. else \
  375. builtin_define ("__mips_dsp_rev=1"); \
  376. } \
  377. \
  378. MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
  379. MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
  380. \
  381. if (ISA_MIPS1) \
  382. { \
  383. builtin_define ("__mips=1"); \
  384. builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
  385. } \
  386. else if (ISA_MIPS2) \
  387. { \
  388. builtin_define ("__mips=2"); \
  389. builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
  390. } \
  391. else if (ISA_MIPS3) \
  392. { \
  393. builtin_define ("__mips=3"); \
  394. builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
  395. } \
  396. else if (ISA_MIPS4) \
  397. { \
  398. builtin_define ("__mips=4"); \
  399. builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
  400. } \
  401. else if (mips_isa >= 32 && mips_isa < 64) \
  402. { \
  403. builtin_define ("__mips=32"); \
  404. builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
  405. } \
  406. else if (mips_isa >= 64) \
  407. { \
  408. builtin_define ("__mips=64"); \
  409. builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
  410. } \
  411. if (mips_isa_rev > 0) \
  412. builtin_define_with_int_value ("__mips_isa_rev", \
  413. mips_isa_rev); \
  414. \
  415. switch (mips_abi) \
  416. { \
  417. case ABI_32: \
  418. builtin_define ("_ABIO32=1"); \
  419. builtin_define ("_MIPS_SIM=_ABIO32"); \
  420. break; \
  421. \
  422. case ABI_N32: \
  423. builtin_define ("_ABIN32=2"); \
  424. builtin_define ("_MIPS_SIM=_ABIN32"); \
  425. break; \
  426. \
  427. case ABI_64: \
  428. builtin_define ("_ABI64=3"); \
  429. builtin_define ("_MIPS_SIM=_ABI64"); \
  430. break; \
  431. \
  432. case ABI_O64: \
  433. builtin_define ("_ABIO64=4"); \
  434. builtin_define ("_MIPS_SIM=_ABIO64"); \
  435. break; \
  436. } \
  437. \
  438. builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
  439. builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
  440. builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
  441. builtin_define_with_int_value ("_MIPS_FPSET", \
  442. 32 / MAX_FPRS_PER_FMT); \
  443. builtin_define_with_int_value ("_MIPS_SPFPSET", \
  444. TARGET_ODD_SPREG ? 32 : 16); \
  445. \
  446. /* These defines reflect the ABI in use, not whether the \
  447. FPU is directly accessible. */ \
  448. if (TARGET_NO_FLOAT) \
  449. builtin_define ("__mips_no_float"); \
  450. else if (TARGET_HARD_FLOAT_ABI) \
  451. builtin_define ("__mips_hard_float"); \
  452. else \
  453. builtin_define ("__mips_soft_float"); \
  454. \
  455. if (TARGET_SINGLE_FLOAT) \
  456. builtin_define ("__mips_single_float"); \
  457. \
  458. if (TARGET_PAIRED_SINGLE_FLOAT) \
  459. builtin_define ("__mips_paired_single_float"); \
  460. \
  461. if (mips_abs == MIPS_IEEE_754_2008) \
  462. builtin_define ("__mips_abs2008"); \
  463. \
  464. if (mips_nan == MIPS_IEEE_754_2008) \
  465. builtin_define ("__mips_nan2008"); \
  466. \
  467. if (TARGET_BIG_ENDIAN) \
  468. { \
  469. builtin_define_std ("MIPSEB"); \
  470. builtin_define ("_MIPSEB"); \
  471. } \
  472. else \
  473. { \
  474. builtin_define_std ("MIPSEL"); \
  475. builtin_define ("_MIPSEL"); \
  476. } \
  477. \
  478. /* Whether calls should go through $25. The separate __PIC__ \
  479. macro indicates whether abicalls code might use a GOT. */ \
  480. if (TARGET_ABICALLS) \
  481. builtin_define ("__mips_abicalls"); \
  482. \
  483. /* Whether Loongson vector modes are enabled. */ \
  484. if (TARGET_LOONGSON_VECTORS) \
  485. builtin_define ("__mips_loongson_vector_rev"); \
  486. \
  487. /* Historical Octeon macro. */ \
  488. if (TARGET_OCTEON) \
  489. builtin_define ("__OCTEON__"); \
  490. \
  491. if (TARGET_SYNCI) \
  492. builtin_define ("__mips_synci"); \
  493. \
  494. /* Macros dependent on the C dialect. */ \
  495. if (preprocessing_asm_p ()) \
  496. { \
  497. builtin_define_std ("LANGUAGE_ASSEMBLY"); \
  498. builtin_define ("_LANGUAGE_ASSEMBLY"); \
  499. } \
  500. else if (c_dialect_cxx ()) \
  501. { \
  502. builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
  503. builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
  504. builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
  505. } \
  506. else \
  507. { \
  508. builtin_define_std ("LANGUAGE_C"); \
  509. builtin_define ("_LANGUAGE_C"); \
  510. } \
  511. if (c_dialect_objc ()) \
  512. { \
  513. builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
  514. builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
  515. /* Bizarre, but retained for backwards compatibility. */ \
  516. builtin_define_std ("LANGUAGE_C"); \
  517. builtin_define ("_LANGUAGE_C"); \
  518. } \
  519. \
  520. if (mips_abi == ABI_EABI) \
  521. builtin_define ("__mips_eabi"); \
  522. \
  523. if (TARGET_CACHE_BUILTIN) \
  524. builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
  525. } \
  526. while (0)
  527. /* Default target_flags if no switches are specified */
  528. #ifndef TARGET_DEFAULT
  529. #define TARGET_DEFAULT 0
  530. #endif
  531. #ifndef TARGET_CPU_DEFAULT
  532. #define TARGET_CPU_DEFAULT 0
  533. #endif
  534. #ifndef TARGET_ENDIAN_DEFAULT
  535. #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
  536. #endif
  537. #ifdef IN_LIBGCC2
  538. #undef TARGET_64BIT
  539. /* Make this compile time constant for libgcc2 */
  540. #ifdef __mips64
  541. #define TARGET_64BIT 1
  542. #else
  543. #define TARGET_64BIT 0
  544. #endif
  545. #endif /* IN_LIBGCC2 */
  546. /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
  547. when compiled with hardware floating point. This is because MIPS16
  548. code cannot save and restore the floating-point registers, which is
  549. important if in a mixed MIPS16/non-MIPS16 environment. */
  550. #ifdef IN_LIBGCC2
  551. #if __mips_hard_float
  552. #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
  553. #endif
  554. #endif /* IN_LIBGCC2 */
  555. #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
  556. #ifndef MULTILIB_ENDIAN_DEFAULT
  557. #if TARGET_ENDIAN_DEFAULT == 0
  558. #define MULTILIB_ENDIAN_DEFAULT "EL"
  559. #else
  560. #define MULTILIB_ENDIAN_DEFAULT "EB"
  561. #endif
  562. #endif
  563. #ifndef MULTILIB_ISA_DEFAULT
  564. #if MIPS_ISA_DEFAULT == 1
  565. #define MULTILIB_ISA_DEFAULT "mips1"
  566. #elif MIPS_ISA_DEFAULT == 2
  567. #define MULTILIB_ISA_DEFAULT "mips2"
  568. #elif MIPS_ISA_DEFAULT == 3
  569. #define MULTILIB_ISA_DEFAULT "mips3"
  570. #elif MIPS_ISA_DEFAULT == 4
  571. #define MULTILIB_ISA_DEFAULT "mips4"
  572. #elif MIPS_ISA_DEFAULT == 32
  573. #define MULTILIB_ISA_DEFAULT "mips32"
  574. #elif MIPS_ISA_DEFAULT == 33
  575. #define MULTILIB_ISA_DEFAULT "mips32r2"
  576. #elif MIPS_ISA_DEFAULT == 37
  577. #define MULTILIB_ISA_DEFAULT "mips32r6"
  578. #elif MIPS_ISA_DEFAULT == 64
  579. #define MULTILIB_ISA_DEFAULT "mips64"
  580. #elif MIPS_ISA_DEFAULT == 65
  581. #define MULTILIB_ISA_DEFAULT "mips64r2"
  582. #elif MIPS_ISA_DEFAULT == 69
  583. #define MULTILIB_ISA_DEFAULT "mips64r6"
  584. #else
  585. #define MULTILIB_ISA_DEFAULT "mips1"
  586. #endif
  587. #endif
  588. #ifndef MIPS_ABI_DEFAULT
  589. #define MIPS_ABI_DEFAULT ABI_32
  590. #endif
  591. /* Use the most portable ABI flag for the ASM specs. */
  592. #if MIPS_ABI_DEFAULT == ABI_32
  593. #define MULTILIB_ABI_DEFAULT "mabi=32"
  594. #elif MIPS_ABI_DEFAULT == ABI_O64
  595. #define MULTILIB_ABI_DEFAULT "mabi=o64"
  596. #elif MIPS_ABI_DEFAULT == ABI_N32
  597. #define MULTILIB_ABI_DEFAULT "mabi=n32"
  598. #elif MIPS_ABI_DEFAULT == ABI_64
  599. #define MULTILIB_ABI_DEFAULT "mabi=64"
  600. #elif MIPS_ABI_DEFAULT == ABI_EABI
  601. #define MULTILIB_ABI_DEFAULT "mabi=eabi"
  602. #endif
  603. #ifndef MULTILIB_DEFAULTS
  604. #define MULTILIB_DEFAULTS \
  605. { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
  606. #endif
  607. /* We must pass -EL to the linker by default for little endian embedded
  608. targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
  609. linker will default to using big-endian output files. The OUTPUT_FORMAT
  610. line must be in the linker script, otherwise -EB/-EL will not work. */
  611. #ifndef ENDIAN_SPEC
  612. #if TARGET_ENDIAN_DEFAULT == 0
  613. #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
  614. #else
  615. #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
  616. #endif
  617. #endif
  618. /* A spec condition that matches all non-mips16 -mips arguments. */
  619. #define MIPS_ISA_LEVEL_OPTION_SPEC \
  620. "mips1|mips2|mips3|mips4|mips32*|mips64*"
  621. /* A spec condition that matches all non-mips16 architecture arguments. */
  622. #define MIPS_ARCH_OPTION_SPEC \
  623. MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
  624. /* A spec that infers a -mips argument from an -march argument. */
  625. #define MIPS_ISA_LEVEL_SPEC \
  626. "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
  627. %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
  628. %{march=mips2|march=r6000:-mips2} \
  629. %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
  630. %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
  631. |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
  632. %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
  633. %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
  634. |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
  635. %{march=mips32r3: -mips32r3} \
  636. %{march=mips32r5|march=p5600: -mips32r5} \
  637. %{march=mips32r6: -mips32r6} \
  638. %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
  639. |march=xlr: -mips64} \
  640. %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
  641. %{march=mips64r3: -mips64r3} \
  642. %{march=mips64r5: -mips64r5} \
  643. %{march=mips64r6: -mips64r6}}"
  644. /* A spec that injects the default multilib ISA if no architecture is
  645. specified. */
  646. #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
  647. "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
  648. %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
  649. /* A spec that infers a -mhard-float or -msoft-float setting from an
  650. -march argument. Note that soft-float and hard-float code are not
  651. link-compatible. */
  652. #define MIPS_ARCH_FLOAT_SPEC \
  653. "%{mhard-float|msoft-float|mno-float|march=mips*:; \
  654. march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
  655. |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
  656. |march=m14k*|march=octeon|march=xlr: -msoft-float; \
  657. march=*: -mhard-float}"
  658. /* A spec condition that matches 32-bit options. It only works if
  659. MIPS_ISA_LEVEL_SPEC has been applied. */
  660. #define MIPS_32BIT_OPTION_SPEC \
  661. "mips1|mips2|mips32*|mgp32"
  662. /* A spec condition that matches architectures should be targeted with
  663. o32 FPXX for compatibility reasons. */
  664. #define MIPS_FPXX_OPTION_SPEC \
  665. "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
  666. mips64|mips64r2|mips64r3|mips64r5"
  667. /* Infer a -msynci setting from a -mips argument, on the assumption that
  668. -msynci is desired where possible. */
  669. #define MIPS_ISA_SYNCI_SPEC \
  670. "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
  671. |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
  672. /* Infer a -mnan=2008 setting from a -mips argument. */
  673. #define MIPS_ISA_NAN2008_SPEC \
  674. "%{mnan*:;mips32r6|mips64r6:-mnan=2008}"
  675. #if (MIPS_ABI_DEFAULT == ABI_O64 \
  676. || MIPS_ABI_DEFAULT == ABI_N32 \
  677. || MIPS_ABI_DEFAULT == ABI_64)
  678. #define OPT_ARCH64 "mabi=32|mgp32:;"
  679. #define OPT_ARCH32 "mabi=32|mgp32"
  680. #else
  681. #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
  682. #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
  683. #endif
  684. /* Support for a compile-time default CPU, et cetera. The rules are:
  685. --with-arch is ignored if -march is specified or a -mips is specified
  686. (other than -mips16); likewise --with-arch-32 and --with-arch-64.
  687. --with-tune is ignored if -mtune is specified; likewise
  688. --with-tune-32 and --with-tune-64.
  689. --with-abi is ignored if -mabi is specified.
  690. --with-float is ignored if -mhard-float or -msoft-float are
  691. specified.
  692. --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
  693. specified.
  694. --with-nan is ignored if -mnan is specified.
  695. --with-fp-32 is ignored if -msoft-float, -msingle-float or -mfp are specified.
  696. --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
  697. or -mno-odd-spreg are specified.
  698. --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
  699. specified. */
  700. #define OPTION_DEFAULT_SPECS \
  701. {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
  702. {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
  703. {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
  704. {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
  705. {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
  706. {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
  707. {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
  708. {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
  709. {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
  710. {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
  711. {"fp_32", "%{" OPT_ARCH32 \
  712. ":%{!msoft-float:%{!msingle-float:%{!mfp*:-mfp%(VALUE)}}}}" }, \
  713. {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
  714. "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
  715. {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
  716. {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
  717. {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
  718. {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
  719. /* A spec that infers the:
  720. -mnan=2008 setting from a -mips argument,
  721. -mdsp setting from a -march argument. */
  722. #define BASE_DRIVER_SELF_SPECS \
  723. MIPS_ISA_NAN2008_SPEC, \
  724. "%{!mno-dsp: \
  725. %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
  726. %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
  727. #define DRIVER_SELF_SPECS \
  728. MIPS_ISA_LEVEL_SPEC, \
  729. BASE_DRIVER_SELF_SPECS
  730. #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
  731. && ISA_HAS_COND_TRAP)
  732. #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
  733. /* True if the ABI can only work with 64-bit integer registers. We
  734. generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
  735. otherwise floating-point registers must also be 64-bit. */
  736. #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
  737. /* Likewise for 32-bit regs. */
  738. #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
  739. /* True if the file format uses 64-bit symbols. At present, this is
  740. only true for n64, which uses 64-bit ELF. */
  741. #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
  742. /* True if symbols are 64 bits wide. This is usually determined by
  743. the ABI's file format, but it can be overridden by -msym32. Note that
  744. overriding the size with -msym32 changes the ABI of relocatable objects,
  745. although it doesn't change the ABI of a fully-linked object. */
  746. #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
  747. && Pmode == DImode \
  748. && !TARGET_SYM32)
  749. /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
  750. #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
  751. || ISA_MIPS4 \
  752. || ISA_MIPS64 \
  753. || ISA_MIPS64R2 \
  754. || ISA_MIPS64R3 \
  755. || ISA_MIPS64R5 \
  756. || ISA_MIPS64R6)
  757. #define ISA_HAS_JR (mips_isa_rev <= 5)
  758. /* ISA has branch likely instructions (e.g. mips2). */
  759. /* Disable branchlikely for tx39 until compare rewrite. They haven't
  760. been generated up to this point. */
  761. #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 && mips_isa_rev <= 5)
  762. /* ISA has 32 single-precision registers. */
  763. #define ISA_HAS_ODD_SPREG ((mips_isa_rev >= 1 \
  764. && !TARGET_LOONGSON_3A) \
  765. || TARGET_FLOAT64 \
  766. || TARGET_MIPS5900)
  767. /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
  768. #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
  769. || TARGET_MIPS5400 \
  770. || TARGET_MIPS5500 \
  771. || TARGET_MIPS5900 \
  772. || TARGET_MIPS7000 \
  773. || TARGET_MIPS9000 \
  774. || TARGET_MAD \
  775. || (mips_isa_rev >= 1 \
  776. && mips_isa_rev <= 5)) \
  777. && !TARGET_MIPS16)
  778. /* ISA has a three-operand multiplication instruction. */
  779. #define ISA_HAS_DMUL3 (TARGET_64BIT \
  780. && TARGET_OCTEON \
  781. && !TARGET_MIPS16)
  782. /* ISA has HI and LO registers. */
  783. #define ISA_HAS_HILO (mips_isa_rev <= 5)
  784. /* ISA supports instructions DMULT and DMULTU. */
  785. #define ISA_HAS_DMULT (TARGET_64BIT \
  786. && !TARGET_MIPS5900 \
  787. && mips_isa_rev <= 5)
  788. /* ISA supports instructions MULT and MULTU. */
  789. #define ISA_HAS_MULT (mips_isa_rev <= 5)
  790. /* ISA supports instructions MUL, MULU, MUH, MUHU. */
  791. #define ISA_HAS_R6MUL (mips_isa_rev >= 6)
  792. /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU. */
  793. #define ISA_HAS_R6DMUL (TARGET_64BIT && mips_isa_rev >= 6)
  794. /* ISA supports instructions DDIV and DDIVU. */
  795. #define ISA_HAS_DDIV (TARGET_64BIT \
  796. && !TARGET_MIPS5900 \
  797. && mips_isa_rev <= 5)
  798. /* ISA supports instructions DIV and DIVU.
  799. This is always true, but the macro is needed for ISA_HAS_<D>DIV
  800. in mips.md. */
  801. #define ISA_HAS_DIV (mips_isa_rev <= 5)
  802. #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
  803. || TARGET_LOONGSON_3A) \
  804. && !TARGET_MIPS16)
  805. /* ISA supports instructions DIV, DIVU, MOD and MODU. */
  806. #define ISA_HAS_R6DIV (mips_isa_rev >= 6)
  807. /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU. */
  808. #define ISA_HAS_R6DDIV (TARGET_64BIT && mips_isa_rev >= 6)
  809. /* ISA has the floating-point conditional move instructions introduced
  810. in mips4. */
  811. #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
  812. || (mips_isa_rev >= 1 \
  813. && mips_isa_rev <= 5)) \
  814. && !TARGET_MIPS5500 \
  815. && !TARGET_MIPS16)
  816. /* ISA has the integer conditional move instructions introduced in mips4 and
  817. ST Loongson 2E/2F. */
  818. #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
  819. || TARGET_MIPS5900 \
  820. || TARGET_LOONGSON_2EF)
  821. /* ISA has LDC1 and SDC1. */
  822. #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
  823. && !TARGET_MIPS5900 \
  824. && !TARGET_MIPS16)
  825. /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
  826. branch on CC, and move (both FP and non-FP) on CC. */
  827. #define ISA_HAS_8CC (ISA_MIPS4 \
  828. || (mips_isa_rev >= 1 \
  829. && mips_isa_rev <= 5))
  830. /* ISA has the FP condition code instructions that store the flag in an
  831. FP register. */
  832. #define ISA_HAS_CCF (mips_isa_rev >= 6)
  833. #define ISA_HAS_SEL (mips_isa_rev >= 6)
  834. /* This is a catch all for other mips4 instructions: indexed load, the
  835. FP madd and msub instructions, and the FP recip and recip sqrt
  836. instructions. Note that this macro should only be used by other
  837. ISA_HAS_* macros. */
  838. #define ISA_HAS_FP4 ((ISA_MIPS4 \
  839. || ISA_MIPS64 \
  840. || (mips_isa_rev >= 2 \
  841. && mips_isa_rev <= 5)) \
  842. && !TARGET_MIPS16)
  843. /* ISA has floating-point indexed load and store instructions
  844. (LWXC1, LDXC1, SWXC1 and SDXC1). */
  845. #define ISA_HAS_LXC1_SXC1 ISA_HAS_FP4
  846. /* ISA has paired-single instructions. */
  847. #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS64 \
  848. || (mips_isa_rev >= 2 \
  849. && mips_isa_rev <= 5))
  850. /* ISA has conditional trap instructions. */
  851. #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
  852. && !TARGET_MIPS16)
  853. /* ISA has conditional trap with immediate instructions. */
  854. #define ISA_HAS_COND_TRAPI (!ISA_MIPS1 \
  855. && mips_isa_rev <= 5 \
  856. && !TARGET_MIPS16)
  857. /* ISA has integer multiply-accumulate instructions, madd and msub. */
  858. #define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1 \
  859. && mips_isa_rev <= 5)
  860. /* Integer multiply-accumulate instructions should be generated. */
  861. #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
  862. /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
  863. #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
  864. /* ISA has floating-point MADDF and MSUBF instructions 'd = d [+-] a * b'. */
  865. #define ISA_HAS_FP_MADDF_MSUBF (mips_isa_rev >= 6)
  866. /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
  867. #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
  868. /* ISA has floating-point nmadd and nmsub instructions
  869. 'd = -((a * b) [+-] c)'. */
  870. #define ISA_HAS_NMADD4_NMSUB4 ISA_HAS_FP4
  871. /* ISA has floating-point nmadd and nmsub instructions
  872. 'c = -((a * b) [+-] c)'. */
  873. #define ISA_HAS_NMADD3_NMSUB3 TARGET_LOONGSON_2EF
  874. /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
  875. MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
  876. doubles are stored in pairs of FPRs, so for safety's sake, we apply
  877. this restriction to the MIPS IV ISA too. */
  878. #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
  879. (((ISA_HAS_FP4 \
  880. && ((MODE) == SFmode \
  881. || ((TARGET_FLOAT64 \
  882. || mips_isa_rev >= 2) \
  883. && (MODE) == DFmode))) \
  884. || (((MODE) == SFmode \
  885. || (MODE) == DFmode) \
  886. && (mips_isa_rev >= 6)) \
  887. || (TARGET_SB1 \
  888. && (MODE) == V2SFmode)) \
  889. && !TARGET_MIPS16)
  890. #define ISA_HAS_LWL_LWR (mips_isa_rev <= 5 && !TARGET_MIPS16)
  891. #define ISA_HAS_IEEE_754_LEGACY (mips_isa_rev <= 5)
  892. #define ISA_HAS_IEEE_754_2008 (mips_isa_rev >= 2)
  893. /* ISA has count leading zeroes/ones instruction (not implemented). */
  894. #define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
  895. /* ISA has three operand multiply instructions that put
  896. the high part in an accumulator: mulhi or mulhiu. */
  897. #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
  898. || TARGET_MIPS5500 \
  899. || TARGET_SR71K) \
  900. && !TARGET_MIPS16)
  901. /* ISA has three operand multiply instructions that negate the
  902. result and put the result in an accumulator. */
  903. #define ISA_HAS_MULS ((TARGET_MIPS5400 \
  904. || TARGET_MIPS5500 \
  905. || TARGET_SR71K) \
  906. && !TARGET_MIPS16)
  907. /* ISA has three operand multiply instructions that subtract the
  908. result from a 4th operand and put the result in an accumulator. */
  909. #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
  910. || TARGET_MIPS5500 \
  911. || TARGET_SR71K) \
  912. && !TARGET_MIPS16)
  913. /* ISA has three operand multiply instructions that add the result
  914. to a 4th operand and put the result in an accumulator. */
  915. #define ISA_HAS_MACC ((TARGET_MIPS4120 \
  916. || TARGET_MIPS4130 \
  917. || TARGET_MIPS5400 \
  918. || TARGET_MIPS5500 \
  919. || TARGET_SR71K) \
  920. && !TARGET_MIPS16)
  921. /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
  922. #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
  923. || TARGET_MIPS4130) \
  924. && !TARGET_MIPS16)
  925. /* ISA has the "ror" (rotate right) instructions. */
  926. #define ISA_HAS_ROR ((mips_isa_rev >= 2 \
  927. || TARGET_MIPS5400 \
  928. || TARGET_MIPS5500 \
  929. || TARGET_SR71K \
  930. || TARGET_SMARTMIPS) \
  931. && !TARGET_MIPS16)
  932. /* ISA has the WSBH (word swap bytes within halfwords) instruction.
  933. 64-bit targets also provide DSBH and DSHD. */
  934. #define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
  935. /* ISA has data prefetch instructions. This controls use of 'pref'. */
  936. #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
  937. || TARGET_LOONGSON_2EF \
  938. || TARGET_MIPS5900 \
  939. || mips_isa_rev >= 1) \
  940. && !TARGET_MIPS16)
  941. /* ISA has data prefetch, LL and SC with limited 9-bit displacement. */
  942. #define ISA_HAS_9BIT_DISPLACEMENT (mips_isa_rev >= 6)
  943. /* ISA has data indexed prefetch instructions. This controls use of
  944. 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
  945. (prefx is a cop1x instruction, so can only be used if FP is
  946. enabled.) */
  947. #define ISA_HAS_PREFETCHX ISA_HAS_FP4
  948. /* True if trunc.w.s and trunc.w.d are real (not synthetic)
  949. instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
  950. also requires TARGET_DOUBLE_FLOAT. */
  951. #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
  952. /* ISA includes the MIPS32r2 seb and seh instructions. */
  953. #define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
  954. /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
  955. #define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
  956. /* ISA has instructions for accessing top part of 64-bit fp regs. */
  957. #define ISA_HAS_MXHC1 (!TARGET_FLOAT32 \
  958. && mips_isa_rev >= 2)
  959. /* ISA has lwxs instruction (load w/scaled index address. */
  960. #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
  961. && !TARGET_MIPS16)
  962. /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
  963. #define ISA_HAS_LBX (TARGET_OCTEON2)
  964. #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
  965. #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
  966. #define ISA_HAS_LHUX (TARGET_OCTEON2)
  967. #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
  968. #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
  969. #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
  970. && TARGET_64BIT)
  971. /* The DSP ASE is available. */
  972. #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
  973. /* Revision 2 of the DSP ASE is available. */
  974. #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
  975. /* True if the result of a load is not available to the next instruction.
  976. A nop will then be needed between instructions like "lw $4,..."
  977. and "addiu $4,$4,1". */
  978. #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
  979. && !TARGET_MIPS3900 \
  980. && !TARGET_MIPS5900 \
  981. && !TARGET_MIPS16 \
  982. && !TARGET_MICROMIPS)
  983. /* Likewise mtc1 and mfc1. */
  984. #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
  985. && !TARGET_MIPS5900 \
  986. && !TARGET_LOONGSON_2EF)
  987. /* Likewise floating-point comparisons. */
  988. #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
  989. && !TARGET_MIPS5900 \
  990. && !TARGET_LOONGSON_2EF)
  991. /* True if mflo and mfhi can be immediately followed by instructions
  992. which write to the HI and LO registers.
  993. According to MIPS specifications, MIPS ISAs I, II, and III need
  994. (at least) two instructions between the reads of HI/LO and
  995. instructions which write them, and later ISAs do not. Contradicting
  996. the MIPS specifications, some MIPS IV processor user manuals (e.g.
  997. the UM for the NEC Vr5000) document needing the instructions between
  998. HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
  999. MIPS64 and later ISAs to have the interlocks, plus any specific
  1000. earlier-ISA CPUs for which CPU documentation declares that the
  1001. instructions are really interlocked. */
  1002. #define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
  1003. || TARGET_MIPS5500 \
  1004. || TARGET_MIPS5900 \
  1005. || TARGET_LOONGSON_2EF)
  1006. /* ISA includes synci, jr.hb and jalr.hb. */
  1007. #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
  1008. /* ISA includes sync. */
  1009. #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
  1010. #define GENERATE_SYNC \
  1011. (target_flags_explicit & MASK_LLSC \
  1012. ? TARGET_LLSC && !TARGET_MIPS16 \
  1013. : ISA_HAS_SYNC)
  1014. /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
  1015. because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
  1016. instructions. */
  1017. #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
  1018. #define GENERATE_LL_SC \
  1019. (target_flags_explicit & MASK_LLSC \
  1020. ? TARGET_LLSC && !TARGET_MIPS16 \
  1021. : ISA_HAS_LL_SC)
  1022. #define ISA_HAS_SWAP (TARGET_XLP)
  1023. #define ISA_HAS_LDADD (TARGET_XLP)
  1024. /* ISA includes the baddu instruction. */
  1025. #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
  1026. /* ISA includes the bbit* instructions. */
  1027. #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
  1028. /* ISA includes the cins instruction. */
  1029. #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
  1030. /* ISA includes the exts instruction. */
  1031. #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
  1032. /* ISA includes the seq and sne instructions. */
  1033. #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
  1034. /* ISA includes the pop instruction. */
  1035. #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
  1036. /* The CACHE instruction is available in non-MIPS16 code. */
  1037. #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
  1038. /* The CACHE instruction is available. */
  1039. #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
  1040. /* Tell collect what flags to pass to nm. */
  1041. #ifndef NM_FLAGS
  1042. #define NM_FLAGS "-Bn"
  1043. #endif
  1044. /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
  1045. the assembler. It may be overridden by subtargets.
  1046. Beginning with gas 2.13, -mdebug must be passed to correctly handle
  1047. COFF debugging info. */
  1048. #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
  1049. #define SUBTARGET_ASM_DEBUGGING_SPEC "\
  1050. %{g} %{g0} %{g1} %{g2} %{g3} \
  1051. %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
  1052. %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
  1053. %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
  1054. %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
  1055. %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
  1056. #endif
  1057. /* FP_ASM_SPEC represents the floating-point options that must be passed
  1058. to the assembler when FPXX support exists. Prior to that point the
  1059. assembler could accept the options but were not required for
  1060. correctness. We only add the options when absolutely necessary
  1061. because passing -msoft-float to the assembler will cause it to reject
  1062. all hard-float instructions which may require some user code to be
  1063. updated. */
  1064. #ifdef HAVE_AS_DOT_MODULE
  1065. #define FP_ASM_SPEC "\
  1066. %{mhard-float} %{msoft-float} \
  1067. %{msingle-float} %{mdouble-float}"
  1068. #else
  1069. #define FP_ASM_SPEC
  1070. #endif
  1071. /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
  1072. overridden by subtargets. */
  1073. #ifndef SUBTARGET_ASM_SPEC
  1074. #define SUBTARGET_ASM_SPEC ""
  1075. #endif
  1076. #undef ASM_SPEC
  1077. #define ASM_SPEC "\
  1078. %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
  1079. %{mips32*} %{mips64*} \
  1080. %{mips16} %{mno-mips16:-no-mips16} \
  1081. %{mmicromips} %{mno-micromips} \
  1082. %{mips3d} %{mno-mips3d:-no-mips3d} \
  1083. %{mdmx} %{mno-mdmx:-no-mdmx} \
  1084. %{mdsp} %{mno-dsp} \
  1085. %{mdspr2} %{mno-dspr2} \
  1086. %{mmcu} %{mno-mcu} \
  1087. %{meva} %{mno-eva} \
  1088. %{mvirt} %{mno-virt} \
  1089. %{mxpa} %{mno-xpa} \
  1090. %{msmartmips} %{mno-smartmips} \
  1091. %{mmt} %{mno-mt} \
  1092. %{mfix-rm7000} %{mno-fix-rm7000} \
  1093. %{mfix-vr4120} %{mfix-vr4130} \
  1094. %{mfix-24k} \
  1095. %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
  1096. %(subtarget_asm_debugging_spec) \
  1097. %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
  1098. %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
  1099. %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
  1100. %{modd-spreg} %{mno-odd-spreg} \
  1101. %{mshared} %{mno-shared} \
  1102. %{msym32} %{mno-sym32} \
  1103. %{mtune=*}" \
  1104. FP_ASM_SPEC "\
  1105. %(subtarget_asm_spec)"
  1106. /* Extra switches sometimes passed to the linker. */
  1107. #ifndef LINK_SPEC
  1108. #define LINK_SPEC "\
  1109. %(endian_spec) \
  1110. %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
  1111. %{shared}"
  1112. #endif /* LINK_SPEC defined */
  1113. /* Specs for the compiler proper */
  1114. /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
  1115. overridden by subtargets. */
  1116. #ifndef SUBTARGET_CC1_SPEC
  1117. #define SUBTARGET_CC1_SPEC ""
  1118. #endif
  1119. /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
  1120. #undef CC1_SPEC
  1121. #define CC1_SPEC "\
  1122. %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
  1123. %(subtarget_cc1_spec)"
  1124. /* Preprocessor specs. */
  1125. /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
  1126. overridden by subtargets. */
  1127. #ifndef SUBTARGET_CPP_SPEC
  1128. #define SUBTARGET_CPP_SPEC ""
  1129. #endif
  1130. #define CPP_SPEC "%(subtarget_cpp_spec)"
  1131. /* This macro defines names of additional specifications to put in the specs
  1132. that can be used in various specifications like CC1_SPEC. Its definition
  1133. is an initializer with a subgrouping for each command option.
  1134. Each subgrouping contains a string constant, that defines the
  1135. specification name, and a string constant that used by the GCC driver
  1136. program.
  1137. Do not define this macro if it does not need to do anything. */
  1138. #define EXTRA_SPECS \
  1139. { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
  1140. { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
  1141. { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
  1142. { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
  1143. { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
  1144. { "endian_spec", ENDIAN_SPEC }, \
  1145. SUBTARGET_EXTRA_SPECS
  1146. #ifndef SUBTARGET_EXTRA_SPECS
  1147. #define SUBTARGET_EXTRA_SPECS
  1148. #endif
  1149. #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
  1150. #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
  1151. #ifndef PREFERRED_DEBUGGING_TYPE
  1152. #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
  1153. #endif
  1154. /* The size of DWARF addresses should be the same as the size of symbols
  1155. in the target file format. They shouldn't depend on things like -msym32,
  1156. because many DWARF consumers do not allow the mixture of address sizes
  1157. that one would then get from linking -msym32 code with -msym64 code.
  1158. Note that the default POINTER_SIZE test is not appropriate for MIPS.
  1159. EABI64 has 64-bit pointers but uses 32-bit ELF. */
  1160. #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
  1161. /* By default, turn on GDB extensions. */
  1162. #define DEFAULT_GDB_EXTENSIONS 1
  1163. /* Registers may have a prefix which can be ignored when matching
  1164. user asm and register definitions. */
  1165. #ifndef REGISTER_PREFIX
  1166. #define REGISTER_PREFIX "$"
  1167. #endif
  1168. /* Local compiler-generated symbols must have a prefix that the assembler
  1169. understands. By default, this is $, although some targets (e.g.,
  1170. NetBSD-ELF) need to override this. */
  1171. #ifndef LOCAL_LABEL_PREFIX
  1172. #define LOCAL_LABEL_PREFIX "$"
  1173. #endif
  1174. /* By default on the mips, external symbols do not have an underscore
  1175. prepended, but some targets (e.g., NetBSD) require this. */
  1176. #ifndef USER_LABEL_PREFIX
  1177. #define USER_LABEL_PREFIX ""
  1178. #endif
  1179. /* On Sun 4, this limit is 2048. We use 1500 to be safe,
  1180. since the length can run past this up to a continuation point. */
  1181. #undef DBX_CONTIN_LENGTH
  1182. #define DBX_CONTIN_LENGTH 1500
  1183. /* How to renumber registers for dbx and gdb. */
  1184. #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
  1185. /* The mapping from gcc register number to DWARF 2 CFA column number. */
  1186. #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
  1187. /* The DWARF 2 CFA column which tracks the return address. */
  1188. #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
  1189. /* Before the prologue, RA lives in r31. */
  1190. #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
  1191. /* Describe how we implement __builtin_eh_return. */
  1192. #define EH_RETURN_DATA_REGNO(N) \
  1193. ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
  1194. #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
  1195. #define EH_USES(N) mips_eh_uses (N)
  1196. /* Offsets recorded in opcodes are a multiple of this alignment factor.
  1197. The default for this in 64-bit mode is 8, which causes problems with
  1198. SFmode register saves. */
  1199. #define DWARF_CIE_DATA_ALIGNMENT -4
  1200. /* Correct the offset of automatic variables and arguments. Note that
  1201. the MIPS debug format wants all automatic variables and arguments
  1202. to be in terms of the virtual frame pointer (stack pointer before
  1203. any adjustment in the function), while the MIPS 3.0 linker wants
  1204. the frame pointer to be the stack pointer after the initial
  1205. adjustment. */
  1206. #define DEBUGGER_AUTO_OFFSET(X) \
  1207. mips_debugger_offset (X, (HOST_WIDE_INT) 0)
  1208. #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
  1209. mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
  1210. /* Target machine storage layout */
  1211. #define BITS_BIG_ENDIAN 0
  1212. #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
  1213. #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
  1214. #define MAX_BITS_PER_WORD 64
  1215. /* Width of a word, in units (bytes). */
  1216. #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
  1217. #ifndef IN_LIBGCC2
  1218. #define MIN_UNITS_PER_WORD 4
  1219. #endif
  1220. /* For MIPS, width of a floating point register. */
  1221. #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
  1222. /* The number of consecutive floating-point registers needed to store the
  1223. largest format supported by the FPU. */
  1224. #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
  1225. /* The number of consecutive floating-point registers needed to store the
  1226. smallest format supported by the FPU. */
  1227. #define MIN_FPRS_PER_FMT \
  1228. (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
  1229. /* The largest size of value that can be held in floating-point
  1230. registers and moved with a single instruction. */
  1231. #define UNITS_PER_HWFPVALUE \
  1232. (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
  1233. /* The largest size of value that can be held in floating-point
  1234. registers. */
  1235. #define UNITS_PER_FPVALUE \
  1236. (TARGET_SOFT_FLOAT_ABI ? 0 \
  1237. : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
  1238. : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
  1239. /* The number of bytes in a double. */
  1240. #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
  1241. /* Set the sizes of the core types. */
  1242. #define SHORT_TYPE_SIZE 16
  1243. #define INT_TYPE_SIZE 32
  1244. #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
  1245. #define LONG_LONG_TYPE_SIZE 64
  1246. #define FLOAT_TYPE_SIZE 32
  1247. #define DOUBLE_TYPE_SIZE 64
  1248. #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
  1249. /* Define the sizes of fixed-point types. */
  1250. #define SHORT_FRACT_TYPE_SIZE 8
  1251. #define FRACT_TYPE_SIZE 16
  1252. #define LONG_FRACT_TYPE_SIZE 32
  1253. #define LONG_LONG_FRACT_TYPE_SIZE 64
  1254. #define SHORT_ACCUM_TYPE_SIZE 16
  1255. #define ACCUM_TYPE_SIZE 32
  1256. #define LONG_ACCUM_TYPE_SIZE 64
  1257. /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
  1258. doesn't support 128-bit integers for MIPS32 currently. */
  1259. #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
  1260. /* long double is not a fixed mode, but the idea is that, if we
  1261. support long double, we also want a 128-bit integer type. */
  1262. #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
  1263. /* Width in bits of a pointer. */
  1264. #ifndef POINTER_SIZE
  1265. #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
  1266. #endif
  1267. /* Allocation boundary (in *bits*) for storing arguments in argument list. */
  1268. #define PARM_BOUNDARY BITS_PER_WORD
  1269. /* Allocation boundary (in *bits*) for the code of a function. */
  1270. #define FUNCTION_BOUNDARY 32
  1271. /* Alignment of field after `int : 0' in a structure. */
  1272. #define EMPTY_FIELD_BOUNDARY 32
  1273. /* Every structure's size must be a multiple of this. */
  1274. /* 8 is observed right on a DECstation and on riscos 4.02. */
  1275. #define STRUCTURE_SIZE_BOUNDARY 8
  1276. /* There is no point aligning anything to a rounder boundary than this. */
  1277. #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
  1278. /* All accesses must be aligned. */
  1279. #define STRICT_ALIGNMENT 1
  1280. /* Define this if you wish to imitate the way many other C compilers
  1281. handle alignment of bitfields and the structures that contain
  1282. them.
  1283. The behavior is that the type written for a bit-field (`int',
  1284. `short', or other integer type) imposes an alignment for the
  1285. entire structure, as if the structure really did contain an
  1286. ordinary field of that type. In addition, the bit-field is placed
  1287. within the structure so that it would fit within such a field,
  1288. not crossing a boundary for it.
  1289. Thus, on most machines, a bit-field whose type is written as `int'
  1290. would not cross a four-byte boundary, and would force four-byte
  1291. alignment for the whole structure. (The alignment used may not
  1292. be four bytes; it is controlled by the other alignment
  1293. parameters.)
  1294. If the macro is defined, its definition should be a C expression;
  1295. a nonzero value for the expression enables this behavior. */
  1296. #define PCC_BITFIELD_TYPE_MATTERS 1
  1297. /* If defined, a C expression to compute the alignment given to a
  1298. constant that is being placed in memory. CONSTANT is the constant
  1299. and ALIGN is the alignment that the object would ordinarily have.
  1300. The value of this macro is used instead of that alignment to align
  1301. the object.
  1302. If this macro is not defined, then ALIGN is used.
  1303. The typical use of this macro is to increase alignment for string
  1304. constants to be word aligned so that `strcpy' calls that copy
  1305. constants can be done inline. */
  1306. #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
  1307. ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
  1308. && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
  1309. /* If defined, a C expression to compute the alignment for a static
  1310. variable. TYPE is the data type, and ALIGN is the alignment that
  1311. the object would ordinarily have. The value of this macro is used
  1312. instead of that alignment to align the object.
  1313. If this macro is not defined, then ALIGN is used.
  1314. One use of this macro is to increase alignment of medium-size
  1315. data to make it all fit in fewer cache lines. Another is to
  1316. cause character arrays to be word-aligned so that `strcpy' calls
  1317. that copy constants to character arrays can be done inline. */
  1318. #undef DATA_ALIGNMENT
  1319. #define DATA_ALIGNMENT(TYPE, ALIGN) \
  1320. ((((ALIGN) < BITS_PER_WORD) \
  1321. && (TREE_CODE (TYPE) == ARRAY_TYPE \
  1322. || TREE_CODE (TYPE) == UNION_TYPE \
  1323. || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
  1324. /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
  1325. character arrays to be word-aligned so that `strcpy' calls that copy
  1326. constants to character arrays can be done inline, and 'strcmp' can be
  1327. optimised to use word loads. */
  1328. #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
  1329. DATA_ALIGNMENT (TYPE, ALIGN)
  1330. #define PAD_VARARGS_DOWN \
  1331. (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
  1332. /* Define if operations between registers always perform the operation
  1333. on the full register even if a narrower mode is specified. */
  1334. #define WORD_REGISTER_OPERATIONS
  1335. /* When in 64-bit mode, move insns will sign extend SImode and CCmode
  1336. moves. All other references are zero extended. */
  1337. #define LOAD_EXTEND_OP(MODE) \
  1338. (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
  1339. ? SIGN_EXTEND : ZERO_EXTEND)
  1340. /* Define this macro if it is advisable to hold scalars in registers
  1341. in a wider mode than that declared by the program. In such cases,
  1342. the value is constrained to be within the bounds of the declared
  1343. type, but kept valid in the wider mode. The signedness of the
  1344. extension may differ from that of the type. */
  1345. #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
  1346. if (GET_MODE_CLASS (MODE) == MODE_INT \
  1347. && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
  1348. { \
  1349. if ((MODE) == SImode) \
  1350. (UNSIGNEDP) = 0; \
  1351. (MODE) = Pmode; \
  1352. }
  1353. /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
  1354. Extensions of pointers to word_mode must be signed. */
  1355. #define POINTERS_EXTEND_UNSIGNED false
  1356. /* Define if loading short immediate values into registers sign extends. */
  1357. #define SHORT_IMMEDIATES_SIGN_EXTEND
  1358. /* The [d]clz instructions have the natural values at 0. */
  1359. #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
  1360. ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
  1361. /* Standard register usage. */
  1362. /* Number of hardware registers. We have:
  1363. - 32 integer registers
  1364. - 32 floating point registers
  1365. - 8 condition code registers
  1366. - 2 accumulator registers (hi and lo)
  1367. - 32 registers each for coprocessors 0, 2 and 3
  1368. - 4 fake registers:
  1369. - ARG_POINTER_REGNUM
  1370. - FRAME_POINTER_REGNUM
  1371. - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
  1372. - CPRESTORE_SLOT_REGNUM
  1373. - 2 dummy entries that were used at various times in the past.
  1374. - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
  1375. - 6 DSP control registers */
  1376. #define FIRST_PSEUDO_REGISTER 188
  1377. /* By default, fix the kernel registers ($26 and $27), the global
  1378. pointer ($28) and the stack pointer ($29). This can change
  1379. depending on the command-line options.
  1380. Regarding coprocessor registers: without evidence to the contrary,
  1381. it's best to assume that each coprocessor register has a unique
  1382. use. This can be overridden, in, e.g., mips_option_override or
  1383. TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
  1384. inappropriate for a particular target. */
  1385. #define FIXED_REGISTERS \
  1386. { \
  1387. 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1388. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
  1389. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1390. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1391. 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
  1392. /* COP0 registers */ \
  1393. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1394. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1395. /* COP2 registers */ \
  1396. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1397. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1398. /* COP3 registers */ \
  1399. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1400. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1401. /* 6 DSP accumulator registers & 6 control registers */ \
  1402. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
  1403. }
  1404. /* Set up this array for o32 by default.
  1405. Note that we don't mark $31 as a call-clobbered register. The idea is
  1406. that it's really the call instructions themselves which clobber $31.
  1407. We don't care what the called function does with it afterwards.
  1408. This approach makes it easier to implement sibcalls. Unlike normal
  1409. calls, sibcalls don't clobber $31, so the register reaches the
  1410. called function in tact. EPILOGUE_USES says that $31 is useful
  1411. to the called function. */
  1412. #define CALL_USED_REGISTERS \
  1413. { \
  1414. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1415. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
  1416. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1417. 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1418. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1419. /* COP0 registers */ \
  1420. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1421. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1422. /* COP2 registers */ \
  1423. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1424. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1425. /* COP3 registers */ \
  1426. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1427. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1428. /* 6 DSP accumulator registers & 6 control registers */ \
  1429. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
  1430. }
  1431. /* Define this since $28, though fixed, is call-saved in many ABIs. */
  1432. #define CALL_REALLY_USED_REGISTERS \
  1433. { /* General registers. */ \
  1434. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1435. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
  1436. /* Floating-point registers. */ \
  1437. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
  1438. 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1439. /* Others. */ \
  1440. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
  1441. /* COP0 registers */ \
  1442. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1443. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1444. /* COP2 registers */ \
  1445. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1446. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1447. /* COP3 registers */ \
  1448. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1449. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  1450. /* 6 DSP accumulator registers & 6 control registers */ \
  1451. 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
  1452. }
  1453. /* Internal macros to classify a register number as to whether it's a
  1454. general purpose register, a floating point register, a
  1455. multiply/divide register, or a status register. */
  1456. #define GP_REG_FIRST 0
  1457. #define GP_REG_LAST 31
  1458. #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
  1459. #define GP_DBX_FIRST 0
  1460. #define K0_REG_NUM (GP_REG_FIRST + 26)
  1461. #define K1_REG_NUM (GP_REG_FIRST + 27)
  1462. #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
  1463. #define FP_REG_FIRST 32
  1464. #define FP_REG_LAST 63
  1465. #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
  1466. #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
  1467. #define MD_REG_FIRST 64
  1468. #define MD_REG_LAST 65
  1469. #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
  1470. #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
  1471. /* The DWARF 2 CFA column which tracks the return address from a
  1472. signal handler context. This means that to maintain backwards
  1473. compatibility, no hard register can be assigned this column if it
  1474. would need to be handled by the DWARF unwinder. */
  1475. #define DWARF_ALT_FRAME_RETURN_COLUMN 66
  1476. #define ST_REG_FIRST 67
  1477. #define ST_REG_LAST 74
  1478. #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
  1479. /* FIXME: renumber. */
  1480. #define COP0_REG_FIRST 80
  1481. #define COP0_REG_LAST 111
  1482. #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
  1483. #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
  1484. #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
  1485. #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
  1486. #define COP2_REG_FIRST 112
  1487. #define COP2_REG_LAST 143
  1488. #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
  1489. #define COP3_REG_FIRST 144
  1490. #define COP3_REG_LAST 175
  1491. #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
  1492. /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
  1493. #define ALL_COP_REG_FIRST COP0_REG_FIRST
  1494. #define ALL_COP_REG_LAST COP3_REG_LAST
  1495. #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
  1496. #define DSP_ACC_REG_FIRST 176
  1497. #define DSP_ACC_REG_LAST 181
  1498. #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
  1499. #define AT_REGNUM (GP_REG_FIRST + 1)
  1500. #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
  1501. #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
  1502. /* A few bitfield locations for the coprocessor registers. */
  1503. /* Request Interrupt Priority Level is from bit 10 to bit 15 of
  1504. the cause register for the EIC interrupt mode. */
  1505. #define CAUSE_IPL 10
  1506. /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
  1507. #define SR_IPL 10
  1508. /* Exception Level is at bit 1 of the status register. */
  1509. #define SR_EXL 1
  1510. /* Interrupt Enable is at bit 0 of the status register. */
  1511. #define SR_IE 0
  1512. /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
  1513. If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
  1514. should be used instead. */
  1515. #define FPSW_REGNUM ST_REG_FIRST
  1516. #define GP_REG_P(REGNO) \
  1517. ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
  1518. #define M16_REG_P(REGNO) \
  1519. (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
  1520. #define M16STORE_REG_P(REGNO) \
  1521. (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
  1522. #define FP_REG_P(REGNO) \
  1523. ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
  1524. #define MD_REG_P(REGNO) \
  1525. ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
  1526. #define ST_REG_P(REGNO) \
  1527. ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
  1528. #define COP0_REG_P(REGNO) \
  1529. ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
  1530. #define COP2_REG_P(REGNO) \
  1531. ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
  1532. #define COP3_REG_P(REGNO) \
  1533. ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
  1534. #define ALL_COP_REG_P(REGNO) \
  1535. ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
  1536. /* Test if REGNO is one of the 6 new DSP accumulators. */
  1537. #define DSP_ACC_REG_P(REGNO) \
  1538. ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
  1539. /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
  1540. #define ACC_REG_P(REGNO) \
  1541. (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
  1542. #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
  1543. /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
  1544. to initialize the mips16 gp pseudo register. */
  1545. #define CONST_GP_P(X) \
  1546. (GET_CODE (X) == CONST \
  1547. && GET_CODE (XEXP (X, 0)) == UNSPEC \
  1548. && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
  1549. /* Return coprocessor number from register number. */
  1550. #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
  1551. (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
  1552. : COP3_REG_P (REGNO) ? '3' : '?')
  1553. #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
  1554. #define HARD_REGNO_MODE_OK(REGNO, MODE) \
  1555. mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
  1556. /* Select a register mode required for caller save of hard regno REGNO. */
  1557. #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
  1558. mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
  1559. /* Odd-numbered single-precision registers are not considered callee-saved
  1560. for o32 FPXX as they will be clobbered when run on an FR=1 FPU. */
  1561. #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
  1562. (TARGET_FLOATXX && hard_regno_nregs[REGNO][MODE] == 1 \
  1563. && FP_REG_P (REGNO) && ((REGNO) & 1))
  1564. #define MODES_TIEABLE_P mips_modes_tieable_p
  1565. /* Register to use for pushing function arguments. */
  1566. #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
  1567. /* These two registers don't really exist: they get eliminated to either
  1568. the stack or hard frame pointer. */
  1569. #define ARG_POINTER_REGNUM 77
  1570. #define FRAME_POINTER_REGNUM 78
  1571. /* $30 is not available on the mips16, so we use $17 as the frame
  1572. pointer. */
  1573. #define HARD_FRAME_POINTER_REGNUM \
  1574. (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
  1575. #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
  1576. #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
  1577. /* Register in which static-chain is passed to a function. */
  1578. #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
  1579. /* Registers used as temporaries in prologue/epilogue code:
  1580. - If a MIPS16 PIC function needs access to _gp, it first loads
  1581. the value into MIPS16_PIC_TEMP and then copies it to $gp.
  1582. - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
  1583. register. The register must not conflict with MIPS16_PIC_TEMP.
  1584. - If we aren't generating MIPS16 code, the prologue can also use
  1585. MIPS_PROLOGUE_TEMP2 as a general temporary register.
  1586. - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
  1587. register.
  1588. If we're generating MIPS16 code, these registers must come from the
  1589. core set of 8. The prologue registers mustn't conflict with any
  1590. incoming arguments, the static chain pointer, or the frame pointer.
  1591. The epilogue temporary mustn't conflict with the return registers,
  1592. the PIC call register ($25), the frame pointer, the EH stack adjustment,
  1593. or the EH data registers.
  1594. If we're generating interrupt handlers, we use K0 as a temporary register
  1595. in prologue/epilogue code. */
  1596. #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
  1597. #define MIPS_PROLOGUE_TEMP_REGNUM \
  1598. (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
  1599. #define MIPS_PROLOGUE_TEMP2_REGNUM \
  1600. (TARGET_MIPS16 \
  1601. ? (gcc_unreachable (), INVALID_REGNUM) \
  1602. : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
  1603. #define MIPS_EPILOGUE_TEMP_REGNUM \
  1604. (cfun->machine->interrupt_handler_p \
  1605. ? K0_REG_NUM \
  1606. : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
  1607. #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
  1608. #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
  1609. #define MIPS_PROLOGUE_TEMP2(MODE) \
  1610. gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
  1611. #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
  1612. /* Define this macro if it is as good or better to call a constant
  1613. function address than to call an address kept in a register. */
  1614. #define NO_FUNCTION_CSE 1
  1615. /* The ABI-defined global pointer. Sometimes we use a different
  1616. register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
  1617. #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
  1618. /* We normally use $28 as the global pointer. However, when generating
  1619. n32/64 PIC, it is better for leaf functions to use a call-clobbered
  1620. register instead. They can then avoid saving and restoring $28
  1621. and perhaps avoid using a frame at all.
  1622. When a leaf function uses something other than $28, mips_expand_prologue
  1623. will modify pic_offset_table_rtx in place. Take the register number
  1624. from there after reload. */
  1625. #define PIC_OFFSET_TABLE_REGNUM \
  1626. (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
  1627. /* Define the classes of registers for register constraints in the
  1628. machine description. Also define ranges of constants.
  1629. One of the classes must always be named ALL_REGS and include all hard regs.
  1630. If there is more than one class, another class must be named NO_REGS
  1631. and contain no registers.
  1632. The name GENERAL_REGS must be the name of a class (or an alias for
  1633. another name such as ALL_REGS). This is the class of registers
  1634. that is allowed by "g" or "r" in a register constraint.
  1635. Also, registers outside this class are allocated only when
  1636. instructions express preferences for them.
  1637. The classes must be numbered in nondecreasing order; that is,
  1638. a larger-numbered class must never be contained completely
  1639. in a smaller-numbered class.
  1640. For any two classes, it is very desirable that there be another
  1641. class that represents their union. */
  1642. enum reg_class
  1643. {
  1644. NO_REGS, /* no registers in set */
  1645. M16_STORE_REGS, /* microMIPS store registers */
  1646. M16_REGS, /* mips16 directly accessible registers */
  1647. M16_SP_REGS, /* mips16 + $sp */
  1648. T_REG, /* mips16 T register ($24) */
  1649. M16_T_REGS, /* mips16 registers plus T register */
  1650. PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
  1651. V1_REG, /* Register $v1 ($3) used for TLS access. */
  1652. SPILL_REGS, /* All but $sp and call preserved regs are in here */
  1653. LEA_REGS, /* Every GPR except $25 */
  1654. GR_REGS, /* integer registers */
  1655. FP_REGS, /* floating point registers */
  1656. MD0_REG, /* first multiply/divide register */
  1657. MD1_REG, /* second multiply/divide register */
  1658. MD_REGS, /* multiply/divide registers (hi/lo) */
  1659. COP0_REGS, /* generic coprocessor classes */
  1660. COP2_REGS,
  1661. COP3_REGS,
  1662. ST_REGS, /* status registers (fp status) */
  1663. DSP_ACC_REGS, /* DSP accumulator registers */
  1664. ACC_REGS, /* Hi/Lo and DSP accumulator registers */
  1665. FRAME_REGS, /* $arg and $frame */
  1666. GR_AND_MD0_REGS, /* union classes */
  1667. GR_AND_MD1_REGS,
  1668. GR_AND_MD_REGS,
  1669. GR_AND_ACC_REGS,
  1670. ALL_REGS, /* all registers */
  1671. LIM_REG_CLASSES /* max value + 1 */
  1672. };
  1673. #define N_REG_CLASSES (int) LIM_REG_CLASSES
  1674. #define GENERAL_REGS GR_REGS
  1675. /* An initializer containing the names of the register classes as C
  1676. string constants. These names are used in writing some of the
  1677. debugging dumps. */
  1678. #define REG_CLASS_NAMES \
  1679. { \
  1680. "NO_REGS", \
  1681. "M16_STORE_REGS", \
  1682. "M16_REGS", \
  1683. "M16_SP_REGS", \
  1684. "T_REG", \
  1685. "M16_T_REGS", \
  1686. "PIC_FN_ADDR_REG", \
  1687. "V1_REG", \
  1688. "SPILL_REGS", \
  1689. "LEA_REGS", \
  1690. "GR_REGS", \
  1691. "FP_REGS", \
  1692. "MD0_REG", \
  1693. "MD1_REG", \
  1694. "MD_REGS", \
  1695. /* coprocessor registers */ \
  1696. "COP0_REGS", \
  1697. "COP2_REGS", \
  1698. "COP3_REGS", \
  1699. "ST_REGS", \
  1700. "DSP_ACC_REGS", \
  1701. "ACC_REGS", \
  1702. "FRAME_REGS", \
  1703. "GR_AND_MD0_REGS", \
  1704. "GR_AND_MD1_REGS", \
  1705. "GR_AND_MD_REGS", \
  1706. "GR_AND_ACC_REGS", \
  1707. "ALL_REGS" \
  1708. }
  1709. /* An initializer containing the contents of the register classes,
  1710. as integers which are bit masks. The Nth integer specifies the
  1711. contents of class N. The way the integer MASK is interpreted is
  1712. that register R is in the class if `MASK & (1 << R)' is 1.
  1713. When the machine has more than 32 registers, an integer does not
  1714. suffice. Then the integers are replaced by sub-initializers,
  1715. braced groupings containing several integers. Each
  1716. sub-initializer must be suitable as an initializer for the type
  1717. `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
  1718. #define REG_CLASS_CONTENTS \
  1719. { \
  1720. { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
  1721. { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
  1722. { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
  1723. { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \
  1724. { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
  1725. { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
  1726. { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
  1727. { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
  1728. { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \
  1729. { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
  1730. { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
  1731. { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
  1732. { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
  1733. { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
  1734. { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
  1735. { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
  1736. { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
  1737. { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
  1738. { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
  1739. { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
  1740. { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
  1741. { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
  1742. { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
  1743. { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
  1744. { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
  1745. { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
  1746. { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
  1747. }
  1748. /* A C expression whose value is a register class containing hard
  1749. register REGNO. In general there is more that one such class;
  1750. choose a class which is "minimal", meaning that no smaller class
  1751. also contains the register. */
  1752. #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
  1753. /* A macro whose definition is the name of the class to which a
  1754. valid base register must belong. A base register is one used in
  1755. an address which is the register value plus a displacement. */
  1756. #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
  1757. /* A macro whose definition is the name of the class to which a
  1758. valid index register must belong. An index register is one used
  1759. in an address where its value is either multiplied by a scale
  1760. factor or added to another register (as well as added to a
  1761. displacement). */
  1762. #define INDEX_REG_CLASS NO_REGS
  1763. /* We generally want to put call-clobbered registers ahead of
  1764. call-saved ones. (IRA expects this.) */
  1765. #define REG_ALLOC_ORDER \
  1766. { /* Accumulator registers. When GPRs and accumulators have equal \
  1767. cost, we generally prefer to use accumulators. For example, \
  1768. a division of multiplication result is better allocated to LO, \
  1769. so that we put the MFLO at the point of use instead of at the \
  1770. point of definition. It's also needed if we're to take advantage \
  1771. of the extra accumulators available with -mdspr2. In some cases, \
  1772. it can also help to reduce register pressure. */ \
  1773. 64, 65,176,177,178,179,180,181, \
  1774. /* Call-clobbered GPRs. */ \
  1775. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
  1776. 24, 25, 31, \
  1777. /* The global pointer. This is call-clobbered for o32 and o64 \
  1778. abicalls, call-saved for n32 and n64 abicalls, and a program \
  1779. invariant otherwise. Putting it between the call-clobbered \
  1780. and call-saved registers should cope with all eventualities. */ \
  1781. 28, \
  1782. /* Call-saved GPRs. */ \
  1783. 16, 17, 18, 19, 20, 21, 22, 23, 30, \
  1784. /* GPRs that can never be exposed to the register allocator. */ \
  1785. 0, 26, 27, 29, \
  1786. /* Call-clobbered FPRs. */ \
  1787. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
  1788. 48, 49, 50, 51, \
  1789. /* FPRs that are usually call-saved. The odd ones are actually \
  1790. call-clobbered for n32, but listing them ahead of the even \
  1791. registers might encourage the register allocator to fragment \
  1792. the available FPR pairs. We need paired FPRs to store long \
  1793. doubles, so it isn't clear that using a different order \
  1794. for n32 would be a win. */ \
  1795. 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
  1796. /* None of the remaining classes have defined call-saved \
  1797. registers. */ \
  1798. 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
  1799. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
  1800. 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
  1801. 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
  1802. 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
  1803. 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
  1804. 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
  1805. 182,183,184,185,186,187 \
  1806. }
  1807. /* True if VALUE is an unsigned 6-bit number. */
  1808. #define UIMM6_OPERAND(VALUE) \
  1809. (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
  1810. /* True if VALUE is a signed 10-bit number. */
  1811. #define IMM10_OPERAND(VALUE) \
  1812. ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
  1813. /* True if VALUE is a signed 16-bit number. */
  1814. #define SMALL_OPERAND(VALUE) \
  1815. ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
  1816. /* True if VALUE is an unsigned 16-bit number. */
  1817. #define SMALL_OPERAND_UNSIGNED(VALUE) \
  1818. (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
  1819. /* True if VALUE can be loaded into a register using LUI. */
  1820. #define LUI_OPERAND(VALUE) \
  1821. (((VALUE) | 0x7fff0000) == 0x7fff0000 \
  1822. || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
  1823. /* Return a value X with the low 16 bits clear, and such that
  1824. VALUE - X is a signed 16-bit value. */
  1825. #define CONST_HIGH_PART(VALUE) \
  1826. (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
  1827. #define CONST_LOW_PART(VALUE) \
  1828. ((VALUE) - CONST_HIGH_PART (VALUE))
  1829. #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
  1830. #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
  1831. #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
  1832. #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
  1833. #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
  1834. /* The HI and LO registers can only be reloaded via the general
  1835. registers. Condition code registers can only be loaded to the
  1836. general registers, and from the floating point registers. */
  1837. #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
  1838. mips_secondary_reload_class (CLASS, MODE, X, true)
  1839. #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
  1840. mips_secondary_reload_class (CLASS, MODE, X, false)
  1841. /* When targeting the o32 FPXX ABI, all moves with a length of doubleword
  1842. or greater must be performed by FR-mode-aware instructions.
  1843. This can be achieved using MFHC1/MTHC1 when these instructions are
  1844. available but otherwise moves must go via memory.
  1845. For the o32 FP64A ABI, all odd-numbered moves with a length of
  1846. doubleword or greater are required to use memory. Using MTC1/MFC1
  1847. to access the lower-half of these registers would require a forbidden
  1848. single-precision access. We require all double-word moves to use
  1849. memory because adding even and odd floating-point registers classes
  1850. would have a significant impact on the backend. */
  1851. #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
  1852. mips_secondary_memory_needed ((CLASS1), (CLASS2), (MODE))
  1853. /* Return the maximum number of consecutive registers
  1854. needed to represent mode MODE in a register of class CLASS. */
  1855. #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
  1856. #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
  1857. mips_cannot_change_mode_class (FROM, TO, CLASS)
  1858. /* Stack layout; function entry, exit and calling. */
  1859. #define STACK_GROWS_DOWNWARD
  1860. #define FRAME_GROWS_DOWNWARD flag_stack_protect
  1861. /* Size of the area allocated in the frame to save the GP. */
  1862. #define MIPS_GP_SAVE_AREA_SIZE \
  1863. (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
  1864. /* The offset of the first local variable from the frame pointer. See
  1865. mips_compute_frame_info for details about the frame layout. */
  1866. #define STARTING_FRAME_OFFSET \
  1867. (FRAME_GROWS_DOWNWARD \
  1868. ? 0 \
  1869. : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
  1870. #define RETURN_ADDR_RTX mips_return_addr
  1871. /* Mask off the MIPS16 ISA bit in unwind addresses.
  1872. The reason for this is a little subtle. When unwinding a call,
  1873. we are given the call's return address, which on most targets
  1874. is the address of the following instruction. However, what we
  1875. actually want to find is the EH region for the call itself.
  1876. The target-independent unwind code therefore searches for "RA - 1".
  1877. In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
  1878. RA - 1 is therefore the real (even-valued) start of the return
  1879. instruction. EH region labels are usually odd-valued MIPS16 symbols
  1880. too, so a search for an even address within a MIPS16 region would
  1881. usually work.
  1882. However, there is an exception. If the end of an EH region is also
  1883. the end of a function, the end label is allowed to be even. This is
  1884. necessary because a following non-MIPS16 function may also need EH
  1885. information for its first instruction.
  1886. Thus a MIPS16 region may be terminated by an ISA-encoded or a
  1887. non-ISA-encoded address. This probably isn't ideal, but it is
  1888. the traditional (legacy) behavior. It is therefore only safe
  1889. to search MIPS EH regions for an _odd-valued_ address.
  1890. Masking off the ISA bit means that the target-independent code
  1891. will search for "(RA & -2) - 1", which is guaranteed to be odd. */
  1892. #define MASK_RETURN_ADDR GEN_INT (-2)
  1893. /* Similarly, don't use the least-significant bit to tell pointers to
  1894. code from vtable index. */
  1895. #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
  1896. /* The eliminations to $17 are only used for mips16 code. See the
  1897. definition of HARD_FRAME_POINTER_REGNUM. */
  1898. #define ELIMINABLE_REGS \
  1899. {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
  1900. { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
  1901. { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
  1902. { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
  1903. { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
  1904. { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
  1905. #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
  1906. (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
  1907. /* Allocate stack space for arguments at the beginning of each function. */
  1908. #define ACCUMULATE_OUTGOING_ARGS 1
  1909. /* The argument pointer always points to the first argument. */
  1910. #define FIRST_PARM_OFFSET(FNDECL) 0
  1911. /* o32 and o64 reserve stack space for all argument registers. */
  1912. #define REG_PARM_STACK_SPACE(FNDECL) \
  1913. (TARGET_OLDABI \
  1914. ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
  1915. : 0)
  1916. /* Define this if it is the responsibility of the caller to
  1917. allocate the area reserved for arguments passed in registers.
  1918. If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
  1919. of this macro is to determine whether the space is included in
  1920. `crtl->outgoing_args_size'. */
  1921. #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
  1922. #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
  1923. /* Symbolic macros for the registers used to return integer and floating
  1924. point values. */
  1925. #define GP_RETURN (GP_REG_FIRST + 2)
  1926. #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
  1927. #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
  1928. /* Symbolic macros for the first/last argument registers. */
  1929. #define GP_ARG_FIRST (GP_REG_FIRST + 4)
  1930. #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
  1931. #define FP_ARG_FIRST (FP_REG_FIRST + 12)
  1932. #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
  1933. /* Temporary register that is used when restoring $gp after a call. $4 and $5
  1934. are used for returning complex double values in soft-float code, so $6 is the
  1935. first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use
  1936. $gp itself as the temporary. */
  1937. #define POST_CALL_TMP_REG \
  1938. (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
  1939. /* 1 if N is a possible register number for function argument passing.
  1940. We have no FP argument registers when soft-float. Special handling
  1941. is required for O32 where only even numbered registers are used for
  1942. O32-FPXX and O32-FP64. */
  1943. #define FUNCTION_ARG_REGNO_P(N) \
  1944. ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
  1945. || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
  1946. && (mips_abi != ABI_32 \
  1947. || TARGET_FLOAT32 \
  1948. || ((N) % 2 == 0)))) \
  1949. && !fixed_regs[N])
  1950. /* This structure has to cope with two different argument allocation
  1951. schemes. Most MIPS ABIs view the arguments as a structure, of which
  1952. the first N words go in registers and the rest go on the stack. If I
  1953. < N, the Ith word might go in Ith integer argument register or in a
  1954. floating-point register. For these ABIs, we only need to remember
  1955. the offset of the current argument into the structure.
  1956. The EABI instead allocates the integer and floating-point arguments
  1957. separately. The first N words of FP arguments go in FP registers,
  1958. the rest go on the stack. Likewise, the first N words of the other
  1959. arguments go in integer registers, and the rest go on the stack. We
  1960. need to maintain three counts: the number of integer registers used,
  1961. the number of floating-point registers used, and the number of words
  1962. passed on the stack.
  1963. We could keep separate information for the two ABIs (a word count for
  1964. the standard ABIs, and three separate counts for the EABI). But it
  1965. seems simpler to view the standard ABIs as forms of EABI that do not
  1966. allocate floating-point registers.
  1967. So for the standard ABIs, the first N words are allocated to integer
  1968. registers, and mips_function_arg decides on an argument-by-argument
  1969. basis whether that argument should really go in an integer register,
  1970. or in a floating-point one. */
  1971. typedef struct mips_args {
  1972. /* Always true for varargs functions. Otherwise true if at least
  1973. one argument has been passed in an integer register. */
  1974. int gp_reg_found;
  1975. /* The number of arguments seen so far. */
  1976. unsigned int arg_number;
  1977. /* The number of integer registers used so far. For all ABIs except
  1978. EABI, this is the number of words that have been added to the
  1979. argument structure, limited to MAX_ARGS_IN_REGISTERS. */
  1980. unsigned int num_gprs;
  1981. /* For EABI, the number of floating-point registers used so far. */
  1982. unsigned int num_fprs;
  1983. /* The number of words passed on the stack. */
  1984. unsigned int stack_words;
  1985. /* On the mips16, we need to keep track of which floating point
  1986. arguments were passed in general registers, but would have been
  1987. passed in the FP regs if this were a 32-bit function, so that we
  1988. can move them to the FP regs if we wind up calling a 32-bit
  1989. function. We record this information in fp_code, encoded in base
  1990. four. A zero digit means no floating point argument, a one digit
  1991. means an SFmode argument, and a two digit means a DFmode argument,
  1992. and a three digit is not used. The low order digit is the first
  1993. argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
  1994. an SFmode argument. ??? A more sophisticated approach will be
  1995. needed if MIPS_ABI != ABI_32. */
  1996. int fp_code;
  1997. /* True if the function has a prototype. */
  1998. int prototype;
  1999. } CUMULATIVE_ARGS;
  2000. /* Initialize a variable CUM of type CUMULATIVE_ARGS
  2001. for a call to a function whose data type is FNTYPE.
  2002. For a library call, FNTYPE is 0. */
  2003. #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
  2004. mips_init_cumulative_args (&CUM, FNTYPE)
  2005. #define FUNCTION_ARG_PADDING(MODE, TYPE) \
  2006. (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
  2007. #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
  2008. (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
  2009. /* True if using EABI and varargs can be passed in floating-point
  2010. registers. Under these conditions, we need a more complex form
  2011. of va_list, which tracks GPR, FPR and stack arguments separately. */
  2012. #define EABI_FLOAT_VARARGS_P \
  2013. (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
  2014. #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
  2015. /* Treat LOC as a byte offset from the stack pointer and round it up
  2016. to the next fully-aligned offset. */
  2017. #define MIPS_STACK_ALIGN(LOC) \
  2018. (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
  2019. /* Output assembler code to FILE to increment profiler label # LABELNO
  2020. for profiling a function entry. */
  2021. #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
  2022. /* The profiler preserves all interesting registers, including $31. */
  2023. #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
  2024. /* No mips port has ever used the profiler counter word, so don't emit it
  2025. or the label for it. */
  2026. #define NO_PROFILE_COUNTERS 1
  2027. /* Define this macro if the code for function profiling should come
  2028. before the function prologue. Normally, the profiling code comes
  2029. after. */
  2030. /* #define PROFILE_BEFORE_PROLOGUE */
  2031. /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
  2032. the stack pointer does not matter. The value is tested only in
  2033. functions that have frame pointers.
  2034. No definition is equivalent to always zero. */
  2035. #define EXIT_IGNORE_STACK 1
  2036. /* Trampolines are a block of code followed by two pointers. */
  2037. #define TRAMPOLINE_SIZE \
  2038. (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
  2039. /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
  2040. pointers from a single LUI base. */
  2041. #define TRAMPOLINE_ALIGNMENT 64
  2042. /* mips_trampoline_init calls this library function to flush
  2043. program and data caches. */
  2044. #ifndef CACHE_FLUSH_FUNC
  2045. #define CACHE_FLUSH_FUNC "_flush_cache"
  2046. #endif
  2047. #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
  2048. /* Flush both caches. We need to flush the data cache in case \
  2049. the system has a write-back cache. */ \
  2050. emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
  2051. LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
  2052. GEN_INT (3), TYPE_MODE (integer_type_node))
  2053. /* Addressing modes, and classification of registers for them. */
  2054. #define REGNO_OK_FOR_INDEX_P(REGNO) 0
  2055. #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
  2056. mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
  2057. /* Maximum number of registers that can appear in a valid memory address. */
  2058. #define MAX_REGS_PER_ADDRESS 1
  2059. /* Check for constness inline but use mips_legitimate_address_p
  2060. to check whether a constant really is an address. */
  2061. #define CONSTANT_ADDRESS_P(X) \
  2062. (CONSTANT_P (X) && memory_address_p (SImode, X))
  2063. /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
  2064. 'the start of the function that this code is output in'. */
  2065. #define ASM_OUTPUT_LABELREF(FILE,NAME) \
  2066. if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
  2067. asm_fprintf ((FILE), "%U%s", \
  2068. XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
  2069. else \
  2070. asm_fprintf ((FILE), "%U%s", (NAME))
  2071. /* Flag to mark a function decl symbol that requires a long call. */
  2072. #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
  2073. #define SYMBOL_REF_LONG_CALL_P(X) \
  2074. ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
  2075. /* This flag marks functions that cannot be lazily bound. */
  2076. #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
  2077. #define SYMBOL_REF_BIND_NOW_P(RTX) \
  2078. ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
  2079. /* True if we're generating a form of MIPS16 code in which jump tables
  2080. are stored in the text section and encoded as 16-bit PC-relative
  2081. offsets. This is only possible when general text loads are allowed,
  2082. since the table access itself will be an "lh" instruction. If the
  2083. PC-relative offsets grow too large, 32-bit offsets are used instead. */
  2084. #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
  2085. #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
  2086. #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
  2087. /* Only use short offsets if their range will not overflow. */
  2088. #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
  2089. (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
  2090. : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
  2091. : SImode)
  2092. #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
  2093. /* Define this as 1 if `char' should by default be signed; else as 0. */
  2094. #ifndef DEFAULT_SIGNED_CHAR
  2095. #define DEFAULT_SIGNED_CHAR 1
  2096. #endif
  2097. /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
  2098. we generally don't want to use them for copying arbitrary data.
  2099. A single N-word move is usually the same cost as N single-word moves. */
  2100. #define MOVE_MAX UNITS_PER_WORD
  2101. #define MAX_MOVE_MAX 8
  2102. /* Define this macro as a C expression which is nonzero if
  2103. accessing less than a word of memory (i.e. a `char' or a
  2104. `short') is no faster than accessing a word of memory, i.e., if
  2105. such access require more than one instruction or if there is no
  2106. difference in cost between byte and (aligned) word loads.
  2107. On RISC machines, it tends to generate better code to define
  2108. this as 1, since it avoids making a QI or HI mode register.
  2109. But, generating word accesses for -mips16 is generally bad as shifts
  2110. (often extended) would be needed for byte accesses. */
  2111. #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
  2112. /* Standard MIPS integer shifts truncate the shift amount to the
  2113. width of the shifted operand. However, Loongson vector shifts
  2114. do not truncate the shift amount at all. */
  2115. #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
  2116. /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
  2117. is done just by pretending it is already truncated. */
  2118. #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
  2119. (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
  2120. /* Specify the machine mode that pointers have.
  2121. After generation of rtl, the compiler makes no further distinction
  2122. between pointers and any other objects of this machine mode. */
  2123. #ifndef Pmode
  2124. #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
  2125. #endif
  2126. /* Give call MEMs SImode since it is the "most permissive" mode
  2127. for both 32-bit and 64-bit targets. */
  2128. #define FUNCTION_MODE SImode
  2129. /* We allocate $fcc registers by hand and can't cope with moves of
  2130. CCmode registers to and from pseudos (or memory). */
  2131. #define AVOID_CCMODE_COPIES
  2132. /* A C expression for the cost of a branch instruction. A value of
  2133. 1 is the default; other values are interpreted relative to that. */
  2134. #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
  2135. #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
  2136. /* The MIPS port has several functions that return an instruction count.
  2137. Multiplying the count by this value gives the number of bytes that
  2138. the instructions occupy. */
  2139. #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
  2140. /* The length of a NOP in bytes. */
  2141. #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
  2142. /* If defined, modifies the length assigned to instruction INSN as a
  2143. function of the context in which it is used. LENGTH is an lvalue
  2144. that contains the initially computed length of the insn and should
  2145. be updated with the correct length of the insn. */
  2146. #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
  2147. ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
  2148. /* Return the asm template for a non-MIPS16 conditional branch instruction.
  2149. OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
  2150. its operands. */
  2151. #define MIPS_BRANCH(OPCODE, OPERANDS) \
  2152. "%*" OPCODE "%?\t" OPERANDS "%/"
  2153. /* Return an asm string that forces INSN to be treated as an absolute
  2154. J or JAL instruction instead of an assembler macro. */
  2155. #define MIPS_ABSOLUTE_JUMP(INSN) \
  2156. (TARGET_ABICALLS_PIC2 \
  2157. ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
  2158. : INSN)
  2159. /* Return the asm template for a call. INSN is the instruction's mnemonic
  2160. ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
  2161. number of the target. SIZE_OPNO is the operand number of the argument size
  2162. operand that can optionally hold the call attributes. If SIZE_OPNO is not
  2163. -1 and the call is indirect, use the function symbol from the call
  2164. attributes to attach a R_MIPS_JALR relocation to the call.
  2165. When generating GOT code without explicit relocation operators,
  2166. all calls should use assembly macros. Otherwise, all indirect
  2167. calls should use "jr" or "jalr"; we will arrange to restore $gp
  2168. afterwards if necessary. Finally, we can only generate direct
  2169. calls for -mabicalls by temporarily switching to non-PIC mode.
  2170. For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
  2171. instruction is in the delay slot of jal(r). */
  2172. #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
  2173. (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
  2174. ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
  2175. : REG_P (OPERANDS[TARGET_OPNO]) \
  2176. ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
  2177. ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
  2178. "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
  2179. : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
  2180. ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
  2181. : "%*" INSN "r\t%" #TARGET_OPNO "%/") \
  2182. : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
  2183. ? MIPS_ABSOLUTE_JUMP ("%*" INSN "%!\t%" #TARGET_OPNO "%/") \
  2184. : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/")) \
  2185. /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
  2186. "jrc" when nop is in the delay slot of "jr". */
  2187. #define MICROMIPS_J(INSN, OPERANDS, OPNO) \
  2188. (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
  2189. ? "%*j\t%" #OPNO "%/" \
  2190. : REG_P (OPERANDS[OPNO]) \
  2191. ? "%*jr%:\t%" #OPNO \
  2192. : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
  2193. /* Control the assembler format that we output. */
  2194. /* Output to assembler file text saying following lines
  2195. may contain character constants, extra white space, comments, etc. */
  2196. #ifndef ASM_APP_ON
  2197. #define ASM_APP_ON " #APP\n"
  2198. #endif
  2199. /* Output to assembler file text saying following lines
  2200. no longer contain unusual constructs. */
  2201. #ifndef ASM_APP_OFF
  2202. #define ASM_APP_OFF " #NO_APP\n"
  2203. #endif
  2204. #define REGISTER_NAMES \
  2205. { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
  2206. "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
  2207. "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
  2208. "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
  2209. "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
  2210. "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
  2211. "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
  2212. "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
  2213. "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
  2214. "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
  2215. "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
  2216. "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
  2217. "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
  2218. "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
  2219. "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
  2220. "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
  2221. "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
  2222. "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
  2223. "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
  2224. "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
  2225. "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
  2226. "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
  2227. "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
  2228. "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
  2229. /* List the "software" names for each register. Also list the numerical
  2230. names for $fp and $sp. */
  2231. #define ADDITIONAL_REGISTER_NAMES \
  2232. { \
  2233. { "$29", 29 + GP_REG_FIRST }, \
  2234. { "$30", 30 + GP_REG_FIRST }, \
  2235. { "at", 1 + GP_REG_FIRST }, \
  2236. { "v0", 2 + GP_REG_FIRST }, \
  2237. { "v1", 3 + GP_REG_FIRST }, \
  2238. { "a0", 4 + GP_REG_FIRST }, \
  2239. { "a1", 5 + GP_REG_FIRST }, \
  2240. { "a2", 6 + GP_REG_FIRST }, \
  2241. { "a3", 7 + GP_REG_FIRST }, \
  2242. { "t0", 8 + GP_REG_FIRST }, \
  2243. { "t1", 9 + GP_REG_FIRST }, \
  2244. { "t2", 10 + GP_REG_FIRST }, \
  2245. { "t3", 11 + GP_REG_FIRST }, \
  2246. { "t4", 12 + GP_REG_FIRST }, \
  2247. { "t5", 13 + GP_REG_FIRST }, \
  2248. { "t6", 14 + GP_REG_FIRST }, \
  2249. { "t7", 15 + GP_REG_FIRST }, \
  2250. { "s0", 16 + GP_REG_FIRST }, \
  2251. { "s1", 17 + GP_REG_FIRST }, \
  2252. { "s2", 18 + GP_REG_FIRST }, \
  2253. { "s3", 19 + GP_REG_FIRST }, \
  2254. { "s4", 20 + GP_REG_FIRST }, \
  2255. { "s5", 21 + GP_REG_FIRST }, \
  2256. { "s6", 22 + GP_REG_FIRST }, \
  2257. { "s7", 23 + GP_REG_FIRST }, \
  2258. { "t8", 24 + GP_REG_FIRST }, \
  2259. { "t9", 25 + GP_REG_FIRST }, \
  2260. { "k0", 26 + GP_REG_FIRST }, \
  2261. { "k1", 27 + GP_REG_FIRST }, \
  2262. { "gp", 28 + GP_REG_FIRST }, \
  2263. { "sp", 29 + GP_REG_FIRST }, \
  2264. { "fp", 30 + GP_REG_FIRST }, \
  2265. { "ra", 31 + GP_REG_FIRST } \
  2266. }
  2267. #define DBR_OUTPUT_SEQEND(STREAM) \
  2268. do \
  2269. { \
  2270. /* Undo the effect of '%*'. */ \
  2271. mips_pop_asm_switch (&mips_nomacro); \
  2272. mips_pop_asm_switch (&mips_noreorder); \
  2273. /* Emit a blank line after the delay slot for emphasis. */ \
  2274. fputs ("\n", STREAM); \
  2275. } \
  2276. while (0)
  2277. /* The MIPS implementation uses some labels for its own purpose. The
  2278. following lists what labels are created, and are all formed by the
  2279. pattern $L[a-z].*. The machine independent portion of GCC creates
  2280. labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
  2281. LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
  2282. $Lb[0-9]+ Begin blocks for MIPS debug support
  2283. $Lc[0-9]+ Label for use in s<xx> operation.
  2284. $Le[0-9]+ End blocks for MIPS debug support */
  2285. #undef ASM_DECLARE_OBJECT_NAME
  2286. #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
  2287. mips_declare_object (STREAM, NAME, "", ":\n")
  2288. /* Globalizing directive for a label. */
  2289. #define GLOBAL_ASM_OP "\t.globl\t"
  2290. /* This says how to define a global common symbol. */
  2291. #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
  2292. /* This says how to define a local common symbol (i.e., not visible to
  2293. linker). */
  2294. #ifndef ASM_OUTPUT_ALIGNED_LOCAL
  2295. #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
  2296. mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
  2297. #endif
  2298. /* This says how to output an external. It would be possible not to
  2299. output anything and let undefined symbol become external. However
  2300. the assembler uses length information on externals to allocate in
  2301. data/sdata bss/sbss, thereby saving exec time. */
  2302. #undef ASM_OUTPUT_EXTERNAL
  2303. #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
  2304. mips_output_external(STREAM,DECL,NAME)
  2305. /* This is how to declare a function name. The actual work of
  2306. emitting the label is moved to function_prologue, so that we can
  2307. get the line number correctly emitted before the .ent directive,
  2308. and after any .file directives. Define as empty so that the function
  2309. is not declared before the .ent directive elsewhere. */
  2310. #undef ASM_DECLARE_FUNCTION_NAME
  2311. #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
  2312. /* This is how to store into the string LABEL
  2313. the symbol_ref name of an internal numbered label where
  2314. PREFIX is the class of label and NUM is the number within the class.
  2315. This is suitable for output with `assemble_name'. */
  2316. #undef ASM_GENERATE_INTERNAL_LABEL
  2317. #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
  2318. sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
  2319. /* Print debug labels as "foo = ." rather than "foo:" because they should
  2320. represent a byte pointer rather than an ISA-encoded address. This is
  2321. particularly important for code like:
  2322. $LFBxxx = .
  2323. .cfi_startproc
  2324. ...
  2325. .section .gcc_except_table,...
  2326. ...
  2327. .uleb128 foo-$LFBxxx
  2328. The .uleb128 requies $LFBxxx to match the FDE start address, which is
  2329. likewise a byte pointer rather than an ISA-encoded address.
  2330. At the time of writing, this hook is not used for the function end
  2331. label:
  2332. $LFExxx:
  2333. .end foo
  2334. But this doesn't matter, because GAS doesn't treat a pre-.end label
  2335. as a MIPS16 one anyway. */
  2336. #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
  2337. fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
  2338. /* This is how to output an element of a case-vector that is absolute. */
  2339. #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
  2340. fprintf (STREAM, "\t%s\t%sL%d\n", \
  2341. ptr_mode == DImode ? ".dword" : ".word", \
  2342. LOCAL_LABEL_PREFIX, \
  2343. VALUE)
  2344. /* This is how to output an element of a case-vector. We can make the
  2345. entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
  2346. is supported. */
  2347. #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
  2348. do { \
  2349. if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
  2350. { \
  2351. if (GET_MODE (BODY) == HImode) \
  2352. fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
  2353. LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
  2354. else \
  2355. fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
  2356. LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
  2357. } \
  2358. else if (TARGET_GPWORD) \
  2359. fprintf (STREAM, "\t%s\t%sL%d\n", \
  2360. ptr_mode == DImode ? ".gpdword" : ".gpword", \
  2361. LOCAL_LABEL_PREFIX, VALUE); \
  2362. else if (TARGET_RTP_PIC) \
  2363. { \
  2364. /* Make the entry relative to the start of the function. */ \
  2365. rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
  2366. fprintf (STREAM, "\t%s\t%sL%d-", \
  2367. Pmode == DImode ? ".dword" : ".word", \
  2368. LOCAL_LABEL_PREFIX, VALUE); \
  2369. assemble_name (STREAM, XSTR (fnsym, 0)); \
  2370. fprintf (STREAM, "\n"); \
  2371. } \
  2372. else \
  2373. fprintf (STREAM, "\t%s\t%sL%d\n", \
  2374. ptr_mode == DImode ? ".dword" : ".word", \
  2375. LOCAL_LABEL_PREFIX, VALUE); \
  2376. } while (0)
  2377. /* This is how to output an assembler line
  2378. that says to advance the location counter
  2379. to a multiple of 2**LOG bytes. */
  2380. #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
  2381. fprintf (STREAM, "\t.align\t%d\n", (LOG))
  2382. /* This is how to output an assembler line to advance the location
  2383. counter by SIZE bytes. */
  2384. #undef ASM_OUTPUT_SKIP
  2385. #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
  2386. fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
  2387. /* This is how to output a string. */
  2388. #undef ASM_OUTPUT_ASCII
  2389. #define ASM_OUTPUT_ASCII mips_output_ascii
  2390. /* Default to -G 8 */
  2391. #ifndef MIPS_DEFAULT_GVALUE
  2392. #define MIPS_DEFAULT_GVALUE 8
  2393. #endif
  2394. /* Define the strings to put out for each section in the object file. */
  2395. #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
  2396. #define DATA_SECTION_ASM_OP "\t.data" /* large data */
  2397. #undef READONLY_DATA_SECTION_ASM_OP
  2398. #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
  2399. #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
  2400. do \
  2401. { \
  2402. fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
  2403. TARGET_64BIT ? "daddiu" : "addiu", \
  2404. reg_names[STACK_POINTER_REGNUM], \
  2405. reg_names[STACK_POINTER_REGNUM], \
  2406. TARGET_64BIT ? "sd" : "sw", \
  2407. reg_names[REGNO], \
  2408. reg_names[STACK_POINTER_REGNUM]); \
  2409. } \
  2410. while (0)
  2411. #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
  2412. do \
  2413. { \
  2414. mips_push_asm_switch (&mips_noreorder); \
  2415. fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
  2416. TARGET_64BIT ? "ld" : "lw", \
  2417. reg_names[REGNO], \
  2418. reg_names[STACK_POINTER_REGNUM], \
  2419. TARGET_64BIT ? "daddu" : "addu", \
  2420. reg_names[STACK_POINTER_REGNUM], \
  2421. reg_names[STACK_POINTER_REGNUM]); \
  2422. mips_pop_asm_switch (&mips_noreorder); \
  2423. } \
  2424. while (0)
  2425. /* How to start an assembler comment.
  2426. The leading space is important (the mips native assembler requires it). */
  2427. #ifndef ASM_COMMENT_START
  2428. #define ASM_COMMENT_START " #"
  2429. #endif
  2430. #undef SIZE_TYPE
  2431. #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
  2432. #undef PTRDIFF_TYPE
  2433. #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
  2434. /* The maximum number of bytes that can be copied by one iteration of
  2435. a movmemsi loop; see mips_block_move_loop. */
  2436. #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
  2437. (UNITS_PER_WORD * 4)
  2438. /* The maximum number of bytes that can be copied by a straight-line
  2439. implementation of movmemsi; see mips_block_move_straight. We want
  2440. to make sure that any loop-based implementation will iterate at
  2441. least twice. */
  2442. #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
  2443. (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
  2444. /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
  2445. values were determined experimentally by benchmarking with CSiBE.
  2446. In theory, the call overhead is higher for TARGET_ABICALLS (especially
  2447. for o32 where we have to restore $gp afterwards as well as make an
  2448. indirect call), but in practice, bumping this up higher for
  2449. TARGET_ABICALLS doesn't make much difference to code size. */
  2450. #define MIPS_CALL_RATIO 8
  2451. /* Any loop-based implementation of movmemsi will have at least
  2452. MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
  2453. moves, so allow individual copies of fewer elements.
  2454. When movmemsi is not available, use a value approximating
  2455. the length of a memcpy call sequence, so that move_by_pieces
  2456. will generate inline code if it is shorter than a function call.
  2457. Since move_by_pieces_ninsns counts memory-to-memory moves, but
  2458. we'll have to generate a load/store pair for each, halve the
  2459. value of MIPS_CALL_RATIO to take that into account. */
  2460. #define MOVE_RATIO(speed) \
  2461. (HAVE_movmemsi \
  2462. ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
  2463. : MIPS_CALL_RATIO / 2)
  2464. /* For CLEAR_RATIO, when optimizing for size, give a better estimate
  2465. of the length of a memset call, but use the default otherwise. */
  2466. #define CLEAR_RATIO(speed)\
  2467. ((speed) ? 15 : MIPS_CALL_RATIO)
  2468. /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
  2469. optimizing for size adjust the ratio to account for the overhead of
  2470. loading the constant and replicating it across the word. */
  2471. #define SET_RATIO(speed) \
  2472. ((speed) ? 15 : MIPS_CALL_RATIO - 2)
  2473. /* Since the bits of the _init and _fini function is spread across
  2474. many object files, each potentially with its own GP, we must assume
  2475. we need to load our GP. We don't preserve $gp or $ra, since each
  2476. init/fini chunk is supposed to initialize $gp, and crti/crtn
  2477. already take care of preserving $ra and, when appropriate, $gp. */
  2478. #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
  2479. #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
  2480. asm (SECTION_OP "\n\
  2481. .set push\n\
  2482. .set nomips16\n\
  2483. .set noreorder\n\
  2484. bal 1f\n\
  2485. nop\n\
  2486. 1: .cpload $31\n\
  2487. .set reorder\n\
  2488. jal " USER_LABEL_PREFIX #FUNC "\n\
  2489. .set pop\n\
  2490. " TEXT_SECTION_ASM_OP);
  2491. #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
  2492. || (defined _ABI64 && _MIPS_SIM == _ABI64))
  2493. #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
  2494. asm (SECTION_OP "\n\
  2495. .set push\n\
  2496. .set nomips16\n\
  2497. .set noreorder\n\
  2498. bal 1f\n\
  2499. nop\n\
  2500. 1: .set reorder\n\
  2501. .cpsetup $31, $2, 1b\n\
  2502. jal " USER_LABEL_PREFIX #FUNC "\n\
  2503. .set pop\n\
  2504. " TEXT_SECTION_ASM_OP);
  2505. #endif
  2506. #ifndef HAVE_AS_TLS
  2507. #define HAVE_AS_TLS 0
  2508. #endif
  2509. #ifndef HAVE_AS_NAN
  2510. #define HAVE_AS_NAN 0
  2511. #endif
  2512. #ifndef USED_FOR_TARGET
  2513. /* Information about ".set noFOO; ...; .set FOO" blocks. */
  2514. struct mips_asm_switch {
  2515. /* The FOO in the description above. */
  2516. const char *name;
  2517. /* The current block nesting level, or 0 if we aren't in a block. */
  2518. int nesting_level;
  2519. };
  2520. extern const enum reg_class mips_regno_to_class[];
  2521. extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
  2522. extern const char *current_function_file; /* filename current function is in */
  2523. extern int num_source_filenames; /* current .file # */
  2524. extern struct mips_asm_switch mips_noreorder;
  2525. extern struct mips_asm_switch mips_nomacro;
  2526. extern struct mips_asm_switch mips_noat;
  2527. extern int mips_dbx_regno[];
  2528. extern int mips_dwarf_regno[];
  2529. extern bool mips_split_p[];
  2530. extern bool mips_split_hi_p[];
  2531. extern bool mips_use_pcrel_pool_p[];
  2532. extern const char *mips_lo_relocs[];
  2533. extern const char *mips_hi_relocs[];
  2534. extern enum processor mips_arch; /* which cpu to codegen for */
  2535. extern enum processor mips_tune; /* which cpu to schedule for */
  2536. extern int mips_isa; /* architectural level */
  2537. extern int mips_isa_rev;
  2538. extern const struct mips_cpu_info *mips_arch_info;
  2539. extern const struct mips_cpu_info *mips_tune_info;
  2540. extern unsigned int mips_base_compression_flags;
  2541. extern GTY(()) struct target_globals *mips16_globals;
  2542. #endif
  2543. /* Enable querying of DFA units. */
  2544. #define CPU_UNITS_QUERY 1
  2545. #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
  2546. mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
  2547. /* As on most targets, we want the .eh_frame section to be read-only where
  2548. possible. And as on most targets, this means two things:
  2549. (a) Non-locally-binding pointers must have an indirect encoding,
  2550. so that the addresses in the .eh_frame section itself become
  2551. locally-binding.
  2552. (b) A shared library's .eh_frame section must encode locally-binding
  2553. pointers in a relative (relocation-free) form.
  2554. However, MIPS has traditionally not allowed directives like:
  2555. .long x-.
  2556. in cases where "x" is in a different section, or is not defined in the
  2557. same assembly file. We are therefore unable to emit the PC-relative
  2558. form required by (b) at assembly time.
  2559. Fortunately, the linker is able to convert absolute addresses into
  2560. PC-relative addresses on our behalf. Unfortunately, only certain
  2561. versions of the linker know how to do this for indirect pointers,
  2562. and for personality data. We must fall back on using writable
  2563. .eh_frame sections for shared libraries if the linker does not
  2564. support this feature. */
  2565. #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
  2566. (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
  2567. /* For switching between MIPS16 and non-MIPS16 modes. */
  2568. #define SWITCHABLE_TARGET 1
  2569. /* Several named MIPS patterns depend on Pmode. These patterns have the
  2570. form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
  2571. Add the appropriate suffix to generator function NAME and invoke it
  2572. with arguments ARGS. */
  2573. #define PMODE_INSN(NAME, ARGS) \
  2574. (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
  2575. /* If we are *not* using multilibs and the default ABI is not ABI_32 we
  2576. need to change these from /lib and /usr/lib. */
  2577. #if MIPS_ABI_DEFAULT == ABI_N32
  2578. #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
  2579. #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
  2580. #elif MIPS_ABI_DEFAULT == ABI_64
  2581. #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
  2582. #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
  2583. #endif