1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143 |
- @c -*-texinfo-*-
- @c This is part of the GNU Guile Reference Manual.
- @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008
- @c Free Software Foundation, Inc.
- @c See the file guile.texi for copying conditions.
- @page
- @node Simple Data Types
- @section Simple Generic Data Types
- This chapter describes those of Guile's simple data types which are
- primarily used for their role as items of generic data. By
- @dfn{simple} we mean data types that are not primarily used as
- containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
- For the documentation of such @dfn{compound} data types, see
- @ref{Compound Data Types}.
- @c One of the great strengths of Scheme is that there is no straightforward
- @c distinction between ``data'' and ``functionality''. For example,
- @c Guile's support for dynamic linking could be described:
- @c @itemize @bullet
- @c @item
- @c either in a ``data-centric'' way, as the behaviour and properties of the
- @c ``dynamically linked object'' data type, and the operations that may be
- @c applied to instances of this type
- @c @item
- @c or in a ``functionality-centric'' way, as the set of procedures that
- @c constitute Guile's support for dynamic linking, in the context of the
- @c module system.
- @c @end itemize
- @c The contents of this chapter are, therefore, a matter of judgment. By
- @c @dfn{generic}, we mean to select those data types whose typical use as
- @c @emph{data} in a wide variety of programming contexts is more important
- @c than their use in the implementation of a particular piece of
- @c @emph{functionality}. The last section of this chapter provides
- @c references for all the data types that are documented not here but in a
- @c ``functionality-centric'' way elsewhere in the manual.
- @menu
- * Booleans:: True/false values.
- * Numbers:: Numerical data types.
- * Characters:: Single characters.
- * Character Sets:: Sets of characters.
- * Strings:: Sequences of characters.
- * Regular Expressions:: Pattern matching and substitution.
- * Symbols:: Symbols.
- * Keywords:: Self-quoting, customizable display keywords.
- * Other Types:: "Functionality-centric" data types.
- @end menu
- @node Booleans
- @subsection Booleans
- @tpindex Booleans
- The two boolean values are @code{#t} for true and @code{#f} for false.
- Boolean values are returned by predicate procedures, such as the general
- equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
- (@pxref{Equality}) and numerical and string comparison operators like
- @code{string=?} (@pxref{String Comparison}) and @code{<=}
- (@pxref{Comparison}).
- @lisp
- (<= 3 8)
- @result{} #t
- (<= 3 -3)
- @result{} #f
- (equal? "house" "houses")
- @result{} #f
- (eq? #f #f)
- @result{}
- #t
- @end lisp
- In test condition contexts like @code{if} and @code{cond} (@pxref{if
- cond case}), where a group of subexpressions will be evaluated only if a
- @var{condition} expression evaluates to ``true'', ``true'' means any
- value at all except @code{#f}.
- @lisp
- (if #t "yes" "no")
- @result{} "yes"
- (if 0 "yes" "no")
- @result{} "yes"
- (if #f "yes" "no")
- @result{} "no"
- @end lisp
- A result of this asymmetry is that typical Scheme source code more often
- uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
- represent an @code{if} or @code{cond} false value, whereas @code{#t} is
- not necessary to represent an @code{if} or @code{cond} true value.
- It is important to note that @code{#f} is @strong{not} equivalent to any
- other Scheme value. In particular, @code{#f} is not the same as the
- number 0 (like in C and C++), and not the same as the ``empty list''
- (like in some Lisp dialects).
- In C, the two Scheme boolean values are available as the two constants
- @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
- Care must be taken with the false value @code{SCM_BOOL_F}: it is not
- false when used in C conditionals. In order to test for it, use
- @code{scm_is_false} or @code{scm_is_true}.
- @rnindex not
- @deffn {Scheme Procedure} not x
- @deffnx {C Function} scm_not (x)
- Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
- @end deffn
- @rnindex boolean?
- @deffn {Scheme Procedure} boolean? obj
- @deffnx {C Function} scm_boolean_p (obj)
- Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
- return @code{#f}.
- @end deffn
- @deftypevr {C Macro} SCM SCM_BOOL_T
- The @code{SCM} representation of the Scheme object @code{#t}.
- @end deftypevr
- @deftypevr {C Macro} SCM SCM_BOOL_F
- The @code{SCM} representation of the Scheme object @code{#f}.
- @end deftypevr
- @deftypefn {C Function} int scm_is_true (SCM obj)
- Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
- @end deftypefn
- @deftypefn {C Function} int scm_is_false (SCM obj)
- Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
- @end deftypefn
- @deftypefn {C Function} int scm_is_bool (SCM obj)
- Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
- return @code{0}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_bool (int val)
- Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
- @end deftypefn
- @deftypefn {C Function} int scm_to_bool (SCM val)
- Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
- when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
- You should probably use @code{scm_is_true} instead of this function
- when you just want to test a @code{SCM} value for trueness.
- @end deftypefn
- @node Numbers
- @subsection Numerical data types
- @tpindex Numbers
- Guile supports a rich ``tower'' of numerical types --- integer,
- rational, real and complex --- and provides an extensive set of
- mathematical and scientific functions for operating on numerical
- data. This section of the manual documents those types and functions.
- You may also find it illuminating to read R5RS's presentation of numbers
- in Scheme, which is particularly clear and accessible: see
- @ref{Numbers,,,r5rs,R5RS}.
- @menu
- * Numerical Tower:: Scheme's numerical "tower".
- * Integers:: Whole numbers.
- * Reals and Rationals:: Real and rational numbers.
- * Complex Numbers:: Complex numbers.
- * Exactness:: Exactness and inexactness.
- * Number Syntax:: Read syntax for numerical data.
- * Integer Operations:: Operations on integer values.
- * Comparison:: Comparison predicates.
- * Conversion:: Converting numbers to and from strings.
- * Complex:: Complex number operations.
- * Arithmetic:: Arithmetic functions.
- * Scientific:: Scientific functions.
- * Primitive Numerics:: Primitive numeric functions.
- * Bitwise Operations:: Logical AND, OR, NOT, and so on.
- * Random:: Random number generation.
- @end menu
- @node Numerical Tower
- @subsubsection Scheme's Numerical ``Tower''
- @rnindex number?
- Scheme's numerical ``tower'' consists of the following categories of
- numbers:
- @table @dfn
- @item integers
- Whole numbers, positive or negative; e.g.@: --5, 0, 18.
- @item rationals
- The set of numbers that can be expressed as @math{@var{p}/@var{q}}
- where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
- pi (an irrational number) doesn't. These include integers
- (@math{@var{n}/1}).
- @item real numbers
- The set of numbers that describes all possible positions along a
- one-dimensional line. This includes rationals as well as irrational
- numbers.
- @item complex numbers
- The set of numbers that describes all possible positions in a two
- dimensional space. This includes real as well as imaginary numbers
- (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
- @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
- @minus{}1.)
- @end table
- It is called a tower because each category ``sits on'' the one that
- follows it, in the sense that every integer is also a rational, every
- rational is also real, and every real number is also a complex number
- (but with zero imaginary part).
- In addition to the classification into integers, rationals, reals and
- complex numbers, Scheme also distinguishes between whether a number is
- represented exactly or not. For example, the result of
- @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
- can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
- Instead, it stores an inexact approximation, using the C type
- @code{double}.
- Guile can represent exact rationals of any magnitude, inexact
- rationals that fit into a C @code{double}, and inexact complex numbers
- with @code{double} real and imaginary parts.
- The @code{number?} predicate may be applied to any Scheme value to
- discover whether the value is any of the supported numerical types.
- @deffn {Scheme Procedure} number? obj
- @deffnx {C Function} scm_number_p (obj)
- Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
- @end deffn
- For example:
- @lisp
- (number? 3)
- @result{} #t
- (number? "hello there!")
- @result{} #f
- (define pi 3.141592654)
- (number? pi)
- @result{} #t
- @end lisp
- @deftypefn {C Function} int scm_is_number (SCM obj)
- This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
- @end deftypefn
- The next few subsections document each of Guile's numerical data types
- in detail.
- @node Integers
- @subsubsection Integers
- @tpindex Integer numbers
- @rnindex integer?
- Integers are whole numbers, that is numbers with no fractional part,
- such as 2, 83, and @minus{}3789.
- Integers in Guile can be arbitrarily big, as shown by the following
- example.
- @lisp
- (define (factorial n)
- (let loop ((n n) (product 1))
- (if (= n 0)
- product
- (loop (- n 1) (* product n)))))
- (factorial 3)
- @result{} 6
- (factorial 20)
- @result{} 2432902008176640000
- (- (factorial 45))
- @result{} -119622220865480194561963161495657715064383733760000000000
- @end lisp
- Readers whose background is in programming languages where integers are
- limited by the need to fit into just 4 or 8 bytes of memory may find
- this surprising, or suspect that Guile's representation of integers is
- inefficient. In fact, Guile achieves a near optimal balance of
- convenience and efficiency by using the host computer's native
- representation of integers where possible, and a more general
- representation where the required number does not fit in the native
- form. Conversion between these two representations is automatic and
- completely invisible to the Scheme level programmer.
- The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
- inexact integers. They are explained in detail in the next section,
- together with reals and rationals.
- C has a host of different integer types, and Guile offers a host of
- functions to convert between them and the @code{SCM} representation.
- For example, a C @code{int} can be handled with @code{scm_to_int} and
- @code{scm_from_int}. Guile also defines a few C integer types of its
- own, to help with differences between systems.
- C integer types that are not covered can be handled with the generic
- @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
- signed types, or with @code{scm_to_unsigned_integer} and
- @code{scm_from_unsigned_integer} for unsigned types.
- Scheme integers can be exact and inexact. For example, a number
- written as @code{3.0} with an explicit decimal-point is inexact, but
- it is also an integer. The functions @code{integer?} and
- @code{scm_is_integer} report true for such a number, but the functions
- @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
- allow exact integers and thus report false. Likewise, the conversion
- functions like @code{scm_to_signed_integer} only accept exact
- integers.
- The motivation for this behavior is that the inexactness of a number
- should not be lost silently. If you want to allow inexact integers,
- you can explicitely insert a call to @code{inexact->exact} or to its C
- equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
- be converted by this call into exact integers; inexact non-integers
- will become exact fractions.)
- @deffn {Scheme Procedure} integer? x
- @deffnx {C Function} scm_integer_p (x)
- Return @code{#t} if @var{x} is an exact or inexact integer number, else
- @code{#f}.
- @lisp
- (integer? 487)
- @result{} #t
- (integer? 3.0)
- @result{} #t
- (integer? -3.4)
- @result{} #f
- (integer? +inf.0)
- @result{} #t
- @end lisp
- @end deffn
- @deftypefn {C Function} int scm_is_integer (SCM x)
- This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
- @end deftypefn
- @defvr {C Type} scm_t_int8
- @defvrx {C Type} scm_t_uint8
- @defvrx {C Type} scm_t_int16
- @defvrx {C Type} scm_t_uint16
- @defvrx {C Type} scm_t_int32
- @defvrx {C Type} scm_t_uint32
- @defvrx {C Type} scm_t_int64
- @defvrx {C Type} scm_t_uint64
- @defvrx {C Type} scm_t_intmax
- @defvrx {C Type} scm_t_uintmax
- The C types are equivalent to the corresponding ISO C types but are
- defined on all platforms, with the exception of @code{scm_t_int64} and
- @code{scm_t_uint64}, which are only defined when a 64-bit type is
- available. For example, @code{scm_t_int8} is equivalent to
- @code{int8_t}.
- You can regard these definitions as a stop-gap measure until all
- platforms provide these types. If you know that all the platforms
- that you are interested in already provide these types, it is better
- to use them directly instead of the types provided by Guile.
- @end defvr
- @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
- @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
- Return @code{1} when @var{x} represents an exact integer that is
- between @var{min} and @var{max}, inclusive.
- These functions can be used to check whether a @code{SCM} value will
- fit into a given range, such as the range of a given C integer type.
- If you just want to convert a @code{SCM} value to a given C integer
- type, use one of the conversion functions directly.
- @end deftypefn
- @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
- @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
- When @var{x} represents an exact integer that is between @var{min} and
- @var{max} inclusive, return that integer. Else signal an error,
- either a `wrong-type' error when @var{x} is not an exact integer, or
- an `out-of-range' error when it doesn't fit the given range.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
- @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
- Return the @code{SCM} value that represents the integer @var{x}. This
- function will always succeed and will always return an exact number.
- @end deftypefn
- @deftypefn {C Function} char scm_to_char (SCM x)
- @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
- @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
- @deftypefnx {C Function} short scm_to_short (SCM x)
- @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
- @deftypefnx {C Function} int scm_to_int (SCM x)
- @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
- @deftypefnx {C Function} long scm_to_long (SCM x)
- @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
- @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
- @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
- @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
- @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
- @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
- @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
- @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
- @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
- @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
- @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
- @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
- @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
- @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
- @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
- When @var{x} represents an exact integer that fits into the indicated
- C type, return that integer. Else signal an error, either a
- `wrong-type' error when @var{x} is not an exact integer, or an
- `out-of-range' error when it doesn't fit the given range.
- The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
- @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
- the corresponding types are.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_char (char x)
- @deftypefnx {C Function} SCM scm_from_schar (signed char x)
- @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
- @deftypefnx {C Function} SCM scm_from_short (short x)
- @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
- @deftypefnx {C Function} SCM scm_from_int (int x)
- @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
- @deftypefnx {C Function} SCM scm_from_long (long x)
- @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
- @deftypefnx {C Function} SCM scm_from_long_long (long long x)
- @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
- @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
- @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
- @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
- @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
- @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
- @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
- @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
- @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
- @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
- @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
- @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
- @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
- Return the @code{SCM} value that represents the integer @var{x}.
- These functions will always succeed and will always return an exact
- number.
- @end deftypefn
- @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
- Assign @var{val} to the multiple precision integer @var{rop}.
- @var{val} must be an exact integer, otherwise an error will be
- signalled. @var{rop} must have been initialized with @code{mpz_init}
- before this function is called. When @var{rop} is no longer needed
- the occupied space must be freed with @code{mpz_clear}.
- @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
- Return the @code{SCM} value that represents @var{val}.
- @end deftypefn
- @node Reals and Rationals
- @subsubsection Real and Rational Numbers
- @tpindex Real numbers
- @tpindex Rational numbers
- @rnindex real?
- @rnindex rational?
- Mathematically, the real numbers are the set of numbers that describe
- all possible points along a continuous, infinite, one-dimensional line.
- The rational numbers are the set of all numbers that can be written as
- fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
- All rational numbers are also real, but there are real numbers that
- are not rational, for example @m{\sqrt2, the square root of 2}, and
- @m{\pi,pi}.
- Guile can represent both exact and inexact rational numbers, but it
- can not represent irrational numbers. Exact rationals are represented
- by storing the numerator and denominator as two exact integers.
- Inexact rationals are stored as floating point numbers using the C
- type @code{double}.
- Exact rationals are written as a fraction of integers. There must be
- no whitespace around the slash:
- @lisp
- 1/2
- -22/7
- @end lisp
- Even though the actual encoding of inexact rationals is in binary, it
- may be helpful to think of it as a decimal number with a limited
- number of significant figures and a decimal point somewhere, since
- this corresponds to the standard notation for non-whole numbers. For
- example:
- @lisp
- 0.34
- -0.00000142857931198
- -5648394822220000000000.0
- 4.0
- @end lisp
- The limited precision of Guile's encoding means that any ``real'' number
- in Guile can be written in a rational form, by multiplying and then dividing
- by sufficient powers of 10 (or in fact, 2). For example,
- @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
- 100000000000000000. In Guile's current incarnation, therefore, the
- @code{rational?} and @code{real?} predicates are equivalent.
- Dividing by an exact zero leads to a error message, as one might
- expect. However, dividing by an inexact zero does not produce an
- error. Instead, the result of the division is either plus or minus
- infinity, depending on the sign of the divided number.
- The infinities are written @samp{+inf.0} and @samp{-inf.0},
- respectivly. This syntax is also recognized by @code{read} as an
- extension to the usual Scheme syntax.
- Dividing zero by zero yields something that is not a number at all:
- @samp{+nan.0}. This is the special `not a number' value.
- On platforms that follow @acronym{IEEE} 754 for their floating point
- arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
- are implemented using the corresponding @acronym{IEEE} 754 values.
- They behave in arithmetic operations like @acronym{IEEE} 754 describes
- it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
- The infinities are inexact integers and are considered to be both even
- and odd. While @samp{+nan.0} is not @code{=} to itself, it is
- @code{eqv?} to itself.
- To test for the special values, use the functions @code{inf?} and
- @code{nan?}.
- @deffn {Scheme Procedure} real? obj
- @deffnx {C Function} scm_real_p (obj)
- Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
- that the sets of integer and rational values form subsets of the set
- of real numbers, so the predicate will also be fulfilled if @var{obj}
- is an integer number or a rational number.
- @end deffn
- @deffn {Scheme Procedure} rational? x
- @deffnx {C Function} scm_rational_p (x)
- Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
- Note that the set of integer values forms a subset of the set of
- rational numbers, i. e. the predicate will also be fulfilled if
- @var{x} is an integer number.
- Since Guile can not represent irrational numbers, every number
- satisfying @code{real?} also satisfies @code{rational?} in Guile.
- @end deffn
- @deffn {Scheme Procedure} rationalize x eps
- @deffnx {C Function} scm_rationalize (x, eps)
- Returns the @emph{simplest} rational number differing
- from @var{x} by no more than @var{eps}.
- As required by @acronym{R5RS}, @code{rationalize} only returns an
- exact result when both its arguments are exact. Thus, you might need
- to use @code{inexact->exact} on the arguments.
- @lisp
- (rationalize (inexact->exact 1.2) 1/100)
- @result{} 6/5
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} inf? x
- @deffnx {C Function} scm_inf_p (x)
- Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
- @code{#f} otherwise.
- @end deffn
- @deffn {Scheme Procedure} nan? x
- @deffnx {C Function} scm_nan_p (x)
- Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
- @end deffn
- @deffn {Scheme Procedure} nan
- @deffnx {C Function} scm_nan ()
- Return NaN.
- @end deffn
- @deffn {Scheme Procedure} inf
- @deffnx {C Function} scm_inf ()
- Return Inf.
- @end deffn
- @deffn {Scheme Procedure} numerator x
- @deffnx {C Function} scm_numerator (x)
- Return the numerator of the rational number @var{x}.
- @end deffn
- @deffn {Scheme Procedure} denominator x
- @deffnx {C Function} scm_denominator (x)
- Return the denominator of the rational number @var{x}.
- @end deffn
- @deftypefn {C Function} int scm_is_real (SCM val)
- @deftypefnx {C Function} int scm_is_rational (SCM val)
- Equivalent to @code{scm_is_true (scm_real_p (val))} and
- @code{scm_is_true (scm_rational_p (val))}, respectively.
- @end deftypefn
- @deftypefn {C Function} double scm_to_double (SCM val)
- Returns the number closest to @var{val} that is representable as a
- @code{double}. Returns infinity for a @var{val} that is too large in
- magnitude. The argument @var{val} must be a real number.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_double (double val)
- Return the @code{SCM} value that representats @var{val}. The returned
- value is inexact according to the predicate @code{inexact?}, but it
- will be exactly equal to @var{val}.
- @end deftypefn
- @node Complex Numbers
- @subsubsection Complex Numbers
- @tpindex Complex numbers
- @rnindex complex?
- Complex numbers are the set of numbers that describe all possible points
- in a two-dimensional space. The two coordinates of a particular point
- in this space are known as the @dfn{real} and @dfn{imaginary} parts of
- the complex number that describes that point.
- In Guile, complex numbers are written in rectangular form as the sum of
- their real and imaginary parts, using the symbol @code{i} to indicate
- the imaginary part.
- @lisp
- 3+4i
- @result{}
- 3.0+4.0i
- (* 3-8i 2.3+0.3i)
- @result{}
- 9.3-17.5i
- @end lisp
- @cindex polar form
- @noindent
- Polar form can also be used, with an @samp{@@} between magnitude and
- angle,
- @lisp
- 1@@3.141592 @result{} -1.0 (approx)
- -1@@1.57079 @result{} 0.0-1.0i (approx)
- @end lisp
- Guile represents a complex number with a non-zero imaginary part as a
- pair of inexact rationals, so the real and imaginary parts of a
- complex number have the same properties of inexactness and limited
- precision as single inexact rational numbers. Guile can not represent
- exact complex numbers with non-zero imaginary parts.
- @deffn {Scheme Procedure} complex? z
- @deffnx {C Function} scm_complex_p (z)
- Return @code{#t} if @var{x} is a complex number, @code{#f}
- otherwise. Note that the sets of real, rational and integer
- values form subsets of the set of complex numbers, i. e. the
- predicate will also be fulfilled if @var{x} is a real,
- rational or integer number.
- @end deffn
- @deftypefn {C Function} int scm_is_complex (SCM val)
- Equivalent to @code{scm_is_true (scm_complex_p (val))}.
- @end deftypefn
- @node Exactness
- @subsubsection Exact and Inexact Numbers
- @tpindex Exact numbers
- @tpindex Inexact numbers
- @rnindex exact?
- @rnindex inexact?
- @rnindex exact->inexact
- @rnindex inexact->exact
- R5RS requires that a calculation involving inexact numbers always
- produces an inexact result. To meet this requirement, Guile
- distinguishes between an exact integer value such as @samp{5} and the
- corresponding inexact real value which, to the limited precision
- available, has no fractional part, and is printed as @samp{5.0}. Guile
- will only convert the latter value to the former when forced to do so by
- an invocation of the @code{inexact->exact} procedure.
- @deffn {Scheme Procedure} exact? z
- @deffnx {C Function} scm_exact_p (z)
- Return @code{#t} if the number @var{z} is exact, @code{#f}
- otherwise.
- @lisp
- (exact? 2)
- @result{} #t
- (exact? 0.5)
- @result{} #f
- (exact? (/ 2))
- @result{} #t
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} inexact? z
- @deffnx {C Function} scm_inexact_p (z)
- Return @code{#t} if the number @var{z} is inexact, @code{#f}
- else.
- @end deffn
- @deffn {Scheme Procedure} inexact->exact z
- @deffnx {C Function} scm_inexact_to_exact (z)
- Return an exact number that is numerically closest to @var{z}, when
- there is one. For inexact rationals, Guile returns the exact rational
- that is numerically equal to the inexact rational. Inexact complex
- numbers with a non-zero imaginary part can not be made exact.
- @lisp
- (inexact->exact 0.5)
- @result{} 1/2
- @end lisp
- The following happens because 12/10 is not exactly representable as a
- @code{double} (on most platforms). However, when reading a decimal
- number that has been marked exact with the ``#e'' prefix, Guile is
- able to represent it correctly.
- @lisp
- (inexact->exact 1.2)
- @result{} 5404319552844595/4503599627370496
- #e1.2
- @result{} 6/5
- @end lisp
- @end deffn
- @c begin (texi-doc-string "guile" "exact->inexact")
- @deffn {Scheme Procedure} exact->inexact z
- @deffnx {C Function} scm_exact_to_inexact (z)
- Convert the number @var{z} to its inexact representation.
- @end deffn
- @node Number Syntax
- @subsubsection Read Syntax for Numerical Data
- The read syntax for integers is a string of digits, optionally
- preceded by a minus or plus character, a code indicating the
- base in which the integer is encoded, and a code indicating whether
- the number is exact or inexact. The supported base codes are:
- @table @code
- @item #b
- @itemx #B
- the integer is written in binary (base 2)
- @item #o
- @itemx #O
- the integer is written in octal (base 8)
- @item #d
- @itemx #D
- the integer is written in decimal (base 10)
- @item #x
- @itemx #X
- the integer is written in hexadecimal (base 16)
- @end table
- If the base code is omitted, the integer is assumed to be decimal. The
- following examples show how these base codes are used.
- @lisp
- -13
- @result{} -13
- #d-13
- @result{} -13
- #x-13
- @result{} -19
- #b+1101
- @result{} 13
- #o377
- @result{} 255
- @end lisp
- The codes for indicating exactness (which can, incidentally, be applied
- to all numerical values) are:
- @table @code
- @item #e
- @itemx #E
- the number is exact
- @item #i
- @itemx #I
- the number is inexact.
- @end table
- If the exactness indicator is omitted, the number is exact unless it
- contains a radix point. Since Guile can not represent exact complex
- numbers, an error is signalled when asking for them.
- @lisp
- (exact? 1.2)
- @result{} #f
- (exact? #e1.2)
- @result{} #t
- (exact? #e+1i)
- ERROR: Wrong type argument
- @end lisp
- Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
- plus and minus infinity, respectively. The value must be written
- exactly as shown, that is, they always must have a sign and exactly
- one zero digit after the decimal point. It also understands
- @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
- The sign is ignored for `not-a-number' and the value is always printed
- as @samp{+nan.0}.
- @node Integer Operations
- @subsubsection Operations on Integer Values
- @rnindex odd?
- @rnindex even?
- @rnindex quotient
- @rnindex remainder
- @rnindex modulo
- @rnindex gcd
- @rnindex lcm
- @deffn {Scheme Procedure} odd? n
- @deffnx {C Function} scm_odd_p (n)
- Return @code{#t} if @var{n} is an odd number, @code{#f}
- otherwise.
- @end deffn
- @deffn {Scheme Procedure} even? n
- @deffnx {C Function} scm_even_p (n)
- Return @code{#t} if @var{n} is an even number, @code{#f}
- otherwise.
- @end deffn
- @c begin (texi-doc-string "guile" "quotient")
- @c begin (texi-doc-string "guile" "remainder")
- @deffn {Scheme Procedure} quotient n d
- @deffnx {Scheme Procedure} remainder n d
- @deffnx {C Function} scm_quotient (n, d)
- @deffnx {C Function} scm_remainder (n, d)
- Return the quotient or remainder from @var{n} divided by @var{d}. The
- quotient is rounded towards zero, and the remainder will have the same
- sign as @var{n}. In all cases quotient and remainder satisfy
- @math{@var{n} = @var{q}*@var{d} + @var{r}}.
- @lisp
- (remainder 13 4) @result{} 1
- (remainder -13 4) @result{} -1
- @end lisp
- @end deffn
- @c begin (texi-doc-string "guile" "modulo")
- @deffn {Scheme Procedure} modulo n d
- @deffnx {C Function} scm_modulo (n, d)
- Return the remainder from @var{n} divided by @var{d}, with the same
- sign as @var{d}.
- @lisp
- (modulo 13 4) @result{} 1
- (modulo -13 4) @result{} 3
- (modulo 13 -4) @result{} -3
- (modulo -13 -4) @result{} -1
- @end lisp
- @end deffn
- @c begin (texi-doc-string "guile" "gcd")
- @deffn {Scheme Procedure} gcd x@dots{}
- @deffnx {C Function} scm_gcd (x, y)
- Return the greatest common divisor of all arguments.
- If called without arguments, 0 is returned.
- The C function @code{scm_gcd} always takes two arguments, while the
- Scheme function can take an arbitrary number.
- @end deffn
- @c begin (texi-doc-string "guile" "lcm")
- @deffn {Scheme Procedure} lcm x@dots{}
- @deffnx {C Function} scm_lcm (x, y)
- Return the least common multiple of the arguments.
- If called without arguments, 1 is returned.
- The C function @code{scm_lcm} always takes two arguments, while the
- Scheme function can take an arbitrary number.
- @end deffn
- @deffn {Scheme Procedure} modulo-expt n k m
- @deffnx {C Function} scm_modulo_expt (n, k, m)
- Return @var{n} raised to the integer exponent
- @var{k}, modulo @var{m}.
- @lisp
- (modulo-expt 2 3 5)
- @result{} 3
- @end lisp
- @end deffn
- @node Comparison
- @subsubsection Comparison Predicates
- @rnindex zero?
- @rnindex positive?
- @rnindex negative?
- The C comparison functions below always takes two arguments, while the
- Scheme functions can take an arbitrary number. Also keep in mind that
- the C functions return one of the Scheme boolean values
- @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
- is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
- y))} when testing the two Scheme numbers @code{x} and @code{y} for
- equality, for example.
- @c begin (texi-doc-string "guile" "=")
- @deffn {Scheme Procedure} =
- @deffnx {C Function} scm_num_eq_p (x, y)
- Return @code{#t} if all parameters are numerically equal.
- @end deffn
- @c begin (texi-doc-string "guile" "<")
- @deffn {Scheme Procedure} <
- @deffnx {C Function} scm_less_p (x, y)
- Return @code{#t} if the list of parameters is monotonically
- increasing.
- @end deffn
- @c begin (texi-doc-string "guile" ">")
- @deffn {Scheme Procedure} >
- @deffnx {C Function} scm_gr_p (x, y)
- Return @code{#t} if the list of parameters is monotonically
- decreasing.
- @end deffn
- @c begin (texi-doc-string "guile" "<=")
- @deffn {Scheme Procedure} <=
- @deffnx {C Function} scm_leq_p (x, y)
- Return @code{#t} if the list of parameters is monotonically
- non-decreasing.
- @end deffn
- @c begin (texi-doc-string "guile" ">=")
- @deffn {Scheme Procedure} >=
- @deffnx {C Function} scm_geq_p (x, y)
- Return @code{#t} if the list of parameters is monotonically
- non-increasing.
- @end deffn
- @c begin (texi-doc-string "guile" "zero?")
- @deffn {Scheme Procedure} zero? z
- @deffnx {C Function} scm_zero_p (z)
- Return @code{#t} if @var{z} is an exact or inexact number equal to
- zero.
- @end deffn
- @c begin (texi-doc-string "guile" "positive?")
- @deffn {Scheme Procedure} positive? x
- @deffnx {C Function} scm_positive_p (x)
- Return @code{#t} if @var{x} is an exact or inexact number greater than
- zero.
- @end deffn
- @c begin (texi-doc-string "guile" "negative?")
- @deffn {Scheme Procedure} negative? x
- @deffnx {C Function} scm_negative_p (x)
- Return @code{#t} if @var{x} is an exact or inexact number less than
- zero.
- @end deffn
- @node Conversion
- @subsubsection Converting Numbers To and From Strings
- @rnindex number->string
- @rnindex string->number
- @deffn {Scheme Procedure} number->string n [radix]
- @deffnx {C Function} scm_number_to_string (n, radix)
- Return a string holding the external representation of the
- number @var{n} in the given @var{radix}. If @var{n} is
- inexact, a radix of 10 will be used.
- @end deffn
- @deffn {Scheme Procedure} string->number string [radix]
- @deffnx {C Function} scm_string_to_number (string, radix)
- Return a number of the maximally precise representation
- expressed by the given @var{string}. @var{radix} must be an
- exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
- is a default radix that may be overridden by an explicit radix
- prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
- supplied, then the default radix is 10. If string is not a
- syntactically valid notation for a number, then
- @code{string->number} returns @code{#f}.
- @end deffn
- @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
- As per @code{string->number} above, but taking a C string, as pointer
- and length. The string characters should be in the current locale
- encoding (@code{locale} in the name refers only to that, there's no
- locale-dependent parsing).
- @end deftypefn
- @node Complex
- @subsubsection Complex Number Operations
- @rnindex make-rectangular
- @rnindex make-polar
- @rnindex real-part
- @rnindex imag-part
- @rnindex magnitude
- @rnindex angle
- @deffn {Scheme Procedure} make-rectangular real imaginary
- @deffnx {C Function} scm_make_rectangular (real, imaginary)
- Return a complex number constructed of the given @var{real} and
- @var{imaginary} parts.
- @end deffn
- @deffn {Scheme Procedure} make-polar x y
- @deffnx {C Function} scm_make_polar (x, y)
- @cindex polar form
- Return the complex number @var{x} * e^(i * @var{y}).
- @end deffn
- @c begin (texi-doc-string "guile" "real-part")
- @deffn {Scheme Procedure} real-part z
- @deffnx {C Function} scm_real_part (z)
- Return the real part of the number @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "imag-part")
- @deffn {Scheme Procedure} imag-part z
- @deffnx {C Function} scm_imag_part (z)
- Return the imaginary part of the number @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "magnitude")
- @deffn {Scheme Procedure} magnitude z
- @deffnx {C Function} scm_magnitude (z)
- Return the magnitude of the number @var{z}. This is the same as
- @code{abs} for real arguments, but also allows complex numbers.
- @end deffn
- @c begin (texi-doc-string "guile" "angle")
- @deffn {Scheme Procedure} angle z
- @deffnx {C Function} scm_angle (z)
- Return the angle of the complex number @var{z}.
- @end deffn
- @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
- @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
- Like @code{scm_make_rectangular} or @code{scm_make_polar},
- respectively, but these functions take @code{double}s as their
- arguments.
- @end deftypefn
- @deftypefn {C Function} double scm_c_real_part (z)
- @deftypefnx {C Function} double scm_c_imag_part (z)
- Returns the real or imaginary part of @var{z} as a @code{double}.
- @end deftypefn
- @deftypefn {C Function} double scm_c_magnitude (z)
- @deftypefnx {C Function} double scm_c_angle (z)
- Returns the magnitude or angle of @var{z} as a @code{double}.
- @end deftypefn
- @node Arithmetic
- @subsubsection Arithmetic Functions
- @rnindex max
- @rnindex min
- @rnindex +
- @rnindex *
- @rnindex -
- @rnindex /
- @findex 1+
- @findex 1-
- @rnindex abs
- @rnindex floor
- @rnindex ceiling
- @rnindex truncate
- @rnindex round
- The C arithmetic functions below always takes two arguments, while the
- Scheme functions can take an arbitrary number. When you need to
- invoke them with just one argument, for example to compute the
- equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
- one: @code{scm_difference (x, SCM_UNDEFINED)}.
- @c begin (texi-doc-string "guile" "+")
- @deffn {Scheme Procedure} + z1 @dots{}
- @deffnx {C Function} scm_sum (z1, z2)
- Return the sum of all parameter values. Return 0 if called without any
- parameters.
- @end deffn
- @c begin (texi-doc-string "guile" "-")
- @deffn {Scheme Procedure} - z1 z2 @dots{}
- @deffnx {C Function} scm_difference (z1, z2)
- If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
- the sum of all but the first argument are subtracted from the first
- argument.
- @end deffn
- @c begin (texi-doc-string "guile" "*")
- @deffn {Scheme Procedure} * z1 @dots{}
- @deffnx {C Function} scm_product (z1, z2)
- Return the product of all arguments. If called without arguments, 1 is
- returned.
- @end deffn
- @c begin (texi-doc-string "guile" "/")
- @deffn {Scheme Procedure} / z1 z2 @dots{}
- @deffnx {C Function} scm_divide (z1, z2)
- Divide the first argument by the product of the remaining arguments. If
- called with one argument @var{z1}, 1/@var{z1} is returned.
- @end deffn
- @deffn {Scheme Procedure} 1+ z
- @deffnx {C Function} scm_oneplus (z)
- Return @math{@var{z} + 1}.
- @end deffn
- @deffn {Scheme Procedure} 1- z
- @deffnx {C function} scm_oneminus (z)
- Return @math{@var{z} - 1}.
- @end deffn
- @c begin (texi-doc-string "guile" "abs")
- @deffn {Scheme Procedure} abs x
- @deffnx {C Function} scm_abs (x)
- Return the absolute value of @var{x}.
- @var{x} must be a number with zero imaginary part. To calculate the
- magnitude of a complex number, use @code{magnitude} instead.
- @end deffn
- @c begin (texi-doc-string "guile" "max")
- @deffn {Scheme Procedure} max x1 x2 @dots{}
- @deffnx {C Function} scm_max (x1, x2)
- Return the maximum of all parameter values.
- @end deffn
- @c begin (texi-doc-string "guile" "min")
- @deffn {Scheme Procedure} min x1 x2 @dots{}
- @deffnx {C Function} scm_min (x1, x2)
- Return the minimum of all parameter values.
- @end deffn
- @c begin (texi-doc-string "guile" "truncate")
- @deffn {Scheme Procedure} truncate x
- @deffnx {C Function} scm_truncate_number (x)
- Round the inexact number @var{x} towards zero.
- @end deffn
- @c begin (texi-doc-string "guile" "round")
- @deffn {Scheme Procedure} round x
- @deffnx {C Function} scm_round_number (x)
- Round the inexact number @var{x} to the nearest integer. When exactly
- halfway between two integers, round to the even one.
- @end deffn
- @c begin (texi-doc-string "guile" "floor")
- @deffn {Scheme Procedure} floor x
- @deffnx {C Function} scm_floor (x)
- Round the number @var{x} towards minus infinity.
- @end deffn
- @c begin (texi-doc-string "guile" "ceiling")
- @deffn {Scheme Procedure} ceiling x
- @deffnx {C Function} scm_ceiling (x)
- Round the number @var{x} towards infinity.
- @end deffn
- @deftypefn {C Function} double scm_c_truncate (double x)
- @deftypefnx {C Function} double scm_c_round (double x)
- Like @code{scm_truncate_number} or @code{scm_round_number},
- respectively, but these functions take and return @code{double}
- values.
- @end deftypefn
- @node Scientific
- @subsubsection Scientific Functions
- The following procedures accept any kind of number as arguments,
- including complex numbers.
- @rnindex sqrt
- @c begin (texi-doc-string "guile" "sqrt")
- @deffn {Scheme Procedure} sqrt z
- Return the square root of @var{z}. Of the two possible roots
- (positive and negative), the one with the a positive real part is
- returned, or if that's zero then a positive imaginary part. Thus,
- @example
- (sqrt 9.0) @result{} 3.0
- (sqrt -9.0) @result{} 0.0+3.0i
- (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
- (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
- @end example
- @end deffn
- @rnindex expt
- @c begin (texi-doc-string "guile" "expt")
- @deffn {Scheme Procedure} expt z1 z2
- Return @var{z1} raised to the power of @var{z2}.
- @end deffn
- @rnindex sin
- @c begin (texi-doc-string "guile" "sin")
- @deffn {Scheme Procedure} sin z
- Return the sine of @var{z}.
- @end deffn
- @rnindex cos
- @c begin (texi-doc-string "guile" "cos")
- @deffn {Scheme Procedure} cos z
- Return the cosine of @var{z}.
- @end deffn
- @rnindex tan
- @c begin (texi-doc-string "guile" "tan")
- @deffn {Scheme Procedure} tan z
- Return the tangent of @var{z}.
- @end deffn
- @rnindex asin
- @c begin (texi-doc-string "guile" "asin")
- @deffn {Scheme Procedure} asin z
- Return the arcsine of @var{z}.
- @end deffn
- @rnindex acos
- @c begin (texi-doc-string "guile" "acos")
- @deffn {Scheme Procedure} acos z
- Return the arccosine of @var{z}.
- @end deffn
- @rnindex atan
- @c begin (texi-doc-string "guile" "atan")
- @deffn {Scheme Procedure} atan z
- @deffnx {Scheme Procedure} atan y x
- Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
- @end deffn
- @rnindex exp
- @c begin (texi-doc-string "guile" "exp")
- @deffn {Scheme Procedure} exp z
- Return e to the power of @var{z}, where e is the base of natural
- logarithms (2.71828@dots{}).
- @end deffn
- @rnindex log
- @c begin (texi-doc-string "guile" "log")
- @deffn {Scheme Procedure} log z
- Return the natural logarithm of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "log10")
- @deffn {Scheme Procedure} log10 z
- Return the base 10 logarithm of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "sinh")
- @deffn {Scheme Procedure} sinh z
- Return the hyperbolic sine of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "cosh")
- @deffn {Scheme Procedure} cosh z
- Return the hyperbolic cosine of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "tanh")
- @deffn {Scheme Procedure} tanh z
- Return the hyperbolic tangent of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "asinh")
- @deffn {Scheme Procedure} asinh z
- Return the hyperbolic arcsine of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "acosh")
- @deffn {Scheme Procedure} acosh z
- Return the hyperbolic arccosine of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "atanh")
- @deffn {Scheme Procedure} atanh z
- Return the hyperbolic arctangent of @var{z}.
- @end deffn
- @node Primitive Numerics
- @subsubsection Primitive Numeric Functions
- Many of Guile's numeric procedures which accept any kind of numbers as
- arguments, including complex numbers, are implemented as Scheme
- procedures that use the following real number-based primitives. These
- primitives signal an error if they are called with complex arguments.
- @c begin (texi-doc-string "guile" "$abs")
- @deffn {Scheme Procedure} $abs x
- Return the absolute value of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$sqrt")
- @deffn {Scheme Procedure} $sqrt x
- Return the square root of @var{x}.
- @end deffn
- @deffn {Scheme Procedure} $expt x y
- @deffnx {C Function} scm_sys_expt (x, y)
- Return @var{x} raised to the power of @var{y}. This
- procedure does not accept complex arguments.
- @end deffn
- @c begin (texi-doc-string "guile" "$sin")
- @deffn {Scheme Procedure} $sin x
- Return the sine of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$cos")
- @deffn {Scheme Procedure} $cos x
- Return the cosine of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$tan")
- @deffn {Scheme Procedure} $tan x
- Return the tangent of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$asin")
- @deffn {Scheme Procedure} $asin x
- Return the arcsine of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$acos")
- @deffn {Scheme Procedure} $acos x
- Return the arccosine of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$atan")
- @deffn {Scheme Procedure} $atan x
- Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
- @math{PI/2}.
- @end deffn
- @deffn {Scheme Procedure} $atan2 x y
- @deffnx {C Function} scm_sys_atan2 (x, y)
- Return the arc tangent of the two arguments @var{x} and
- @var{y}. This is similar to calculating the arc tangent of
- @var{x} / @var{y}, except that the signs of both arguments
- are used to determine the quadrant of the result. This
- procedure does not accept complex arguments.
- @end deffn
- @c begin (texi-doc-string "guile" "$exp")
- @deffn {Scheme Procedure} $exp x
- Return e to the power of @var{x}, where e is the base of natural
- logarithms (2.71828@dots{}).
- @end deffn
- @c begin (texi-doc-string "guile" "$log")
- @deffn {Scheme Procedure} $log x
- Return the natural logarithm of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$sinh")
- @deffn {Scheme Procedure} $sinh x
- Return the hyperbolic sine of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$cosh")
- @deffn {Scheme Procedure} $cosh x
- Return the hyperbolic cosine of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$tanh")
- @deffn {Scheme Procedure} $tanh x
- Return the hyperbolic tangent of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$asinh")
- @deffn {Scheme Procedure} $asinh x
- Return the hyperbolic arcsine of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$acosh")
- @deffn {Scheme Procedure} $acosh x
- Return the hyperbolic arccosine of @var{x}.
- @end deffn
- @c begin (texi-doc-string "guile" "$atanh")
- @deffn {Scheme Procedure} $atanh x
- Return the hyperbolic arctangent of @var{x}.
- @end deffn
- C functions for the above are provided by the standard mathematics
- library. Naturally these expect and return @code{double} arguments
- (@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
- @multitable {xx} {Scheme Procedure} {C Function}
- @item @tab Scheme Procedure @tab C Function
- @item @tab @code{$abs} @tab @code{fabs}
- @item @tab @code{$sqrt} @tab @code{sqrt}
- @item @tab @code{$sin} @tab @code{sin}
- @item @tab @code{$cos} @tab @code{cos}
- @item @tab @code{$tan} @tab @code{tan}
- @item @tab @code{$asin} @tab @code{asin}
- @item @tab @code{$acos} @tab @code{acos}
- @item @tab @code{$atan} @tab @code{atan}
- @item @tab @code{$atan2} @tab @code{atan2}
- @item @tab @code{$exp} @tab @code{exp}
- @item @tab @code{$expt} @tab @code{pow}
- @item @tab @code{$log} @tab @code{log}
- @item @tab @code{$sinh} @tab @code{sinh}
- @item @tab @code{$cosh} @tab @code{cosh}
- @item @tab @code{$tanh} @tab @code{tanh}
- @item @tab @code{$asinh} @tab @code{asinh}
- @item @tab @code{$acosh} @tab @code{acosh}
- @item @tab @code{$atanh} @tab @code{atanh}
- @end multitable
- @code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
- not be available on older systems. Guile provides the following
- equivalents (on all systems).
- @deftypefn {C Function} double scm_asinh (double x)
- @deftypefnx {C Function} double scm_acosh (double x)
- @deftypefnx {C Function} double scm_atanh (double x)
- Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
- respectively.
- @end deftypefn
- @node Bitwise Operations
- @subsubsection Bitwise Operations
- For the following bitwise functions, negative numbers are treated as
- infinite precision twos-complements. For instance @math{-6} is bits
- @math{@dots{}111010}, with infinitely many ones on the left. It can
- be seen that adding 6 (binary 110) to such a bit pattern gives all
- zeros.
- @deffn {Scheme Procedure} logand n1 n2 @dots{}
- @deffnx {C Function} scm_logand (n1, n2)
- Return the bitwise @sc{and} of the integer arguments.
- @lisp
- (logand) @result{} -1
- (logand 7) @result{} 7
- (logand #b111 #b011 #b001) @result{} 1
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logior n1 n2 @dots{}
- @deffnx {C Function} scm_logior (n1, n2)
- Return the bitwise @sc{or} of the integer arguments.
- @lisp
- (logior) @result{} 0
- (logior 7) @result{} 7
- (logior #b000 #b001 #b011) @result{} 3
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logxor n1 n2 @dots{}
- @deffnx {C Function} scm_loxor (n1, n2)
- Return the bitwise @sc{xor} of the integer arguments. A bit is
- set in the result if it is set in an odd number of arguments.
- @lisp
- (logxor) @result{} 0
- (logxor 7) @result{} 7
- (logxor #b000 #b001 #b011) @result{} 2
- (logxor #b000 #b001 #b011 #b011) @result{} 1
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} lognot n
- @deffnx {C Function} scm_lognot (n)
- Return the integer which is the ones-complement of the integer
- argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
- @lisp
- (number->string (lognot #b10000000) 2)
- @result{} "-10000001"
- (number->string (lognot #b0) 2)
- @result{} "-1"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logtest j k
- @deffnx {C Function} scm_logtest (j, k)
- Test whether @var{j} and @var{k} have any 1 bits in common. This is
- equivalent to @code{(not (zero? (logand j k)))}, but without actually
- calculating the @code{logand}, just testing for non-zero.
- @lisp
- (logtest #b0100 #b1011) @result{} #f
- (logtest #b0100 #b0111) @result{} #t
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logbit? index j
- @deffnx {C Function} scm_logbit_p (index, j)
- Test whether bit number @var{index} in @var{j} is set. @var{index}
- starts from 0 for the least significant bit.
- @lisp
- (logbit? 0 #b1101) @result{} #t
- (logbit? 1 #b1101) @result{} #f
- (logbit? 2 #b1101) @result{} #t
- (logbit? 3 #b1101) @result{} #t
- (logbit? 4 #b1101) @result{} #f
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} ash n cnt
- @deffnx {C Function} scm_ash (n, cnt)
- Return @var{n} shifted left by @var{cnt} bits, or shifted right if
- @var{cnt} is negative. This is an ``arithmetic'' shift.
- This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
- when @var{cnt} is negative it's a division, rounded towards negative
- infinity. (Note that this is not the same rounding as @code{quotient}
- does.)
- With @var{n} viewed as an infinite precision twos complement,
- @code{ash} means a left shift introducing zero bits, or a right shift
- dropping bits.
- @lisp
- (number->string (ash #b1 3) 2) @result{} "1000"
- (number->string (ash #b1010 -1) 2) @result{} "101"
- ;; -23 is bits ...11101001, -6 is bits ...111010
- (ash -23 -2) @result{} -6
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logcount n
- @deffnx {C Function} scm_logcount (n)
- Return the number of bits in integer @var{n}. If @var{n} is
- positive, the 1-bits in its binary representation are counted.
- If negative, the 0-bits in its two's-complement binary
- representation are counted. If zero, 0 is returned.
- @lisp
- (logcount #b10101010)
- @result{} 4
- (logcount 0)
- @result{} 0
- (logcount -2)
- @result{} 1
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} integer-length n
- @deffnx {C Function} scm_integer_length (n)
- Return the number of bits necessary to represent @var{n}.
- For positive @var{n} this is how many bits to the most significant one
- bit. For negative @var{n} it's how many bits to the most significant
- zero bit in twos complement form.
- @lisp
- (integer-length #b10101010) @result{} 8
- (integer-length #b1111) @result{} 4
- (integer-length 0) @result{} 0
- (integer-length -1) @result{} 0
- (integer-length -256) @result{} 8
- (integer-length -257) @result{} 9
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} integer-expt n k
- @deffnx {C Function} scm_integer_expt (n, k)
- Return @var{n} raised to the power @var{k}. @var{k} must be an exact
- integer, @var{n} can be any number.
- Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
- in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
- @math{0^0} is 1.
- @lisp
- (integer-expt 2 5) @result{} 32
- (integer-expt -3 3) @result{} -27
- (integer-expt 5 -3) @result{} 1/125
- (integer-expt 0 0) @result{} 1
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} bit-extract n start end
- @deffnx {C Function} scm_bit_extract (n, start, end)
- Return the integer composed of the @var{start} (inclusive)
- through @var{end} (exclusive) bits of @var{n}. The
- @var{start}th bit becomes the 0-th bit in the result.
- @lisp
- (number->string (bit-extract #b1101101010 0 4) 2)
- @result{} "1010"
- (number->string (bit-extract #b1101101010 4 9) 2)
- @result{} "10110"
- @end lisp
- @end deffn
- @node Random
- @subsubsection Random Number Generation
- Pseudo-random numbers are generated from a random state object, which
- can be created with @code{seed->random-state}. The @var{state}
- parameter to the various functions below is optional, it defaults to
- the state object in the @code{*random-state*} variable.
- @deffn {Scheme Procedure} copy-random-state [state]
- @deffnx {C Function} scm_copy_random_state (state)
- Return a copy of the random state @var{state}.
- @end deffn
- @deffn {Scheme Procedure} random n [state]
- @deffnx {C Function} scm_random (n, state)
- Return a number in [0, @var{n}).
- Accepts a positive integer or real n and returns a
- number of the same type between zero (inclusive) and
- @var{n} (exclusive). The values returned have a uniform
- distribution.
- @end deffn
- @deffn {Scheme Procedure} random:exp [state]
- @deffnx {C Function} scm_random_exp (state)
- Return an inexact real in an exponential distribution with mean
- 1. For an exponential distribution with mean @var{u} use @code{(*
- @var{u} (random:exp))}.
- @end deffn
- @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
- @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
- Fills @var{vect} with inexact real random numbers the sum of whose
- squares is equal to 1.0. Thinking of @var{vect} as coordinates in
- space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
- the coordinates are uniformly distributed over the surface of the unit
- n-sphere.
- @end deffn
- @deffn {Scheme Procedure} random:normal [state]
- @deffnx {C Function} scm_random_normal (state)
- Return an inexact real in a normal distribution. The distribution
- used has mean 0 and standard deviation 1. For a normal distribution
- with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
- (* @var{d} (random:normal)))}.
- @end deffn
- @deffn {Scheme Procedure} random:normal-vector! vect [state]
- @deffnx {C Function} scm_random_normal_vector_x (vect, state)
- Fills @var{vect} with inexact real random numbers that are
- independent and standard normally distributed
- (i.e., with mean 0 and variance 1).
- @end deffn
- @deffn {Scheme Procedure} random:solid-sphere! vect [state]
- @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
- Fills @var{vect} with inexact real random numbers the sum of whose
- squares is less than 1.0. Thinking of @var{vect} as coordinates in
- space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
- the coordinates are uniformly distributed within the unit
- @var{n}-sphere.
- @c FIXME: What does this mean, particularly the n-sphere part?
- @end deffn
- @deffn {Scheme Procedure} random:uniform [state]
- @deffnx {C Function} scm_random_uniform (state)
- Return a uniformly distributed inexact real random number in
- [0,1).
- @end deffn
- @deffn {Scheme Procedure} seed->random-state seed
- @deffnx {C Function} scm_seed_to_random_state (seed)
- Return a new random state using @var{seed}.
- @end deffn
- @defvar *random-state*
- The global random state used by the above functions when the
- @var{state} parameter is not given.
- @end defvar
- Note that the initial value of @code{*random-state*} is the same every
- time Guile starts up. Therefore, if you don't pass a @var{state}
- parameter to the above procedures, and you don't set
- @code{*random-state*} to @code{(seed->random-state your-seed)}, where
- @code{your-seed} is something that @emph{isn't} the same every time,
- you'll get the same sequence of ``random'' numbers on every run.
- For example, unless the relevant source code has changed, @code{(map
- random (cdr (iota 30)))}, if the first use of random numbers since
- Guile started up, will always give:
- @lisp
- (map random (cdr (iota 19)))
- @result{}
- (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
- @end lisp
- To use the time of day as the random seed, you can use code like this:
- @lisp
- (let ((time (gettimeofday)))
- (set! *random-state*
- (seed->random-state (+ (car time)
- (cdr time)))))
- @end lisp
- @noindent
- And then (depending on the time of day, of course):
- @lisp
- (map random (cdr (iota 19)))
- @result{}
- (0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
- @end lisp
- For security applications, such as password generation, you should use
- more bits of seed. Otherwise an open source password generator could
- be attacked by guessing the seed@dots{} but that's a subject for
- another manual.
- @node Characters
- @subsection Characters
- @tpindex Characters
- In Scheme, a character literal is written as @code{#\@var{name}} where
- @var{name} is the name of the character that you want. Printable
- characters have their usual single character name; for example,
- @code{#\a} is a lower case @code{a}.
- Most of the ``control characters'' (those below codepoint 32) in the
- @acronym{ASCII} character set, as well as the space, may be referred
- to by longer names: for example, @code{#\tab}, @code{#\esc},
- @code{#\stx}, and so on. The following table describes the
- @acronym{ASCII} names for each character.
- @multitable @columnfractions .25 .25 .25 .25
- @item 0 = @code{#\nul}
- @tab 1 = @code{#\soh}
- @tab 2 = @code{#\stx}
- @tab 3 = @code{#\etx}
- @item 4 = @code{#\eot}
- @tab 5 = @code{#\enq}
- @tab 6 = @code{#\ack}
- @tab 7 = @code{#\bel}
- @item 8 = @code{#\bs}
- @tab 9 = @code{#\ht}
- @tab 10 = @code{#\nl}
- @tab 11 = @code{#\vt}
- @item 12 = @code{#\np}
- @tab 13 = @code{#\cr}
- @tab 14 = @code{#\so}
- @tab 15 = @code{#\si}
- @item 16 = @code{#\dle}
- @tab 17 = @code{#\dc1}
- @tab 18 = @code{#\dc2}
- @tab 19 = @code{#\dc3}
- @item 20 = @code{#\dc4}
- @tab 21 = @code{#\nak}
- @tab 22 = @code{#\syn}
- @tab 23 = @code{#\etb}
- @item 24 = @code{#\can}
- @tab 25 = @code{#\em}
- @tab 26 = @code{#\sub}
- @tab 27 = @code{#\esc}
- @item 28 = @code{#\fs}
- @tab 29 = @code{#\gs}
- @tab 30 = @code{#\rs}
- @tab 31 = @code{#\us}
- @item 32 = @code{#\sp}
- @end multitable
- The ``delete'' character (octal 177) may be referred to with the name
- @code{#\del}.
- Several characters have more than one name:
- @multitable {@code{#\backspace}} {Original}
- @item Alias @tab Original
- @item @code{#\space} @tab @code{#\sp}
- @item @code{#\newline} @tab @code{#\nl}
- @item @code{#\tab} @tab @code{#\ht}
- @item @code{#\backspace} @tab @code{#\bs}
- @item @code{#\return} @tab @code{#\cr}
- @item @code{#\page} @tab @code{#\np}
- @item @code{#\null} @tab @code{#\nul}
- @end multitable
- @rnindex char?
- @deffn {Scheme Procedure} char? x
- @deffnx {C Function} scm_char_p (x)
- Return @code{#t} iff @var{x} is a character, else @code{#f}.
- @end deffn
- @rnindex char=?
- @deffn {Scheme Procedure} char=? x y
- Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
- @end deffn
- @rnindex char<?
- @deffn {Scheme Procedure} char<? x y
- Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
- else @code{#f}.
- @end deffn
- @rnindex char<=?
- @deffn {Scheme Procedure} char<=? x y
- Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
- @acronym{ASCII} sequence, else @code{#f}.
- @end deffn
- @rnindex char>?
- @deffn {Scheme Procedure} char>? x y
- Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
- sequence, else @code{#f}.
- @end deffn
- @rnindex char>=?
- @deffn {Scheme Procedure} char>=? x y
- Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
- @acronym{ASCII} sequence, else @code{#f}.
- @end deffn
- @rnindex char-ci=?
- @deffn {Scheme Procedure} char-ci=? x y
- Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
- case, else @code{#f}.
- @end deffn
- @rnindex char-ci<?
- @deffn {Scheme Procedure} char-ci<? x y
- Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
- ignoring case, else @code{#f}.
- @end deffn
- @rnindex char-ci<=?
- @deffn {Scheme Procedure} char-ci<=? x y
- Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
- @acronym{ASCII} sequence ignoring case, else @code{#f}.
- @end deffn
- @rnindex char-ci>?
- @deffn {Scheme Procedure} char-ci>? x y
- Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
- sequence ignoring case, else @code{#f}.
- @end deffn
- @rnindex char-ci>=?
- @deffn {Scheme Procedure} char-ci>=? x y
- Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
- @acronym{ASCII} sequence ignoring case, else @code{#f}.
- @end deffn
- @rnindex char-alphabetic?
- @deffn {Scheme Procedure} char-alphabetic? chr
- @deffnx {C Function} scm_char_alphabetic_p (chr)
- Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
- @end deffn
- @rnindex char-numeric?
- @deffn {Scheme Procedure} char-numeric? chr
- @deffnx {C Function} scm_char_numeric_p (chr)
- Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
- @end deffn
- @rnindex char-whitespace?
- @deffn {Scheme Procedure} char-whitespace? chr
- @deffnx {C Function} scm_char_whitespace_p (chr)
- Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
- @end deffn
- @rnindex char-upper-case?
- @deffn {Scheme Procedure} char-upper-case? chr
- @deffnx {C Function} scm_char_upper_case_p (chr)
- Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
- @end deffn
- @rnindex char-lower-case?
- @deffn {Scheme Procedure} char-lower-case? chr
- @deffnx {C Function} scm_char_lower_case_p (chr)
- Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} char-is-both? chr
- @deffnx {C Function} scm_char_is_both_p (chr)
- Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
- @code{#f}.
- @end deffn
- @rnindex char->integer
- @deffn {Scheme Procedure} char->integer chr
- @deffnx {C Function} scm_char_to_integer (chr)
- Return the number corresponding to ordinal position of @var{chr} in the
- @acronym{ASCII} sequence.
- @end deffn
- @rnindex integer->char
- @deffn {Scheme Procedure} integer->char n
- @deffnx {C Function} scm_integer_to_char (n)
- Return the character at position @var{n} in the @acronym{ASCII} sequence.
- @end deffn
- @rnindex char-upcase
- @deffn {Scheme Procedure} char-upcase chr
- @deffnx {C Function} scm_char_upcase (chr)
- Return the uppercase character version of @var{chr}.
- @end deffn
- @rnindex char-downcase
- @deffn {Scheme Procedure} char-downcase chr
- @deffnx {C Function} scm_char_downcase (chr)
- Return the lowercase character version of @var{chr}.
- @end deffn
- @node Character Sets
- @subsection Character Sets
- The features described in this section correspond directly to SRFI-14.
- The data type @dfn{charset} implements sets of characters
- (@pxref{Characters}). Because the internal representation of
- character sets is not visible to the user, a lot of procedures for
- handling them are provided.
- Character sets can be created, extended, tested for the membership of a
- characters and be compared to other character sets.
- The Guile implementation of character sets currently deals only with
- 8-bit characters. In the future, when Guile gets support for
- international character sets, this will change, but the functions
- provided here will always then be able to efficiently cope with very
- large character sets.
- @menu
- * Character Set Predicates/Comparison::
- * Iterating Over Character Sets:: Enumerate charset elements.
- * Creating Character Sets:: Making new charsets.
- * Querying Character Sets:: Test charsets for membership etc.
- * Character-Set Algebra:: Calculating new charsets.
- * Standard Character Sets:: Variables containing predefined charsets.
- @end menu
- @node Character Set Predicates/Comparison
- @subsubsection Character Set Predicates/Comparison
- Use these procedures for testing whether an object is a character set,
- or whether several character sets are equal or subsets of each other.
- @code{char-set-hash} can be used for calculating a hash value, maybe for
- usage in fast lookup procedures.
- @deffn {Scheme Procedure} char-set? obj
- @deffnx {C Function} scm_char_set_p (obj)
- Return @code{#t} if @var{obj} is a character set, @code{#f}
- otherwise.
- @end deffn
- @deffn {Scheme Procedure} char-set= . char_sets
- @deffnx {C Function} scm_char_set_eq (char_sets)
- Return @code{#t} if all given character sets are equal.
- @end deffn
- @deffn {Scheme Procedure} char-set<= . char_sets
- @deffnx {C Function} scm_char_set_leq (char_sets)
- Return @code{#t} if every character set @var{cs}i is a subset
- of character set @var{cs}i+1.
- @end deffn
- @deffn {Scheme Procedure} char-set-hash cs [bound]
- @deffnx {C Function} scm_char_set_hash (cs, bound)
- Compute a hash value for the character set @var{cs}. If
- @var{bound} is given and non-zero, it restricts the
- returned value to the range 0 @dots{} @var{bound - 1}.
- @end deffn
- @c ===================================================================
- @node Iterating Over Character Sets
- @subsubsection Iterating Over Character Sets
- Character set cursors are a means for iterating over the members of a
- character sets. After creating a character set cursor with
- @code{char-set-cursor}, a cursor can be dereferenced with
- @code{char-set-ref}, advanced to the next member with
- @code{char-set-cursor-next}. Whether a cursor has passed past the last
- element of the set can be checked with @code{end-of-char-set?}.
- Additionally, mapping and (un-)folding procedures for character sets are
- provided.
- @deffn {Scheme Procedure} char-set-cursor cs
- @deffnx {C Function} scm_char_set_cursor (cs)
- Return a cursor into the character set @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set-ref cs cursor
- @deffnx {C Function} scm_char_set_ref (cs, cursor)
- Return the character at the current cursor position
- @var{cursor} in the character set @var{cs}. It is an error to
- pass a cursor for which @code{end-of-char-set?} returns true.
- @end deffn
- @deffn {Scheme Procedure} char-set-cursor-next cs cursor
- @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
- Advance the character set cursor @var{cursor} to the next
- character in the character set @var{cs}. It is an error if the
- cursor given satisfies @code{end-of-char-set?}.
- @end deffn
- @deffn {Scheme Procedure} end-of-char-set? cursor
- @deffnx {C Function} scm_end_of_char_set_p (cursor)
- Return @code{#t} if @var{cursor} has reached the end of a
- character set, @code{#f} otherwise.
- @end deffn
- @deffn {Scheme Procedure} char-set-fold kons knil cs
- @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
- Fold the procedure @var{kons} over the character set @var{cs},
- initializing it with @var{knil}.
- @end deffn
- @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
- @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
- This is a fundamental constructor for character sets.
- @itemize @bullet
- @item @var{g} is used to generate a series of ``seed'' values
- from the initial seed: @var{seed}, (@var{g} @var{seed}),
- (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
- @item @var{p} tells us when to stop -- when it returns true
- when applied to one of the seed values.
- @item @var{f} maps each seed value to a character. These
- characters are added to the base character set @var{base_cs} to
- form the result; @var{base_cs} defaults to the empty set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
- @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
- This is a fundamental constructor for character sets.
- @itemize @bullet
- @item @var{g} is used to generate a series of ``seed'' values
- from the initial seed: @var{seed}, (@var{g} @var{seed}),
- (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
- @item @var{p} tells us when to stop -- when it returns true
- when applied to one of the seed values.
- @item @var{f} maps each seed value to a character. These
- characters are added to the base character set @var{base_cs} to
- form the result; @var{base_cs} defaults to the empty set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} char-set-for-each proc cs
- @deffnx {C Function} scm_char_set_for_each (proc, cs)
- Apply @var{proc} to every character in the character set
- @var{cs}. The return value is not specified.
- @end deffn
- @deffn {Scheme Procedure} char-set-map proc cs
- @deffnx {C Function} scm_char_set_map (proc, cs)
- Map the procedure @var{proc} over every character in @var{cs}.
- @var{proc} must be a character -> character procedure.
- @end deffn
- @c ===================================================================
- @node Creating Character Sets
- @subsubsection Creating Character Sets
- New character sets are produced with these procedures.
- @deffn {Scheme Procedure} char-set-copy cs
- @deffnx {C Function} scm_char_set_copy (cs)
- Return a newly allocated character set containing all
- characters in @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set . rest
- @deffnx {C Function} scm_char_set (rest)
- Return a character set containing all given characters.
- @end deffn
- @deffn {Scheme Procedure} list->char-set list [base_cs]
- @deffnx {C Function} scm_list_to_char_set (list, base_cs)
- Convert the character list @var{list} to a character set. If
- the character set @var{base_cs} is given, the character in this
- set are also included in the result.
- @end deffn
- @deffn {Scheme Procedure} list->char-set! list base_cs
- @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
- Convert the character list @var{list} to a character set. The
- characters are added to @var{base_cs} and @var{base_cs} is
- returned.
- @end deffn
- @deffn {Scheme Procedure} string->char-set str [base_cs]
- @deffnx {C Function} scm_string_to_char_set (str, base_cs)
- Convert the string @var{str} to a character set. If the
- character set @var{base_cs} is given, the characters in this
- set are also included in the result.
- @end deffn
- @deffn {Scheme Procedure} string->char-set! str base_cs
- @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
- Convert the string @var{str} to a character set. The
- characters from the string are added to @var{base_cs}, and
- @var{base_cs} is returned.
- @end deffn
- @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
- @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
- Return a character set containing every character from @var{cs}
- so that it satisfies @var{pred}. If provided, the characters
- from @var{base_cs} are added to the result.
- @end deffn
- @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
- @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
- Return a character set containing every character from @var{cs}
- so that it satisfies @var{pred}. The characters are added to
- @var{base_cs} and @var{base_cs} is returned.
- @end deffn
- @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
- @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
- Return a character set containing all characters whose
- character codes lie in the half-open range
- [@var{lower},@var{upper}).
- If @var{error} is a true value, an error is signalled if the
- specified range contains characters which are not contained in
- the implemented character range. If @var{error} is @code{#f},
- these characters are silently left out of the resultung
- character set.
- The characters in @var{base_cs} are added to the result, if
- given.
- @end deffn
- @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
- @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
- Return a character set containing all characters whose
- character codes lie in the half-open range
- [@var{lower},@var{upper}).
- If @var{error} is a true value, an error is signalled if the
- specified range contains characters which are not contained in
- the implemented character range. If @var{error} is @code{#f},
- these characters are silently left out of the resultung
- character set.
- The characters are added to @var{base_cs} and @var{base_cs} is
- returned.
- @end deffn
- @deffn {Scheme Procedure} ->char-set x
- @deffnx {C Function} scm_to_char_set (x)
- Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
- @end deffn
- @c ===================================================================
- @node Querying Character Sets
- @subsubsection Querying Character Sets
- Access the elements and other information of a character set with these
- procedures.
- @deffn {Scheme Procedure} char-set-size cs
- @deffnx {C Function} scm_char_set_size (cs)
- Return the number of elements in character set @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set-count pred cs
- @deffnx {C Function} scm_char_set_count (pred, cs)
- Return the number of the elements int the character set
- @var{cs} which satisfy the predicate @var{pred}.
- @end deffn
- @deffn {Scheme Procedure} char-set->list cs
- @deffnx {C Function} scm_char_set_to_list (cs)
- Return a list containing the elements of the character set
- @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set->string cs
- @deffnx {C Function} scm_char_set_to_string (cs)
- Return a string containing the elements of the character set
- @var{cs}. The order in which the characters are placed in the
- string is not defined.
- @end deffn
- @deffn {Scheme Procedure} char-set-contains? cs ch
- @deffnx {C Function} scm_char_set_contains_p (cs, ch)
- Return @code{#t} iff the character @var{ch} is contained in the
- character set @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set-every pred cs
- @deffnx {C Function} scm_char_set_every (pred, cs)
- Return a true value if every character in the character set
- @var{cs} satisfies the predicate @var{pred}.
- @end deffn
- @deffn {Scheme Procedure} char-set-any pred cs
- @deffnx {C Function} scm_char_set_any (pred, cs)
- Return a true value if any character in the character set
- @var{cs} satisfies the predicate @var{pred}.
- @end deffn
- @c ===================================================================
- @node Character-Set Algebra
- @subsubsection Character-Set Algebra
- Character sets can be manipulated with the common set algebra operation,
- such as union, complement, intersection etc. All of these procedures
- provide side-effecting variants, which modify their character set
- argument(s).
- @deffn {Scheme Procedure} char-set-adjoin cs . rest
- @deffnx {C Function} scm_char_set_adjoin (cs, rest)
- Add all character arguments to the first argument, which must
- be a character set.
- @end deffn
- @deffn {Scheme Procedure} char-set-delete cs . rest
- @deffnx {C Function} scm_char_set_delete (cs, rest)
- Delete all character arguments from the first argument, which
- must be a character set.
- @end deffn
- @deffn {Scheme Procedure} char-set-adjoin! cs . rest
- @deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
- Add all character arguments to the first argument, which must
- be a character set.
- @end deffn
- @deffn {Scheme Procedure} char-set-delete! cs . rest
- @deffnx {C Function} scm_char_set_delete_x (cs, rest)
- Delete all character arguments from the first argument, which
- must be a character set.
- @end deffn
- @deffn {Scheme Procedure} char-set-complement cs
- @deffnx {C Function} scm_char_set_complement (cs)
- Return the complement of the character set @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set-union . rest
- @deffnx {C Function} scm_char_set_union (rest)
- Return the union of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-intersection . rest
- @deffnx {C Function} scm_char_set_intersection (rest)
- Return the intersection of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-difference cs1 . rest
- @deffnx {C Function} scm_char_set_difference (cs1, rest)
- Return the difference of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-xor . rest
- @deffnx {C Function} scm_char_set_xor (rest)
- Return the exclusive-or of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
- @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
- Return the difference and the intersection of all argument
- character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-complement! cs
- @deffnx {C Function} scm_char_set_complement_x (cs)
- Return the complement of the character set @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set-union! cs1 . rest
- @deffnx {C Function} scm_char_set_union_x (cs1, rest)
- Return the union of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-intersection! cs1 . rest
- @deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
- Return the intersection of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-difference! cs1 . rest
- @deffnx {C Function} scm_char_set_difference_x (cs1, rest)
- Return the difference of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-xor! cs1 . rest
- @deffnx {C Function} scm_char_set_xor_x (cs1, rest)
- Return the exclusive-or of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
- @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
- Return the difference and the intersection of all argument
- character sets.
- @end deffn
- @c ===================================================================
- @node Standard Character Sets
- @subsubsection Standard Character Sets
- In order to make the use of the character set data type and procedures
- useful, several predefined character set variables exist.
- @cindex codeset
- @cindex charset
- @cindex locale
- Currently, the contents of these character sets are recomputed upon a
- successful @code{setlocale} call (@pxref{Locales}) in order to reflect
- the characters available in the current locale's codeset. For
- instance, @code{char-set:letter} contains 52 characters under an ASCII
- locale (e.g., the default @code{C} locale) and 117 characters under an
- ISO-8859-1 (``Latin-1'') locale.
- @defvr {Scheme Variable} char-set:lower-case
- @defvrx {C Variable} scm_char_set_lower_case
- All lower-case characters.
- @end defvr
- @defvr {Scheme Variable} char-set:upper-case
- @defvrx {C Variable} scm_char_set_upper_case
- All upper-case characters.
- @end defvr
- @defvr {Scheme Variable} char-set:title-case
- @defvrx {C Variable} scm_char_set_title_case
- This is empty, because ASCII has no titlecase characters.
- @end defvr
- @defvr {Scheme Variable} char-set:letter
- @defvrx {C Variable} scm_char_set_letter
- All letters, e.g. the union of @code{char-set:lower-case} and
- @code{char-set:upper-case}.
- @end defvr
- @defvr {Scheme Variable} char-set:digit
- @defvrx {C Variable} scm_char_set_digit
- All digits.
- @end defvr
- @defvr {Scheme Variable} char-set:letter+digit
- @defvrx {C Variable} scm_char_set_letter_and_digit
- The union of @code{char-set:letter} and @code{char-set:digit}.
- @end defvr
- @defvr {Scheme Variable} char-set:graphic
- @defvrx {C Variable} scm_char_set_graphic
- All characters which would put ink on the paper.
- @end defvr
- @defvr {Scheme Variable} char-set:printing
- @defvrx {C Variable} scm_char_set_printing
- The union of @code{char-set:graphic} and @code{char-set:whitespace}.
- @end defvr
- @defvr {Scheme Variable} char-set:whitespace
- @defvrx {C Variable} scm_char_set_whitespace
- All whitespace characters.
- @end defvr
- @defvr {Scheme Variable} char-set:blank
- @defvrx {C Variable} scm_char_set_blank
- All horizontal whitespace characters, that is @code{#\space} and
- @code{#\tab}.
- @end defvr
- @defvr {Scheme Variable} char-set:iso-control
- @defvrx {C Variable} scm_char_set_iso_control
- The ISO control characters with the codes 0--31 and 127.
- @end defvr
- @defvr {Scheme Variable} char-set:punctuation
- @defvrx {C Variable} scm_char_set_punctuation
- The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
- @end defvr
- @defvr {Scheme Variable} char-set:symbol
- @defvrx {C Variable} scm_char_set_symbol
- The characters @code{$+<=>^`|~}.
- @end defvr
- @defvr {Scheme Variable} char-set:hex-digit
- @defvrx {C Variable} scm_char_set_hex_digit
- The hexadecimal digits @code{0123456789abcdefABCDEF}.
- @end defvr
- @defvr {Scheme Variable} char-set:ascii
- @defvrx {C Variable} scm_char_set_ascii
- All ASCII characters.
- @end defvr
- @defvr {Scheme Variable} char-set:empty
- @defvrx {C Variable} scm_char_set_empty
- The empty character set.
- @end defvr
- @defvr {Scheme Variable} char-set:full
- @defvrx {C Variable} scm_char_set_full
- This character set contains all possible characters.
- @end defvr
- @node Strings
- @subsection Strings
- @tpindex Strings
- Strings are fixed-length sequences of characters. They can be created
- by calling constructor procedures, but they can also literally get
- entered at the @acronym{REPL} or in Scheme source files.
- @c Guile provides a rich set of string processing procedures, because text
- @c handling is very important when Guile is used as a scripting language.
- Strings always carry the information about how many characters they are
- composed of with them, so there is no special end-of-string character,
- like in C. That means that Scheme strings can contain any character,
- even the @samp{#\nul} character @samp{\0}.
- To use strings efficiently, you need to know a bit about how Guile
- implements them. In Guile, a string consists of two parts, a head and
- the actual memory where the characters are stored. When a string (or
- a substring of it) is copied, only a new head gets created, the memory
- is usually not copied. The two heads start out pointing to the same
- memory.
- When one of these two strings is modified, as with @code{string-set!},
- their common memory does get copied so that each string has its own
- memory and modifying one does not accidently modify the other as well.
- Thus, Guile's strings are `copy on write'; the actual copying of their
- memory is delayed until one string is written to.
- This implementation makes functions like @code{substring} very
- efficient in the common case that no modifications are done to the
- involved strings.
- If you do know that your strings are getting modified right away, you
- can use @code{substring/copy} instead of @code{substring}. This
- function performs the copy immediately at the time of creation. This
- is more efficient, especially in a multi-threaded program. Also,
- @code{substring/copy} can avoid the problem that a short substring
- holds on to the memory of a very large original string that could
- otherwise be recycled.
- If you want to avoid the copy altogether, so that modifications of one
- string show up in the other, you can use @code{substring/shared}. The
- strings created by this procedure are called @dfn{mutation sharing
- substrings} since the substring and the original string share
- modifications to each other.
- If you want to prevent modifications, use @code{substring/read-only}.
- Guile provides all procedures of SRFI-13 and a few more.
- @menu
- * String Syntax:: Read syntax for strings.
- * String Predicates:: Testing strings for certain properties.
- * String Constructors:: Creating new string objects.
- * List/String Conversion:: Converting from/to lists of characters.
- * String Selection:: Select portions from strings.
- * String Modification:: Modify parts or whole strings.
- * String Comparison:: Lexicographic ordering predicates.
- * String Searching:: Searching in strings.
- * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
- * Reversing and Appending Strings:: Appending strings to form a new string.
- * Mapping Folding and Unfolding:: Iterating over strings.
- * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
- * Conversion to/from C::
- @end menu
- @node String Syntax
- @subsubsection String Read Syntax
- @c In the following @code is used to get a good font in TeX etc, but
- @c is omitted for Info format, so as not to risk any confusion over
- @c whether surrounding ` ' quotes are part of the escape or are
- @c special in a string (they're not).
- The read syntax for strings is an arbitrarily long sequence of
- characters enclosed in double quotes (@nicode{"}).
- Backslash is an escape character and can be used to insert the
- following special characters. @nicode{\"} and @nicode{\\} are R5RS
- standard, the rest are Guile extensions, notice they follow C string
- syntax.
- @table @asis
- @item @nicode{\\}
- Backslash character.
- @item @nicode{\"}
- Double quote character (an unescaped @nicode{"} is otherwise the end
- of the string).
- @item @nicode{\0}
- NUL character (ASCII 0).
- @item @nicode{\a}
- Bell character (ASCII 7).
- @item @nicode{\f}
- Formfeed character (ASCII 12).
- @item @nicode{\n}
- Newline character (ASCII 10).
- @item @nicode{\r}
- Carriage return character (ASCII 13).
- @item @nicode{\t}
- Tab character (ASCII 9).
- @item @nicode{\v}
- Vertical tab character (ASCII 11).
- @item @nicode{\xHH}
- Character code given by two hexadecimal digits. For example
- @nicode{\x7f} for an ASCII DEL (127).
- @end table
- @noindent
- The following are examples of string literals:
- @lisp
- "foo"
- "bar plonk"
- "Hello World"
- "\"Hi\", he said."
- @end lisp
- @node String Predicates
- @subsubsection String Predicates
- The following procedures can be used to check whether a given string
- fulfills some specified property.
- @rnindex string?
- @deffn {Scheme Procedure} string? obj
- @deffnx {C Function} scm_string_p (obj)
- Return @code{#t} if @var{obj} is a string, else @code{#f}.
- @end deffn
- @deftypefn {C Function} int scm_is_string (SCM obj)
- Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
- @end deftypefn
- @deffn {Scheme Procedure} string-null? str
- @deffnx {C Function} scm_string_null_p (str)
- Return @code{#t} if @var{str}'s length is zero, and
- @code{#f} otherwise.
- @lisp
- (string-null? "") @result{} #t
- y @result{} "foo"
- (string-null? y) @result{} #f
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} string-any char_pred s [start [end]]
- @deffnx {C Function} scm_string_any (char_pred, s, start, end)
- Check if @var{char_pred} is true for any character in string @var{s}.
- @var{char_pred} can be a character to check for any equal to that, or
- a character set (@pxref{Character Sets}) to check for any in that set,
- or a predicate procedure to call.
- For a procedure, calls @code{(@var{char_pred} c)} are made
- successively on the characters from @var{start} to @var{end}. If
- @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
- stops and that return value is the return from @code{string-any}. The
- call on the last character (ie.@: at @math{@var{end}-1}), if that
- point is reached, is a tail call.
- If there are no characters in @var{s} (ie.@: @var{start} equals
- @var{end}) then the return is @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} string-every char_pred s [start [end]]
- @deffnx {C Function} scm_string_every (char_pred, s, start, end)
- Check if @var{char_pred} is true for every character in string
- @var{s}.
- @var{char_pred} can be a character to check for every character equal
- to that, or a character set (@pxref{Character Sets}) to check for
- every character being in that set, or a predicate procedure to call.
- For a procedure, calls @code{(@var{char_pred} c)} are made
- successively on the characters from @var{start} to @var{end}. If
- @var{char_pred} returns @code{#f}, @code{string-every} stops and
- returns @code{#f}. The call on the last character (ie.@: at
- @math{@var{end}-1}), if that point is reached, is a tail call and the
- return from that call is the return from @code{string-every}.
- If there are no characters in @var{s} (ie.@: @var{start} equals
- @var{end}) then the return is @code{#t}.
- @end deffn
- @node String Constructors
- @subsubsection String Constructors
- The string constructor procedures create new string objects, possibly
- initializing them with some specified character data. See also
- @xref{String Selection}, for ways to create strings from existing
- strings.
- @c FIXME::martin: list->string belongs into `List/String Conversion'
- @deffn {Scheme Procedure} string char@dots{}
- @rnindex string
- Return a newly allocated string made from the given character
- arguments.
- @example
- (string #\x #\y #\z) @result{} "xyz"
- (string) @result{} ""
- @end example
- @end deffn
- @deffn {Scheme Procedure} list->string lst
- @deffnx {C Function} scm_string (lst)
- @rnindex list->string
- Return a newly allocated string made from a list of characters.
- @example
- (list->string '(#\a #\b #\c)) @result{} "abc"
- @end example
- @end deffn
- @deffn {Scheme Procedure} reverse-list->string lst
- @deffnx {C Function} scm_reverse_list_to_string (lst)
- Return a newly allocated string made from a list of characters, in
- reverse order.
- @example
- (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
- @end example
- @end deffn
- @rnindex make-string
- @deffn {Scheme Procedure} make-string k [chr]
- @deffnx {C Function} scm_make_string (k, chr)
- Return a newly allocated string of
- length @var{k}. If @var{chr} is given, then all elements of
- the string are initialized to @var{chr}, otherwise the contents
- of the @var{string} are unspecified.
- @end deffn
- @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
- Like @code{scm_make_string}, but expects the length as a
- @code{size_t}.
- @end deftypefn
- @deffn {Scheme Procedure} string-tabulate proc len
- @deffnx {C Function} scm_string_tabulate (proc, len)
- @var{proc} is an integer->char procedure. Construct a string
- of size @var{len} by applying @var{proc} to each index to
- produce the corresponding string element. The order in which
- @var{proc} is applied to the indices is not specified.
- @end deffn
- @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
- @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
- Append the string in the string list @var{ls}, using the string
- @var{delim} as a delimiter between the elements of @var{ls}.
- @var{grammar} is a symbol which specifies how the delimiter is
- placed between the strings, and defaults to the symbol
- @code{infix}.
- @table @code
- @item infix
- Insert the separator between list elements. An empty string
- will produce an empty list.
- @item string-infix
- Like @code{infix}, but will raise an error if given the empty
- list.
- @item suffix
- Insert the separator after every list element.
- @item prefix
- Insert the separator before each list element.
- @end table
- @end deffn
- @node List/String Conversion
- @subsubsection List/String conversion
- When processing strings, it is often convenient to first convert them
- into a list representation by using the procedure @code{string->list},
- work with the resulting list, and then convert it back into a string.
- These procedures are useful for similar tasks.
- @rnindex string->list
- @deffn {Scheme Procedure} string->list str [start [end]]
- @deffnx {C Function} scm_substring_to_list (str, start, end)
- @deffnx {C Function} scm_string_to_list (str)
- Convert the string @var{str} into a list of characters.
- @end deffn
- @deffn {Scheme Procedure} string-split str chr
- @deffnx {C Function} scm_string_split (str, chr)
- Split the string @var{str} into the a list of the substrings delimited
- by appearances of the character @var{chr}. Note that an empty substring
- between separator characters will result in an empty string in the
- result list.
- @lisp
- (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
- @result{}
- ("root" "x" "0" "0" "root" "/root" "/bin/bash")
- (string-split "::" #\:)
- @result{}
- ("" "" "")
- (string-split "" #\:)
- @result{}
- ("")
- @end lisp
- @end deffn
- @node String Selection
- @subsubsection String Selection
- Portions of strings can be extracted by these procedures.
- @code{string-ref} delivers individual characters whereas
- @code{substring} can be used to extract substrings from longer strings.
- @rnindex string-length
- @deffn {Scheme Procedure} string-length string
- @deffnx {C Function} scm_string_length (string)
- Return the number of characters in @var{string}.
- @end deffn
- @deftypefn {C Function} size_t scm_c_string_length (SCM str)
- Return the number of characters in @var{str} as a @code{size_t}.
- @end deftypefn
- @rnindex string-ref
- @deffn {Scheme Procedure} string-ref str k
- @deffnx {C Function} scm_string_ref (str, k)
- Return character @var{k} of @var{str} using zero-origin
- indexing. @var{k} must be a valid index of @var{str}.
- @end deffn
- @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
- Return character @var{k} of @var{str} using zero-origin
- indexing. @var{k} must be a valid index of @var{str}.
- @end deftypefn
- @rnindex string-copy
- @deffn {Scheme Procedure} string-copy str [start [end]]
- @deffnx {C Function} scm_substring_copy (str, start, end)
- @deffnx {C Function} scm_string_copy (str)
- Return a copy of the given string @var{str}.
- The returned string shares storage with @var{str} initially, but it is
- copied as soon as one of the two strings is modified.
- @end deffn
- @rnindex substring
- @deffn {Scheme Procedure} substring str start [end]
- @deffnx {C Function} scm_substring (str, start, end)
- Return a new string formed from the characters
- of @var{str} beginning with index @var{start} (inclusive) and
- ending with index @var{end} (exclusive).
- @var{str} must be a string, @var{start} and @var{end} must be
- exact integers satisfying:
- 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
- The returned string shares storage with @var{str} initially, but it is
- copied as soon as one of the two strings is modified.
- @end deffn
- @deffn {Scheme Procedure} substring/shared str start [end]
- @deffnx {C Function} scm_substring_shared (str, start, end)
- Like @code{substring}, but the strings continue to share their storage
- even if they are modified. Thus, modifications to @var{str} show up
- in the new string, and vice versa.
- @end deffn
- @deffn {Scheme Procedure} substring/copy str start [end]
- @deffnx {C Function} scm_substring_copy (str, start, end)
- Like @code{substring}, but the storage for the new string is copied
- immediately.
- @end deffn
- @deffn {Scheme Procedure} substring/read-only str start [end]
- @deffnx {C Function} scm_substring_read_only (str, start, end)
- Like @code{substring}, but the resulting string can not be modified.
- @end deffn
- @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
- @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
- @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
- @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
- Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
- @end deftypefn
- @deffn {Scheme Procedure} string-take s n
- @deffnx {C Function} scm_string_take (s, n)
- Return the @var{n} first characters of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-drop s n
- @deffnx {C Function} scm_string_drop (s, n)
- Return all but the first @var{n} characters of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-take-right s n
- @deffnx {C Function} scm_string_take_right (s, n)
- Return the @var{n} last characters of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-drop-right s n
- @deffnx {C Function} scm_string_drop_right (s, n)
- Return all but the last @var{n} characters of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
- @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
- @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
- @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
- Take characters @var{start} to @var{end} from the string @var{s} and
- either pad with @var{char} or truncate them to give @var{len}
- characters.
- @code{string-pad} pads or truncates on the left, so for example
- @example
- (string-pad "x" 3) @result{} " x"
- (string-pad "abcde" 3) @result{} "cde"
- @end example
- @code{string-pad-right} pads or truncates on the right, so for example
- @example
- (string-pad-right "x" 3) @result{} "x "
- (string-pad-right "abcde" 3) @result{} "abc"
- @end example
- @end deffn
- @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
- @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
- @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
- @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
- @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
- @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
- Trim occurrances of @var{char_pred} from the ends of @var{s}.
- @code{string-trim} trims @var{char_pred} characters from the left
- (start) of the string, @code{string-trim-right} trims them from the
- right (end) of the string, @code{string-trim-both} trims from both
- ends.
- @var{char_pred} can be a character, a character set, or a predicate
- procedure to call on each character. If @var{char_pred} is not given
- the default is whitespace as per @code{char-set:whitespace}
- (@pxref{Standard Character Sets}).
- @example
- (string-trim " x ") @result{} "x "
- (string-trim-right "banana" #\a) @result{} "banan"
- (string-trim-both ".,xy:;" char-set:punctuation)
- @result{} "xy"
- (string-trim-both "xyzzy" (lambda (c)
- (or (eqv? c #\x)
- (eqv? c #\y))))
- @result{} "zz"
- @end example
- @end deffn
- @node String Modification
- @subsubsection String Modification
- These procedures are for modifying strings in-place. This means that the
- result of the operation is not a new string; instead, the original string's
- memory representation is modified.
- @rnindex string-set!
- @deffn {Scheme Procedure} string-set! str k chr
- @deffnx {C Function} scm_string_set_x (str, k, chr)
- Store @var{chr} in element @var{k} of @var{str} and return
- an unspecified value. @var{k} must be a valid index of
- @var{str}.
- @end deffn
- @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
- Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
- @end deftypefn
- @rnindex string-fill!
- @deffn {Scheme Procedure} string-fill! str chr [start [end]]
- @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
- @deffnx {C Function} scm_string_fill_x (str, chr)
- Stores @var{chr} in every element of the given @var{str} and
- returns an unspecified value.
- @end deffn
- @deffn {Scheme Procedure} substring-fill! str start end fill
- @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
- Change every character in @var{str} between @var{start} and
- @var{end} to @var{fill}.
- @lisp
- (define y "abcdefg")
- (substring-fill! y 1 3 #\r)
- y
- @result{} "arrdefg"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
- @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
- Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
- into @var{str2} beginning at position @var{start2}.
- @var{str1} and @var{str2} can be the same string.
- @end deffn
- @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
- @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
- Copy the sequence of characters from index range [@var{start},
- @var{end}) in string @var{s} to string @var{target}, beginning
- at index @var{tstart}. The characters are copied left-to-right
- or right-to-left as needed -- the copy is guaranteed to work,
- even if @var{target} and @var{s} are the same string. It is an
- error if the copy operation runs off the end of the target
- string.
- @end deffn
- @node String Comparison
- @subsubsection String Comparison
- The procedures in this section are similar to the character ordering
- predicates (@pxref{Characters}), but are defined on character sequences.
- The first set is specified in R5RS and has names that end in @code{?}.
- The second set is specified in SRFI-13 and the names have no ending
- @code{?}. The predicates ending in @code{-ci} ignore the character case
- when comparing strings.
- @rnindex string=?
- @deffn {Scheme Procedure} string=? s1 s2
- Lexicographic equality predicate; return @code{#t} if the two
- strings are the same length and contain the same characters in
- the same positions, otherwise return @code{#f}.
- The procedure @code{string-ci=?} treats upper and lower case
- letters as though they were the same character, but
- @code{string=?} treats upper and lower case as distinct
- characters.
- @end deffn
- @rnindex string<?
- @deffn {Scheme Procedure} string<? s1 s2
- Lexicographic ordering predicate; return @code{#t} if @var{s1}
- is lexicographically less than @var{s2}.
- @end deffn
- @rnindex string<=?
- @deffn {Scheme Procedure} string<=? s1 s2
- Lexicographic ordering predicate; return @code{#t} if @var{s1}
- is lexicographically less than or equal to @var{s2}.
- @end deffn
- @rnindex string>?
- @deffn {Scheme Procedure} string>? s1 s2
- Lexicographic ordering predicate; return @code{#t} if @var{s1}
- is lexicographically greater than @var{s2}.
- @end deffn
- @rnindex string>=?
- @deffn {Scheme Procedure} string>=? s1 s2
- Lexicographic ordering predicate; return @code{#t} if @var{s1}
- is lexicographically greater than or equal to @var{s2}.
- @end deffn
- @rnindex string-ci=?
- @deffn {Scheme Procedure} string-ci=? s1 s2
- Case-insensitive string equality predicate; return @code{#t} if
- the two strings are the same length and their component
- characters match (ignoring case) at each position; otherwise
- return @code{#f}.
- @end deffn
- @rnindex string-ci<?
- @deffn {Scheme Procedure} string-ci<? s1 s2
- Case insensitive lexicographic ordering predicate; return
- @code{#t} if @var{s1} is lexicographically less than @var{s2}
- regardless of case.
- @end deffn
- @rnindex string<=?
- @deffn {Scheme Procedure} string-ci<=? s1 s2
- Case insensitive lexicographic ordering predicate; return
- @code{#t} if @var{s1} is lexicographically less than or equal
- to @var{s2} regardless of case.
- @end deffn
- @rnindex string-ci>?
- @deffn {Scheme Procedure} string-ci>? s1 s2
- Case insensitive lexicographic ordering predicate; return
- @code{#t} if @var{s1} is lexicographically greater than
- @var{s2} regardless of case.
- @end deffn
- @rnindex string-ci>=?
- @deffn {Scheme Procedure} string-ci>=? s1 s2
- Case insensitive lexicographic ordering predicate; return
- @code{#t} if @var{s1} is lexicographically greater than or
- equal to @var{s2} regardless of case.
- @end deffn
- @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
- Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
- mismatch index, depending upon whether @var{s1} is less than,
- equal to, or greater than @var{s2}. The mismatch index is the
- largest index @var{i} such that for every 0 <= @var{j} <
- @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
- @var{i} is the first position that does not match.
- @end deffn
- @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
- Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
- mismatch index, depending upon whether @var{s1} is less than,
- equal to, or greater than @var{s2}. The mismatch index is the
- largest index @var{i} such that for every 0 <= @var{j} <
- @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
- @var{i} is the first position that does not match. The
- character comparison is done case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
- value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} and @var{s2} are equal, a true
- value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
- true value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
- true value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is greater to @var{s2}, a true
- value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is less to @var{s2}, a true value
- otherwise.
- @end deffn
- @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
- value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} and @var{s2} are equal, a true
- value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
- true value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
- true value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is greater to @var{s2}, a true
- value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is less to @var{s2}, a true value
- otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
- @deffnx {C Function} scm_substring_hash (s, bound, start, end)
- Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
- @end deffn
- @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
- @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
- Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
- @end deffn
- @node String Searching
- @subsubsection String Searching
- @deffn {Scheme Procedure} string-index s char_pred [start [end]]
- @deffnx {C Function} scm_string_index (s, char_pred, start, end)
- Search through the string @var{s} from left to right, returning
- the index of the first occurence of a character which
- @itemize @bullet
- @item
- equals @var{char_pred}, if it is character,
- @item
- satisifies the predicate @var{char_pred}, if it is a procedure,
- @item
- is in the set @var{char_pred}, if it is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
- @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
- Search through the string @var{s} from right to left, returning
- the index of the last occurence of a character which
- @itemize @bullet
- @item
- equals @var{char_pred}, if it is character,
- @item
- satisifies the predicate @var{char_pred}, if it is a procedure,
- @item
- is in the set if @var{char_pred} is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
- Return the length of the longest common prefix of the two
- strings.
- @end deffn
- @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
- Return the length of the longest common prefix of the two
- strings, ignoring character case.
- @end deffn
- @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
- Return the length of the longest common suffix of the two
- strings.
- @end deffn
- @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
- Return the length of the longest common suffix of the two
- strings, ignoring character case.
- @end deffn
- @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
- Is @var{s1} a prefix of @var{s2}?
- @end deffn
- @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
- Is @var{s1} a prefix of @var{s2}, ignoring character case?
- @end deffn
- @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
- Is @var{s1} a suffix of @var{s2}?
- @end deffn
- @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
- Is @var{s1} a suffix of @var{s2}, ignoring character case?
- @end deffn
- @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
- @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
- Search through the string @var{s} from right to left, returning
- the index of the last occurence of a character which
- @itemize @bullet
- @item
- equals @var{char_pred}, if it is character,
- @item
- satisifies the predicate @var{char_pred}, if it is a procedure,
- @item
- is in the set if @var{char_pred} is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
- @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
- Search through the string @var{s} from left to right, returning
- the index of the first occurence of a character which
- @itemize @bullet
- @item
- does not equal @var{char_pred}, if it is character,
- @item
- does not satisify the predicate @var{char_pred}, if it is a
- procedure,
- @item
- is not in the set if @var{char_pred} is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
- @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
- Search through the string @var{s} from right to left, returning
- the index of the last occurence of a character which
- @itemize @bullet
- @item
- does not equal @var{char_pred}, if it is character,
- @item
- does not satisfy the predicate @var{char_pred}, if it is a
- procedure,
- @item
- is not in the set if @var{char_pred} is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-count s char_pred [start [end]]
- @deffnx {C Function} scm_string_count (s, char_pred, start, end)
- Return the count of the number of characters in the string
- @var{s} which
- @itemize @bullet
- @item
- equals @var{char_pred}, if it is character,
- @item
- satisifies the predicate @var{char_pred}, if it is a procedure.
- @item
- is in the set @var{char_pred}, if it is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
- Does string @var{s1} contain string @var{s2}? Return the index
- in @var{s1} where @var{s2} occurs as a substring, or false.
- The optional start/end indices restrict the operation to the
- indicated substrings.
- @end deffn
- @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
- Does string @var{s1} contain string @var{s2}? Return the index
- in @var{s1} where @var{s2} occurs as a substring, or false.
- The optional start/end indices restrict the operation to the
- indicated substrings. Character comparison is done
- case-insensitively.
- @end deffn
- @node Alphabetic Case Mapping
- @subsubsection Alphabetic Case Mapping
- These are procedures for mapping strings to their upper- or lower-case
- equivalents, respectively, or for capitalizing strings.
- @deffn {Scheme Procedure} string-upcase str [start [end]]
- @deffnx {C Function} scm_substring_upcase (str, start, end)
- @deffnx {C Function} scm_string_upcase (str)
- Upcase every character in @code{str}.
- @end deffn
- @deffn {Scheme Procedure} string-upcase! str [start [end]]
- @deffnx {C Function} scm_substring_upcase_x (str, start, end)
- @deffnx {C Function} scm_string_upcase_x (str)
- Destructively upcase every character in @code{str}.
- @lisp
- (string-upcase! y)
- @result{} "ARRDEFG"
- y
- @result{} "ARRDEFG"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} string-downcase str [start [end]]
- @deffnx {C Function} scm_substring_downcase (str, start, end)
- @deffnx {C Function} scm_string_downcase (str)
- Downcase every character in @var{str}.
- @end deffn
- @deffn {Scheme Procedure} string-downcase! str [start [end]]
- @deffnx {C Function} scm_substring_downcase_x (str, start, end)
- @deffnx {C Function} scm_string_downcase_x (str)
- Destructively downcase every character in @var{str}.
- @lisp
- y
- @result{} "ARRDEFG"
- (string-downcase! y)
- @result{} "arrdefg"
- y
- @result{} "arrdefg"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} string-capitalize str
- @deffnx {C Function} scm_string_capitalize (str)
- Return a freshly allocated string with the characters in
- @var{str}, where the first character of every word is
- capitalized.
- @end deffn
- @deffn {Scheme Procedure} string-capitalize! str
- @deffnx {C Function} scm_string_capitalize_x (str)
- Upcase the first character of every word in @var{str}
- destructively and return @var{str}.
- @lisp
- y @result{} "hello world"
- (string-capitalize! y) @result{} "Hello World"
- y @result{} "Hello World"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} string-titlecase str [start [end]]
- @deffnx {C Function} scm_string_titlecase (str, start, end)
- Titlecase every first character in a word in @var{str}.
- @end deffn
- @deffn {Scheme Procedure} string-titlecase! str [start [end]]
- @deffnx {C Function} scm_string_titlecase_x (str, start, end)
- Destructively titlecase every first character in a word in
- @var{str}.
- @end deffn
- @node Reversing and Appending Strings
- @subsubsection Reversing and Appending Strings
- @deffn {Scheme Procedure} string-reverse str [start [end]]
- @deffnx {C Function} scm_string_reverse (str, start, end)
- Reverse the string @var{str}. The optional arguments
- @var{start} and @var{end} delimit the region of @var{str} to
- operate on.
- @end deffn
- @deffn {Scheme Procedure} string-reverse! str [start [end]]
- @deffnx {C Function} scm_string_reverse_x (str, start, end)
- Reverse the string @var{str} in-place. The optional arguments
- @var{start} and @var{end} delimit the region of @var{str} to
- operate on. The return value is unspecified.
- @end deffn
- @rnindex string-append
- @deffn {Scheme Procedure} string-append . args
- @deffnx {C Function} scm_string_append (args)
- Return a newly allocated string whose characters form the
- concatenation of the given strings, @var{args}.
- @example
- (let ((h "hello "))
- (string-append h "world"))
- @result{} "hello world"
- @end example
- @end deffn
- @deffn {Scheme Procedure} string-append/shared . ls
- @deffnx {C Function} scm_string_append_shared (ls)
- Like @code{string-append}, but the result may share memory
- with the argument strings.
- @end deffn
- @deffn {Scheme Procedure} string-concatenate ls
- @deffnx {C Function} scm_string_concatenate (ls)
- Append the elements of @var{ls} (which must be strings)
- together into a single string. Guaranteed to return a freshly
- allocated string.
- @end deffn
- @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
- @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
- Without optional arguments, this procedure is equivalent to
- @smalllisp
- (string-concatenate (reverse ls))
- @end smalllisp
- If the optional argument @var{final_string} is specified, it is
- consed onto the beginning to @var{ls} before performing the
- list-reverse and string-concatenate operations. If @var{end}
- is given, only the characters of @var{final_string} up to index
- @var{end} are used.
- Guaranteed to return a freshly allocated string.
- @end deffn
- @deffn {Scheme Procedure} string-concatenate/shared ls
- @deffnx {C Function} scm_string_concatenate_shared (ls)
- Like @code{string-concatenate}, but the result may share memory
- with the strings in the list @var{ls}.
- @end deffn
- @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
- @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
- Like @code{string-concatenate-reverse}, but the result may
- share memory with the the strings in the @var{ls} arguments.
- @end deffn
- @node Mapping Folding and Unfolding
- @subsubsection Mapping, Folding, and Unfolding
- @deffn {Scheme Procedure} string-map proc s [start [end]]
- @deffnx {C Function} scm_string_map (proc, s, start, end)
- @var{proc} is a char->char procedure, it is mapped over
- @var{s}. The order in which the procedure is applied to the
- string elements is not specified.
- @end deffn
- @deffn {Scheme Procedure} string-map! proc s [start [end]]
- @deffnx {C Function} scm_string_map_x (proc, s, start, end)
- @var{proc} is a char->char procedure, it is mapped over
- @var{s}. The order in which the procedure is applied to the
- string elements is not specified. The string @var{s} is
- modified in-place, the return value is not specified.
- @end deffn
- @deffn {Scheme Procedure} string-for-each proc s [start [end]]
- @deffnx {C Function} scm_string_for_each (proc, s, start, end)
- @var{proc} is mapped over @var{s} in left-to-right order. The
- return value is not specified.
- @end deffn
- @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
- @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
- Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
- right.
- For example, to change characters to alternately upper and lower case,
- @example
- (define str (string-copy "studly"))
- (string-for-each-index (lambda (i)
- (string-set! str i
- ((if (even? i) char-upcase char-downcase)
- (string-ref str i))))
- str)
- str @result{} "StUdLy"
- @end example
- @end deffn
- @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
- @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
- Fold @var{kons} over the characters of @var{s}, with @var{knil}
- as the terminating element, from left to right. @var{kons}
- must expect two arguments: The actual character and the last
- result of @var{kons}' application.
- @end deffn
- @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
- @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
- Fold @var{kons} over the characters of @var{s}, with @var{knil}
- as the terminating element, from right to left. @var{kons}
- must expect two arguments: The actual character and the last
- result of @var{kons}' application.
- @end deffn
- @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
- @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
- @itemize @bullet
- @item @var{g} is used to generate a series of @emph{seed}
- values from the initial @var{seed}: @var{seed}, (@var{g}
- @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
- @dots{}
- @item @var{p} tells us when to stop -- when it returns true
- when applied to one of these seed values.
- @item @var{f} maps each seed value to the corresponding
- character in the result string. These chars are assembled
- into the string in a left-to-right order.
- @item @var{base} is the optional initial/leftmost portion
- of the constructed string; it default to the empty
- string.
- @item @var{make_final} is applied to the terminal seed
- value (on which @var{p} returns true) to produce
- the final/rightmost portion of the constructed string.
- The default is nothing extra.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
- @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
- @itemize @bullet
- @item @var{g} is used to generate a series of @emph{seed}
- values from the initial @var{seed}: @var{seed}, (@var{g}
- @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
- @dots{}
- @item @var{p} tells us when to stop -- when it returns true
- when applied to one of these seed values.
- @item @var{f} maps each seed value to the corresponding
- character in the result string. These chars are assembled
- into the string in a right-to-left order.
- @item @var{base} is the optional initial/rightmost portion
- of the constructed string; it default to the empty
- string.
- @item @var{make_final} is applied to the terminal seed
- value (on which @var{p} returns true) to produce
- the final/leftmost portion of the constructed string.
- It defaults to @code{(lambda (x) )}.
- @end itemize
- @end deffn
- @node Miscellaneous String Operations
- @subsubsection Miscellaneous String Operations
- @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
- @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
- This is the @emph{extended substring} procedure that implements
- replicated copying of a substring of some string.
- @var{s} is a string, @var{start} and @var{end} are optional
- arguments that demarcate a substring of @var{s}, defaulting to
- 0 and the length of @var{s}. Replicate this substring up and
- down index space, in both the positive and negative directions.
- @code{xsubstring} returns the substring of this string
- beginning at index @var{from}, and ending at @var{to}, which
- defaults to @var{from} + (@var{end} - @var{start}).
- @end deffn
- @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
- @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
- Exactly the same as @code{xsubstring}, but the extracted text
- is written into the string @var{target} starting at index
- @var{tstart}. The operation is not defined if @code{(eq?
- @var{target} @var{s})} or these arguments share storage -- you
- cannot copy a string on top of itself.
- @end deffn
- @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
- Return the string @var{s1}, but with the characters
- @var{start1} @dots{} @var{end1} replaced by the characters
- @var{start2} @dots{} @var{end2} from @var{s2}.
- @end deffn
- @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
- @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
- Split the string @var{s} into a list of substrings, where each
- substring is a maximal non-empty contiguous sequence of
- characters from the character set @var{token_set}, which
- defaults to @code{char-set:graphic}.
- If @var{start} or @var{end} indices are provided, they restrict
- @code{string-tokenize} to operating on the indicated substring
- of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-filter s char_pred [start [end]]
- @deffnx {C Function} scm_string_filter (s, char_pred, start, end)
- Filter the string @var{s}, retaining only those characters which
- satisfy @var{char_pred}.
- If @var{char_pred} is a procedure, it is applied to each character as
- a predicate, if it is a character, it is tested for equality and if it
- is a character set, it is tested for membership.
- @end deffn
- @deffn {Scheme Procedure} string-delete s char_pred [start [end]]
- @deffnx {C Function} scm_string_delete (s, char_pred, start, end)
- Delete characters satisfying @var{char_pred} from @var{s}.
- If @var{char_pred} is a procedure, it is applied to each character as
- a predicate, if it is a character, it is tested for equality and if it
- is a character set, it is tested for membership.
- @end deffn
- @node Conversion to/from C
- @subsubsection Conversion to/from C
- When creating a Scheme string from a C string or when converting a
- Scheme string to a C string, the concept of character encoding becomes
- important.
- In C, a string is just a sequence of bytes, and the character encoding
- describes the relation between these bytes and the actual characters
- that make up the string. For Scheme strings, character encoding is
- not an issue (most of the time), since in Scheme you never get to see
- the bytes, only the characters.
- Well, ideally, anyway. Right now, Guile simply equates Scheme
- characters and bytes, ignoring the possibility of multi-byte encodings
- completely. This will change in the future, where Guile will use
- Unicode codepoints as its characters and UTF-8 or some other encoding
- as its internal encoding. When you exclusively use the functions
- listed in this section, you are `future-proof'.
- Converting a Scheme string to a C string will often allocate fresh
- memory to hold the result. You must take care that this memory is
- properly freed eventually. In many cases, this can be achieved by
- using @code{scm_dynwind_free} inside an appropriate dynwind context,
- @xref{Dynamic Wind}.
- @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
- @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
- Creates a new Scheme string that has the same contents as @var{str}
- when interpreted in the current locale character encoding.
- For @code{scm_from_locale_string}, @var{str} must be null-terminated.
- For @code{scm_from_locale_stringn}, @var{len} specifies the length of
- @var{str} in bytes, and @var{str} does not need to be null-terminated.
- If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
- null-terminated and the real length will be found with @code{strlen}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_take_locale_string (char *str)
- @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
- Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
- respectively, but also frees @var{str} with @code{free} eventually.
- Thus, you can use this function when you would free @var{str} anyway
- immediately after creating the Scheme string. In certain cases, Guile
- can then use @var{str} directly as its internal representation.
- @end deftypefn
- @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
- @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
- Returns a C string in the current locale encoding with the same
- contents as @var{str}. The C string must be freed with @code{free}
- eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
- Wind}.
- For @code{scm_to_locale_string}, the returned string is
- null-terminated and an error is signalled when @var{str} contains
- @code{#\nul} characters.
- For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
- @var{str} might contain @code{#\nul} characters and the length of the
- returned string in bytes is stored in @code{*@var{lenp}}. The
- returned string will not be null-terminated in this case. If
- @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
- @code{scm_to_locale_string}.
- @end deftypefn
- @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
- Puts @var{str} as a C string in the current locale encoding into the
- memory pointed to by @var{buf}. The buffer at @var{buf} has room for
- @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
- more than that. No terminating @code{'\0'} will be stored.
- The return value of @code{scm_to_locale_stringbuf} is the number of
- bytes that are needed for all of @var{str}, regardless of whether
- @var{buf} was large enough to hold them. Thus, when the return value
- is larger than @var{max_len}, only @var{max_len} bytes have been
- stored and you probably need to try again with a larger buffer.
- @end deftypefn
- @node Regular Expressions
- @subsection Regular Expressions
- @tpindex Regular expressions
- @cindex regular expressions
- @cindex regex
- @cindex emacs regexp
- A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
- describes a whole class of strings. A full description of regular
- expressions and their syntax is beyond the scope of this manual;
- an introduction can be found in the Emacs manual (@pxref{Regexps,
- , Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
- in many general Unix reference books.
- If your system does not include a POSIX regular expression library,
- and you have not linked Guile with a third-party regexp library such
- as Rx, these functions will not be available. You can tell whether
- your Guile installation includes regular expression support by
- checking whether @code{(provided? 'regex)} returns true.
- The following regexp and string matching features are provided by the
- @code{(ice-9 regex)} module. Before using the described functions,
- you should load this module by executing @code{(use-modules (ice-9
- regex))}.
- @menu
- * Regexp Functions:: Functions that create and match regexps.
- * Match Structures:: Finding what was matched by a regexp.
- * Backslash Escapes:: Removing the special meaning of regexp
- meta-characters.
- @end menu
- @node Regexp Functions
- @subsubsection Regexp Functions
- By default, Guile supports POSIX extended regular expressions.
- That means that the characters @samp{(}, @samp{)}, @samp{+} and
- @samp{?} are special, and must be escaped if you wish to match the
- literal characters.
- This regular expression interface was modeled after that
- implemented by SCSH, the Scheme Shell. It is intended to be
- upwardly compatible with SCSH regular expressions.
- Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
- strings, since the underlying C functions treat that as the end of
- string. If there's a zero byte an error is thrown.
- Patterns and input strings are treated as being in the locale
- character set if @code{setlocale} has been called (@pxref{Locales}),
- and in a multibyte locale this includes treating multi-byte sequences
- as a single character. (Guile strings are currently merely bytes,
- though this may change in the future, @xref{Conversion to/from C}.)
- @deffn {Scheme Procedure} string-match pattern str [start]
- Compile the string @var{pattern} into a regular expression and compare
- it with @var{str}. The optional numeric argument @var{start} specifies
- the position of @var{str} at which to begin matching.
- @code{string-match} returns a @dfn{match structure} which
- describes what, if anything, was matched by the regular
- expression. @xref{Match Structures}. If @var{str} does not match
- @var{pattern} at all, @code{string-match} returns @code{#f}.
- @end deffn
- Two examples of a match follow. In the first example, the pattern
- matches the four digits in the match string. In the second, the pattern
- matches nothing.
- @example
- (string-match "[0-9][0-9][0-9][0-9]" "blah2002")
- @result{} #("blah2002" (4 . 8))
- (string-match "[A-Za-z]" "123456")
- @result{} #f
- @end example
- Each time @code{string-match} is called, it must compile its
- @var{pattern} argument into a regular expression structure. This
- operation is expensive, which makes @code{string-match} inefficient if
- the same regular expression is used several times (for example, in a
- loop). For better performance, you can compile a regular expression in
- advance and then match strings against the compiled regexp.
- @deffn {Scheme Procedure} make-regexp pat flag@dots{}
- @deffnx {C Function} scm_make_regexp (pat, flaglst)
- Compile the regular expression described by @var{pat}, and
- return the compiled regexp structure. If @var{pat} does not
- describe a legal regular expression, @code{make-regexp} throws
- a @code{regular-expression-syntax} error.
- The @var{flag} arguments change the behavior of the compiled
- regular expression. The following values may be supplied:
- @defvar regexp/icase
- Consider uppercase and lowercase letters to be the same when
- matching.
- @end defvar
- @defvar regexp/newline
- If a newline appears in the target string, then permit the
- @samp{^} and @samp{$} operators to match immediately after or
- immediately before the newline, respectively. Also, the
- @samp{.} and @samp{[^...]} operators will never match a newline
- character. The intent of this flag is to treat the target
- string as a buffer containing many lines of text, and the
- regular expression as a pattern that may match a single one of
- those lines.
- @end defvar
- @defvar regexp/basic
- Compile a basic (``obsolete'') regexp instead of the extended
- (``modern'') regexps that are the default. Basic regexps do
- not consider @samp{|}, @samp{+} or @samp{?} to be special
- characters, and require the @samp{@{...@}} and @samp{(...)}
- metacharacters to be backslash-escaped (@pxref{Backslash
- Escapes}). There are several other differences between basic
- and extended regular expressions, but these are the most
- significant.
- @end defvar
- @defvar regexp/extended
- Compile an extended regular expression rather than a basic
- regexp. This is the default behavior; this flag will not
- usually be needed. If a call to @code{make-regexp} includes
- both @code{regexp/basic} and @code{regexp/extended} flags, the
- one which comes last will override the earlier one.
- @end defvar
- @end deffn
- @deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
- @deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
- Match the compiled regular expression @var{rx} against
- @code{str}. If the optional integer @var{start} argument is
- provided, begin matching from that position in the string.
- Return a match structure describing the results of the match,
- or @code{#f} if no match could be found.
- The @var{flags} argument changes the matching behavior. The following
- flag values may be supplied, use @code{logior} (@pxref{Bitwise
- Operations}) to combine them,
- @defvar regexp/notbol
- Consider that the @var{start} offset into @var{str} is not the
- beginning of a line and should not match operator @samp{^}.
- If @var{rx} was created with the @code{regexp/newline} option above,
- @samp{^} will still match after a newline in @var{str}.
- @end defvar
- @defvar regexp/noteol
- Consider that the end of @var{str} is not the end of a line and should
- not match operator @samp{$}.
- If @var{rx} was created with the @code{regexp/newline} option above,
- @samp{$} will still match before a newline in @var{str}.
- @end defvar
- @end deffn
- @lisp
- ;; Regexp to match uppercase letters
- (define r (make-regexp "[A-Z]*"))
- ;; Regexp to match letters, ignoring case
- (define ri (make-regexp "[A-Z]*" regexp/icase))
- ;; Search for bob using regexp r
- (match:substring (regexp-exec r "bob"))
- @result{} "" ; no match
- ;; Search for bob using regexp ri
- (match:substring (regexp-exec ri "Bob"))
- @result{} "Bob" ; matched case insensitive
- @end lisp
- @deffn {Scheme Procedure} regexp? obj
- @deffnx {C Function} scm_regexp_p (obj)
- Return @code{#t} if @var{obj} is a compiled regular expression,
- or @code{#f} otherwise.
- @end deffn
- @sp 1
- @deffn {Scheme Procedure} list-matches regexp str [flags]
- Return a list of match structures which are the non-overlapping
- matches of @var{regexp} in @var{str}. @var{regexp} can be either a
- pattern string or a compiled regexp. The @var{flags} argument is as
- per @code{regexp-exec} above.
- @example
- (map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
- @result{} ("abc" "def")
- @end example
- @end deffn
- @deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
- Apply @var{proc} to the non-overlapping matches of @var{regexp} in
- @var{str}, to build a result. @var{regexp} can be either a pattern
- string or a compiled regexp. The @var{flags} argument is as per
- @code{regexp-exec} above.
- @var{proc} is called as @code{(@var{proc} match prev)} where
- @var{match} is a match structure and @var{prev} is the previous return
- from @var{proc}. For the first call @var{prev} is the given
- @var{init} parameter. @code{fold-matches} returns the final value
- from @var{proc}.
- For example to count matches,
- @example
- (fold-matches "[a-z][0-9]" "abc x1 def y2" 0
- (lambda (match count)
- (1+ count)))
- @result{} 2
- @end example
- @end deffn
- @sp 1
- Regular expressions are commonly used to find patterns in one string
- and replace them with the contents of another string. The following
- functions are convenient ways to do this.
- @c begin (scm-doc-string "regex.scm" "regexp-substitute")
- @deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
- Write to @var{port} selected parts of the match structure @var{match}.
- Or if @var{port} is @code{#f} then form a string from those parts and
- return that.
- Each @var{item} specifies a part to be written, and may be one of the
- following,
- @itemize @bullet
- @item
- A string. String arguments are written out verbatim.
- @item
- An integer. The submatch with that number is written
- (@code{match:substring}). Zero is the entire match.
- @item
- The symbol @samp{pre}. The portion of the matched string preceding
- the regexp match is written (@code{match:prefix}).
- @item
- The symbol @samp{post}. The portion of the matched string following
- the regexp match is written (@code{match:suffix}).
- @end itemize
- For example, changing a match and retaining the text before and after,
- @example
- (regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
- 'pre "37" 'post)
- @result{} "number 37 is good"
- @end example
- Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
- re-ordering and hyphenating the fields.
- @lisp
- (define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
- (define s "Date 20020429 12am.")
- (regexp-substitute #f (string-match date-regex s)
- 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
- @result{} "Date 04-29-2002 12am. (20020429)"
- @end lisp
- @end deffn
- @c begin (scm-doc-string "regex.scm" "regexp-substitute")
- @deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
- @cindex search and replace
- Write to @var{port} selected parts of matches of @var{regexp} in
- @var{target}. If @var{port} is @code{#f} then form a string from
- those parts and return that. @var{regexp} can be a string or a
- compiled regex.
- This is similar to @code{regexp-substitute}, but allows global
- substitutions on @var{target}. Each @var{item} behaves as per
- @code{regexp-substitute}, with the following differences,
- @itemize @bullet
- @item
- A function. Called as @code{(@var{item} match)} with the match
- structure for the @var{regexp} match, it should return a string to be
- written to @var{port}.
- @item
- The symbol @samp{post}. This doesn't output anything, but instead
- causes @code{regexp-substitute/global} to recurse on the unmatched
- portion of @var{target}.
- This @emph{must} be supplied to perform a global search and replace on
- @var{target}; without it @code{regexp-substitute/global} returns after
- a single match and output.
- @end itemize
- For example, to collapse runs of tabs and spaces to a single hyphen
- each,
- @example
- (regexp-substitute/global #f "[ \t]+" "this is the text"
- 'pre "-" 'post)
- @result{} "this-is-the-text"
- @end example
- Or using a function to reverse the letters in each word,
- @example
- (regexp-substitute/global #f "[a-z]+" "to do and not-do"
- 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
- @result{} "ot od dna ton-od"
- @end example
- Without the @code{post} symbol, just one regexp match is made. For
- example the following is the date example from
- @code{regexp-substitute} above, without the need for the separate
- @code{string-match} call.
- @lisp
- (define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
- (define s "Date 20020429 12am.")
- (regexp-substitute/global #f date-regex s
- 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
- @result{} "Date 04-29-2002 12am. (20020429)"
- @end lisp
- @end deffn
- @node Match Structures
- @subsubsection Match Structures
- @cindex match structures
- A @dfn{match structure} is the object returned by @code{string-match} and
- @code{regexp-exec}. It describes which portion of a string, if any,
- matched the given regular expression. Match structures include: a
- reference to the string that was checked for matches; the starting and
- ending positions of the regexp match; and, if the regexp included any
- parenthesized subexpressions, the starting and ending positions of each
- submatch.
- In each of the regexp match functions described below, the @code{match}
- argument must be a match structure returned by a previous call to
- @code{string-match} or @code{regexp-exec}. Most of these functions
- return some information about the original target string that was
- matched against a regular expression; we will call that string
- @var{target} for easy reference.
- @c begin (scm-doc-string "regex.scm" "regexp-match?")
- @deffn {Scheme Procedure} regexp-match? obj
- Return @code{#t} if @var{obj} is a match structure returned by a
- previous call to @code{regexp-exec}, or @code{#f} otherwise.
- @end deffn
- @c begin (scm-doc-string "regex.scm" "match:substring")
- @deffn {Scheme Procedure} match:substring match [n]
- Return the portion of @var{target} matched by subexpression number
- @var{n}. Submatch 0 (the default) represents the entire regexp match.
- If the regular expression as a whole matched, but the subexpression
- number @var{n} did not match, return @code{#f}.
- @end deffn
- @lisp
- (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
- (match:substring s)
- @result{} "2002"
- ;; match starting at offset 6 in the string
- (match:substring
- (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
- @result{} "7654"
- @end lisp
- @c begin (scm-doc-string "regex.scm" "match:start")
- @deffn {Scheme Procedure} match:start match [n]
- Return the starting position of submatch number @var{n}.
- @end deffn
- In the following example, the result is 4, since the match starts at
- character index 4:
- @lisp
- (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
- (match:start s)
- @result{} 4
- @end lisp
- @c begin (scm-doc-string "regex.scm" "match:end")
- @deffn {Scheme Procedure} match:end match [n]
- Return the ending position of submatch number @var{n}.
- @end deffn
- In the following example, the result is 8, since the match runs between
- characters 4 and 8 (i.e. the ``2002'').
- @lisp
- (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
- (match:end s)
- @result{} 8
- @end lisp
- @c begin (scm-doc-string "regex.scm" "match:prefix")
- @deffn {Scheme Procedure} match:prefix match
- Return the unmatched portion of @var{target} preceding the regexp match.
- @lisp
- (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
- (match:prefix s)
- @result{} "blah"
- @end lisp
- @end deffn
- @c begin (scm-doc-string "regex.scm" "match:suffix")
- @deffn {Scheme Procedure} match:suffix match
- Return the unmatched portion of @var{target} following the regexp match.
- @end deffn
- @lisp
- (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
- (match:suffix s)
- @result{} "foo"
- @end lisp
- @c begin (scm-doc-string "regex.scm" "match:count")
- @deffn {Scheme Procedure} match:count match
- Return the number of parenthesized subexpressions from @var{match}.
- Note that the entire regular expression match itself counts as a
- subexpression, and failed submatches are included in the count.
- @end deffn
- @c begin (scm-doc-string "regex.scm" "match:string")
- @deffn {Scheme Procedure} match:string match
- Return the original @var{target} string.
- @end deffn
- @lisp
- (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
- (match:string s)
- @result{} "blah2002foo"
- @end lisp
- @node Backslash Escapes
- @subsubsection Backslash Escapes
- Sometimes you will want a regexp to match characters like @samp{*} or
- @samp{$} exactly. For example, to check whether a particular string
- represents a menu entry from an Info node, it would be useful to match
- it against a regexp like @samp{^* [^:]*::}. However, this won't work;
- because the asterisk is a metacharacter, it won't match the @samp{*} at
- the beginning of the string. In this case, we want to make the first
- asterisk un-magic.
- You can do this by preceding the metacharacter with a backslash
- character @samp{\}. (This is also called @dfn{quoting} the
- metacharacter, and is known as a @dfn{backslash escape}.) When Guile
- sees a backslash in a regular expression, it considers the following
- glyph to be an ordinary character, no matter what special meaning it
- would ordinarily have. Therefore, we can make the above example work by
- changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
- the regular expression engine to match only a single asterisk in the
- target string.
- Since the backslash is itself a metacharacter, you may force a regexp to
- match a backslash in the target string by preceding the backslash with
- itself. For example, to find variable references in a @TeX{} program,
- you might want to find occurrences of the string @samp{\let\} followed
- by any number of alphabetic characters. The regular expression
- @samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
- regexp each match a single backslash in the target string.
- @c begin (scm-doc-string "regex.scm" "regexp-quote")
- @deffn {Scheme Procedure} regexp-quote str
- Quote each special character found in @var{str} with a backslash, and
- return the resulting string.
- @end deffn
- @strong{Very important:} Using backslash escapes in Guile source code
- (as in Emacs Lisp or C) can be tricky, because the backslash character
- has special meaning for the Guile reader. For example, if Guile
- encounters the character sequence @samp{\n} in the middle of a string
- while processing Scheme code, it replaces those characters with a
- newline character. Similarly, the character sequence @samp{\t} is
- replaced by a horizontal tab. Several of these @dfn{escape sequences}
- are processed by the Guile reader before your code is executed.
- Unrecognized escape sequences are ignored: if the characters @samp{\*}
- appear in a string, they will be translated to the single character
- @samp{*}.
- This translation is obviously undesirable for regular expressions, since
- we want to be able to include backslashes in a string in order to
- escape regexp metacharacters. Therefore, to make sure that a backslash
- is preserved in a string in your Guile program, you must use @emph{two}
- consecutive backslashes:
- @lisp
- (define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
- @end lisp
- The string in this example is preprocessed by the Guile reader before
- any code is executed. The resulting argument to @code{make-regexp} is
- the string @samp{^\* [^:]*}, which is what we really want.
- This also means that in order to write a regular expression that matches
- a single backslash character, the regular expression string in the
- source code must include @emph{four} backslashes. Each consecutive pair
- of backslashes gets translated by the Guile reader to a single
- backslash, and the resulting double-backslash is interpreted by the
- regexp engine as matching a single backslash character. Hence:
- @lisp
- (define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
- @end lisp
- The reason for the unwieldiness of this syntax is historical. Both
- regular expression pattern matchers and Unix string processing systems
- have traditionally used backslashes with the special meanings
- described above. The POSIX regular expression specification and ANSI C
- standard both require these semantics. Attempting to abandon either
- convention would cause other kinds of compatibility problems, possibly
- more severe ones. Therefore, without extending the Scheme reader to
- support strings with different quoting conventions (an ungainly and
- confusing extension when implemented in other languages), we must adhere
- to this cumbersome escape syntax.
- @node Symbols
- @subsection Symbols
- @tpindex Symbols
- Symbols in Scheme are widely used in three ways: as items of discrete
- data, as lookup keys for alists and hash tables, and to denote variable
- references.
- A @dfn{symbol} is similar to a string in that it is defined by a
- sequence of characters. The sequence of characters is known as the
- symbol's @dfn{name}. In the usual case --- that is, where the symbol's
- name doesn't include any characters that could be confused with other
- elements of Scheme syntax --- a symbol is written in a Scheme program by
- writing the sequence of characters that make up the name, @emph{without}
- any quotation marks or other special syntax. For example, the symbol
- whose name is ``multiply-by-2'' is written, simply:
- @lisp
- multiply-by-2
- @end lisp
- Notice how this differs from a @emph{string} with contents
- ``multiply-by-2'', which is written with double quotation marks, like
- this:
- @lisp
- "multiply-by-2"
- @end lisp
- Looking beyond how they are written, symbols are different from strings
- in two important respects.
- The first important difference is uniqueness. If the same-looking
- string is read twice from two different places in a program, the result
- is two @emph{different} string objects whose contents just happen to be
- the same. If, on the other hand, the same-looking symbol is read twice
- from two different places in a program, the result is the @emph{same}
- symbol object both times.
- Given two read symbols, you can use @code{eq?} to test whether they are
- the same (that is, have the same name). @code{eq?} is the most
- efficient comparison operator in Scheme, and comparing two symbols like
- this is as fast as comparing, for example, two numbers. Given two
- strings, on the other hand, you must use @code{equal?} or
- @code{string=?}, which are much slower comparison operators, to
- determine whether the strings have the same contents.
- @lisp
- (define sym1 (quote hello))
- (define sym2 (quote hello))
- (eq? sym1 sym2) @result{} #t
- (define str1 "hello")
- (define str2 "hello")
- (eq? str1 str2) @result{} #f
- (equal? str1 str2) @result{} #t
- @end lisp
- The second important difference is that symbols, unlike strings, are not
- self-evaluating. This is why we need the @code{(quote @dots{})}s in the
- example above: @code{(quote hello)} evaluates to the symbol named
- "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
- symbol named "hello" and evaluated as a variable reference @dots{} about
- which more below (@pxref{Symbol Variables}).
- @menu
- * Symbol Data:: Symbols as discrete data.
- * Symbol Keys:: Symbols as lookup keys.
- * Symbol Variables:: Symbols as denoting variables.
- * Symbol Primitives:: Operations related to symbols.
- * Symbol Props:: Function slots and property lists.
- * Symbol Read Syntax:: Extended read syntax for symbols.
- * Symbol Uninterned:: Uninterned symbols.
- @end menu
- @node Symbol Data
- @subsubsection Symbols as Discrete Data
- Numbers and symbols are similar to the extent that they both lend
- themselves to @code{eq?} comparison. But symbols are more descriptive
- than numbers, because a symbol's name can be used directly to describe
- the concept for which that symbol stands.
- For example, imagine that you need to represent some colours in a
- computer program. Using numbers, you would have to choose arbitrarily
- some mapping between numbers and colours, and then take care to use that
- mapping consistently:
- @lisp
- ;; 1=red, 2=green, 3=purple
- (if (eq? (colour-of car) 1)
- ...)
- @end lisp
- @noindent
- You can make the mapping more explicit and the code more readable by
- defining constants:
- @lisp
- (define red 1)
- (define green 2)
- (define purple 3)
- (if (eq? (colour-of car) red)
- ...)
- @end lisp
- @noindent
- But the simplest and clearest approach is not to use numbers at all, but
- symbols whose names specify the colours that they refer to:
- @lisp
- (if (eq? (colour-of car) 'red)
- ...)
- @end lisp
- The descriptive advantages of symbols over numbers increase as the set
- of concepts that you want to describe grows. Suppose that a car object
- can have other properties as well, such as whether it has or uses:
- @itemize @bullet
- @item
- automatic or manual transmission
- @item
- leaded or unleaded fuel
- @item
- power steering (or not).
- @end itemize
- @noindent
- Then a car's combined property set could be naturally represented and
- manipulated as a list of symbols:
- @lisp
- (properties-of car1)
- @result{}
- (red manual unleaded power-steering)
- (if (memq 'power-steering (properties-of car1))
- (display "Unfit people can drive this car.\n")
- (display "You'll need strong arms to drive this car!\n"))
- @print{}
- Unfit people can drive this car.
- @end lisp
- Remember, the fundamental property of symbols that we are relying on
- here is that an occurrence of @code{'red} in one part of a program is an
- @emph{indistinguishable} symbol from an occurrence of @code{'red} in
- another part of a program; this means that symbols can usefully be
- compared using @code{eq?}. At the same time, symbols have naturally
- descriptive names. This combination of efficiency and descriptive power
- makes them ideal for use as discrete data.
- @node Symbol Keys
- @subsubsection Symbols as Lookup Keys
- Given their efficiency and descriptive power, it is natural to use
- symbols as the keys in an association list or hash table.
- To illustrate this, consider a more structured representation of the car
- properties example from the preceding subsection. Rather than
- mixing all the properties up together in a flat list, we could use an
- association list like this:
- @lisp
- (define car1-properties '((colour . red)
- (transmission . manual)
- (fuel . unleaded)
- (steering . power-assisted)))
- @end lisp
- Notice how this structure is more explicit and extensible than the flat
- list. For example it makes clear that @code{manual} refers to the
- transmission rather than, say, the windows or the locking of the car.
- It also allows further properties to use the same symbols among their
- possible values without becoming ambiguous:
- @lisp
- (define car1-properties '((colour . red)
- (transmission . manual)
- (fuel . unleaded)
- (steering . power-assisted)
- (seat-colour . red)
- (locking . manual)))
- @end lisp
- With a representation like this, it is easy to use the efficient
- @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
- extract or change individual pieces of information:
- @lisp
- (assq-ref car1-properties 'fuel) @result{} unleaded
- (assq-ref car1-properties 'transmission) @result{} manual
- (assq-set! car1-properties 'seat-colour 'black)
- @result{}
- ((colour . red)
- (transmission . manual)
- (fuel . unleaded)
- (steering . power-assisted)
- (seat-colour . black)
- (locking . manual)))
- @end lisp
- Hash tables also have keys, and exactly the same arguments apply to the
- use of symbols in hash tables as in association lists. The hash value
- that Guile uses to decide where to add a symbol-keyed entry to a hash
- table can be obtained by calling the @code{symbol-hash} procedure:
- @deffn {Scheme Procedure} symbol-hash symbol
- @deffnx {C Function} scm_symbol_hash (symbol)
- Return a hash value for @var{symbol}.
- @end deffn
- See @ref{Hash Tables} for information about hash tables in general, and
- for why you might choose to use a hash table rather than an association
- list.
- @node Symbol Variables
- @subsubsection Symbols as Denoting Variables
- When an unquoted symbol in a Scheme program is evaluated, it is
- interpreted as a variable reference, and the result of the evaluation is
- the appropriate variable's value.
- For example, when the expression @code{(string-length "abcd")} is read
- and evaluated, the sequence of characters @code{string-length} is read
- as the symbol whose name is "string-length". This symbol is associated
- with a variable whose value is the procedure that implements string
- length calculation. Therefore evaluation of the @code{string-length}
- symbol results in that procedure.
- The details of the connection between an unquoted symbol and the
- variable to which it refers are explained elsewhere. See @ref{Binding
- Constructs}, for how associations between symbols and variables are
- created, and @ref{Modules}, for how those associations are affected by
- Guile's module system.
- @node Symbol Primitives
- @subsubsection Operations Related to Symbols
- Given any Scheme value, you can determine whether it is a symbol using
- the @code{symbol?} primitive:
- @rnindex symbol?
- @deffn {Scheme Procedure} symbol? obj
- @deffnx {C Function} scm_symbol_p (obj)
- Return @code{#t} if @var{obj} is a symbol, otherwise return
- @code{#f}.
- @end deffn
- @deftypefn {C Function} int scm_is_symbol (SCM val)
- Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
- @end deftypefn
- Once you know that you have a symbol, you can obtain its name as a
- string by calling @code{symbol->string}. Note that Guile differs by
- default from R5RS on the details of @code{symbol->string} as regards
- case-sensitivity:
- @rnindex symbol->string
- @deffn {Scheme Procedure} symbol->string s
- @deffnx {C Function} scm_symbol_to_string (s)
- Return the name of symbol @var{s} as a string. By default, Guile reads
- symbols case-sensitively, so the string returned will have the same case
- variation as the sequence of characters that caused @var{s} to be
- created.
- If Guile is set to read symbols case-insensitively (as specified by
- R5RS), and @var{s} comes into being as part of a literal expression
- (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
- by a call to the @code{read} or @code{string-ci->symbol} procedures,
- Guile converts any alphabetic characters in the symbol's name to
- lower case before creating the symbol object, so the string returned
- here will be in lower case.
- If @var{s} was created by @code{string->symbol}, the case of characters
- in the string returned will be the same as that in the string that was
- passed to @code{string->symbol}, regardless of Guile's case-sensitivity
- setting at the time @var{s} was created.
- It is an error to apply mutation procedures like @code{string-set!} to
- strings returned by this procedure.
- @end deffn
- Most symbols are created by writing them literally in code. However it
- is also possible to create symbols programmatically using the following
- @code{string->symbol} and @code{string-ci->symbol} procedures:
- @rnindex string->symbol
- @deffn {Scheme Procedure} string->symbol string
- @deffnx {C Function} scm_string_to_symbol (string)
- Return the symbol whose name is @var{string}. This procedure can create
- symbols with names containing special characters or letters in the
- non-standard case, but it is usually a bad idea to create such symbols
- because in some implementations of Scheme they cannot be read as
- themselves.
- @end deffn
- @deffn {Scheme Procedure} string-ci->symbol str
- @deffnx {C Function} scm_string_ci_to_symbol (str)
- Return the symbol whose name is @var{str}. If Guile is currently
- reading symbols case-insensitively, @var{str} is converted to lowercase
- before the returned symbol is looked up or created.
- @end deffn
- The following examples illustrate Guile's detailed behaviour as regards
- the case-sensitivity of symbols:
- @lisp
- (read-enable 'case-insensitive) ; R5RS compliant behaviour
- (symbol->string 'flying-fish) @result{} "flying-fish"
- (symbol->string 'Martin) @result{} "martin"
- (symbol->string
- (string->symbol "Malvina")) @result{} "Malvina"
- (eq? 'mISSISSIppi 'mississippi) @result{} #t
- (string->symbol "mISSISSIppi") @result{} mISSISSIppi
- (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
- (eq? 'LolliPop
- (string->symbol (symbol->string 'LolliPop))) @result{} #t
- (string=? "K. Harper, M.D."
- (symbol->string
- (string->symbol "K. Harper, M.D."))) @result{} #t
- (read-disable 'case-insensitive) ; Guile default behaviour
- (symbol->string 'flying-fish) @result{} "flying-fish"
- (symbol->string 'Martin) @result{} "Martin"
- (symbol->string
- (string->symbol "Malvina")) @result{} "Malvina"
- (eq? 'mISSISSIppi 'mississippi) @result{} #f
- (string->symbol "mISSISSIppi") @result{} mISSISSIppi
- (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
- (eq? 'LolliPop
- (string->symbol (symbol->string 'LolliPop))) @result{} #t
- (string=? "K. Harper, M.D."
- (symbol->string
- (string->symbol "K. Harper, M.D."))) @result{} #t
- @end lisp
- From C, there are lower level functions that construct a Scheme symbol
- from a C string in the current locale encoding.
- When you want to do more from C, you should convert between symbols
- and strings using @code{scm_symbol_to_string} and
- @code{scm_string_to_symbol} and work with the strings.
- @deffn {C Function} scm_from_locale_symbol (const char *name)
- @deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
- Construct and return a Scheme symbol whose name is specified by
- @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
- terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
- specified explicitly by @var{len}.
- @end deffn
- @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
- @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
- Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
- respectively, but also frees @var{str} with @code{free} eventually.
- Thus, you can use this function when you would free @var{str} anyway
- immediately after creating the Scheme string. In certain cases, Guile
- can then use @var{str} directly as its internal representation.
- @end deftypefn
- The size of a symbol can also be obtained from C:
- @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
- Return the number of characters in @var{sym}.
- @end deftypefn
- Finally, some applications, especially those that generate new Scheme
- code dynamically, need to generate symbols for use in the generated
- code. The @code{gensym} primitive meets this need:
- @deffn {Scheme Procedure} gensym [prefix]
- @deffnx {C Function} scm_gensym (prefix)
- Create a new symbol with a name constructed from a prefix and a counter
- value. The string @var{prefix} can be specified as an optional
- argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
- at each call. There is no provision for resetting the counter.
- @end deffn
- The symbols generated by @code{gensym} are @emph{likely} to be unique,
- since their names begin with a space and it is only otherwise possible
- to generate such symbols if a programmer goes out of their way to do
- so. Uniqueness can be guaranteed by instead using uninterned symbols
- (@pxref{Symbol Uninterned}), though they can't be usefully written out
- and read back in.
- @node Symbol Props
- @subsubsection Function Slots and Property Lists
- In traditional Lisp dialects, symbols are often understood as having
- three kinds of value at once:
- @itemize @bullet
- @item
- a @dfn{variable} value, which is used when the symbol appears in
- code in a variable reference context
- @item
- a @dfn{function} value, which is used when the symbol appears in
- code in a function name position (i.e. as the first element in an
- unquoted list)
- @item
- a @dfn{property list} value, which is used when the symbol is given as
- the first argument to Lisp's @code{put} or @code{get} functions.
- @end itemize
- Although Scheme (as one of its simplifications with respect to Lisp)
- does away with the distinction between variable and function namespaces,
- Guile currently retains some elements of the traditional structure in
- case they turn out to be useful when implementing translators for other
- languages, in particular Emacs Lisp.
- Specifically, Guile symbols have two extra slots. for a symbol's
- property list, and for its ``function value.'' The following procedures
- are provided to access these slots.
- @deffn {Scheme Procedure} symbol-fref symbol
- @deffnx {C Function} scm_symbol_fref (symbol)
- Return the contents of @var{symbol}'s @dfn{function slot}.
- @end deffn
- @deffn {Scheme Procedure} symbol-fset! symbol value
- @deffnx {C Function} scm_symbol_fset_x (symbol, value)
- Set the contents of @var{symbol}'s function slot to @var{value}.
- @end deffn
- @deffn {Scheme Procedure} symbol-pref symbol
- @deffnx {C Function} scm_symbol_pref (symbol)
- Return the @dfn{property list} currently associated with @var{symbol}.
- @end deffn
- @deffn {Scheme Procedure} symbol-pset! symbol value
- @deffnx {C Function} scm_symbol_pset_x (symbol, value)
- Set @var{symbol}'s property list to @var{value}.
- @end deffn
- @deffn {Scheme Procedure} symbol-property sym prop
- From @var{sym}'s property list, return the value for property
- @var{prop}. The assumption is that @var{sym}'s property list is an
- association list whose keys are distinguished from each other using
- @code{equal?}; @var{prop} should be one of the keys in that list. If
- the property list has no entry for @var{prop}, @code{symbol-property}
- returns @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} set-symbol-property! sym prop val
- In @var{sym}'s property list, set the value for property @var{prop} to
- @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
- none already exists. For the structure of the property list, see
- @code{symbol-property}.
- @end deffn
- @deffn {Scheme Procedure} symbol-property-remove! sym prop
- From @var{sym}'s property list, remove the entry for property
- @var{prop}, if there is one. For the structure of the property list,
- see @code{symbol-property}.
- @end deffn
- Support for these extra slots may be removed in a future release, and it
- is probably better to avoid using them. For a more modern and Schemely
- approach to properties, see @ref{Object Properties}.
- @node Symbol Read Syntax
- @subsubsection Extended Read Syntax for Symbols
- The read syntax for a symbol is a sequence of letters, digits, and
- @dfn{extended alphabetic characters}, beginning with a character that
- cannot begin a number. In addition, the special cases of @code{+},
- @code{-}, and @code{...} are read as symbols even though numbers can
- begin with @code{+}, @code{-} or @code{.}.
- Extended alphabetic characters may be used within identifiers as if
- they were letters. The set of extended alphabetic characters is:
- @example
- ! $ % & * + - . / : < = > ? @@ ^ _ ~
- @end example
- In addition to the standard read syntax defined above (which is taken
- from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
- Scheme})), Guile provides an extended symbol read syntax that allows the
- inclusion of unusual characters such as space characters, newlines and
- parentheses. If (for whatever reason) you need to write a symbol
- containing characters not mentioned above, you can do so as follows.
- @itemize @bullet
- @item
- Begin the symbol with the characters @code{#@{},
- @item
- write the characters of the symbol and
- @item
- finish the symbol with the characters @code{@}#}.
- @end itemize
- Here are a few examples of this form of read syntax. The first symbol
- needs to use extended syntax because it contains a space character, the
- second because it contains a line break, and the last because it looks
- like a number.
- @lisp
- #@{foo bar@}#
- #@{what
- ever@}#
- #@{4242@}#
- @end lisp
- Although Guile provides this extended read syntax for symbols,
- widespread usage of it is discouraged because it is not portable and not
- very readable.
- @node Symbol Uninterned
- @subsubsection Uninterned Symbols
- What makes symbols useful is that they are automatically kept unique.
- There are no two symbols that are distinct objects but have the same
- name. But of course, there is no rule without exception. In addition
- to the normal symbols that have been discussed up to now, you can also
- create special @dfn{uninterned} symbols that behave slightly
- differently.
- To understand what is different about them and why they might be useful,
- we look at how normal symbols are actually kept unique.
- Whenever Guile wants to find the symbol with a specific name, for
- example during @code{read} or when executing @code{string->symbol}, it
- first looks into a table of all existing symbols to find out whether a
- symbol with the given name already exists. When this is the case, Guile
- just returns that symbol. When not, a new symbol with the name is
- created and entered into the table so that it can be found later.
- Sometimes you might want to create a symbol that is guaranteed `fresh',
- i.e. a symbol that did not exist previously. You might also want to
- somehow guarantee that no one else will ever unintentionally stumble
- across your symbol in the future. These properties of a symbol are
- often needed when generating code during macro expansion. When
- introducing new temporary variables, you want to guarantee that they
- don't conflict with variables in other people's code.
- The simplest way to arrange for this is to create a new symbol but
- not enter it into the global table of all symbols. That way, no one
- will ever get access to your symbol by chance. Symbols that are not in
- the table are called @dfn{uninterned}. Of course, symbols that
- @emph{are} in the table are called @dfn{interned}.
- You create new uninterned symbols with the function @code{make-symbol}.
- You can test whether a symbol is interned or not with
- @code{symbol-interned?}.
- Uninterned symbols break the rule that the name of a symbol uniquely
- identifies the symbol object. Because of this, they can not be written
- out and read back in like interned symbols. Currently, Guile has no
- support for reading uninterned symbols. Note that the function
- @code{gensym} does not return uninterned symbols for this reason.
- @deffn {Scheme Procedure} make-symbol name
- @deffnx {C Function} scm_make_symbol (name)
- Return a new uninterned symbol with the name @var{name}. The returned
- symbol is guaranteed to be unique and future calls to
- @code{string->symbol} will not return it.
- @end deffn
- @deffn {Scheme Procedure} symbol-interned? symbol
- @deffnx {C Function} scm_symbol_interned_p (symbol)
- Return @code{#t} if @var{symbol} is interned, otherwise return
- @code{#f}.
- @end deffn
- For example:
- @lisp
- (define foo-1 (string->symbol "foo"))
- (define foo-2 (string->symbol "foo"))
- (define foo-3 (make-symbol "foo"))
- (define foo-4 (make-symbol "foo"))
- (eq? foo-1 foo-2)
- @result{} #t
- ; Two interned symbols with the same name are the same object,
- (eq? foo-1 foo-3)
- @result{} #f
- ; but a call to make-symbol with the same name returns a
- ; distinct object.
- (eq? foo-3 foo-4)
- @result{} #f
- ; A call to make-symbol always returns a new object, even for
- ; the same name.
- foo-3
- @result{} #<uninterned-symbol foo 8085290>
- ; Uninterned symbols print differently from interned symbols,
- (symbol? foo-3)
- @result{} #t
- ; but they are still symbols,
- (symbol-interned? foo-3)
- @result{} #f
- ; just not interned.
- @end lisp
- @node Keywords
- @subsection Keywords
- @tpindex Keywords
- Keywords are self-evaluating objects with a convenient read syntax that
- makes them easy to type.
- Guile's keyword support conforms to R5RS, and adds a (switchable) read
- syntax extension to permit keywords to begin with @code{:} as well as
- @code{#:}, or to end with @code{:}.
- @menu
- * Why Use Keywords?:: Motivation for keyword usage.
- * Coding With Keywords:: How to use keywords.
- * Keyword Read Syntax:: Read syntax for keywords.
- * Keyword Procedures:: Procedures for dealing with keywords.
- @end menu
- @node Why Use Keywords?
- @subsubsection Why Use Keywords?
- Keywords are useful in contexts where a program or procedure wants to be
- able to accept a large number of optional arguments without making its
- interface unmanageable.
- To illustrate this, consider a hypothetical @code{make-window}
- procedure, which creates a new window on the screen for drawing into
- using some graphical toolkit. There are many parameters that the caller
- might like to specify, but which could also be sensibly defaulted, for
- example:
- @itemize @bullet
- @item
- color depth -- Default: the color depth for the screen
- @item
- background color -- Default: white
- @item
- width -- Default: 600
- @item
- height -- Default: 400
- @end itemize
- If @code{make-window} did not use keywords, the caller would have to
- pass in a value for each possible argument, remembering the correct
- argument order and using a special value to indicate the default value
- for that argument:
- @lisp
- (make-window 'default ;; Color depth
- 'default ;; Background color
- 800 ;; Width
- 100 ;; Height
- @dots{}) ;; More make-window arguments
- @end lisp
- With keywords, on the other hand, defaulted arguments are omitted, and
- non-default arguments are clearly tagged by the appropriate keyword. As
- a result, the invocation becomes much clearer:
- @lisp
- (make-window #:width 800 #:height 100)
- @end lisp
- On the other hand, for a simpler procedure with few arguments, the use
- of keywords would be a hindrance rather than a help. The primitive
- procedure @code{cons}, for example, would not be improved if it had to
- be invoked as
- @lisp
- (cons #:car x #:cdr y)
- @end lisp
- So the decision whether to use keywords or not is purely pragmatic: use
- them if they will clarify the procedure invocation at point of call.
- @node Coding With Keywords
- @subsubsection Coding With Keywords
- If a procedure wants to support keywords, it should take a rest argument
- and then use whatever means is convenient to extract keywords and their
- corresponding arguments from the contents of that rest argument.
- The following example illustrates the principle: the code for
- @code{make-window} uses a helper procedure called
- @code{get-keyword-value} to extract individual keyword arguments from
- the rest argument.
- @lisp
- (define (get-keyword-value args keyword default)
- (let ((kv (memq keyword args)))
- (if (and kv (>= (length kv) 2))
- (cadr kv)
- default)))
- (define (make-window . args)
- (let ((depth (get-keyword-value args #:depth screen-depth))
- (bg (get-keyword-value args #:bg "white"))
- (width (get-keyword-value args #:width 800))
- (height (get-keyword-value args #:height 100))
- @dots{})
- @dots{}))
- @end lisp
- But you don't need to write @code{get-keyword-value}. The @code{(ice-9
- optargs)} module provides a set of powerful macros that you can use to
- implement keyword-supporting procedures like this:
- @lisp
- (use-modules (ice-9 optargs))
- (define (make-window . args)
- (let-keywords args #f ((depth screen-depth)
- (bg "white")
- (width 800)
- (height 100))
- ...))
- @end lisp
- @noindent
- Or, even more economically, like this:
- @lisp
- (use-modules (ice-9 optargs))
- (define* (make-window #:key (depth screen-depth)
- (bg "white")
- (width 800)
- (height 100))
- ...)
- @end lisp
- For further details on @code{let-keywords}, @code{define*} and other
- facilities provided by the @code{(ice-9 optargs)} module, see
- @ref{Optional Arguments}.
- @node Keyword Read Syntax
- @subsubsection Keyword Read Syntax
- Guile, by default, only recognizes a keyword syntax that is compatible
- with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
- same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
- external representation of the keyword named @code{NAME}. Keyword
- objects print using this syntax as well, so values containing keyword
- objects can be read back into Guile. When used in an expression,
- keywords are self-quoting objects.
- If the @code{keyword} read option is set to @code{'prefix}, Guile also
- recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
- of the form @code{:NAME} are read as symbols, as required by R5RS.
- @cindex SRFI-88 keyword syntax
- If the @code{keyword} read option is set to @code{'postfix}, Guile
- recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
- Otherwise, tokens of this form are read as symbols.
- To enable and disable the alternative non-R5RS keyword syntax, you use
- the @code{read-set!} procedure documented in @ref{User level options
- interfaces} and @ref{Reader options}. Note that the @code{prefix} and
- @code{postfix} syntax are mutually exclusive.
- @smalllisp
- (read-set! keywords 'prefix)
- #:type
- @result{}
- #:type
- :type
- @result{}
- #:type
- (read-set! keywords 'postfix)
- type:
- @result{}
- #:type
- :type
- @result{}
- :type
- (read-set! keywords #f)
- #:type
- @result{}
- #:type
- :type
- @print{}
- ERROR: In expression :type:
- ERROR: Unbound variable: :type
- ABORT: (unbound-variable)
- @end smalllisp
- @node Keyword Procedures
- @subsubsection Keyword Procedures
- @deffn {Scheme Procedure} keyword? obj
- @deffnx {C Function} scm_keyword_p (obj)
- Return @code{#t} if the argument @var{obj} is a keyword, else
- @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} keyword->symbol keyword
- @deffnx {C Function} scm_keyword_to_symbol (keyword)
- Return the symbol with the same name as @var{keyword}.
- @end deffn
- @deffn {Scheme Procedure} symbol->keyword symbol
- @deffnx {C Function} scm_symbol_to_keyword (symbol)
- Return the keyword with the same name as @var{symbol}.
- @end deffn
- @deftypefn {C Function} int scm_is_keyword (SCM obj)
- Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
- @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
- Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
- (@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
- (@var{str}, @var{len}))}, respectively.
- @end deftypefn
- @node Other Types
- @subsection ``Functionality-Centric'' Data Types
- Procedures and macros are documented in their own chapter: see
- @ref{Procedures and Macros}.
- Variable objects are documented as part of the description of Guile's
- module system: see @ref{Variables}.
- Asyncs, dynamic roots and fluids are described in the chapter on
- scheduling: see @ref{Scheduling}.
- Hooks are documented in the chapter on general utility functions: see
- @ref{Hooks}.
- Ports are described in the chapter on I/O: see @ref{Input and Output}.
- @c Local Variables:
- @c TeX-master: "guile.texi"
- @c End:
|