123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- <?php
- /**
- * Artificial Neural Network - Version 2.2
- *
- * For updates and changes visit the project page at http://ann.thwien.de/
- *
- *
- *
- * <b>LICENCE</b>
- *
- * The BSD 2-Clause License
- *
- * http://opensource.org/licenses/bsd-license.php
- *
- * Copyright (c) 2007 - 2012, Thomas Wien
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- *
- * @author Thomas Wien <info_at_thwien_dot_de>
- * @version ANN Version 2.2 by Thomas Wien
- * @copyright Copyright (c) 2007-2012 by Thomas Wien
- * @package ANN
- */
- namespace ANN;
- /**
- * @package ANN
- * @access public
- * @since 2.0.6
- */
- class Values extends Filesystem implements InterfaceLoadable
- {
- /**#@+
- * @ignore
- */
- /**
- * @var array
- */
- protected $arrInputs = array();
- /**
- * @var array
- */
- protected $arrOutputs = array();
- /**
- * @var boolean
- */
- protected $boolLastActionInput = FALSE;
- /**
- * @var boolean
- */
- protected $boolTrain = FALSE;
- /**
- * @var integer
- */
- protected $intCountInputs = null;
- /**
- * @var integer
- */
- protected $intCountOutputs = null;
-
- /**#@-*/
-
- /**
- * Input values
- *
- * List all input values comma separated
- *
- * <code>
- * $objValues = new \ANN\Values;
- *
- * $objValues->train()
- * ->input(0.12, 0.11, 0.15)
- * ->output(0.56);
- * </code>
- *
- * <code>
- * $objValues = new \ANN\Values;
- *
- * $objValues->input(0.12, 0.11, 0.15)
- * ->input(0.13, 0.12, 0.16)
- * ->input(0.14, 0.13, 0.17);
- * </code>
- *
- * @return Values
- * @uses Exception::__construct()
- * @throws Exception
- */
-
- public function input()
- {
- if($this->boolTrain && $this->boolLastActionInput)
- throw new Exception('After calling input() method output() should be called');
-
- $arrParameters = func_get_args();
-
- $arrInputParameters = array();
-
- foreach($arrParameters as $mixedParameter)
- if(is_array($mixedParameter))
- {
- $arrInputParameters = array_merge($arrInputParameters, $mixedParameter);
- }
- elseif(is_numeric($mixedParameter))
- {
- $arrInputParameters[] = $mixedParameter;
- }
-
- $intCountParameters = func_num_args();
-
- foreach($arrInputParameters as $floatParameter)
- if(!is_float($floatParameter) && !is_integer($floatParameter))
- throw new Exception('Each parameter should be float');
-
- if($this->intCountInputs === null)
- $this->intCountInputs = $intCountParameters;
-
- if($this->intCountInputs != $intCountParameters)
- throw new Exception('There should be '. $this->intCountInputs .' parameter values for input()');
-
- $this->arrInputs[] = $arrInputParameters;
-
- $this->boolLastActionInput = TRUE;
-
- return $this;
- }
-
- /**
- * Output values
- *
- * List all output values comma separated. Before you can call this method you
- * have to call input(). After calling output() you cannot call the same method
- * again. You have to call input() again first.
- *
- * <code>
- * $objValues = new \ANN\Values;
- *
- * $objValues->train()
- * ->input(0.12, 0.11, 0.15)
- * ->output(0.56);
- * </code>
- *
- * @return Values
- * @uses Exception::__construct()
- * @throws Exception
- */
-
- public function output()
- {
- if(!$this->boolLastActionInput)
- throw new Exception('After calling output() method input() should be called');
-
- if(!$this->boolTrain)
- throw new Exception('Calling output() is just allowed for training. Call train() if values for training.');
-
- $arrParameters = func_get_args();
-
- // If Classification is used
-
- if(isset($arrParameters[0]) && is_array($arrParameters[0]))
- $arrParameters = $arrParameters[0];
-
- $intCountParameters = func_num_args();
-
- foreach($arrParameters as $floatParameter)
- if(!is_float($floatParameter) && !is_integer($floatParameter))
- throw new Exception('Each parameter should be float');
-
- if($this->intCountOutputs === null)
- $this->intCountOutputs = $intCountParameters;
-
- if($this->intCountOutputs != $intCountParameters)
- throw new Exception('There should be '. $this->intCountOutputs .' parameter values for output()');
-
- $this->arrOutputs[] = $arrParameters;
-
- $this->boolLastActionInput = FALSE;
-
- return $this;
- }
-
- /**
- * @return Values
- */
-
- public function train()
- {
- $this->boolTrain = TRUE;
-
- return $this;
- }
-
- /**
- * Get internal saved input array
- *
- * Actually there is no reason to call this method in your application. This
- * method is used by \ANN\Network only.
- *
- * @return array
- */
-
- public function getInputsArray()
- {
- return $this->arrInputs;
- }
-
- /**
- * Get internal saved output array
- *
- * Actually there is no reason to call this method in your application. This
- * method is used by Network only.
- *
- * @return array
- */
-
- public function getOutputsArray()
- {
- return $this->arrOutputs;
- }
-
- /**
- * Unserializing \ANN\Values
- *
- * After calling unserialize the train mode is set to false. Therefore it is
- * possible to use a saved object of \ANN\Values to use inputs not for training
- * purposes.
- *
- * You would not use unserialize in your application but you can call loadFromFile()
- * to load the saved object to your application.
- */
-
- public function __wakeup()
- {
- $this->boolTrain = FALSE;
- }
-
- /**
- * Reset saved input and output values
- *
- * All internal saved input and output values will be deleted after calling reset().
- * If train() was called before, train state does not change by calling reset().
- *
- * <code>
- * $objValues = new \ANN\Values;
- *
- * $objValues->train()
- * ->input(0.12, 0.11, 0.15)
- * ->output(0.56)
- * ->reset()
- * ->input(0.12, 0.11, 0.15)
- * ->output(0.56);
- * </code>
- *
- * @return Values
- */
-
- public function reset()
- {
- $this->arrInputs = array();
-
- $this->arrOutputs = array();
-
- return $this;
- }
- }
|