async.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /* Copyright 1995-1998,2000-2002,2004,2006,2008-2011,2014,2018-2019
  2. Free Software Foundation, Inc.
  3. This file is part of Guile.
  4. Guile is free software: you can redistribute it and/or modify it
  5. under the terms of the GNU Lesser General Public License as published
  6. by the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. Guile is distributed in the hope that it will be useful, but WITHOUT
  9. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
  11. License for more details.
  12. You should have received a copy of the GNU Lesser General Public
  13. License along with Guile. If not, see
  14. <https://www.gnu.org/licenses/>. */
  15. #ifdef HAVE_CONFIG_H
  16. # include <config.h>
  17. #endif
  18. #include <full-write.h>
  19. #include <string.h>
  20. #include <unistd.h>
  21. #include "atomics-internal.h"
  22. #include "deprecation.h"
  23. #include "dynwind.h"
  24. #include "eval.h"
  25. #include "gsubr.h"
  26. #include "list.h"
  27. #include "pairs.h"
  28. #include "smob.h"
  29. #include "throw.h"
  30. #include "async.h"
  31. /* {Asynchronous Events}
  32. *
  33. * Asyncs are used to run arbitrary code at the next safe point in a
  34. * specified thread. You can use them to trigger execution of Scheme
  35. * code from signal handlers or to interrupt a thread, for example.
  36. *
  37. * Each thread has a list of 'activated asyncs', which is a normal
  38. * Scheme list of procedures with zero arguments. When a thread
  39. * executes an scm_async_tick (), it will call all procedures on this
  40. * list in the order they were added to the list.
  41. */
  42. void
  43. scm_i_async_push (scm_thread *t, SCM proc)
  44. {
  45. SCM asyncs;
  46. /* The usual algorithm you'd use for atomics with GC would be
  47. something like:
  48. repeat
  49. l = get(asyncs);
  50. until swap(l, cons(proc, l))
  51. But this is a LIFO list of asyncs, and that's not so great. To
  52. make it FIFO, you'd do:
  53. repeat
  54. l = get(asyncs);
  55. until swap(l, append(l, list(proc)))
  56. However, some parts of Guile need to add entries to the async list
  57. from a context in which allocation is unsafe, for example right
  58. before GC or from a signal handler. They do that by pre-allocating
  59. a pair, then when the interrupt fires the code does a setcdr of
  60. that pair to the t->pending_asyncs and atomically updates
  61. t->pending_asyncs. So the append strategy doesn't work.
  62. Instead to preserve the FIFO behavior we atomically cut off the
  63. tail of the asyncs every time we want to run an interrupt, then
  64. disable that newly-severed tail by setting its cdr to #f. Not so
  65. nice, but oh well. */
  66. asyncs = scm_atomic_ref_scm (&t->pending_asyncs);
  67. while (1)
  68. {
  69. /* Traverse the asyncs list atomically. */
  70. SCM walk;
  71. for (walk = asyncs;
  72. scm_is_pair (walk);
  73. walk = scm_atomic_ref_scm (SCM_CDRLOC (walk)))
  74. if (scm_is_eq (SCM_CAR (walk), proc))
  75. return;
  76. SCM expected = asyncs;
  77. asyncs = scm_atomic_compare_and_swap_scm
  78. (&t->pending_asyncs, asyncs, scm_cons (proc, asyncs));
  79. if (scm_is_eq (asyncs, expected))
  80. return;
  81. }
  82. }
  83. /* Precondition: there are pending asyncs. */
  84. SCM
  85. scm_i_async_pop (scm_thread *t)
  86. {
  87. while (1)
  88. {
  89. SCM asyncs, last_pair, penultimate_pair;
  90. last_pair = asyncs = scm_atomic_ref_scm (&t->pending_asyncs);
  91. penultimate_pair = SCM_BOOL_F;
  92. /* Since we are the only writer to cdrs of pairs in ASYNCS, and these
  93. pairs were given to us after an atomic update to t->pending_asyncs,
  94. no need to use atomic ops to traverse the list. */
  95. while (scm_is_pair (SCM_CDR (last_pair)))
  96. {
  97. penultimate_pair = last_pair;
  98. last_pair = SCM_CDR (last_pair);
  99. }
  100. /* Sever the tail. */
  101. if (scm_is_false (penultimate_pair))
  102. {
  103. if (!scm_is_eq (asyncs,
  104. scm_atomic_compare_and_swap_scm (&t->pending_asyncs,
  105. asyncs, SCM_EOL)))
  106. continue;
  107. }
  108. else
  109. scm_atomic_set_scm (SCM_CDRLOC (penultimate_pair), SCM_EOL);
  110. /* Disable it. */
  111. scm_atomic_set_scm (SCM_CDRLOC (last_pair), SCM_BOOL_F);
  112. return SCM_CAR (last_pair);
  113. }
  114. }
  115. void
  116. scm_async_tick (void)
  117. {
  118. scm_thread *t = SCM_I_CURRENT_THREAD;
  119. if (t->block_asyncs)
  120. return;
  121. while (!scm_is_null (scm_atomic_ref_scm (&t->pending_asyncs)))
  122. scm_call_0 (scm_i_async_pop (t));
  123. }
  124. struct scm_thread_wake_data {
  125. enum { WAIT_FD, WAIT_COND } kind;
  126. union {
  127. struct {
  128. int fd;
  129. } wait_fd;
  130. struct {
  131. scm_i_pthread_mutex_t *mutex;
  132. scm_i_pthread_cond_t *cond;
  133. } wait_cond;
  134. } data;
  135. };
  136. int
  137. scm_i_prepare_to_wait (scm_thread *t,
  138. struct scm_thread_wake_data *wake)
  139. {
  140. if (t->block_asyncs)
  141. return 0;
  142. scm_atomic_set_pointer ((void **)&t->wake, wake);
  143. /* If no interrupt was registered in the meantime, then any future
  144. wakeup will signal the FD or cond var. */
  145. if (scm_is_null (scm_atomic_ref_scm (&t->pending_asyncs)))
  146. return 0;
  147. /* Otherwise clear the wake pointer and indicate that the caller
  148. should handle interrupts directly. */
  149. scm_i_wait_finished (t);
  150. return 1;
  151. }
  152. void
  153. scm_i_wait_finished (scm_thread *t)
  154. {
  155. scm_atomic_set_pointer ((void **)&t->wake, NULL);
  156. }
  157. int
  158. scm_i_prepare_to_wait_on_fd (scm_thread *t, int fd)
  159. {
  160. struct scm_thread_wake_data *wake;
  161. wake = scm_gc_typed_calloc (struct scm_thread_wake_data);
  162. wake->kind = WAIT_FD;
  163. wake->data.wait_fd.fd = fd;
  164. return scm_i_prepare_to_wait (t, wake);
  165. }
  166. int
  167. scm_c_prepare_to_wait_on_fd (int fd)
  168. {
  169. return scm_i_prepare_to_wait_on_fd (SCM_I_CURRENT_THREAD, fd);
  170. }
  171. int
  172. scm_i_prepare_to_wait_on_cond (scm_thread *t,
  173. scm_i_pthread_mutex_t *m,
  174. scm_i_pthread_cond_t *c)
  175. {
  176. struct scm_thread_wake_data *wake;
  177. wake = scm_gc_typed_calloc (struct scm_thread_wake_data);
  178. wake->kind = WAIT_COND;
  179. wake->data.wait_cond.mutex = m;
  180. wake->data.wait_cond.cond = c;
  181. return scm_i_prepare_to_wait (t, wake);
  182. }
  183. int
  184. scm_c_prepare_to_wait_on_cond (scm_i_pthread_mutex_t *m,
  185. scm_i_pthread_cond_t *c)
  186. {
  187. return scm_i_prepare_to_wait_on_cond (SCM_I_CURRENT_THREAD, m, c);
  188. }
  189. void
  190. scm_c_wait_finished (void)
  191. {
  192. scm_i_wait_finished (SCM_I_CURRENT_THREAD);
  193. }
  194. SCM_DEFINE (scm_system_async_mark_for_thread, "system-async-mark", 1, 1, 0,
  195. (SCM proc, SCM thread),
  196. "Mark @var{proc} (a procedure with zero arguments) for future execution\n"
  197. "in @var{thread}. If @var{proc} has already been marked for\n"
  198. "@var{thread} but has not been executed yet, this call has no effect.\n"
  199. "If @var{thread} is omitted, the thread that called\n"
  200. "@code{system-async-mark} is used.\n\n"
  201. "This procedure is not safe to be called from C signal handlers. Use\n"
  202. "@code{scm_sigaction} or @code{scm_sigaction_for_thread} to install\n"
  203. "signal handlers.")
  204. #define FUNC_NAME s_scm_system_async_mark_for_thread
  205. {
  206. scm_thread *t;
  207. struct scm_thread_wake_data *wake;
  208. if (SCM_UNBNDP (thread))
  209. t = SCM_I_CURRENT_THREAD;
  210. else
  211. {
  212. SCM_VALIDATE_THREAD (2, thread);
  213. t = SCM_I_THREAD_DATA (thread);
  214. }
  215. scm_i_async_push (t, proc);
  216. /* At this point the async is enqueued. However if the thread is
  217. sleeping, we have to wake it up. */
  218. if ((wake = scm_atomic_ref_pointer ((void **) &t->wake)))
  219. {
  220. /* By now, the thread T might be out of its sleep already, or
  221. might even be in the next, unrelated sleep. Interrupting it
  222. anyway does no harm, however.
  223. The important thing to prevent here is to signal the cond
  224. before T waits on it. This can not happen since T has its
  225. mutex locked while preparing the wait and will only unlock it
  226. again while waiting on the cond.
  227. */
  228. if (wake->kind == WAIT_COND)
  229. {
  230. scm_i_scm_pthread_mutex_lock (wake->data.wait_cond.mutex);
  231. scm_i_pthread_cond_signal (wake->data.wait_cond.cond);
  232. scm_i_pthread_mutex_unlock (wake->data.wait_cond.mutex);
  233. }
  234. else if (wake->kind == WAIT_FD)
  235. {
  236. char dummy = 0;
  237. /* Likewise, T might already been done with sleeping here, but
  238. interrupting it once too often does no harm. T might also
  239. not yet have started sleeping, but this is no problem
  240. either since the data written to a pipe will not be lost,
  241. unlike a condition variable signal. */
  242. full_write (wake->data.wait_fd.fd, &dummy, 1);
  243. }
  244. else
  245. abort ();
  246. }
  247. return SCM_UNSPECIFIED;
  248. }
  249. #undef FUNC_NAME
  250. SCM
  251. scm_system_async_mark (SCM proc)
  252. #define FUNC_NAME s_scm_system_async_mark_for_thread
  253. {
  254. return scm_system_async_mark_for_thread (proc, SCM_UNDEFINED);
  255. }
  256. #undef FUNC_NAME
  257. SCM_DEFINE (scm_noop, "noop", 0, 0, 1,
  258. (SCM args),
  259. "Do nothing. When called without arguments, return @code{#f},\n"
  260. "otherwise return the first argument.")
  261. #define FUNC_NAME s_scm_noop
  262. {
  263. SCM_VALIDATE_REST_ARGUMENT (args);
  264. return (SCM_NULL_OR_NIL_P (args) ? SCM_BOOL_F : SCM_CAR (args));
  265. }
  266. #undef FUNC_NAME
  267. static void
  268. increase_block (void *data)
  269. {
  270. scm_thread *t = data;
  271. t->block_asyncs++;
  272. }
  273. static void
  274. decrease_block (void *data)
  275. {
  276. scm_thread *t = data;
  277. if (--t->block_asyncs == 0)
  278. scm_async_tick ();
  279. }
  280. void
  281. scm_dynwind_block_asyncs (void)
  282. {
  283. scm_thread *t = SCM_I_CURRENT_THREAD;
  284. scm_dynwind_rewind_handler (increase_block, t, SCM_F_WIND_EXPLICITLY);
  285. scm_dynwind_unwind_handler (decrease_block, t, SCM_F_WIND_EXPLICITLY);
  286. }
  287. void
  288. scm_dynwind_unblock_asyncs (void)
  289. {
  290. scm_thread *t = SCM_I_CURRENT_THREAD;
  291. if (t->block_asyncs == 0)
  292. scm_misc_error ("scm_with_unblocked_asyncs",
  293. "asyncs already unblocked", SCM_EOL);
  294. scm_dynwind_rewind_handler (decrease_block, t, SCM_F_WIND_EXPLICITLY);
  295. scm_dynwind_unwind_handler (increase_block, t, SCM_F_WIND_EXPLICITLY);
  296. }
  297. SCM_DEFINE (scm_call_with_blocked_asyncs, "call-with-blocked-asyncs", 1, 0, 0,
  298. (SCM proc),
  299. "Call @var{proc} with no arguments and block the execution\n"
  300. "of system asyncs by one level for the current thread while\n"
  301. "it is running. Return the value returned by @var{proc}.\n")
  302. #define FUNC_NAME s_scm_call_with_blocked_asyncs
  303. {
  304. SCM ans;
  305. scm_dynwind_begin (SCM_F_DYNWIND_REWINDABLE);
  306. scm_dynwind_block_asyncs ();
  307. ans = scm_call_0 (proc);
  308. scm_dynwind_end ();
  309. return ans;
  310. }
  311. #undef FUNC_NAME
  312. void *
  313. scm_c_call_with_blocked_asyncs (void *(*proc) (void *data), void *data)
  314. {
  315. void* ans;
  316. scm_dynwind_begin (SCM_F_DYNWIND_REWINDABLE);
  317. scm_dynwind_block_asyncs ();
  318. ans = proc (data);
  319. scm_dynwind_end ();
  320. return ans;
  321. }
  322. SCM_DEFINE (scm_call_with_unblocked_asyncs, "call-with-unblocked-asyncs", 1, 0, 0,
  323. (SCM proc),
  324. "Call @var{proc} with no arguments and unblock the execution\n"
  325. "of system asyncs by one level for the current thread while\n"
  326. "it is running. Return the value returned by @var{proc}.\n")
  327. #define FUNC_NAME s_scm_call_with_unblocked_asyncs
  328. {
  329. SCM ans;
  330. if (SCM_I_CURRENT_THREAD->block_asyncs == 0)
  331. SCM_MISC_ERROR ("asyncs already unblocked", SCM_EOL);
  332. scm_dynwind_begin (SCM_F_DYNWIND_REWINDABLE);
  333. scm_dynwind_unblock_asyncs ();
  334. ans = scm_call_0 (proc);
  335. scm_dynwind_end ();
  336. return ans;
  337. }
  338. #undef FUNC_NAME
  339. void *
  340. scm_c_call_with_unblocked_asyncs (void *(*proc) (void *data), void *data)
  341. {
  342. void* ans;
  343. if (SCM_I_CURRENT_THREAD->block_asyncs == 0)
  344. scm_misc_error ("scm_c_call_with_unblocked_asyncs",
  345. "asyncs already unblocked", SCM_EOL);
  346. scm_dynwind_begin (SCM_F_DYNWIND_REWINDABLE);
  347. scm_dynwind_unblock_asyncs ();
  348. ans = proc (data);
  349. scm_dynwind_end ();
  350. return ans;
  351. }
  352. void
  353. scm_init_async ()
  354. {
  355. #include "async.x"
  356. }