12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202 |
- @c -*-texinfo-*-
- @c This is part of the GNU Guile Reference Manual.
- @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
- @c Free Software Foundation, Inc.
- @c See the file guile.texi for copying conditions.
- @page
- @node GH
- @section GH: A Portable C to Scheme Interface
- @cindex libguile - gh
- @cindex gh
- @cindex gh - reference manual
- This chapter shows how to use the GH interface to call Guile from your
- application's C code, and to add new Scheme level procedures to Guile
- whose behaviour is specified by application specific code written in C.
- Note, however, that the GH interface is now deprecated, and developers
- are encouraged to switch to using the scm interface instead. Therefore,
- for each GH feature, this chapter also documents how to achieve
- the same result using the scm interface.
- @menu
- * GH deprecation:: Why the GH interface is now deprecated.
- * Transitioning away from GH::
- * GH preliminaries::
- * Data types and constants defined by GH::
- * Starting and controlling the interpreter::
- * Error messages::
- * Executing Scheme code::
- * Defining new Scheme procedures in C::
- * Converting data between C and Scheme::
- * Type predicates::
- * Equality predicates::
- * Memory allocation and garbage collection::
- * Calling Scheme procedures from C::
- @end menu
- @node GH deprecation
- @subsection Why the GH Interface is Now Deprecated
- Historically, the GH interface was the product of a practical problem
- and a neat idea. The practical problem was that the interface of the
- @code{scm_} functions with which Guile itself was written (inherited
- from Aubrey Jaffer's SCM) was so closely tied to the (rather arcane)
- details of the internal data representation that it was extremely
- difficult to write a Guile extension using these functions. The neat
- idea was to define a high level language extension interface in such a
- way that other extension language projects, not just Guile, would be
- able to provide an implementation of that interface; then applications
- using this interface could be compiled with whichever of the various
- available implementations they chose. So the GH interface was created,
- and advertised both as the recommended interface for application
- developers wishing to use Guile, and as a portable high level interface
- that could theoretically be implemented by other extension language
- projects.
- Time passed, and various things changed. Crucially, an enormous number
- of improvements were made to the @code{scm_} interface that Guile itself
- uses in its implementation, with the result that it is now both easy and
- comfortable to write a Guile extension with this interface. At the same
- time, the contents of the GH interface were somewhat neglected by the
- core Guile developers, such that some key operations --- such as smob
- creation and management --- are simply not possible using GH alone.
- Finally, the idea of multiple implementations of the GH interface did
- not really crystallize (apart, I believe, from a short lived
- implementation by the MzScheme project).
- For all these reasons, the Guile developers have decided to deprecate
- the GH interface --- which means that support for GH will be completely
- removed after the next few releases --- and to focus only on the
- @code{scm_} interface, with additions to ensure that it is as easy to
- use in all respects as GH was.
- It remains an open question whether a deep kind of interface portability
- would be useful for extension language-based applications, and it may
- still be an interesting project to attempt to define a corresponding
- GH-like interface, but the Guile developers no longer plan to try to do
- this as part of the core Guile project.
- @node Transitioning away from GH
- @subsection Transitioning away from GH
- The following table summarizes how to transition from the GH to the
- scm interface. The replacements that are recommended are not always
- completely equivalent to the GH functionality that they should
- replace. Therefore, you should read the reference documentation of
- the replacements carefully if you are not yet familiar with them.
- @table @asis
- @item Header file
- Use @code{#include <libguile.h>} instead of @code{#include
- <guile/gh.h>}.
- @item Compiling and Linking
- Use @code{guile-config} to pick up the flags required to compile C or
- C++ code that uses @code{libguile}, like so
- @smallexample
- $(CC) -o prog.o -c prog.c `guile-config compile`
- @end smallexample
- If you are using libtool to link your executables, just use
- @code{-lguile} in your link command. Libtool will expand this into
- the needed linker options automatically. If you are not using
- libtool, use the @code{guile-config} program to query the needed
- options explicitly. A linker command like
- @smallexample
- $(CC) -o prog prog.o `guile-config link`
- @end smallexample
- should be all that is needed. To link shared libraries that will be
- used as Guile Extensions, use libtool to control both the compilation
- and the link stage.
- @item The @code{SCM} type
- No change: the scm interface also uses this type to represent an
- arbitrary Scheme value.
- @item @code{SCM_BOOL_F} and @code{SCM_BOOL_T}
- No change.
- @item @code{SCM_UNSPECIFIED} and @code{SCM_UNDEFINED}
- No change.
- @item @code{gh_enter}
- Use @code{scm_boot_guile} instead, but note that @code{scm_boot_guile}
- has a slightly different calling convention from @code{gh_enter}:
- @code{scm_boot_guile}, and the main program function that you specify
- for @code{scm_boot_guile} to call, both take an additional @var{closure}
- parameter. @ref{Guile Initialization Functions} for more details.
- @item @code{gh_repl}
- Use @code{scm_shell} instead.
- @item @code{gh_init}
- Use @code{scm_init_guile} instead.
- @item @code{gh_catch}
- Use @code{scm_internal_catch} instead.
- @item @code{gh_eval_str}
- Use @code{scm_c_eval_string} instead.
- @item @code{gh_eval_str_with_catch}
- Use @code{scm_c_eval_string} together with @code{scm_internal_catch}
- instead.
- @item @code{gh_eval_str_with_standard_handler}
- Use @code{scm_c_eval_string} together with @code{scm_internal_catch}
- and @code{scm_handle_by_message_no_exit} instead.
- @item @code{gh_eval_str_with_stack_saving_handler}
- Use @code{scm_c_eval_string} together with
- @code{scm_internal_stack_catch} and
- @code{scm_handle_by_message_no_exit} instead.
- @item @code{gh_eval_file} or @code{gh_load}
- Use @code{scm_c_primitive_load} instead.
- @item @code{gh_eval_file_with_catch}
- Use @code{scm_c_primitive_load} together with
- @code{scm_internal_catch} instead.
- @item @code{gh_eval_file_with_standard_handler}
- Use @code{scm_c_primitive_load} together with
- @code{scm_internal_catch} and @code{scm_handle_by_message_no_exit}
- instead.
- @item @code{gh_new_procedure}
- @itemx @code{gh_new_procedure0_0}
- @itemx @code{gh_new_procedure0_1}
- @itemx @code{gh_new_procedure0_2}
- @itemx @code{gh_new_procedure1_0}
- @itemx @code{gh_new_procedure1_1}
- @itemx @code{gh_new_procedure1_2}
- @itemx @code{gh_new_procedure2_0}
- @itemx @code{gh_new_procedure2_1}
- @itemx @code{gh_new_procedure2_2}
- @itemx @code{gh_new_procedure3_0}
- @itemx @code{gh_new_procedure4_0}
- @itemx @code{gh_new_procedure5_0}
- Use @code{scm_c_define_gsubr} instead, but note that the arguments are
- in a different order: for @code{scm_c_define_gsubr} the C function
- pointer is the last argument. @ref{A Sample Guile Extension} for an
- example.
- @item @code{gh_defer_ints} and @code{gh_allow_ints}
- Use @code{SCM_CRITICAL_SECTION_START} and
- @code{SCM_CRITICAL_SECTION_END} instead. Note that these macros are
- used without parentheses, as in @code{SCM_DEFER_INTS;}.
- @item @code{gh_bool2scm}
- Use @code{scm_from_bool} instead.
- @item @code{gh_int2scm}
- Use @code{scm_from_int} instead.
- @item @code{gh_ulong2scm}
- Use @code{scm_from_ulong} instead.
- @item @code{gh_long2scm}
- Use @code{scm_from_long} instead.
- @item @code{gh_double2scm}
- Use @code{scm_make_real} instead.
- @item @code{gh_char2scm}
- Use @code{SCM_MAKE_CHAR} instead.
- @item @code{gh_str2scm}
- Use @code{scm_from_locale_stringn} instead.
- @item @code{gh_str02scm}
- Use @code{scm_from_locale_string} instead.
- @item @code{gh_set_substr}
- Use @code{scm_string_copy_x}.
- @item @code{gh_symbol2scm}
- Use @code{scm_from_locale_symbol} instead.
- @item @code{gh_ints2scm}
- @itemx @code{gh_doubles2scm}
- @itemx @code{gh_chars2byvect}
- @itemx @code{gh_shorts2svect}
- @itemx @code{gh_longs2ivect}
- @itemx @code{gh_ulongs2uvect}
- @itemx @code{gh_floats2fvect}
- @itemx @code{gh_doubles2dvect}
- Use the uniform numeric vector function, @xref{Uniform Numeric
- Vectors}.
- @item @code{gh_scm2bool}
- Use @code{scm_is_true} or @code{scm_to_bool} instead.
- @item @code{gh_scm2int}
- Use @code{scm_to_int} instead.
- @item @code{gh_scm2ulong}
- Use @code{scm_to_ulong} instead.
- @item @code{gh_scm2long}
- Use @code{scm_to_long} instead.
- @item @code{gh_scm2double}
- Use @code{scm_to_double} instead.
- @item @code{gh_scm2char}
- Use @code{scm_to_char} instead.
- @item @code{gh_scm2newstr}
- Use @code{scm_to_locale_string} or similar instead.
- @item @code{gh_get_substr}
- Use @code{scm_c_substring} together with @code{scm_to_locale_string}
- or similar instead.
- @item @code{gh_symbol2newstr}
- Use @code{scm_symbol_to_string} together with @code{scm_to_locale_string} or similar instead.
- @item @code{gh_scm2chars}
- Use @code{scm_from_locale_string} (or similar) or the uniform numeric
- vector functions (@pxref{Uniform Numeric Vectors}) instead.
- @item @code{gh_scm2shorts}
- @itemx @code{gh_scm2longs}
- @itemx @code{gh_scm2floats}
- @itemx @code{gh_scm2doubles}
- Use the uniform numeric vector function, @xref{Uniform Numeric
- Vectors}.
- @item @code{gh_boolean_p}
- Use @code{scm_is_bool} instead.
- @item @code{gh_symbol_p}
- Use @code{scm_is_symbol} instead.
- @item @code{gh_char_p}
- Replace @code{gh_char_p (@var{obj})} with
- @example
- scm_is_true (scm_char_p (@var{obj}))
- @end example
- @item @code{gh_vector_p}
- Replace @code{gh_vector_p (@var{obj})} with
- @example
- scm_is_true (scm_vector_p (@var{obj}))
- @end example
- @item @code{gh_pair_p}
- Replace @code{gh_pair_p (@var{obj})} with
- @example
- scm_is_true (scm_pair_p (@var{obj}))
- @end example
- @item @code{gh_number_p}
- Use @code{scm_is_number} instead.
- @item @code{gh_string_p}
- Use @code{scm_is_string} instead.
- @item @code{gh_procedure_p}
- Replace @code{gh_procedure_p (@var{obj})} by
- @example
- scm_is_true (scm_procedure_p (@var{obj}))
- @end example
- @item @code{gh_list_p}
- Replace @code{gh_list_p (@var{obj})} with
- @example
- scm_is_true (scm_list_p (@var{obj}))
- @end example
- @item @code{gh_inexact_p}
- Replace @code{gh_inexact_p (@var{obj})} with
- @example
- scm_is_true (scm_inexact_p (@var{obj}))
- @end example
- @item @code{gh_exact_p}
- Replace @code{gh_exact_p (@var{obj})} with
- @example
- scm_is_true (scm_exact_p (@var{obj}))
- @end example
- @item @code{gh_eq_p}
- Use @code{scm_is_eq} instead.
- @item @code{gh_eqv_p}
- Replace @code{gh_eqv_p (@var{x}, @var{y})} with
- @example
- scm_is_true (scm_eqv_p (@var{x}, @var{y}))
- @end example
- @item @code{gh_equal_p}
- Replace @code{gh_equal_p (@var{x}, @var{y})} with
- @example
- scm_is_true (scm_equal_p (@var{x}, @var{y}))
- @end example
- @item @code{gh_string_equal_p}
- Replace @code{gh_string_equal_p (@var{x}, @var{y})} with
- @example
- scm_is_true (scm_string_equal_p (@var{x}, @var{y}))
- @end example
- @item @code{gh_null_p}
- Use @code{scm_is_null} instead.
- @item @code{gh_not}
- Use @code{scm_not} instead.
- @item @code{gh_make_string}
- Use @code{scm_make_string} instead.
- @item @code{gh_string_length}
- Use @code{scm_string_length} instead.
- @item @code{gh_string_ref}
- Use @code{scm_string_ref} instead.
- @item @code{gh_string_set_x}
- Use @code{scm_string_set_x} instead.
- @item @code{gh_substring}
- Use @code{scm_substring} instead.
- @item @code{gh_string_append}
- Use @code{scm_string_append} instead.
- @item @code{gh_cons}
- Use @code{scm_cons} instead.
- @item @code{gh_car} and @code{gh_cdr}
- Use @code{scm_car} and @code{scm_cdr} instead.
- @item @code{gh_cxxr} and @code{gh_cxxxr}
- (Where each x is either @samp{a} or @samp{d}.) Use the corresponding
- @code{scm_cxxr} or @code{scm_cxxxr} function instead.
- @item @code{gh_set_car_x} and @code{gh_set_cdr_x}
- Use @code{scm_set_car_x} and @code{scm_set_cdr_x} instead.
- @item @code{gh_list}
- Use @code{scm_list_n} instead.
- @item @code{gh_length}
- Replace @code{gh_length (@var{lst})} with
- @example
- scm_to_size_t (scm_length (@var{lst}))
- @end example
- @item @code{gh_append}
- Use @code{scm_append} instead.
- @item @code{gh_append2}, @code{gh_append3}, @code{gh_append4}
- Replace @code{gh_append@var{N} (@var{l1}, @dots{}, @var{lN})} by
- @example
- scm_append (scm_list_n (@var{l1}, @dots{}, @var{lN}, SCM_UNDEFINED))
- @end example
- @item @code{gh_reverse}
- Use @code{scm_reverse} instead.
- @item @code{gh_list_tail} and @code{gh_list_ref}
- Use @code{scm_list_tail} and @code{scm_list_ref} instead.
- @item @code{gh_memq}, @code{gh_memv} and @code{gh_member}
- Use @code{scm_memq}, @code{scm_memv} and @code{scm_member} instead.
- @item @code{gh_assq}, @code{gh_assv} and @code{gh_assoc}
- Use @code{scm_assq}, @code{scm_assv} and @code{scm_assoc} instead.
- @item @code{gh_make_vector}
- Use @code{scm_make_vector} instead.
- @item @code{gh_vector} or @code{gh_list_to_vector}
- Use @code{scm_vector} instead.
- @item @code{gh_vector_ref} and @code{gh_vector_set_x}
- Use @code{scm_vector_ref} and @code{scm_vector_set_x} instead.
- @item @code{gh_vector_length}
- Use @code{scm_c_vector_length} instead.
- @item @code{gh_uniform_vector_length}
- Use @code{scm_c_uniform_vector_length} instead.
- @item @code{gh_uniform_vector_ref}
- Use @code{scm_c_uniform_vector_ref} instead.
- @item @code{gh_vector_to_list}
- Use @code{scm_vector_to_list} instead.
- @item @code{gh_apply}
- Use @code{scm_apply_0} instead.
- @item @code{gh_call0}
- @itemx @code{gh_call1}
- @itemx @code{gh_call2}
- @itemx @code{gh_call3}
- Use @code{scm_call_0}, @code{scm_call_1}, etc instead.
- @item @code{gh_display}
- @itemx @code{gh_write}
- @itemx @code{gh_newline}
- Use @code{scm_display (obj, scm_current_output_port ())} instead, etc.
- @item @code{gh_lookup}
- Use @code{scm_variable_ref (scm_c_lookup (name))} instead.
- @item @code{gh_module_lookup}
- Use @code{scm_variable_ref (scm_c_module_lookup (module, name))} instead.
- @end table
- @node GH preliminaries
- @subsection GH preliminaries
- To use gh, you must have the following toward the beginning of your C
- source:
- @smallexample
- #include <guile/gh.h>
- @end smallexample
- @cindex gh - headers
- When you link, you will have to add at least @code{-lguile} to the list
- of libraries. If you are using more of Guile than the basic Scheme
- interpreter, you will have to add more libraries.
- @cindex gh - linking
- @node Data types and constants defined by GH
- @subsection Data types and constants defined by GH
- The following C constants and data types are defined in gh:
- @code{SCM} is a C data type used to store all Scheme data, no matter what the
- Scheme type. Values are converted between C data types and the SCM type
- with utility functions described below (@pxref{Converting data between C
- and Scheme}). [FIXME: put in references to Jim's essay and so forth.]
- @defvr Constant SCM_BOOL_T
- @defvrx Constant SCM_BOOL_F
- The @emph{Scheme} values returned by many boolean procedures in
- libguile.
- This can cause confusion because they are different from 0 and 1. In
- testing a boolean function in libguile programming, you must always make
- sure that you check the spec: @code{gh_} and @code{scm_} functions will
- usually return @code{SCM_BOOL_T} and @code{SCM_BOOL_F}, but other C
- functions usually can be tested against 0 and 1, so programmers' fingers
- tend to just type @code{if (boolean_function()) @{ ... @}}
- @end defvr
- @defvr Constant SCM_UNSPECIFIED
- This is a SCM value that is not the same as any legal Scheme value. It
- is the value that a Scheme function returns when its specification says
- that its return value is unspecified.
- @end defvr
- @defvr Constant SCM_UNDEFINED
- This is another SCM value that is not the same as any legal Scheme
- value. It is the value used to mark variables that do not yet have a
- value, and it is also used in C to terminate functions with variable
- numbers of arguments, such as @code{gh_list()}.
- @end defvr
- @node Starting and controlling the interpreter
- @subsection Starting and controlling the interpreter
- @cindex libguile - start interpreter
- In almost every case, your first @code{gh_} call will be:
- @deftypefun void gh_enter (int @var{argc}, char *@var{argv}[], void (*@var{main_prog})())
- Starts up a Scheme interpreter with all the builtin Scheme primitives.
- @code{gh_enter()} never exits, and the user's code should all be in the
- @code{@var{main_prog}()} function. @code{argc} and @code{argv} will be
- passed to @var{main_prog}.
- @deftypefun void main_prog (int @var{argc}, char *@var{argv}[])
- This is the user's main program. It will be invoked by
- @code{gh_enter()} after Guile has been started up.
- @end deftypefun
- Note that you can use @code{gh_repl} inside @code{gh_enter} (in other
- words, inside the code for @code{main-prog}) if you want the program to
- be controlled by a Scheme read-eval-print loop.
- @end deftypefun
- @cindex read eval print loop -- from the gh_ interface
- @cindex REPL -- from the gh_ interface
- A convenience routine which enters the Guile interpreter with the
- standard Guile read-eval-print loop (@dfn{REPL}) is:
- @deftypefun void gh_repl (int @var{argc}, char *@var{argv}[])
- Enters the Scheme interpreter giving control to the Scheme REPL.
- Arguments are processed as if the Guile program @file{guile} were being
- invoked.
- Note that @code{gh_repl} should be used @emph{inside} @code{gh_enter},
- since any Guile interpreter calls are meaningless unless they happen in
- the context of the interpreter.
- Also note that when you use @code{gh_repl}, your program will be
- controlled by Guile's REPL (which is written in Scheme and has many
- useful features). Use straight C code inside @code{gh_enter} if you
- want to maintain execution control in your C program.
- @end deftypefun
- You will typically use @code{gh_enter} and @code{gh_repl} when you
- want a Guile interpreter enhanced by your own libraries, but otherwise
- quite normal. For example, to build a Guile--derived program that
- includes some random number routines @dfn{GSL} (GNU Scientific Library),
- you would write a C program that looks like this:
- @smallexample
- #include <guile/gh.h>
- #include <gsl_ran.h>
- /* random number suite */
- SCM gw_ran_seed(SCM s)
- @{
- gsl_ran_seed(gh_scm2int(s));
- return SCM_UNSPECIFIED;
- @}
- SCM gw_ran_random()
- @{
- SCM x;
- x = gh_ulong2scm(gsl_ran_random());
- return x;
- @}
- SCM gw_ran_uniform()
- @{
- SCM x;
- x = gh_double2scm(gsl_ran_uniform());
- return x;
- @}
- SCM gw_ran_max()
- @{
- return gh_double2scm(gsl_ran_max());
- @}
- void
- init_gsl()
- @{
- /* random number suite */
- gh_new_procedure("gsl-ran-seed", gw_ran_seed, 1, 0, 0);
- gh_new_procedure("gsl-ran-random", gw_ran_random, 0, 0, 0);
- gh_new_procedure("gsl-ran-uniform", gw_ran_uniform, 0, 0, 0);
- gh_new_procedure("gsl-ran-max", gw_ran_max, 0, 0, 0);
- @}
- void
- main_prog (int argc, char *argv[])
- @{
- init_gsl();
- gh_repl(argc, argv);
- @}
- int
- main (int argc, char *argv[])
- @{
- gh_enter (argc, argv, main_prog);
- @}
- @end smallexample
- Then, supposing the C program is in @file{guile-gsl.c}, you could
- compile it with @kbd{gcc -o guile-gsl guile-gsl.c -lguile -lgsl}.
- The resulting program @file{guile-gsl} would have new primitive
- procedures @code{gsl-ran-random}, @code{gsl-ran-gaussian} and so forth.
- @node Error messages
- @subsection Error messages
- @cindex libguile - error messages
- @cindex error messages in libguile
- [FIXME: need to fill this based on Jim's new mechanism]
- @node Executing Scheme code
- @subsection Executing Scheme code
- @cindex libguile - executing Scheme
- @cindex executing Scheme
- Once you have an interpreter running, you can ask it to evaluate Scheme
- code. There are two calls that implement this:
- @deftypefun SCM gh_eval_str (char *@var{scheme_code})
- This asks the interpreter to evaluate a single string of Scheme code,
- and returns the result of the last expression evaluated.
- Note that the line of code in @var{scheme_code} must be a well formed
- Scheme expression. If you have many lines of code before you balance
- parentheses, you must either concatenate them into one string, or use
- @code{gh_eval_file()}.
- @end deftypefun
- @deftypefun SCM gh_eval_file (char *@var{fname})
- @deftypefunx SCM gh_load (char *@var{fname})
- @code{gh_eval_file} is completely analogous to @code{gh_eval_str()},
- except that a whole file is evaluated instead of a string.
- @code{gh_eval_file} returns @code{SCM_UNSPECIFIED}.
- @code{gh_load} is identical to @code{gh_eval_file} (it's a macro that
- calls @code{gh_eval_file} on its argument). It is provided to start
- making the @code{gh_} interface match the R5RS Scheme procedures
- closely.
- @end deftypefun
- @node Defining new Scheme procedures in C
- @subsection Defining new Scheme procedures in C
- @cindex libguile - new procedures
- @cindex new procedures
- @cindex procedures, new
- @cindex new primitives
- @cindex primitives, new
- The real interface between C and Scheme comes when you can write new
- Scheme procedures in C. This is done through the routine
- @deftypefn {Libguile high} SCM gh_new_procedure (char *@var{proc_name}, SCM (*@var{fn})(), int @var{n_required_args}, int @var{n_optional_args}, int @var{restp})
- @code{gh_new_procedure} defines a new Scheme procedure. Its Scheme name
- will be @var{proc_name}, it will be implemented by the C function
- (*@var{fn})(), it will take at least @var{n_required_args} arguments,
- and at most @var{n_optional_args} extra arguments.
- When the @var{restp} parameter is 1, the procedure takes a final
- argument: a list of remaining parameters.
- @code{gh_new_procedure} returns an SCM value representing the procedure.
- The C function @var{fn} should have the form
- @deftypefn {Libguile high} SCM fn (SCM @var{req1}, SCM @var{req2}, ..., SCM @var{opt1}, SCM @var{opt2}, ..., SCM @var{rest_args})
- The arguments are all passed as SCM values, so the user will have to use
- the conversion functions to convert to standard C types.
- Examples of C functions used as new Scheme primitives can be found in
- the sample programs @code{learn0} and @code{learn1}.
- @end deftypefn
- @end deftypefn
- @strong{Rationale:} this is the correct way to define new Scheme
- procedures in C. The ugly mess of arguments is required because of how
- C handles procedures with variable numbers of arguments.
- @strong{NB:} what about documentation strings?
- @cartouche
- There are several important considerations to be made when writing the C
- routine @code{(*fn)()}.
- First of all the C routine has to return type @code{SCM}.
- Second, all arguments passed to the C function will be of type
- @code{SCM}.
- Third: the C routine is now subject to Scheme flow control, which means
- that it could be interrupted at any point, and then reentered. This
- means that you have to be very careful with operations such as
- allocating memory, modifying static data @dots{}
- Fourth: to get around the latter issue, you can use
- @code{GH_DEFER_INTS} and @code{GH_ALLOW_INTS}.
- @end cartouche
- @defmac GH_DEFER_INTS
- @defmacx GH_ALLOW_INTS
- These macros disable and re-enable Scheme's flow control. They
- @end defmac
- @c [??? have to do this right; maybe using subsections, or maybe creating a
- @c section called Flow control issues...]
- @c [??? Go into exhaustive detail with examples of the various possible
- @c combinations of required and optional args...]
- @node Converting data between C and Scheme
- @subsection Converting data between C and Scheme
- @cindex libguile - converting data
- @cindex data conversion
- @cindex converting data
- Guile provides mechanisms to convert data between C and Scheme. This
- allows new builtin procedures to understand their arguments (which are
- of type @code{SCM}) and return values of type @code{SCM}.
- @menu
- * C to Scheme::
- * Scheme to C::
- @end menu
- @node C to Scheme
- @subsubsection C to Scheme
- @deftypefun SCM gh_bool2scm (int @var{x})
- Returns @code{#f} if @var{x} is zero, @code{#t} otherwise.
- @end deftypefun
- @deftypefun SCM gh_ulong2scm (unsigned long @var{x})
- @deftypefunx SCM gh_long2scm (long @var{x})
- @deftypefunx SCM gh_double2scm (double @var{x})
- @deftypefunx SCM gh_char2scm (char @var{x})
- Returns a Scheme object with the value of the C quantity @var{x}.
- @end deftypefun
- @deftypefun SCM gh_str2scm (char *@var{s}, int @var{len})
- Returns a new Scheme string with the (not necessarily null-terminated) C
- array @var{s} data.
- @end deftypefun
- @deftypefun SCM gh_str02scm (char *@var{s})
- Returns a new Scheme string with the null-terminated C string @var{s}
- data.
- @end deftypefun
- @deftypefun SCM gh_set_substr (char *@var{src}, SCM @var{dst}, int @var{start}, int @var{len})
- Copy @var{len} characters at @var{src} into the @emph{existing} Scheme
- string @var{dst}, starting at @var{start}. @var{start} is an index into
- @var{dst}; zero means the beginning of the string.
- If @var{start} + @var{len} is off the end of @var{dst}, signal an
- out-of-range error.
- @end deftypefun
- @deftypefun SCM gh_symbol2scm (char *@var{name})
- Given a null-terminated string @var{name}, return the symbol with that
- name.
- @end deftypefun
- @deftypefun SCM gh_ints2scm (int *@var{dptr}, int @var{n})
- @deftypefunx SCM gh_doubles2scm (double *@var{dptr}, int @var{n})
- Make a scheme vector containing the @var{n} ints or doubles at memory
- location @var{dptr}.
- @end deftypefun
- @deftypefun SCM gh_chars2byvect (char *@var{dptr}, int @var{n})
- @deftypefunx SCM gh_shorts2svect (short *@var{dptr}, int @var{n})
- @deftypefunx SCM gh_longs2ivect (long *@var{dptr}, int @var{n})
- @deftypefunx SCM gh_ulongs2uvect (ulong *@var{dptr}, int @var{n})
- @deftypefunx SCM gh_floats2fvect (float *@var{dptr}, int @var{n})
- @deftypefunx SCM gh_doubles2dvect (double *@var{dptr}, int @var{n})
- Make a scheme uniform vector containing the @var{n} chars, shorts,
- longs, unsigned longs, floats or doubles at memory location @var{dptr}.
- @end deftypefun
- @node Scheme to C
- @subsubsection Scheme to C
- @deftypefun int gh_scm2bool (SCM @var{obj})
- @deftypefunx {unsigned long} gh_scm2ulong (SCM @var{obj})
- @deftypefunx long gh_scm2long (SCM @var{obj})
- @deftypefunx double gh_scm2double (SCM @var{obj})
- @deftypefunx int gh_scm2char (SCM @var{obj})
- These routines convert the Scheme object to the given C type.
- @end deftypefun
- @deftypefun {char *} gh_scm2newstr (SCM @var{str}, size_t *@var{lenp})
- Given a Scheme string @var{str}, return a pointer to a new copy of its
- contents, followed by a null byte. If @var{lenp} is non-null, set
- @code{*@var{lenp}} to the string's length.
- This function uses malloc to obtain storage for the copy; the caller is
- responsible for freeing it.
- Note that Scheme strings may contain arbitrary data, including null
- characters. This means that null termination is not a reliable way to
- determine the length of the returned value. However, the function
- always copies the complete contents of @var{str}, and sets @var{*lenp}
- to the true length of the string (when @var{lenp} is non-null).
- @end deftypefun
- @deftypefun void gh_get_substr (SCM str, char *return_str, int *lenp)
- Copy @var{len} characters at @var{start} from the Scheme string
- @var{src} to memory at @var{dst}. @var{start} is an index into
- @var{src}; zero means the beginning of the string. @var{dst} has
- already been allocated by the caller.
- If @var{start} + @var{len} is off the end of @var{src}, signal an
- out-of-range error.
- @end deftypefun
- @deftypefun {char *} gh_symbol2newstr (SCM @var{sym}, int *@var{lenp})
- Takes a Scheme symbol and returns a string of the form
- @code{"'symbol-name"}. If @var{lenp} is non-null, the string's length
- is returned in @code{*@var{lenp}}.
- This function uses malloc to obtain storage for the returned string; the
- caller is responsible for freeing it.
- @end deftypefun
- @deftypefun {char *} gh_scm2chars (SCM @var{vector}, chars *@var{result})
- @deftypefunx {short *} gh_scm2shorts (SCM @var{vector}, short *@var{result})
- @deftypefunx {long *} gh_scm2longs (SCM @var{vector}, long *@var{result})
- @deftypefunx {float *} gh_scm2floats (SCM @var{vector}, float *@var{result})
- @deftypefunx {double *} gh_scm2doubles (SCM @var{vector}, double *@var{result})
- Copy the numbers in @var{vector} to the array pointed to by @var{result}
- and return it. If @var{result} is NULL, allocate a double array large
- enough.
- @var{vector} can be an ordinary vector, a weak vector, or a signed or
- unsigned uniform vector of the same type as the result array. For
- chars, @var{vector} can be a string or substring. For floats and
- doubles, @var{vector} can contain a mix of inexact and integer values.
- If @var{vector} is of unsigned type and contains values too large to fit
- in the signed destination array, those values will be wrapped around,
- that is, data will be copied as if the destination array was unsigned.
- @end deftypefun
- @node Type predicates
- @subsection Type predicates
- These C functions mirror Scheme's type predicate procedures with one
- important difference. The C routines return C boolean values (0 and 1)
- instead of @code{SCM_BOOL_T} and @code{SCM_BOOL_F}.
- The Scheme notational convention of putting a @code{?} at the end of
- predicate procedure names is mirrored in C by placing @code{_p} at the
- end of the procedure. For example, @code{(pair? ...)} maps to
- @code{gh_pair_p(...)}.
- @deftypefun int gh_boolean_p (SCM @var{val})
- Returns 1 if @var{val} is a boolean, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_symbol_p (SCM @var{val})
- Returns 1 if @var{val} is a symbol, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_char_p (SCM @var{val})
- Returns 1 if @var{val} is a char, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_vector_p (SCM @var{val})
- Returns 1 if @var{val} is a vector, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_pair_p (SCM @var{val})
- Returns 1 if @var{val} is a pair, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_procedure_p (SCM @var{val})
- Returns 1 if @var{val} is a procedure, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_list_p (SCM @var{val})
- Returns 1 if @var{val} is a list, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_inexact_p (SCM @var{val})
- Returns 1 if @var{val} is an inexact number, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_exact_p (SCM @var{val})
- Returns 1 if @var{val} is an exact number, 0 otherwise.
- @end deftypefun
- @node Equality predicates
- @subsection Equality predicates
- These C functions mirror Scheme's equality predicate procedures with one
- important difference. The C routines return C boolean values (0 and 1)
- instead of @code{SCM_BOOL_T} and @code{SCM_BOOL_F}.
- The Scheme notational convention of putting a @code{?} at the end of
- predicate procedure names is mirrored in C by placing @code{_p} at the
- end of the procedure. For example, @code{(equal? ...)} maps to
- @code{gh_equal_p(...)}.
- @deftypefun int gh_eq_p (SCM x, SCM y)
- Returns 1 if @var{x} and @var{y} are equal in the sense of Scheme's
- @code{eq?} predicate, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_eqv_p (SCM x, SCM y)
- Returns 1 if @var{x} and @var{y} are equal in the sense of Scheme's
- @code{eqv?} predicate, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_equal_p (SCM x, SCM y)
- Returns 1 if @var{x} and @var{y} are equal in the sense of Scheme's
- @code{equal?} predicate, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_string_equal_p (SCM @var{s1}, SCM @var{s2})
- Returns 1 if the strings @var{s1} and @var{s2} are equal, 0 otherwise.
- @end deftypefun
- @deftypefun int gh_null_p (SCM @var{l})
- Returns 1 if @var{l} is an empty list or pair; 0 otherwise.
- @end deftypefun
- @node Memory allocation and garbage collection
- @subsection Memory allocation and garbage collection
- @c [FIXME: flesh this out with some description of garbage collection in
- @c scm/guile]
- @c @deftypefun SCM gh_mkarray (int size)
- @c Allocate memory for a Scheme object in a garbage-collector-friendly
- @c manner.
- @c @end deftypefun
- @node Calling Scheme procedures from C
- @subsection Calling Scheme procedures from C
- Many of the Scheme primitives are available in the @code{gh_}
- interface; they take and return objects of type SCM, and one could
- basically use them to write C code that mimics Scheme code.
- I will list these routines here without much explanation, since what
- they do is the same as documented in @ref{Standard procedures, R5RS, ,
- r5rs, R5RS}. But I will point out that when a procedure takes a
- variable number of arguments (such as @code{gh_list}), you should pass
- the constant @var{SCM_UNDEFINED} from C to signify the end of the list.
- @deftypefun SCM gh_define (char *@var{name}, SCM @var{val})
- Corresponds to the Scheme @code{(define name val)}: it binds a value to
- the given name (which is a C string). Returns the new object.
- @end deftypefun
- @heading Pairs and lists
- @deftypefun SCM gh_cons (SCM @var{a}, SCM @var{b})
- @deftypefunx SCM gh_list (SCM l0, SCM l1, ... , SCM_UNDEFINED)
- These correspond to the Scheme @code{(cons a b)} and @code{(list l0 l1
- ...)} procedures. Note that @code{gh_list()} is a C macro that invokes
- @code{scm_list_n()}.
- @end deftypefun
- @deftypefun SCM gh_car (SCM @var{obj})
- @deftypefunx SCM gh_cdr (SCM @var{obj})
- @dots{}
- @deftypefunx SCM gh_c[ad][ad][ad][ad]r (SCM @var{obj})
- These correspond to the Scheme @code{(caadar ls)} procedures etc @dots{}
- @end deftypefun
- @deftypefun SCM gh_set_car_x (SCM @var{pair}, SCM @var{value})
- Modifies the CAR of @var{pair} to be @var{value}. This is equivalent to
- the Scheme procedure @code{(set-car! ...)}.
- @end deftypefun
- @deftypefun SCM gh_set_cdr_x (SCM @var{pair}, SCM @var{value})
- Modifies the CDR of @var{pair} to be @var{value}. This is equivalent to
- the Scheme procedure @code{(set-cdr! ...)}.
- @end deftypefun
- @deftypefun {unsigned long} gh_length (SCM @var{ls})
- Returns the length of the list.
- @end deftypefun
- @deftypefun SCM gh_append (SCM @var{args})
- @deftypefunx SCM gh_append2 (SCM @var{l1}, SCM @var{l2})
- @deftypefunx SCM gh_append3 (SCM @var{l1}, SCM @var{l2}, @var{l3})
- @deftypefunx SCM gh_append4 (SCM @var{l1}, SCM @var{l2}, @var{l3}, @var{l4})
- @code{gh_append()} takes @var{args}, which is a list of lists
- @code{(list1 list2 ...)}, and returns a list containing all the elements
- of the individual lists.
- A typical invocation of @code{gh_append()} to append 5 lists together
- would be
- @smallexample
- gh_append(gh_list(l1, l2, l3, l4, l5, SCM_UNDEFINED));
- @end smallexample
- The functions @code{gh_append2()}, @code{gh_append2()},
- @code{gh_append3()} and @code{gh_append4()} are convenience routines to
- make it easier for C programs to form the list of lists that goes as an
- argument to @code{gh_append()}.
- @end deftypefun
- @deftypefun SCM gh_reverse (SCM @var{ls})
- Returns a new list that has the same elements as @var{ls} but in the
- reverse order. Note that this is implemented as a macro which calls
- @code{scm_reverse()}.
- @end deftypefun
- @deftypefun SCM gh_list_tail (SCM @var{ls}, SCM @var{k})
- Returns the sublist of @var{ls} with the last @var{k} elements.
- @end deftypefun
- @deftypefun SCM gh_list_ref (SCM @var{ls}, SCM @var{k})
- Returns the @var{k}th element of the list @var{ls}.
- @end deftypefun
- @deftypefun SCM gh_memq (SCM @var{x}, SCM @var{ls})
- @deftypefunx SCM gh_memv (SCM @var{x}, SCM @var{ls})
- @deftypefunx SCM gh_member (SCM @var{x}, SCM @var{ls})
- These functions return the first sublist of @var{ls} whose CAR is
- @var{x}. They correspond to @code{(memq x ls)}, @code{(memv x ls)} and
- @code{(member x ls)}, and hence use (respectively) @code{eq?},
- @code{eqv?} and @code{equal?} to do comparisons.
- If @var{x} does not appear in @var{ls}, the value @code{SCM_BOOL_F} (not
- the empty list) is returned.
- Note that these functions are implemented as macros which call
- @code{scm_memq()}, @code{scm_memv()} and @code{scm_member()}
- respectively.
- @end deftypefun
- @deftypefun SCM gh_assq (SCM @var{x}, SCM @var{alist})
- @deftypefunx SCM gh_assv (SCM @var{x}, SCM @var{alist})
- @deftypefunx SCM gh_assoc (SCM @var{x}, SCM @var{alist})
- These functions search an @dfn{association list} (list of pairs)
- @var{alist} for the first pair whose CAR is @var{x}, and they return
- that pair.
- If no pair in @var{alist} has @var{x} as its CAR, the value
- @code{SCM_BOOL_F} (not the empty list) is returned.
- Note that these functions are implemented as macros which call
- @code{scm_assq()}, @code{scm_assv()} and @code{scm_assoc()}
- respectively.
- @end deftypefun
- @heading Symbols
- @c @deftypefun SCM gh_symbol (SCM str, SCM len)
- @c @deftypefunx SCM gh_tmp_symbol (SCM str, SCM len)
- @c Takes the given string @var{str} of length @var{len} and returns a
- @c symbol corresponding to that string.
- @c @end deftypefun
- @heading Vectors
- @deftypefun SCM gh_make_vector (SCM @var{n}, SCM @var{fill})
- @deftypefunx SCM gh_vector (SCM @var{ls})
- @deftypefunx SCM gh_vector_ref (SCM @var{v}, SCM @var{i})
- @deftypefunx SCM gh_vector_set (SCM @var{v}, SCM @var{i}, SCM @var{val})
- @deftypefunx {unsigned long} gh_vector_length (SCM @var{v})
- @deftypefunx SCM gh_list_to_vector (SCM @var{ls})
- These correspond to the Scheme @code{(make-vector n fill)},
- @code{(vector a b c ...)} @code{(vector-ref v i)} @code{(vector-set v i
- value)} @code{(vector-length v)} @code{(list->vector ls)} procedures.
- The correspondence is not perfect for @code{gh_vector}: this routine
- takes a list @var{ls} instead of the individual list elements, thus
- making it identical to @code{gh_list_to_vector}.
- There is also a difference in gh_vector_length: the value returned is a
- C @code{unsigned long} instead of an SCM object.
- @end deftypefun
- @heading Procedures
- @c @deftypefun SCM gh_make_subr (SCM (*@var{fn})(), int @var{req}, int @var{opt}, int @var{restp}, char *@var{sym})
- @c Make the C function @var{fn} available to Scheme programs. The function
- @c will be bound to the symbol @var{sym}. The arguments @var{req},
- @c @var{opt} and @var{restp} describe @var{fn}'s calling conventions. The
- @c function must take @var{req} required arguments and may take @var{opt}
- @c optional arguments. Any optional arguments which are not supplied by
- @c the caller will be bound to @var{SCM_UNSPECIFIED}. If @var{restp} is
- @c non-zero, it means that @var{fn} may be called with an arbitrary number
- @c of arguments, and that any extra arguments supplied by the caller will
- @c be passed to @var{fn} as a list. The @var{restp} argument is exactly
- @c like Scheme's @code{(lambda (arg1 arg2 . arglist))} calling convention.
- @c
- @c For example, the procedure @code{read-line}, which takes optional
- @c @var{port} and @var{handle-delim} arguments, would be declared like so:
- @c
- @c @example
- @c SCM scm_read_line (SCM port, SCM handle_delim);
- @c gh_make_subr (scm_read_line, 0, 2, 0, "read-line");
- @c @end example
- @c
- @c The @var{req} argument to @code{gh_make_subr} is 0 to indicate that
- @c there are no required arguments, so @code{read-line} may be called
- @c without any arguments at all. The @var{opt} argument is 2, to indicate
- @c that both the @var{port} and @var{handle_delim} arguments to
- @c @code{scm_read_line} are optional, and will be bound to
- @c @code{SCM_UNSPECIFIED} if the calling program does not supply them.
- @c Because the @var{restp} argument is 0, this function may not be called
- @c with more than two arguments.
- @c @end deftypefun
- @deftypefun SCM gh_apply (SCM proc, SCM args)
- Call the Scheme procedure @var{proc}, with the elements of @var{args} as
- arguments. @var{args} must be a proper list.
- @end deftypefun
- @deftypefun SCM gh_call0 (SCM proc)
- @deftypefunx SCM gh_call1 (SCM proc, SCM arg)
- @deftypefunx SCM gh_call2 (SCM proc, SCM arg1, SCM arg2)
- @deftypefunx SCM gh_call3 (SCM proc, SCM arg1, SCM arg2, SCM arg3)
- Call the Scheme procedure @var{proc} with no arguments
- (@code{gh_call0}), one argument (@code{gh_call1}), and so on. You can
- get the same effect by wrapping the arguments up into a list, and
- calling @code{gh_apply}; Guile provides these functions for convenience.
- @end deftypefun
- @deftypefun SCM gh_catch (SCM key, SCM thunk, SCM handler)
- @deftypefunx SCM gh_throw (SCM key, SCM args)
- Corresponds to the Scheme @code{catch} and @code{throw} procedures,
- which in Guile are provided as primitives.
- @end deftypefun
- @c [FIXME: must add the I/O section in gscm.h]
- @deftypefun SCM gh_is_eq (SCM a, SCM b)
- @deftypefunx SCM gh_is_eqv (SCM a, SCM b)
- @deftypefunx SCM gh_is_equal (SCM a, SCM b)
- These correspond to the Scheme @code{eq?}, @code{eqv?} and @code{equal?}
- predicates.
- @end deftypefun
- @deftypefun int gh_obj_length (SCM @var{obj})
- Returns the raw object length.
- @end deftypefun
- @heading Data lookup
- For now I just include Tim Pierce's comments from the @file{gh_data.c}
- file; it should be organized into a documentation of the two functions
- here.
- @smallexample
- /* Data lookups between C and Scheme
- Look up a symbol with a given name, and return the object to which
- it is bound. gh_lookup examines the Guile top level, and
- gh_module_lookup checks the module name space specified by the
- `vec' argument.
- The return value is the Scheme object to which SNAME is bound, or
- SCM_UNDEFINED if SNAME is not bound in the given context. [FIXME:
- should this be SCM_UNSPECIFIED? Can a symbol ever legitimately be
- bound to SCM_UNDEFINED or SCM_UNSPECIFIED? What is the difference?
- -twp] */
- @end smallexample
|