123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189 |
- /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008 Free Software Foundation, Inc.
- *
- * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
- * and Bellcore. See scm_divide.
- *
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /* General assumptions:
- * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
- * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
- * If an object satisfies integer?, it's either an inum, a bignum, or a real.
- * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
- * All objects satisfying SCM_FRACTIONP are never an integer.
- */
- /* TODO:
-
- - see if special casing bignums and reals in integer-exponent when
- possible (to use mpz_pow and mpf_pow_ui) is faster.
- - look in to better short-circuiting of common cases in
- integer-expt and elsewhere.
- - see if direct mpz operations can help in ash and elsewhere.
- */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include <math.h>
- #include <ctype.h>
- #include <string.h>
- #if HAVE_COMPLEX_H
- #include <complex.h>
- #endif
- #include "libguile/_scm.h"
- #include "libguile/feature.h"
- #include "libguile/ports.h"
- #include "libguile/root.h"
- #include "libguile/smob.h"
- #include "libguile/strings.h"
- #include "libguile/validate.h"
- #include "libguile/numbers.h"
- #include "libguile/deprecation.h"
- #include "libguile/eq.h"
- #include "libguile/discouraged.h"
- /* values per glibc, if not already defined */
- #ifndef M_LOG10E
- #define M_LOG10E 0.43429448190325182765
- #endif
- #ifndef M_PI
- #define M_PI 3.14159265358979323846
- #endif
- /*
- Wonder if this might be faster for some of our code? A switch on
- the numtag would jump directly to the right case, and the
- SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
- #define SCM_I_NUMTAG_NOTNUM 0
- #define SCM_I_NUMTAG_INUM 1
- #define SCM_I_NUMTAG_BIG scm_tc16_big
- #define SCM_I_NUMTAG_REAL scm_tc16_real
- #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
- #define SCM_I_NUMTAG(x) \
- (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
- : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
- : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
- : SCM_I_NUMTAG_NOTNUM)))
- */
- /* the macro above will not work as is with fractions */
- #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
- /* FLOBUFLEN is the maximum number of characters neccessary for the
- * printed or scm_string representation of an inexact number.
- */
- #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
- #if defined (SCO)
- #if ! defined (HAVE_ISNAN)
- #define HAVE_ISNAN
- static int
- isnan (double x)
- {
- return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
- }
- #endif
- #if ! defined (HAVE_ISINF)
- #define HAVE_ISINF
- static int
- isinf (double x)
- {
- return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
- }
- #endif
- #endif
- /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
- an explicit check. In some future gmp (don't know what version number),
- mpz_cmp_d is supposed to do this itself. */
- #if 1
- #define xmpz_cmp_d(z, d) \
- (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
- #else
- #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
- #endif
- /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
- isinf. It does have finite and isnan though, hence the use of those.
- fpclass would be a possibility on that system too. */
- static int
- xisinf (double x)
- {
- #if defined (HAVE_ISINF)
- return isinf (x);
- #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
- return (! (finite (x) || isnan (x)));
- #else
- return 0;
- #endif
- }
- static int
- xisnan (double x)
- {
- #if defined (HAVE_ISNAN)
- return isnan (x);
- #else
- return 0;
- #endif
- }
- #if defined (GUILE_I)
- #if HAVE_COMPLEX_DOUBLE
- /* For an SCM object Z which is a complex number (ie. satisfies
- SCM_COMPLEXP), return its value as a C level "complex double". */
- #define SCM_COMPLEX_VALUE(z) \
- (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
- static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
- /* Convert a C "complex double" to an SCM value. */
- static inline SCM
- scm_from_complex_double (complex double z)
- {
- return scm_c_make_rectangular (creal (z), cimag (z));
- }
- #endif /* HAVE_COMPLEX_DOUBLE */
- #endif /* GUILE_I */
- static mpz_t z_negative_one;
- SCM
- scm_i_mkbig ()
- {
- /* Return a newly created bignum. */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init (SCM_I_BIG_MPZ (z));
- return z;
- }
- SCM
- scm_i_long2big (long x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_ulong2big (unsigned long x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_clonebig (SCM src_big, int same_sign_p)
- {
- /* Copy src_big's value, negate it if same_sign_p is false, and return. */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
- if (!same_sign_p)
- mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
- return z;
- }
- int
- scm_i_bigcmp (SCM x, SCM y)
- {
- /* Return neg if x < y, pos if x > y, and 0 if x == y */
- /* presume we already know x and y are bignums */
- int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return result;
- }
- SCM
- scm_i_dbl2big (double d)
- {
- /* results are only defined if d is an integer */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
- return z;
- }
- /* Convert a integer in double representation to a SCM number. */
- SCM
- scm_i_dbl2num (double u)
- {
- /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
- powers of 2, so there's no rounding when making "double" values
- from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
- get rounded on a 64-bit machine, hence the "+1".
- The use of floor() to force to an integer value ensures we get a
- "numerically closest" value without depending on how a
- double->long cast or how mpz_set_d will round. For reference,
- double->long probably follows the hardware rounding mode,
- mpz_set_d truncates towards zero. */
- /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
- representable as a double? */
- if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
- && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
- return SCM_I_MAKINUM ((long) u);
- else
- return scm_i_dbl2big (u);
- }
- /* scm_i_big2dbl() rounds to the closest representable double, in accordance
- with R5RS exact->inexact.
- The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
- (ie. truncate towards zero), then adjust to get the closest double by
- examining the next lower bit and adding 1 (to the absolute value) if
- necessary.
- Bignums exactly half way between representable doubles are rounded to the
- next higher absolute value (ie. away from zero). This seems like an
- adequate interpretation of R5RS "numerically closest", and it's easier
- and faster than a full "nearest-even" style.
- The bit test must be done on the absolute value of the mpz_t, which means
- we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
- negatives as twos complement.
- In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
- following the hardware rounding mode, but applied to the absolute value
- of the mpz_t operand. This is not what we want so we put the high
- DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
- mpz_get_d is supposed to always truncate towards zero.
- ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
- is a slowdown. It'd be faster to pick out the relevant high bits with
- mpz_getlimbn if we could be bothered coding that, and if the new
- truncating gmp doesn't come out. */
- double
- scm_i_big2dbl (SCM b)
- {
- double result;
- size_t bits;
- bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
- #if 1
- {
- /* Current GMP, eg. 4.1.3, force truncation towards zero */
- mpz_t tmp;
- if (bits > DBL_MANT_DIG)
- {
- size_t shift = bits - DBL_MANT_DIG;
- mpz_init2 (tmp, DBL_MANT_DIG);
- mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
- result = ldexp (mpz_get_d (tmp), shift);
- mpz_clear (tmp);
- }
- else
- {
- result = mpz_get_d (SCM_I_BIG_MPZ (b));
- }
- }
- #else
- /* Future GMP */
- result = mpz_get_d (SCM_I_BIG_MPZ (b));
- #endif
- if (bits > DBL_MANT_DIG)
- {
- unsigned long pos = bits - DBL_MANT_DIG - 1;
- /* test bit number "pos" in absolute value */
- if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
- & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
- {
- result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
- }
- }
- scm_remember_upto_here_1 (b);
- return result;
- }
- SCM
- scm_i_normbig (SCM b)
- {
- /* convert a big back to a fixnum if it'll fit */
- /* presume b is a bignum */
- if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
- {
- long val = mpz_get_si (SCM_I_BIG_MPZ (b));
- if (SCM_FIXABLE (val))
- b = SCM_I_MAKINUM (val);
- }
- return b;
- }
- static SCM_C_INLINE_KEYWORD SCM
- scm_i_mpz2num (mpz_t b)
- {
- /* convert a mpz number to a SCM number. */
- if (mpz_fits_slong_p (b))
- {
- long val = mpz_get_si (b);
- if (SCM_FIXABLE (val))
- return SCM_I_MAKINUM (val);
- }
- {
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set (SCM_I_BIG_MPZ (z), b);
- return z;
- }
- }
- /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
- static SCM scm_divide2real (SCM x, SCM y);
- static SCM
- scm_i_make_ratio (SCM numerator, SCM denominator)
- #define FUNC_NAME "make-ratio"
- {
- /* First make sure the arguments are proper.
- */
- if (SCM_I_INUMP (denominator))
- {
- if (scm_is_eq (denominator, SCM_INUM0))
- scm_num_overflow ("make-ratio");
- if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
- return numerator;
- }
- else
- {
- if (!(SCM_BIGP(denominator)))
- SCM_WRONG_TYPE_ARG (2, denominator);
- }
- if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
- SCM_WRONG_TYPE_ARG (1, numerator);
- /* Then flip signs so that the denominator is positive.
- */
- if (scm_is_true (scm_negative_p (denominator)))
- {
- numerator = scm_difference (numerator, SCM_UNDEFINED);
- denominator = scm_difference (denominator, SCM_UNDEFINED);
- }
- /* Now consider for each of the four fixnum/bignum combinations
- whether the rational number is really an integer.
- */
- if (SCM_I_INUMP (numerator))
- {
- long x = SCM_I_INUM (numerator);
- if (scm_is_eq (numerator, SCM_INUM0))
- return SCM_INUM0;
- if (SCM_I_INUMP (denominator))
- {
- long y;
- y = SCM_I_INUM (denominator);
- if (x == y)
- return SCM_I_MAKINUM(1);
- if ((x % y) == 0)
- return SCM_I_MAKINUM (x / y);
- }
- else
- {
- /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
- of that value for the denominator, as a bignum. Apart from
- that case, abs(bignum) > abs(inum) so inum/bignum is not an
- integer. */
- if (x == SCM_MOST_NEGATIVE_FIXNUM
- && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0)
- return SCM_I_MAKINUM(-1);
- }
- }
- else if (SCM_BIGP (numerator))
- {
- if (SCM_I_INUMP (denominator))
- {
- long yy = SCM_I_INUM (denominator);
- if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
- return scm_divide (numerator, denominator);
- }
- else
- {
- if (scm_is_eq (numerator, denominator))
- return SCM_I_MAKINUM(1);
- if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
- SCM_I_BIG_MPZ (denominator)))
- return scm_divide(numerator, denominator);
- }
- }
- /* No, it's a proper fraction.
- */
- {
- SCM divisor = scm_gcd (numerator, denominator);
- if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
- {
- numerator = scm_divide (numerator, divisor);
- denominator = scm_divide (denominator, divisor);
- }
-
- return scm_double_cell (scm_tc16_fraction,
- SCM_UNPACK (numerator),
- SCM_UNPACK (denominator), 0);
- }
- }
- #undef FUNC_NAME
- double
- scm_i_fraction2double (SCM z)
- {
- return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z)));
- }
- SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_exact_p
- {
- if (SCM_I_INUMP (x))
- return SCM_BOOL_T;
- if (SCM_BIGP (x))
- return SCM_BOOL_T;
- if (SCM_FRACTIONP (x))
- return SCM_BOOL_T;
- if (SCM_NUMBERP (x))
- return SCM_BOOL_F;
- SCM_WRONG_TYPE_ARG (1, x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_odd_p
- {
- if (SCM_I_INUMP (n))
- {
- long val = SCM_I_INUM (n);
- return scm_from_bool ((val & 1L) != 0);
- }
- else if (SCM_BIGP (n))
- {
- int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_from_bool (odd_p);
- }
- else if (scm_is_true (scm_inf_p (n)))
- return SCM_BOOL_T;
- else if (SCM_REALP (n))
- {
- double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
- if (rem == 1.0)
- return SCM_BOOL_T;
- else if (rem == 0.0)
- return SCM_BOOL_F;
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_even_p
- {
- if (SCM_I_INUMP (n))
- {
- long val = SCM_I_INUM (n);
- return scm_from_bool ((val & 1L) == 0);
- }
- else if (SCM_BIGP (n))
- {
- int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_from_bool (even_p);
- }
- else if (scm_is_true (scm_inf_p (n)))
- return SCM_BOOL_T;
- else if (SCM_REALP (n))
- {
- double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
- if (rem == 1.0)
- return SCM_BOOL_F;
- else if (rem == 0.0)
- return SCM_BOOL_T;
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
- "or @samp{-inf.0}, @code{#f} otherwise.")
- #define FUNC_NAME s_scm_inf_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
- else if (SCM_COMPLEXP (x))
- return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
- || xisinf (SCM_COMPLEX_IMAG (x)));
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_nan_p
- {
- if (SCM_REALP (n))
- return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
- else if (SCM_COMPLEXP (n))
- return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
- || xisnan (SCM_COMPLEX_IMAG (n)));
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- /* Guile's idea of infinity. */
- static double guile_Inf;
- /* Guile's idea of not a number. */
- static double guile_NaN;
- static void
- guile_ieee_init (void)
- {
- #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
- /* Some version of gcc on some old version of Linux used to crash when
- trying to make Inf and NaN. */
- #ifdef INFINITY
- /* C99 INFINITY, when available.
- FIXME: The standard allows for INFINITY to be something that overflows
- at compile time. We ought to have a configure test to check for that
- before trying to use it. (But in practice we believe this is not a
- problem on any system guile is likely to target.) */
- guile_Inf = INFINITY;
- #elif HAVE_DINFINITY
- /* OSF */
- extern unsigned int DINFINITY[2];
- guile_Inf = (*((double *) (DINFINITY)));
- #else
- double tmp = 1e+10;
- guile_Inf = tmp;
- for (;;)
- {
- guile_Inf *= 1e+10;
- if (guile_Inf == tmp)
- break;
- tmp = guile_Inf;
- }
- #endif
- #endif
- #if defined (HAVE_ISNAN)
- #ifdef NAN
- /* C99 NAN, when available */
- guile_NaN = NAN;
- #elif HAVE_DQNAN
- {
- /* OSF */
- extern unsigned int DQNAN[2];
- guile_NaN = (*((double *)(DQNAN)));
- }
- #else
- guile_NaN = guile_Inf / guile_Inf;
- #endif
- #endif
- }
- SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
- (void),
- "Return Inf.")
- #define FUNC_NAME s_scm_inf
- {
- static int initialized = 0;
- if (! initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_from_double (guile_Inf);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
- (void),
- "Return NaN.")
- #define FUNC_NAME s_scm_nan
- {
- static int initialized = 0;
- if (!initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_from_double (guile_NaN);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
- (SCM x),
- "Return the absolute value of @var{x}.")
- #define FUNC_NAME
- {
- if (SCM_I_INUMP (x))
- {
- long int xx = SCM_I_INUM (x);
- if (xx >= 0)
- return x;
- else if (SCM_POSFIXABLE (-xx))
- return SCM_I_MAKINUM (-xx);
- else
- return scm_i_long2big (-xx);
- }
- else if (SCM_BIGP (x))
- {
- const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- if (sgn < 0)
- return scm_i_clonebig (x, 0);
- else
- return x;
- }
- else if (SCM_REALP (x))
- {
- /* note that if x is a NaN then xx<0 is false so we return x unchanged */
- double xx = SCM_REAL_VALUE (x);
- if (xx < 0.0)
- return scm_from_double (-xx);
- else
- return x;
- }
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
- return x;
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- }
- else
- SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
- }
- #undef FUNC_NAME
- SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
- /* "Return the quotient of the numbers @var{x} and @var{y}."
- */
- SCM
- scm_quotient (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_quotient);
- else
- {
- long z = xx / yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_long2big (z);
- }
- }
- else if (SCM_BIGP (y))
- {
- if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
- && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_I_MAKINUM (-1);
- }
- else
- return SCM_I_MAKINUM (0);
- }
- else
- SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_quotient);
- else if (yy == 1)
- return x;
- else
- {
- SCM result = scm_i_mkbig ();
- if (yy < 0)
- {
- mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- - yy);
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- }
- else
- mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_tdiv_q (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
- }
- else
- SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
- }
- SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
- /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
- * "@lisp\n"
- * "(remainder 13 4) @result{} 1\n"
- * "(remainder -13 4) @result{} -1\n"
- * "@end lisp"
- */
- SCM
- scm_remainder (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_remainder);
- else
- {
- long z = SCM_I_INUM (x) % yy;
- return SCM_I_MAKINUM (z);
- }
- }
- else if (SCM_BIGP (y))
- {
- if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
- && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_I_MAKINUM (0);
- }
- else
- return x;
- }
- else
- SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_remainder);
- else
- {
- SCM result = scm_i_mkbig ();
- if (yy < 0)
- yy = - yy;
- mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_tdiv_r (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
- }
- else
- SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
- }
- SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
- /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
- * "@lisp\n"
- * "(modulo 13 4) @result{} 1\n"
- * "(modulo -13 4) @result{} 3\n"
- * "@end lisp"
- */
- SCM
- scm_modulo (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_modulo);
- else
- {
- /* C99 specifies that "%" is the remainder corresponding to a
- quotient rounded towards zero, and that's also traditional
- for machine division, so z here should be well defined. */
- long z = xx % yy;
- long result;
- if (yy < 0)
- {
- if (z > 0)
- result = z + yy;
- else
- result = z;
- }
- else
- {
- if (z < 0)
- result = z + yy;
- else
- result = z;
- }
- return SCM_I_MAKINUM (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- {
- mpz_t z_x;
- SCM result;
- if (sgn_y < 0)
- {
- SCM pos_y = scm_i_clonebig (y, 0);
- /* do this after the last scm_op */
- mpz_init_set_si (z_x, xx);
- result = pos_y; /* re-use this bignum */
- mpz_mod (SCM_I_BIG_MPZ (result),
- z_x,
- SCM_I_BIG_MPZ (pos_y));
- scm_remember_upto_here_1 (pos_y);
- }
- else
- {
- result = scm_i_mkbig ();
- /* do this after the last scm_op */
- mpz_init_set_si (z_x, xx);
- mpz_mod (SCM_I_BIG_MPZ (result),
- z_x,
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- }
-
- if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
- mpz_add (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (y),
- SCM_I_BIG_MPZ (result));
- scm_remember_upto_here_1 (y);
- /* and do this before the next one */
- mpz_clear (z_x);
- return scm_i_normbig (result);
- }
- }
- else
- SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_modulo);
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_mod_ui (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- (yy < 0) ? - yy : yy);
- scm_remember_upto_here_1 (x);
- if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
- mpz_sub_ui (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (result),
- - yy);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- {
- SCM result = scm_i_mkbig ();
- int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
- mpz_mod (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (pos_y));
-
- scm_remember_upto_here_1 (x);
- if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
- mpz_add (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (y),
- SCM_I_BIG_MPZ (result));
- scm_remember_upto_here_2 (y, pos_y);
- return scm_i_normbig (result);
- }
- }
- else
- SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
- }
- else
- SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
- }
- SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
- /* "Return the greatest common divisor of all arguments.\n"
- * "If called without arguments, 0 is returned."
- */
- SCM
- scm_gcd (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
-
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long xx = SCM_I_INUM (x);
- long yy = SCM_I_INUM (y);
- long u = xx < 0 ? -xx : xx;
- long v = yy < 0 ? -yy : yy;
- long result;
- if (xx == 0)
- result = v;
- else if (yy == 0)
- result = u;
- else
- {
- long k = 1;
- long t;
- /* Determine a common factor 2^k */
- while (!(1 & (u | v)))
- {
- k <<= 1;
- u >>= 1;
- v >>= 1;
- }
- /* Now, any factor 2^n can be eliminated */
- if (u & 1)
- t = -v;
- else
- {
- t = u;
- b3:
- t = SCM_SRS (t, 1);
- }
- if (!(1 & t))
- goto b3;
- if (t > 0)
- u = t;
- else
- v = -t;
- t = u - v;
- if (t != 0)
- goto b3;
- result = u * k;
- }
- return (SCM_POSFIXABLE (result)
- ? SCM_I_MAKINUM (result)
- : scm_i_long2big (result));
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_inum;
- }
- else
- SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- unsigned long result;
- long yy;
- big_inum:
- yy = SCM_I_INUM (y);
- if (yy == 0)
- return scm_abs (x);
- if (yy < 0)
- yy = -yy;
- result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- return (SCM_POSFIXABLE (result)
- ? SCM_I_MAKINUM (result)
- : scm_from_ulong (result));
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_gcd (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else
- SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
- }
- SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
- /* "Return the least common multiple of the arguments.\n"
- * "If called without arguments, 1 is returned."
- */
- SCM
- scm_lcm (SCM n1, SCM n2)
- {
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_I_MAKINUM (1L);
- n2 = SCM_I_MAKINUM (1L);
- }
- SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
- g_lcm, n1, n2, SCM_ARG1, s_lcm);
- SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
- g_lcm, n1, n2, SCM_ARGn, s_lcm);
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM d = scm_gcd (n1, n2);
- if (scm_is_eq (d, SCM_INUM0))
- return d;
- else
- return scm_abs (scm_product (n1, scm_quotient (n2, d)));
- }
- else
- {
- /* inum n1, big n2 */
- inumbig:
- {
- SCM result = scm_i_mkbig ();
- long nn1 = SCM_I_INUM (n1);
- if (nn1 == 0) return SCM_INUM0;
- if (nn1 < 0) nn1 = - nn1;
- mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
- scm_remember_upto_here_1 (n2);
- return result;
- }
- }
- }
- else
- {
- /* big n1 */
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- goto inumbig;
- }
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_lcm(SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2(n1, n2);
- /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
- return result;
- }
- }
- }
- /* Emulating 2's complement bignums with sign magnitude arithmetic:
- Logand:
- X Y Result Method:
- (len)
- + + + x (map digit:logand X Y)
- + - + x (map digit:logand X (lognot (+ -1 Y)))
- - + + y (map digit:logand (lognot (+ -1 X)) Y)
- - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
- Logior:
- X Y Result Method:
- + + + (map digit:logior X Y)
- + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
- - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
- - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
- Logxor:
- X Y Result Method:
- + + + (map digit:logxor X Y)
- + - - (+ 1 (map digit:logxor X (+ -1 Y)))
- - + - (+ 1 (map digit:logxor (+ -1 X) Y))
- - - + (map digit:logxor (+ -1 X) (+ -1 Y))
- Logtest:
- X Y Result
- + + (any digit:logand X Y)
- + - (any digit:logand X (lognot (+ -1 Y)))
- - + (any digit:logand (lognot (+ -1 X)) Y)
- - - #t
- */
- SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
- (SCM n1, SCM n2),
- "Return the bitwise AND of the integer arguments.\n\n"
- "@lisp\n"
- "(logand) @result{} -1\n"
- "(logand 7) @result{} 7\n"
- "(logand #b111 #b011 #b001) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logand
- {
- long int nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_I_MAKINUM (-1);
- else if (!SCM_NUMBERP (n1))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- long nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 & nn2);
- }
- else if SCM_BIGP (n2)
- {
- intbig:
- if (n1 == 0)
- return SCM_INUM0;
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_and (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
- (SCM n1, SCM n2),
- "Return the bitwise OR of the integer arguments.\n\n"
- "@lisp\n"
- "(logior) @result{} 0\n"
- "(logior 7) @result{} 7\n"
- "(logior #b000 #b001 #b011) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logior
- {
- long int nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- long nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 | nn2);
- }
- else if (SCM_BIGP (n2))
- {
- intbig:
- if (nn1 == 0)
- return n2;
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_ior (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
- (SCM n1, SCM n2),
- "Return the bitwise XOR of the integer arguments. A bit is\n"
- "set in the result if it is set in an odd number of arguments.\n"
- "@lisp\n"
- "(logxor) @result{} 0\n"
- "(logxor 7) @result{} 7\n"
- "(logxor #b000 #b001 #b011) @result{} 2\n"
- "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logxor
- {
- long int nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- long nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 ^ nn2);
- }
- else if (SCM_BIGP (n2))
- {
- intbig:
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_xor (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
- (SCM j, SCM k),
- "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
- "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
- "without actually calculating the @code{logand}, just testing\n"
- "for non-zero.\n"
- "\n"
- "@lisp\n"
- "(logtest #b0100 #b1011) @result{} #f\n"
- "(logtest #b0100 #b0111) @result{} #t\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logtest
- {
- long int nj;
- if (SCM_I_INUMP (j))
- {
- nj = SCM_I_INUM (j);
- if (SCM_I_INUMP (k))
- {
- long nk = SCM_I_INUM (k);
- return scm_from_bool (nj & nk);
- }
- else if (SCM_BIGP (k))
- {
- intbig:
- if (nj == 0)
- return SCM_BOOL_F;
- {
- SCM result;
- mpz_t nj_z;
- mpz_init_set_si (nj_z, nj);
- mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- result = scm_from_bool (mpz_sgn (nj_z) != 0);
- mpz_clear (nj_z);
- return result;
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else if (SCM_BIGP (j))
- {
- if (SCM_I_INUMP (k))
- {
- SCM_SWAP (j, k);
- nj = SCM_I_INUM (j);
- goto intbig;
- }
- else if (SCM_BIGP (k))
- {
- SCM result;
- mpz_t result_z;
- mpz_init (result_z);
- mpz_and (result_z,
- SCM_I_BIG_MPZ (j),
- SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_2 (j, k);
- result = scm_from_bool (mpz_sgn (result_z) != 0);
- mpz_clear (result_z);
- return result;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
- (SCM index, SCM j),
- "Test whether bit number @var{index} in @var{j} is set.\n"
- "@var{index} starts from 0 for the least significant bit.\n"
- "\n"
- "@lisp\n"
- "(logbit? 0 #b1101) @result{} #t\n"
- "(logbit? 1 #b1101) @result{} #f\n"
- "(logbit? 2 #b1101) @result{} #t\n"
- "(logbit? 3 #b1101) @result{} #t\n"
- "(logbit? 4 #b1101) @result{} #f\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logbit_p
- {
- unsigned long int iindex;
- iindex = scm_to_ulong (index);
- if (SCM_I_INUMP (j))
- {
- /* bits above what's in an inum follow the sign bit */
- iindex = min (iindex, SCM_LONG_BIT - 1);
- return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
- }
- else if (SCM_BIGP (j))
- {
- int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
- scm_remember_upto_here_1 (j);
- return scm_from_bool (val);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
- (SCM n),
- "Return the integer which is the ones-complement of the integer\n"
- "argument.\n"
- "\n"
- "@lisp\n"
- "(number->string (lognot #b10000000) 2)\n"
- " @result{} \"-10000001\"\n"
- "(number->string (lognot #b0) 2)\n"
- " @result{} \"-1\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_lognot
- {
- if (SCM_I_INUMP (n)) {
- /* No overflow here, just need to toggle all the bits making up the inum.
- Enhancement: No need to strip the tag and add it back, could just xor
- a block of 1 bits, if that worked with the various debug versions of
- the SCM typedef. */
- return SCM_I_MAKINUM (~ SCM_I_INUM (n));
- } else if (SCM_BIGP (n)) {
- SCM result = scm_i_mkbig ();
- mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return result;
- } else {
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- }
- #undef FUNC_NAME
- /* returns 0 if IN is not an integer. OUT must already be
- initialized. */
- static int
- coerce_to_big (SCM in, mpz_t out)
- {
- if (SCM_BIGP (in))
- mpz_set (out, SCM_I_BIG_MPZ (in));
- else if (SCM_I_INUMP (in))
- mpz_set_si (out, SCM_I_INUM (in));
- else
- return 0;
- return 1;
- }
- SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
- (SCM n, SCM k, SCM m),
- "Return @var{n} raised to the integer exponent\n"
- "@var{k}, modulo @var{m}.\n"
- "\n"
- "@lisp\n"
- "(modulo-expt 2 3 5)\n"
- " @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo_expt
- {
- mpz_t n_tmp;
- mpz_t k_tmp;
- mpz_t m_tmp;
-
- /* There are two classes of error we might encounter --
- 1) Math errors, which we'll report by calling scm_num_overflow,
- and
- 2) wrong-type errors, which of course we'll report by calling
- SCM_WRONG_TYPE_ARG.
- We don't report those errors immediately, however; instead we do
- some cleanup first. These variables tell us which error (if
- any) we should report after cleaning up.
- */
- int report_overflow = 0;
- int position_of_wrong_type = 0;
- SCM value_of_wrong_type = SCM_INUM0;
- SCM result = SCM_UNDEFINED;
- mpz_init (n_tmp);
- mpz_init (k_tmp);
- mpz_init (m_tmp);
-
- if (scm_is_eq (m, SCM_INUM0))
- {
- report_overflow = 1;
- goto cleanup;
- }
-
- if (!coerce_to_big (n, n_tmp))
- {
- value_of_wrong_type = n;
- position_of_wrong_type = 1;
- goto cleanup;
- }
- if (!coerce_to_big (k, k_tmp))
- {
- value_of_wrong_type = k;
- position_of_wrong_type = 2;
- goto cleanup;
- }
- if (!coerce_to_big (m, m_tmp))
- {
- value_of_wrong_type = m;
- position_of_wrong_type = 3;
- goto cleanup;
- }
- /* if the exponent K is negative, and we simply call mpz_powm, we
- will get a divide-by-zero exception when an inverse 1/n mod m
- doesn't exist (or is not unique). Since exceptions are hard to
- handle, we'll attempt the inversion "by hand" -- that way, we get
- a simple failure code, which is easy to handle. */
-
- if (-1 == mpz_sgn (k_tmp))
- {
- if (!mpz_invert (n_tmp, n_tmp, m_tmp))
- {
- report_overflow = 1;
- goto cleanup;
- }
- mpz_neg (k_tmp, k_tmp);
- }
- result = scm_i_mkbig ();
- mpz_powm (SCM_I_BIG_MPZ (result),
- n_tmp,
- k_tmp,
- m_tmp);
- if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
- mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
- cleanup:
- mpz_clear (m_tmp);
- mpz_clear (k_tmp);
- mpz_clear (n_tmp);
- if (report_overflow)
- scm_num_overflow (FUNC_NAME);
- if (position_of_wrong_type)
- SCM_WRONG_TYPE_ARG (position_of_wrong_type,
- value_of_wrong_type);
-
- return scm_i_normbig (result);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
- (SCM n, SCM k),
- "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
- "exact integer, @var{n} can be any number.\n"
- "\n"
- "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
- "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
- "includes @math{0^0} is 1.\n"
- "\n"
- "@lisp\n"
- "(integer-expt 2 5) @result{} 32\n"
- "(integer-expt -3 3) @result{} -27\n"
- "(integer-expt 5 -3) @result{} 1/125\n"
- "(integer-expt 0 0) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_expt
- {
- long i2 = 0;
- SCM z_i2 = SCM_BOOL_F;
- int i2_is_big = 0;
- SCM acc = SCM_I_MAKINUM (1L);
- /* 0^0 == 1 according to R5RS */
- if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
- return scm_is_false (scm_zero_p(k)) ? n : acc;
- else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
- return scm_is_false (scm_even_p (k)) ? n : acc;
- if (SCM_I_INUMP (k))
- i2 = SCM_I_INUM (k);
- else if (SCM_BIGP (k))
- {
- z_i2 = scm_i_clonebig (k, 1);
- scm_remember_upto_here_1 (k);
- i2_is_big = 1;
- }
- else
- SCM_WRONG_TYPE_ARG (2, k);
-
- if (i2_is_big)
- {
- if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
- {
- mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
- n = scm_divide (n, SCM_UNDEFINED);
- }
- while (1)
- {
- if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
- {
- return acc;
- }
- if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
- {
- return scm_product (acc, n);
- }
- if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
- }
- }
- else
- {
- if (i2 < 0)
- {
- i2 = -i2;
- n = scm_divide (n, SCM_UNDEFINED);
- }
- while (1)
- {
- if (0 == i2)
- return acc;
- if (1 == i2)
- return scm_product (acc, n);
- if (i2 & 1)
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- i2 >>= 1;
- }
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
- (SCM n, SCM cnt),
- "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
- "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
- "\n"
- "This is effectively a multiplication by 2^@var{cnt}, and when\n"
- "@var{cnt} is negative it's a division, rounded towards negative\n"
- "infinity. (Note that this is not the same rounding as\n"
- "@code{quotient} does.)\n"
- "\n"
- "With @var{n} viewed as an infinite precision twos complement,\n"
- "@code{ash} means a left shift introducing zero bits, or a right\n"
- "shift dropping bits.\n"
- "\n"
- "@lisp\n"
- "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
- "\n"
- ";; -23 is bits ...11101001, -6 is bits ...111010\n"
- "(ash -23 -2) @result{} -6\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ash
- {
- long bits_to_shift;
- bits_to_shift = scm_to_long (cnt);
- if (SCM_I_INUMP (n))
- {
- long nn = SCM_I_INUM (n);
- if (bits_to_shift > 0)
- {
- /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
- overflow a non-zero fixnum. For smaller shifts we check the
- bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
- all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
- Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
- bits_to_shift)". */
- if (nn == 0)
- return n;
- if (bits_to_shift < SCM_I_FIXNUM_BIT-1
- && ((unsigned long)
- (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
- <= 1))
- {
- return SCM_I_MAKINUM (nn << bits_to_shift);
- }
- else
- {
- SCM result = scm_i_long2big (nn);
- mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
- bits_to_shift);
- return result;
- }
- }
- else
- {
- bits_to_shift = -bits_to_shift;
- if (bits_to_shift >= SCM_LONG_BIT)
- return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
- else
- return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
- }
- }
- else if (SCM_BIGP (n))
- {
- SCM result;
- if (bits_to_shift == 0)
- return n;
- result = scm_i_mkbig ();
- if (bits_to_shift >= 0)
- {
- mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
- bits_to_shift);
- return result;
- }
- else
- {
- /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
- we have to allocate a bignum even if the result is going to be a
- fixnum. */
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
- -bits_to_shift);
- return scm_i_normbig (result);
- }
- }
- else
- {
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
- (SCM n, SCM start, SCM end),
- "Return the integer composed of the @var{start} (inclusive)\n"
- "through @var{end} (exclusive) bits of @var{n}. The\n"
- "@var{start}th bit becomes the 0-th bit in the result.\n"
- "\n"
- "@lisp\n"
- "(number->string (bit-extract #b1101101010 0 4) 2)\n"
- " @result{} \"1010\"\n"
- "(number->string (bit-extract #b1101101010 4 9) 2)\n"
- " @result{} \"10110\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_bit_extract
- {
- unsigned long int istart, iend, bits;
- istart = scm_to_ulong (start);
- iend = scm_to_ulong (end);
- SCM_ASSERT_RANGE (3, end, (iend >= istart));
- /* how many bits to keep */
- bits = iend - istart;
- if (SCM_I_INUMP (n))
- {
- long int in = SCM_I_INUM (n);
- /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
- SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
- in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
- if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
- {
- /* Since we emulate two's complement encoded numbers, this
- * special case requires us to produce a result that has
- * more bits than can be stored in a fixnum.
- */
- SCM result = scm_i_long2big (in);
- mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
- bits);
- return result;
- }
- /* mask down to requisite bits */
- bits = min (bits, SCM_I_FIXNUM_BIT);
- return SCM_I_MAKINUM (in & ((1L << bits) - 1));
- }
- else if (SCM_BIGP (n))
- {
- SCM result;
- if (bits == 1)
- {
- result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
- }
- else
- {
- /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
- bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
- such bits into a ulong. */
- result = scm_i_mkbig ();
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
- mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
- result = scm_i_normbig (result);
- }
- scm_remember_upto_here_1 (n);
- return result;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- static const char scm_logtab[] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
- };
- SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
- (SCM n),
- "Return the number of bits in integer @var{n}. If integer is\n"
- "positive, the 1-bits in its binary representation are counted.\n"
- "If negative, the 0-bits in its two's-complement binary\n"
- "representation are counted. If 0, 0 is returned.\n"
- "\n"
- "@lisp\n"
- "(logcount #b10101010)\n"
- " @result{} 4\n"
- "(logcount 0)\n"
- " @result{} 0\n"
- "(logcount -2)\n"
- " @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logcount
- {
- if (SCM_I_INUMP (n))
- {
- unsigned long int c = 0;
- long int nn = SCM_I_INUM (n);
- if (nn < 0)
- nn = -1 - nn;
- while (nn)
- {
- c += scm_logtab[15 & nn];
- nn >>= 4;
- }
- return SCM_I_MAKINUM (c);
- }
- else if (SCM_BIGP (n))
- {
- unsigned long count;
- if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
- count = mpz_popcount (SCM_I_BIG_MPZ (n));
- else
- count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
- scm_remember_upto_here_1 (n);
- return SCM_I_MAKINUM (count);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- static const char scm_ilentab[] = {
- 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
- };
- SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
- (SCM n),
- "Return the number of bits necessary to represent @var{n}.\n"
- "\n"
- "@lisp\n"
- "(integer-length #b10101010)\n"
- " @result{} 8\n"
- "(integer-length 0)\n"
- " @result{} 0\n"
- "(integer-length #b1111)\n"
- " @result{} 4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_length
- {
- if (SCM_I_INUMP (n))
- {
- unsigned long int c = 0;
- unsigned int l = 4;
- long int nn = SCM_I_INUM (n);
- if (nn < 0)
- nn = -1 - nn;
- while (nn)
- {
- c += 4;
- l = scm_ilentab [15 & nn];
- nn >>= 4;
- }
- return SCM_I_MAKINUM (c - 4 + l);
- }
- else if (SCM_BIGP (n))
- {
- /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
- want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
- 1 too big, so check for that and adjust. */
- size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
- if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
- && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
- mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
- size--;
- scm_remember_upto_here_1 (n);
- return SCM_I_MAKINUM (size);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- /*** NUMBERS -> STRINGS ***/
- #define SCM_MAX_DBL_PREC 60
- #define SCM_MAX_DBL_RADIX 36
- /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
- static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
- static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
- static
- void init_dblprec(int *prec, int radix) {
- /* determine floating point precision by adding successively
- smaller increments to 1.0 until it is considered == 1.0 */
- double f = ((double)1.0)/radix;
- double fsum = 1.0 + f;
- *prec = 0;
- while (fsum != 1.0)
- {
- if (++(*prec) > SCM_MAX_DBL_PREC)
- fsum = 1.0;
- else
- {
- f /= radix;
- fsum = f + 1.0;
- }
- }
- (*prec) -= 1;
- }
- static
- void init_fx_radix(double *fx_list, int radix)
- {
- /* initialize a per-radix list of tolerances. When added
- to a number < 1.0, we can determine if we should raund
- up and quit converting a number to a string. */
- int i;
- fx_list[0] = 0.0;
- fx_list[1] = 0.5;
- for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
- fx_list[i] = (fx_list[i-1] / radix);
- }
- /* use this array as a way to generate a single digit */
- static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
- static size_t
- idbl2str (double f, char *a, int radix)
- {
- int efmt, dpt, d, i, wp;
- double *fx;
- #ifdef DBL_MIN_10_EXP
- double f_cpy;
- int exp_cpy;
- #endif /* DBL_MIN_10_EXP */
- size_t ch = 0;
- int exp = 0;
- if(radix < 2 ||
- radix > SCM_MAX_DBL_RADIX)
- {
- /* revert to existing behavior */
- radix = 10;
- }
- wp = scm_dblprec[radix-2];
- fx = fx_per_radix[radix-2];
- if (f == 0.0)
- {
- #ifdef HAVE_COPYSIGN
- double sgn = copysign (1.0, f);
- if (sgn < 0.0)
- a[ch++] = '-';
- #endif
- goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
- }
- if (xisinf (f))
- {
- if (f < 0)
- strcpy (a, "-inf.0");
- else
- strcpy (a, "+inf.0");
- return ch+6;
- }
- else if (xisnan (f))
- {
- strcpy (a, "+nan.0");
- return ch+6;
- }
- if (f < 0.0)
- {
- f = -f;
- a[ch++] = '-';
- }
- #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
- make-uniform-vector, from causing infinite loops. */
- /* just do the checking...if it passes, we do the conversion for our
- radix again below */
- f_cpy = f;
- exp_cpy = exp;
- while (f_cpy < 1.0)
- {
- f_cpy *= 10.0;
- if (exp_cpy-- < DBL_MIN_10_EXP)
- {
- a[ch++] = '#';
- a[ch++] = '.';
- a[ch++] = '#';
- return ch;
- }
- }
- while (f_cpy > 10.0)
- {
- f_cpy *= 0.10;
- if (exp_cpy++ > DBL_MAX_10_EXP)
- {
- a[ch++] = '#';
- a[ch++] = '.';
- a[ch++] = '#';
- return ch;
- }
- }
- #endif
- while (f < 1.0)
- {
- f *= radix;
- exp--;
- }
- while (f > radix)
- {
- f /= radix;
- exp++;
- }
- if (f + fx[wp] >= radix)
- {
- f = 1.0;
- exp++;
- }
- zero:
- #ifdef ENGNOT
- /* adding 9999 makes this equivalent to abs(x) % 3 */
- dpt = (exp + 9999) % 3;
- exp -= dpt++;
- efmt = 1;
- #else
- efmt = (exp < -3) || (exp > wp + 2);
- if (!efmt)
- {
- if (exp < 0)
- {
- a[ch++] = '0';
- a[ch++] = '.';
- dpt = exp;
- while (++dpt)
- a[ch++] = '0';
- }
- else
- dpt = exp + 1;
- }
- else
- dpt = 1;
- #endif
- do
- {
- d = f;
- f -= d;
- a[ch++] = number_chars[d];
- if (f < fx[wp])
- break;
- if (f + fx[wp] >= 1.0)
- {
- a[ch - 1] = number_chars[d+1];
- break;
- }
- f *= radix;
- if (!(--dpt))
- a[ch++] = '.';
- }
- while (wp--);
- if (dpt > 0)
- {
- #ifndef ENGNOT
- if ((dpt > 4) && (exp > 6))
- {
- d = (a[0] == '-' ? 2 : 1);
- for (i = ch++; i > d; i--)
- a[i] = a[i - 1];
- a[d] = '.';
- efmt = 1;
- }
- else
- #endif
- {
- while (--dpt)
- a[ch++] = '0';
- a[ch++] = '.';
- }
- }
- if (a[ch - 1] == '.')
- a[ch++] = '0'; /* trailing zero */
- if (efmt && exp)
- {
- a[ch++] = 'e';
- if (exp < 0)
- {
- exp = -exp;
- a[ch++] = '-';
- }
- for (i = radix; i <= exp; i *= radix);
- for (i /= radix; i; i /= radix)
- {
- a[ch++] = number_chars[exp / i];
- exp %= i;
- }
- }
- return ch;
- }
- static size_t
- icmplx2str (double real, double imag, char *str, int radix)
- {
- size_t i;
-
- i = idbl2str (real, str, radix);
- if (imag != 0.0)
- {
- /* Don't output a '+' for negative numbers or for Inf and
- NaN. They will provide their own sign. */
- if (0 <= imag && !xisinf (imag) && !xisnan (imag))
- str[i++] = '+';
- i += idbl2str (imag, &str[i], radix);
- str[i++] = 'i';
- }
- return i;
- }
- static size_t
- iflo2str (SCM flt, char *str, int radix)
- {
- size_t i;
- if (SCM_REALP (flt))
- i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
- else
- i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
- str, radix);
- return i;
- }
- /* convert a scm_t_intmax to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iint2str (scm_t_intmax num, int rad, char *p)
- {
- if (num < 0)
- {
- *p++ = '-';
- return scm_iuint2str (-num, rad, p) + 1;
- }
- else
- return scm_iuint2str (num, rad, p);
- }
- /* convert a scm_t_intmax to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iuint2str (scm_t_uintmax num, int rad, char *p)
- {
- size_t j = 1;
- size_t i;
- scm_t_uintmax n = num;
- for (n /= rad; n > 0; n /= rad)
- j++;
- i = j;
- n = num;
- while (i--)
- {
- int d = n % rad;
- n /= rad;
- p[i] = d + ((d < 10) ? '0' : 'a' - 10);
- }
- return j;
- }
- SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
- (SCM n, SCM radix),
- "Return a string holding the external representation of the\n"
- "number @var{n} in the given @var{radix}. If @var{n} is\n"
- "inexact, a radix of 10 will be used.")
- #define FUNC_NAME s_scm_number_to_string
- {
- int base;
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_signed_integer (radix, 2, 36);
- if (SCM_I_INUMP (n))
- {
- char num_buf [SCM_INTBUFLEN];
- size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
- return scm_from_locale_stringn (num_buf, length);
- }
- else if (SCM_BIGP (n))
- {
- char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_take_locale_string (str);
- }
- else if (SCM_FRACTIONP (n))
- {
- return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
- scm_from_locale_string ("/"),
- scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
- }
- else if (SCM_INEXACTP (n))
- {
- char num_buf [FLOBUFLEN];
- return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- /* These print routines used to be stubbed here so that scm_repl.c
- wouldn't need SCM_BIGDIG conditionals (pre GMP) */
- int
- scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_double (double val, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
- }
- int
- scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_complex (double real, double imag, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
- }
- int
- scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- SCM str;
- str = scm_number_to_string (sexp, SCM_UNDEFINED);
- scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
- scm_remember_upto_here_1 (str);
- return !0;
- }
- int
- scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
- scm_remember_upto_here_1 (exp);
- scm_lfwrite (str, (size_t) strlen (str), port);
- free (str);
- return !0;
- }
- /*** END nums->strs ***/
- /*** STRINGS -> NUMBERS ***/
- /* The following functions implement the conversion from strings to numbers.
- * The implementation somehow follows the grammar for numbers as it is given
- * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
- * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
- * points should be noted about the implementation:
- * * Each function keeps a local index variable 'idx' that points at the
- * current position within the parsed string. The global index is only
- * updated if the function could parse the corresponding syntactic unit
- * successfully.
- * * Similarly, the functions keep track of indicators of inexactness ('#',
- * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
- * global exactness information is only updated after each part has been
- * successfully parsed.
- * * Sequences of digits are parsed into temporary variables holding fixnums.
- * Only if these fixnums would overflow, the result variables are updated
- * using the standard functions scm_add, scm_product, scm_divide etc. Then,
- * the temporary variables holding the fixnums are cleared, and the process
- * starts over again. If for example fixnums were able to store five decimal
- * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
- * and the result was computed as 12345 * 100000 + 67890. In other words,
- * only every five digits two bignum operations were performed.
- */
- enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
- /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
- /* In non ASCII-style encodings the following macro might not work. */
- #define XDIGIT2UINT(d) \
- (isdigit ((int) (unsigned char) d) \
- ? (d) - '0' \
- : tolower ((int) (unsigned char) d) - 'a' + 10)
- static SCM
- mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- unsigned int hash_seen = 0;
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM result;
- char c;
- if (idx == len)
- return SCM_BOOL_F;
- c = mem[idx];
- if (!isxdigit ((int) (unsigned char) c))
- return SCM_BOOL_F;
- digit_value = XDIGIT2UINT (c);
- if (digit_value >= radix)
- return SCM_BOOL_F;
- idx++;
- result = SCM_I_MAKINUM (digit_value);
- while (idx != len)
- {
- char c = mem[idx];
- if (isxdigit ((int) (unsigned char) c))
- {
- if (hash_seen)
- break;
- digit_value = XDIGIT2UINT (c);
- if (digit_value >= radix)
- break;
- }
- else if (c == '#')
- {
- hash_seen = 1;
- digit_value = 0;
- }
- else
- break;
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
- {
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- shift = radix;
- add = digit_value;
- }
- else
- {
- shift = shift * radix;
- add = add * radix + digit_value;
- }
- };
- if (shift > 1)
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- *p_idx = idx;
- if (hash_seen)
- *p_exactness = INEXACT;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
- * covers the parts of the rules that start at a potential point. The value
- * of the digits up to the point have been parsed by the caller and are given
- * in variable result. The content of *p_exactness indicates, whether a hash
- * has already been seen in the digits before the point.
- */
- /* In non ASCII-style encodings the following macro might not work. */
- #define DIGIT2UINT(d) ((d) - '0')
- static SCM
- mem2decimal_from_point (SCM result, const char* mem, size_t len,
- unsigned int *p_idx, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- enum t_exactness x = *p_exactness;
- if (idx == len)
- return result;
- if (mem[idx] == '.')
- {
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM big_shift = SCM_I_MAKINUM (1);
- idx++;
- while (idx != len)
- {
- char c = mem[idx];
- if (isdigit ((int) (unsigned char) c))
- {
- if (x == INEXACT)
- return SCM_BOOL_F;
- else
- digit_value = DIGIT2UINT (c);
- }
- else if (c == '#')
- {
- x = INEXACT;
- digit_value = 0;
- }
- else
- break;
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
-
- shift = 10;
- add = digit_value;
- }
- else
- {
- shift = shift * 10;
- add = add * 10 + digit_value;
- }
- };
- if (add > 0)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- result = scm_sum (result, SCM_I_MAKINUM (add));
- }
- result = scm_divide (result, big_shift);
- /* We've seen a decimal point, thus the value is implicitly inexact. */
- x = INEXACT;
- }
- if (idx != len)
- {
- int sign = 1;
- unsigned int start;
- char c;
- int exponent;
- SCM e;
- /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
- switch (mem[idx])
- {
- case 'd': case 'D':
- case 'e': case 'E':
- case 'f': case 'F':
- case 'l': case 'L':
- case 's': case 'S':
- idx++;
- start = idx;
- c = mem[idx];
- if (c == '-')
- {
- idx++;
- sign = -1;
- c = mem[idx];
- }
- else if (c == '+')
- {
- idx++;
- sign = 1;
- c = mem[idx];
- }
- else
- sign = 1;
- if (!isdigit ((int) (unsigned char) c))
- return SCM_BOOL_F;
- idx++;
- exponent = DIGIT2UINT (c);
- while (idx != len)
- {
- char c = mem[idx];
- if (isdigit ((int) (unsigned char) c))
- {
- idx++;
- if (exponent <= SCM_MAXEXP)
- exponent = exponent * 10 + DIGIT2UINT (c);
- }
- else
- break;
- }
- if (exponent > SCM_MAXEXP)
- {
- size_t exp_len = idx - start;
- SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
- SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
- scm_out_of_range ("string->number", exp_num);
- }
- e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
- if (sign == 1)
- result = scm_product (result, e);
- else
- result = scm_divide2real (result, e);
- /* We've seen an exponent, thus the value is implicitly inexact. */
- x = INEXACT;
- break;
- default:
- break;
- }
- }
- *p_idx = idx;
- if (x == INEXACT)
- *p_exactness = x;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
- static SCM
- mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- SCM result;
- if (idx == len)
- return SCM_BOOL_F;
- if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
- {
- *p_idx = idx+5;
- return scm_inf ();
- }
- if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
- {
- enum t_exactness x = EXACT;
- /* Cobble up the fractional part. We might want to set the
- NaN's mantissa from it. */
- idx += 4;
- mem2uinteger (mem, len, &idx, 10, &x);
- *p_idx = idx;
- return scm_nan ();
- }
- if (mem[idx] == '.')
- {
- if (radix != 10)
- return SCM_BOOL_F;
- else if (idx + 1 == len)
- return SCM_BOOL_F;
- else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
- return SCM_BOOL_F;
- else
- result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
- p_idx, p_exactness);
- }
- else
- {
- enum t_exactness x = EXACT;
- SCM uinteger;
- uinteger = mem2uinteger (mem, len, &idx, radix, &x);
- if (scm_is_false (uinteger))
- return SCM_BOOL_F;
- if (idx == len)
- result = uinteger;
- else if (mem[idx] == '/')
- {
- SCM divisor;
- idx++;
- divisor = mem2uinteger (mem, len, &idx, radix, &x);
- if (scm_is_false (divisor))
- return SCM_BOOL_F;
- /* both are int/big here, I assume */
- result = scm_i_make_ratio (uinteger, divisor);
- }
- else if (radix == 10)
- {
- result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
- if (scm_is_false (result))
- return SCM_BOOL_F;
- }
- else
- result = uinteger;
- *p_idx = idx;
- if (x == INEXACT)
- *p_exactness = x;
- }
- /* When returning an inexact zero, make sure it is represented as a
- floating point value so that we can change its sign.
- */
- if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
- result = scm_from_double (0.0);
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- static SCM
- mem2complex (const char* mem, size_t len, unsigned int idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- char c;
- int sign = 0;
- SCM ureal;
- if (idx == len)
- return SCM_BOOL_F;
- c = mem[idx];
- if (c == '+')
- {
- idx++;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- sign = -1;
- }
- if (idx == len)
- return SCM_BOOL_F;
- ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
- if (scm_is_false (ureal))
- {
- /* input must be either +i or -i */
- if (sign == 0)
- return SCM_BOOL_F;
- if (mem[idx] == 'i' || mem[idx] == 'I')
- {
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
-
- return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
- }
- else
- return SCM_BOOL_F;
- }
- else
- {
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- ureal = scm_difference (ureal, SCM_UNDEFINED);
- if (idx == len)
- return ureal;
- c = mem[idx];
- switch (c)
- {
- case 'i': case 'I':
- /* either +<ureal>i or -<ureal>i */
- idx++;
- if (sign == 0)
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
- case '@':
- /* polar input: <real>@<real>. */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign;
- SCM angle;
- SCM result;
- c = mem[idx];
- if (c == '+')
- {
- idx++;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- sign = -1;
- }
- else
- sign = 1;
- angle = mem2ureal (mem, len, &idx, radix, p_exactness);
- if (scm_is_false (angle))
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- angle = scm_difference (angle, SCM_UNDEFINED);
- result = scm_make_polar (ureal, angle);
- return result;
- }
- case '+':
- case '-':
- /* expecting input matching <real>[+-]<ureal>?i */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign = (c == '+') ? 1 : -1;
- SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
- if (scm_is_false (imag))
- imag = SCM_I_MAKINUM (sign);
- else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- imag = scm_difference (imag, SCM_UNDEFINED);
- if (idx == len)
- return SCM_BOOL_F;
- if (mem[idx] != 'i' && mem[idx] != 'I')
- return SCM_BOOL_F;
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (ureal, imag);
- }
- default:
- return SCM_BOOL_F;
- }
- }
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
- enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
- SCM
- scm_c_locale_stringn_to_number (const char* mem, size_t len,
- unsigned int default_radix)
- {
- unsigned int idx = 0;
- unsigned int radix = NO_RADIX;
- enum t_exactness forced_x = NO_EXACTNESS;
- enum t_exactness implicit_x = EXACT;
- SCM result;
- /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
- while (idx + 2 < len && mem[idx] == '#')
- {
- switch (mem[idx + 1])
- {
- case 'b': case 'B':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DUAL;
- break;
- case 'd': case 'D':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DEC;
- break;
- case 'i': case 'I':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = INEXACT;
- break;
- case 'e': case 'E':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = EXACT;
- break;
- case 'o': case 'O':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = OCT;
- break;
- case 'x': case 'X':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = HEX;
- break;
- default:
- return SCM_BOOL_F;
- }
- idx += 2;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- if (radix == NO_RADIX)
- result = mem2complex (mem, len, idx, default_radix, &implicit_x);
- else
- result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
- if (scm_is_false (result))
- return SCM_BOOL_F;
- switch (forced_x)
- {
- case EXACT:
- if (SCM_INEXACTP (result))
- return scm_inexact_to_exact (result);
- else
- return result;
- case INEXACT:
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- case NO_EXACTNESS:
- default:
- if (implicit_x == INEXACT)
- {
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- }
- else
- return result;
- }
- }
- SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
- (SCM string, SCM radix),
- "Return a number of the maximally precise representation\n"
- "expressed by the given @var{string}. @var{radix} must be an\n"
- "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
- "is a default radix that may be overridden by an explicit radix\n"
- "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
- "supplied, then the default radix is 10. If string is not a\n"
- "syntactically valid notation for a number, then\n"
- "@code{string->number} returns @code{#f}.")
- #define FUNC_NAME s_scm_string_to_number
- {
- SCM answer;
- unsigned int base;
- SCM_VALIDATE_STRING (1, string);
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_unsigned_integer (radix, 2, INT_MAX);
- answer = scm_c_locale_stringn_to_number (scm_i_string_chars (string),
- scm_i_string_length (string),
- base);
- scm_remember_upto_here_1 (string);
- return answer;
- }
- #undef FUNC_NAME
- /*** END strs->nums ***/
- SCM
- scm_bigequal (SCM x, SCM y)
- {
- int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (0 == result);
- }
- SCM
- scm_real_equalp (SCM x, SCM y)
- {
- return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
- }
- SCM
- scm_complex_equalp (SCM x, SCM y)
- {
- return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
- && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
- }
- SCM
- scm_i_fraction_equalp (SCM x, SCM y)
- {
- if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_NUMERATOR (y)))
- || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_DENOMINATOR (y))))
- return SCM_BOOL_F;
- else
- return SCM_BOOL_T;
- }
- SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_number_p
- {
- return scm_from_bool (SCM_NUMBERP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
- "otherwise. Note that the sets of real, rational and integer\n"
- "values form subsets of the set of complex numbers, i. e. the\n"
- "predicate will also be fulfilled if @var{x} is a real,\n"
- "rational or integer number.")
- #define FUNC_NAME s_scm_complex_p
- {
- /* all numbers are complex. */
- return scm_number_p (x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of real numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_real_p
- {
- /* we can't represent irrational numbers. */
- return scm_rational_p (x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of rational numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_rational_p
- {
- if (SCM_I_INUMP (x))
- return SCM_BOOL_T;
- else if (SCM_IMP (x))
- return SCM_BOOL_F;
- else if (SCM_BIGP (x))
- return SCM_BOOL_T;
- else if (SCM_FRACTIONP (x))
- return SCM_BOOL_T;
- else if (SCM_REALP (x))
- /* due to their limited precision, all floating point numbers are
- rational as well. */
- return SCM_BOOL_T;
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
- "else.")
- #define FUNC_NAME s_scm_integer_p
- {
- double r;
- if (SCM_I_INUMP (x))
- return SCM_BOOL_T;
- if (SCM_IMP (x))
- return SCM_BOOL_F;
- if (SCM_BIGP (x))
- return SCM_BOOL_T;
- if (!SCM_INEXACTP (x))
- return SCM_BOOL_F;
- if (SCM_COMPLEXP (x))
- return SCM_BOOL_F;
- r = SCM_REAL_VALUE (x);
- /* +/-inf passes r==floor(r), making those #t */
- if (r == floor (r))
- return SCM_BOOL_T;
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
- "else.")
- #define FUNC_NAME s_scm_inexact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_T;
- if (SCM_NUMBERP (x))
- return SCM_BOOL_F;
- SCM_WRONG_TYPE_ARG (1, x);
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
- /* "Return @code{#t} if all parameters are numerically equal." */
- SCM
- scm_num_eq_p (SCM x, SCM y)
- {
- again:
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- return scm_from_bool (xx == yy);
- }
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- {
- /* On a 32-bit system an inum fits a double, we can cast the inum
- to a double and compare.
- But on a 64-bit system an inum is bigger than a double and
- casting it to a double (call that dxx) will round. dxx is at
- worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
- an integer and fits a long. So we cast yy to a long and
- compare with plain xx.
- An alternative (for any size system actually) would be to check
- yy is an integer (with floor) and is in range of an inum
- (compare against appropriate powers of 2) then test
- xx==(long)yy. It's just a matter of which casts/comparisons
- might be fastest or easiest for the cpu. */
- double yy = SCM_REAL_VALUE (y);
- return scm_from_bool ((double) xx == yy
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || xx == (long) yy));
- }
- else if (SCM_COMPLEXP (y))
- return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
- && (0.0 == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_BOOL_F;
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- {
- int cmp;
- if (xisnan (SCM_REAL_VALUE (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_COMPLEXP (y))
- {
- int cmp;
- if (0.0 != SCM_COMPLEX_IMAG (y))
- return SCM_BOOL_F;
- if (xisnan (SCM_COMPLEX_REAL (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else if (SCM_REALP (x))
- {
- double xx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- {
- /* see comments with inum/real above */
- long yy = SCM_I_INUM (y);
- return scm_from_bool (xx == (double) yy
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || (long) xx == yy));
- }
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (xisnan (SCM_REAL_VALUE (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
- && (0.0 == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- if (xisnan (xx))
- return SCM_BOOL_F;
- if (xisinf (xx))
- return scm_from_bool (xx < 0.0);
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
- && (SCM_COMPLEX_IMAG (x) == 0.0));
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (0.0 != SCM_COMPLEX_IMAG (x))
- return SCM_BOOL_F;
- if (xisnan (SCM_COMPLEX_REAL (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
- && (SCM_COMPLEX_IMAG (x) == 0.0));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
- && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- double xx;
- if (SCM_COMPLEX_IMAG (x) != 0.0)
- return SCM_BOOL_F;
- xx = SCM_COMPLEX_REAL (x);
- if (xisnan (xx))
- return SCM_BOOL_F;
- if (xisinf (xx))
- return scm_from_bool (xx < 0.0);
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_BOOL_F;
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- if (xisnan (yy))
- return SCM_BOOL_F;
- if (xisinf (yy))
- return scm_from_bool (0.0 < yy);
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_COMPLEXP (y))
- {
- double yy;
- if (SCM_COMPLEX_IMAG (y) != 0.0)
- return SCM_BOOL_F;
- yy = SCM_COMPLEX_REAL (y);
- if (xisnan (yy))
- return SCM_BOOL_F;
- if (xisinf (yy))
- return scm_from_bool (0.0 < yy);
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_fraction_equalp (x, y);
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
- }
- /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
- done are good for inums, but for bignums an answer can almost always be
- had by just examining a few high bits of the operands, as done by GMP in
- mpq_cmp. flonum/frac compares likewise, but with the slight complication
- of the float exponent to take into account. */
- SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
- /* "Return @code{#t} if the list of parameters is monotonically\n"
- * "increasing."
- */
- SCM
- scm_less_p (SCM x, SCM y)
- {
- again:
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- return scm_from_bool (xx < yy);
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (sgn > 0);
- }
- else if (SCM_REALP (y))
- return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- {
- /* "x < a/b" becomes "x*b < a" */
- int_frac:
- x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
- y = SCM_FRACTION_NUMERATOR (y);
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn < 0);
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (cmp < 0);
- }
- else if (SCM_REALP (y))
- {
- int cmp;
- if (xisnan (SCM_REAL_VALUE (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (cmp < 0);
- }
- else if (SCM_FRACTIONP (y))
- goto int_frac;
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (xisnan (SCM_REAL_VALUE (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (cmp > 0);
- }
- else if (SCM_REALP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- if (xisnan (xx))
- return SCM_BOOL_F;
- if (xisinf (xx))
- return scm_from_bool (xx < 0.0);
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y) || SCM_BIGP (y))
- {
- /* "a/b < y" becomes "a < y*b" */
- y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
- x = SCM_FRACTION_NUMERATOR (x);
- goto again;
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- if (xisnan (yy))
- return SCM_BOOL_F;
- if (xisinf (yy))
- return scm_from_bool (0.0 < yy);
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_FRACTIONP (y))
- {
- /* "a/b < c/d" becomes "a*d < c*b" */
- SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (y));
- SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
- SCM_FRACTION_DENOMINATOR (x));
- x = new_x;
- y = new_y;
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
- }
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
- }
- SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
- /* "Return @code{#t} if the list of parameters is monotonically\n"
- * "decreasing."
- */
- #define FUNC_NAME s_scm_gr_p
- SCM
- scm_gr_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
- else
- return scm_less_p (y, x);
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
- /* "Return @code{#t} if the list of parameters is monotonically\n"
- * "non-decreasing."
- */
- #define FUNC_NAME s_scm_leq_p
- SCM
- scm_leq_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
- else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
- return SCM_BOOL_F;
- else
- return scm_not (scm_less_p (y, x));
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
- /* "Return @code{#t} if the list of parameters is monotonically\n"
- * "non-increasing."
- */
- #define FUNC_NAME s_scm_geq_p
- SCM
- scm_geq_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
- else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
- return SCM_BOOL_F;
- else
- return scm_not (scm_less_p (x, y));
- }
- #undef FUNC_NAME
- SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
- /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
- * "zero."
- */
- SCM
- scm_zero_p (SCM z)
- {
- if (SCM_I_INUMP (z))
- return scm_from_bool (scm_is_eq (z, SCM_INUM0));
- else if (SCM_BIGP (z))
- return SCM_BOOL_F;
- else if (SCM_REALP (z))
- return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
- else if (SCM_COMPLEXP (z))
- return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
- && SCM_COMPLEX_IMAG (z) == 0.0);
- else if (SCM_FRACTIONP (z))
- return SCM_BOOL_F;
- else
- SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
- }
- SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
- /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
- * "zero."
- */
- SCM
- scm_positive_p (SCM x)
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) > 0);
- else if (SCM_BIGP (x))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn > 0);
- }
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
- else
- SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
- }
- SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
- /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
- * "zero."
- */
- SCM
- scm_negative_p (SCM x)
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) < 0);
- else if (SCM_BIGP (x))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn < 0);
- }
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
- else
- SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
- }
- /* scm_min and scm_max return an inexact when either argument is inexact, as
- required by r5rs. On that basis, for exact/inexact combinations the
- exact is converted to inexact to compare and possibly return. This is
- unlike scm_less_p above which takes some trouble to preserve all bits in
- its test, such trouble is not required for min and max. */
- SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
- /* "Return the maximum of all parameter values."
- */
- SCM
- scm_max (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- SCM_WTA_DISPATCH_0 (g_max, s_max);
- else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
- return x;
- else
- SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
- }
-
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- return (xx < yy) ? y : x;
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return (sgn < 0) ? x : y;
- }
- else if (SCM_REALP (y))
- {
- double z = xx;
- /* if y==NaN then ">" is false and we return NaN */
- return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- use_less:
- return (scm_is_false (scm_less_p (x, y)) ? x : y);
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn < 0) ? y : x;
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return (cmp > 0) ? x : y;
- }
- else if (SCM_REALP (y))
- {
- /* if y==NaN then xx>yy is false, so we return the NaN y */
- double xx, yy;
- big_real:
- xx = scm_i_big2dbl (x);
- yy = SCM_REAL_VALUE (y);
- return (xx > yy ? scm_from_double (xx) : y);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- double z = SCM_I_INUM (y);
- /* if x==NaN then "<" is false and we return NaN */
- return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_real;
- }
- else if (SCM_REALP (y))
- {
- /* if x==NaN then our explicit check means we return NaN
- if y==NaN then ">" is false and we return NaN
- calling isnan is unavoidable, since it's the only way to know
- which of x or y causes any compares to be false */
- double xx = SCM_REAL_VALUE (x);
- return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- double xx = SCM_REAL_VALUE (x);
- return (xx < yy) ? scm_from_double (yy) : x;
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- goto use_less;
- }
- else if (SCM_BIGP (y))
- {
- goto use_less;
- }
- else if (SCM_REALP (y))
- {
- double xx = scm_i_fraction2double (x);
- return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
- }
- SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
- /* "Return the minium of all parameter values."
- */
- SCM
- scm_min (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- SCM_WTA_DISPATCH_0 (g_min, s_min);
- else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
- return x;
- else
- SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
- }
-
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- return (xx < yy) ? x : y;
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return (sgn < 0) ? y : x;
- }
- else if (SCM_REALP (y))
- {
- double z = xx;
- /* if y==NaN then "<" is false and we return NaN */
- return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- use_less:
- return (scm_is_false (scm_less_p (x, y)) ? y : x);
- }
- else
- SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn < 0) ? x : y;
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return (cmp > 0) ? y : x;
- }
- else if (SCM_REALP (y))
- {
- /* if y==NaN then xx<yy is false, so we return the NaN y */
- double xx, yy;
- big_real:
- xx = scm_i_big2dbl (x);
- yy = SCM_REAL_VALUE (y);
- return (xx < yy ? scm_from_double (xx) : y);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- double z = SCM_I_INUM (y);
- /* if x==NaN then "<" is false and we return NaN */
- return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_real;
- }
- else if (SCM_REALP (y))
- {
- /* if x==NaN then our explicit check means we return NaN
- if y==NaN then "<" is false and we return NaN
- calling isnan is unavoidable, since it's the only way to know
- which of x or y causes any compares to be false */
- double xx = SCM_REAL_VALUE (x);
- return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- double xx = SCM_REAL_VALUE (x);
- return (yy < xx) ? scm_from_double (yy) : x;
- }
- else
- SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- goto use_less;
- }
- else if (SCM_BIGP (y))
- {
- goto use_less;
- }
- else if (SCM_REALP (y))
- {
- double xx = scm_i_fraction2double (x);
- return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else
- SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
- }
- SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
- /* "Return the sum of all parameter values. Return 0 if called without\n"
- * "any parameters."
- */
- SCM
- scm_sum (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_NUMBERP (x)) return x;
- if (SCM_UNBNDP (x)) return SCM_INUM0;
- SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
- }
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- long xx = SCM_I_INUM (x);
- long yy = SCM_I_INUM (y);
- long int z = xx + yy;
- return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto add_big_inum;
- }
- else if (SCM_REALP (y))
- {
- long int xx = SCM_I_INUM (x);
- return scm_from_double (xx + SCM_REAL_VALUE (y));
- }
- else if (SCM_COMPLEXP (y))
- {
- long int xx = SCM_I_INUM (x);
- return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- } else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long int inum;
- int bigsgn;
- add_big_inum:
- inum = SCM_I_INUM (y);
- if (inum == 0)
- return x;
- bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- if (inum < 0)
- {
- SCM result = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
- scm_remember_upto_here_1 (x);
- /* we know the result will have to be a bignum */
- if (bigsgn == -1)
- return result;
- return scm_i_normbig (result);
- }
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
- scm_remember_upto_here_1 (x);
- /* we know the result will have to be a bignum */
- if (bigsgn == 1)
- return result;
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- mpz_add (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- /* we know the result will have to be a bignum */
- if (sgn_x == sgn_y)
- return result;
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
- + SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
- scm_remember_upto_here_1 (y);
- return scm_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_BIGP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
- + SCM_COMPLEX_REAL (x));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a/b + c/d = (ad + bc) / bd */
- return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
- scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
- }
- SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}+1}.")
- #define FUNC_NAME s_scm_oneplus
- {
- return scm_sum (x, SCM_I_MAKINUM (1));
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
- /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
- * the sum of all but the first argument are subtracted from the first
- * argument. */
- #define FUNC_NAME s_difference
- SCM
- scm_difference (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- SCM_WTA_DISPATCH_0 (g_difference, s_difference);
- else
- if (SCM_I_INUMP (x))
- {
- long xx = -SCM_I_INUM (x);
- if (SCM_FIXABLE (xx))
- return SCM_I_MAKINUM (xx);
- else
- return scm_i_long2big (xx);
- }
- else if (SCM_BIGP (x))
- /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
- bignum, but negating that gives a fixnum. */
- return scm_i_normbig (scm_i_clonebig (x, 0));
- else if (SCM_REALP (x))
- return scm_from_double (-SCM_REAL_VALUE (x));
- else if (SCM_COMPLEXP (x))
- return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
- -SCM_COMPLEX_IMAG (x));
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- else
- SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
- }
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- long int xx = SCM_I_INUM (x);
- long int yy = SCM_I_INUM (y);
- long int z = xx - yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_long2big (z);
- }
- else if (SCM_BIGP (y))
- {
- /* inum-x - big-y */
- long xx = SCM_I_INUM (x);
- if (xx == 0)
- return scm_i_clonebig (y, 0);
- else
- {
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM result = scm_i_mkbig ();
- if (xx >= 0)
- mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
- else
- {
- /* x - y == -(y + -x) */
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- }
- scm_remember_upto_here_1 (y);
- if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
- /* we know the result will have to be a bignum */
- return result;
- else
- return scm_i_normbig (result);
- }
- }
- else if (SCM_REALP (y))
- {
- long int xx = SCM_I_INUM (x);
- return scm_from_double (xx - SCM_REAL_VALUE (y));
- }
- else if (SCM_COMPLEXP (y))
- {
- long int xx = SCM_I_INUM (x);
- return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
- - SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- /* a - b/c = (ac - b) / c */
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* big-x - inum-y */
- long yy = SCM_I_INUM (y);
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- if (sgn_x == 0)
- return (SCM_FIXABLE (-yy) ?
- SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
- else
- {
- SCM result = scm_i_mkbig ();
- if (yy >= 0)
- mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
- else
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
- /* we know the result will have to be a bignum */
- return result;
- else
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM result = scm_i_mkbig ();
- mpz_sub (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- /* we know the result will have to be a bignum */
- if ((sgn_x == 1) && (sgn_y == -1))
- return result;
- if ((sgn_x == -1) && (sgn_y == 1))
- return result;
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
- - SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (x);
- return scm_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_BIGP (y))
- {
- double real_part = (SCM_COMPLEX_REAL (x)
- - mpz_get_d (SCM_I_BIG_MPZ (y)));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- /* a/b - c = (a - cb) / b */
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
- scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
- scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a/b - c/d = (ad - bc) / bd */
- return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
- scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}-1}.")
- #define FUNC_NAME s_scm_oneminus
- {
- return scm_difference (x, SCM_I_MAKINUM (1));
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
- /* "Return the product of all arguments. If called without arguments,\n"
- * "1 is returned."
- */
- SCM
- scm_product (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- return SCM_I_MAKINUM (1L);
- else if (SCM_NUMBERP (x))
- return x;
- else
- SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
- }
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- long xx;
- intbig:
- xx = SCM_I_INUM (x);
- switch (xx)
- {
- case 0: return x; break;
- case 1: return y; break;
- }
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- long yy = SCM_I_INUM (y);
- long kk = xx * yy;
- SCM k = SCM_I_MAKINUM (kk);
- if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
- return k;
- else
- {
- SCM result = scm_i_long2big (xx);
- mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- return result;
- }
- else if (SCM_REALP (y))
- return scm_from_double (xx * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
- xx * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- SCM_SWAP (x, y);
- goto intbig;
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return result;
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double z = mpz_get_d (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
- z * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
- if (scm_is_eq (y, SCM_INUM0))
- return y;
- return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
- }
- else if (SCM_BIGP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
- scm_remember_upto_here_1 (y);
- return scm_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
- SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
- if (scm_is_eq (y, SCM_INUM0))
- return y;
- return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
- SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_BIGP (y))
- {
- double z = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
- z * SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
- SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- {
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
- - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
- SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
- + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
- yy * SCM_COMPLEX_IMAG (x));
- }
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- {
- double xx = scm_i_fraction2double (x);
- return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
- xx * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- /* a/b * c/d = ac / bd */
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_NUMERATOR (y)),
- scm_product (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_DENOMINATOR (y)));
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
- }
- #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
- || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
- #define ALLOW_DIVIDE_BY_ZERO
- /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
- #endif
- /* The code below for complex division is adapted from the GNU
- libstdc++, which adapted it from f2c's libF77, and is subject to
- this copyright: */
- /****************************************************************
- Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
- Permission to use, copy, modify, and distribute this software
- and its documentation for any purpose and without fee is hereby
- granted, provided that the above copyright notice appear in all
- copies and that both that the copyright notice and this
- permission notice and warranty disclaimer appear in supporting
- documentation, and that the names of AT&T Bell Laboratories or
- Bellcore or any of their entities not be used in advertising or
- publicity pertaining to distribution of the software without
- specific, written prior permission.
- AT&T and Bellcore disclaim all warranties with regard to this
- software, including all implied warranties of merchantability
- and fitness. In no event shall AT&T or Bellcore be liable for
- any special, indirect or consequential damages or any damages
- whatsoever resulting from loss of use, data or profits, whether
- in an action of contract, negligence or other tortious action,
- arising out of or in connection with the use or performance of
- this software.
- ****************************************************************/
- SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
- /* Divide the first argument by the product of the remaining
- arguments. If called with one argument @var{z1}, 1/@var{z1} is
- returned. */
- #define FUNC_NAME s_divide
- static SCM
- scm_i_divide (SCM x, SCM y, int inexact)
- {
- double a;
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- SCM_WTA_DISPATCH_0 (g_divide, s_divide);
- else if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (xx == 1 || xx == -1)
- return x;
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- else if (xx == 0)
- scm_num_overflow (s_divide);
- #endif
- else
- {
- if (inexact)
- return scm_from_double (1.0 / (double) xx);
- else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
- }
- }
- else if (SCM_BIGP (x))
- {
- if (inexact)
- return scm_from_double (1.0 / scm_i_big2dbl (x));
- else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
- }
- else if (SCM_REALP (x))
- {
- double xx = SCM_REAL_VALUE (x);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (xx == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (1.0 / xx);
- }
- else if (SCM_COMPLEXP (x))
- {
- double r = SCM_COMPLEX_REAL (x);
- double i = SCM_COMPLEX_IMAG (x);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular (t / d, -1.0 / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (1.0 / d, -t / d);
- }
- }
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_NUMERATOR (x));
- else
- SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
- }
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- return scm_from_double ((double) xx / (double) yy);
- #endif
- }
- else if (xx % yy != 0)
- {
- if (inexact)
- return scm_from_double ((double) xx / (double) yy);
- else return scm_i_make_ratio (x, y);
- }
- else
- {
- long z = xx / yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_long2big (z);
- }
- }
- else if (SCM_BIGP (y))
- {
- if (inexact)
- return scm_from_double ((double) xx / scm_i_big2dbl (y));
- else return scm_i_make_ratio (x, y);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double ((double) xx / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = xx;
- complex_div: /* y _must_ be a complex number */
- {
- double r = SCM_COMPLEX_REAL (y);
- double i = SCM_COMPLEX_IMAG (y);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular ((a * t) / d, -a / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (a / d, -(a * t) / d);
- }
- }
- }
- else if (SCM_FRACTIONP (y))
- /* a / b/c = ac / b */
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long int yy = SCM_I_INUM (y);
- if (yy == 0)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn == 0) ? scm_nan () : scm_inf ();
- #endif
- }
- else if (yy == 1)
- return x;
- else
- {
- /* FIXME: HMM, what are the relative performance issues here?
- We need to test. Is it faster on average to test
- divisible_p, then perform whichever operation, or is it
- faster to perform the integer div opportunistically and
- switch to real if there's a remainder? For now we take the
- middle ground: test, then if divisible, use the faster div
- func. */
- long abs_yy = yy < 0 ? -yy : yy;
- int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
- if (divisible_p)
- {
- SCM result = scm_i_mkbig ();
- mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
- scm_remember_upto_here_1 (x);
- if (yy < 0)
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- return scm_i_normbig (result);
- }
- else
- {
- if (inexact)
- return scm_from_double (scm_i_big2dbl (x) / (double) yy);
- else return scm_i_make_ratio (x, y);
- }
- }
- }
- else if (SCM_BIGP (y))
- {
- int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
- if (y_is_zero)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn == 0) ? scm_nan () : scm_inf ();
- #endif
- }
- else
- {
- /* big_x / big_y */
- if (inexact)
- {
- /* It's easily possible for the ratio x/y to fit a double
- but one or both x and y be too big to fit a double,
- hence the use of mpq_get_d rather than converting and
- dividing. */
- mpq_t q;
- *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
- *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
- return scm_from_double (mpq_get_d (q));
- }
- else
- {
- int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- if (divisible_p)
- {
- SCM result = scm_i_mkbig ();
- mpz_divexact (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- return scm_i_make_ratio (x, y);
- }
- }
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (scm_i_big2dbl (x) / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = scm_i_big2dbl (x);
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_REALP (x))
- {
- double rx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- {
- long int yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (rx / (double) yy);
- }
- else if (SCM_BIGP (y))
- {
- double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_from_double (rx / dby);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (rx / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = rx;
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_from_double (rx / scm_i_fraction2double (y));
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_COMPLEXP (x))
- {
- double rx = SCM_COMPLEX_REAL (x);
- double ix = SCM_COMPLEX_IMAG (x);
- if (SCM_I_INUMP (y))
- {
- long int yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- {
- double d = yy;
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- }
- else if (SCM_BIGP (y))
- {
- double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (rx / dby, ix / dby);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_c_make_rectangular (rx / yy, ix / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- double ry = SCM_COMPLEX_REAL (y);
- double iy = SCM_COMPLEX_IMAG (y);
- if (fabs(ry) <= fabs(iy))
- {
- double t = ry / iy;
- double d = iy * (1.0 + t * t);
- return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
- }
- else
- {
- double t = iy / ry;
- double d = ry * (1.0 + t * t);
- return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
- }
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (rx / yy, ix / yy);
- }
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long int yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- }
- else if (SCM_BIGP (y))
- {
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (scm_i_fraction2double (x) / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = scm_i_fraction2double (x);
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
- }
- SCM
- scm_divide (SCM x, SCM y)
- {
- return scm_i_divide (x, y, 0);
- }
- static SCM scm_divide2real (SCM x, SCM y)
- {
- return scm_i_divide (x, y, 1);
- }
- #undef FUNC_NAME
- double
- scm_asinh (double x)
- {
- #if HAVE_ASINH
- return asinh (x);
- #else
- #define asinh scm_asinh
- return log (x + sqrt (x * x + 1));
- #endif
- }
- SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
- /* "Return the inverse hyperbolic sine of @var{x}."
- */
- double
- scm_acosh (double x)
- {
- #if HAVE_ACOSH
- return acosh (x);
- #else
- #define acosh scm_acosh
- return log (x + sqrt (x * x - 1));
- #endif
- }
- SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
- /* "Return the inverse hyperbolic cosine of @var{x}."
- */
- double
- scm_atanh (double x)
- {
- #if HAVE_ATANH
- return atanh (x);
- #else
- #define atanh scm_atanh
- return 0.5 * log ((1 + x) / (1 - x));
- #endif
- }
- SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
- /* "Return the inverse hyperbolic tangent of @var{x}."
- */
- double
- scm_c_truncate (double x)
- {
- #if HAVE_TRUNC
- return trunc (x);
- #else
- if (x < 0.0)
- return -floor (-x);
- return floor (x);
- #endif
- }
- /* scm_c_round is done using floor(x+0.5) to round to nearest and with
- half-way case (ie. when x is an integer plus 0.5) going upwards.
- Then half-way cases are identified and adjusted down if the
- round-upwards didn't give the desired even integer.
- "plus_half == result" identifies a half-way case. If plus_half, which is
- x + 0.5, is an integer then x must be an integer plus 0.5.
- An odd "result" value is identified with result/2 != floor(result/2).
- This is done with plus_half, since that value is ready for use sooner in
- a pipelined cpu, and we're already requiring plus_half == result.
- Note however that we need to be careful when x is big and already an
- integer. In that case "x+0.5" may round to an adjacent integer, causing
- us to return such a value, incorrectly. For instance if the hardware is
- in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
- (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
- returned. Or if the hardware is in round-upwards mode, then other bigger
- values like say x == 2^128 will see x+0.5 rounding up to the next higher
- representable value, 2^128+2^76 (or whatever), again incorrect.
- These bad roundings of x+0.5 are avoided by testing at the start whether
- x is already an integer. If it is then clearly that's the desired result
- already. And if it's not then the exponent must be small enough to allow
- an 0.5 to be represented, and hence added without a bad rounding. */
- double
- scm_c_round (double x)
- {
- double plus_half, result;
- if (x == floor (x))
- return x;
- plus_half = x + 0.5;
- result = floor (plus_half);
- /* Adjust so that the rounding is towards even. */
- return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
- ? result - 1
- : result);
- }
- SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards zero.")
- #define FUNC_NAME s_scm_truncate_number
- {
- if (scm_is_false (scm_negative_p (x)))
- return scm_floor (x);
- else
- return scm_ceiling (x);
- }
- #undef FUNC_NAME
- static SCM exactly_one_half;
- SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards the nearest integer. "
- "When it is exactly halfway between two integers, "
- "round towards the even one.")
- #define FUNC_NAME s_scm_round_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
- else
- {
- /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
- single quotient+remainder division then examining to see which way
- the rounding should go. */
- SCM plus_half = scm_sum (x, exactly_one_half);
- SCM result = scm_floor (plus_half);
- /* Adjust so that the rounding is towards even. */
- if (scm_is_true (scm_num_eq_p (plus_half, result))
- && scm_is_true (scm_odd_p (result)))
- return scm_difference (result, SCM_I_MAKINUM (1));
- else
- return result;
- }
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards minus infinity.")
- #define FUNC_NAME s_scm_floor
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_from_double (floor (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- {
- SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- if (scm_is_false (scm_negative_p (x)))
- {
- /* For positive x, rounding towards zero is correct. */
- return q;
- }
- else
- {
- /* For negative x, we need to return q-1 unless x is an
- integer. But fractions are never integer, per our
- assumptions. */
- return scm_difference (q, SCM_I_MAKINUM (1));
- }
- }
- else
- SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards infinity.")
- #define FUNC_NAME s_scm_ceiling
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_from_double (ceil (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- {
- SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- if (scm_is_false (scm_positive_p (x)))
- {
- /* For negative x, rounding towards zero is correct. */
- return q;
- }
- else
- {
- /* For positive x, we need to return q+1 unless x is an
- integer. But fractions are never integer, per our
- assumptions. */
- return scm_sum (q, SCM_I_MAKINUM (1));
- }
- }
- else
- SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
- /* "Return the square root of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
- /* "Return the absolute value of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
- /* "Return the @var{x}th power of e."
- */
- SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
- /* "Return the natural logarithm of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
- /* "Return the sine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
- /* "Return the cosine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
- /* "Return the tangent of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
- /* "Return the arc sine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
- /* "Return the arc cosine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
- /* "Return the arc tangent of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
- /* "Return the hyperbolic sine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
- /* "Return the hyperbolic cosine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
- /* "Return the hyperbolic tangent of the real number @var{x}."
- */
- struct dpair
- {
- double x, y;
- };
- static void scm_two_doubles (SCM x,
- SCM y,
- const char *sstring,
- struct dpair * xy);
- static void
- scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
- {
- if (SCM_I_INUMP (x))
- xy->x = SCM_I_INUM (x);
- else if (SCM_BIGP (x))
- xy->x = scm_i_big2dbl (x);
- else if (SCM_REALP (x))
- xy->x = SCM_REAL_VALUE (x);
- else if (SCM_FRACTIONP (x))
- xy->x = scm_i_fraction2double (x);
- else
- scm_wrong_type_arg (sstring, SCM_ARG1, x);
- if (SCM_I_INUMP (y))
- xy->y = SCM_I_INUM (y);
- else if (SCM_BIGP (y))
- xy->y = scm_i_big2dbl (y);
- else if (SCM_REALP (y))
- xy->y = SCM_REAL_VALUE (y);
- else if (SCM_FRACTIONP (y))
- xy->y = scm_i_fraction2double (y);
- else
- scm_wrong_type_arg (sstring, SCM_ARG2, y);
- }
- SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
- (SCM x, SCM y),
- "Return @var{x} raised to the power of @var{y}. This\n"
- "procedure does not accept complex arguments.")
- #define FUNC_NAME s_scm_sys_expt
- {
- struct dpair xy;
- scm_two_doubles (x, y, FUNC_NAME, &xy);
- return scm_from_double (pow (xy.x, xy.y));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
- (SCM x, SCM y),
- "Return the arc tangent of the two arguments @var{x} and\n"
- "@var{y}. This is similar to calculating the arc tangent of\n"
- "@var{x} / @var{y}, except that the signs of both arguments\n"
- "are used to determine the quadrant of the result. This\n"
- "procedure does not accept complex arguments.")
- #define FUNC_NAME s_scm_sys_atan2
- {
- struct dpair xy;
- scm_two_doubles (x, y, FUNC_NAME, &xy);
- return scm_from_double (atan2 (xy.x, xy.y));
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_rectangular (double re, double im)
- {
- if (im == 0.0)
- return scm_from_double (re);
- else
- {
- SCM z;
- SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
- "complex"));
- SCM_COMPLEX_REAL (z) = re;
- SCM_COMPLEX_IMAG (z) = im;
- return z;
- }
- }
- SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
- (SCM real_part, SCM imaginary_part),
- "Return a complex number constructed of the given @var{real-part} "
- "and @var{imaginary-part} parts.")
- #define FUNC_NAME s_scm_make_rectangular
- {
- struct dpair xy;
- scm_two_doubles (real_part, imaginary_part, FUNC_NAME, &xy);
- return scm_c_make_rectangular (xy.x, xy.y);
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_polar (double mag, double ang)
- {
- double s, c;
- #if HAVE_SINCOS
- sincos (ang, &s, &c);
- #else
- s = sin (ang);
- c = cos (ang);
- #endif
- return scm_c_make_rectangular (mag * c, mag * s);
- }
- SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
- (SCM x, SCM y),
- "Return the complex number @var{x} * e^(i * @var{y}).")
- #define FUNC_NAME s_scm_make_polar
- {
- struct dpair xy;
- scm_two_doubles (x, y, FUNC_NAME, &xy);
- return scm_c_make_polar (xy.x, xy.y);
- }
- #undef FUNC_NAME
- SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
- /* "Return the real part of the number @var{z}."
- */
- SCM
- scm_real_part (SCM z)
- {
- if (SCM_I_INUMP (z))
- return z;
- else if (SCM_BIGP (z))
- return z;
- else if (SCM_REALP (z))
- return z;
- else if (SCM_COMPLEXP (z))
- return scm_from_double (SCM_COMPLEX_REAL (z));
- else if (SCM_FRACTIONP (z))
- return z;
- else
- SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
- }
- SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
- /* "Return the imaginary part of the number @var{z}."
- */
- SCM
- scm_imag_part (SCM z)
- {
- if (SCM_I_INUMP (z))
- return SCM_INUM0;
- else if (SCM_BIGP (z))
- return SCM_INUM0;
- else if (SCM_REALP (z))
- return scm_flo0;
- else if (SCM_COMPLEXP (z))
- return scm_from_double (SCM_COMPLEX_IMAG (z));
- else if (SCM_FRACTIONP (z))
- return SCM_INUM0;
- else
- SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
- }
- SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
- /* "Return the numerator of the number @var{z}."
- */
- SCM
- scm_numerator (SCM z)
- {
- if (SCM_I_INUMP (z))
- return z;
- else if (SCM_BIGP (z))
- return z;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_NUMERATOR (z);
- else if (SCM_REALP (z))
- return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
- else
- SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
- }
- SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
- /* "Return the denominator of the number @var{z}."
- */
- SCM
- scm_denominator (SCM z)
- {
- if (SCM_I_INUMP (z))
- return SCM_I_MAKINUM (1);
- else if (SCM_BIGP (z))
- return SCM_I_MAKINUM (1);
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_DENOMINATOR (z);
- else if (SCM_REALP (z))
- return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
- else
- SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
- }
- SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
- /* "Return the magnitude of the number @var{z}. This is the same as\n"
- * "@code{abs} for real arguments, but also allows complex numbers."
- */
- SCM
- scm_magnitude (SCM z)
- {
- if (SCM_I_INUMP (z))
- {
- long int zz = SCM_I_INUM (z);
- if (zz >= 0)
- return z;
- else if (SCM_POSFIXABLE (-zz))
- return SCM_I_MAKINUM (-zz);
- else
- return scm_i_long2big (-zz);
- }
- else if (SCM_BIGP (z))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- if (sgn < 0)
- return scm_i_clonebig (z, 0);
- else
- return z;
- }
- else if (SCM_REALP (z))
- return scm_from_double (fabs (SCM_REAL_VALUE (z)));
- else if (SCM_COMPLEXP (z))
- return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
- else if (SCM_FRACTIONP (z))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
- return z;
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (z));
- }
- else
- SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
- }
- SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
- /* "Return the angle of the complex number @var{z}."
- */
- SCM
- scm_angle (SCM z)
- {
- /* atan(0,-1) is pi and it'd be possible to have that as a constant like
- scm_flo0 to save allocating a new flonum with scm_from_double each time.
- But if atan2 follows the floating point rounding mode, then the value
- is not a constant. Maybe it'd be close enough though. */
- if (SCM_I_INUMP (z))
- {
- if (SCM_I_INUM (z) >= 0)
- return scm_flo0;
- else
- return scm_from_double (atan2 (0.0, -1.0));
- }
- else if (SCM_BIGP (z))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- if (sgn < 0)
- return scm_from_double (atan2 (0.0, -1.0));
- else
- return scm_flo0;
- }
- else if (SCM_REALP (z))
- {
- if (SCM_REAL_VALUE (z) >= 0)
- return scm_flo0;
- else
- return scm_from_double (atan2 (0.0, -1.0));
- }
- else if (SCM_COMPLEXP (z))
- return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
- else if (SCM_FRACTIONP (z))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
- return scm_flo0;
- else return scm_from_double (atan2 (0.0, -1.0));
- }
- else
- SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
- }
- SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
- /* Convert the number @var{x} to its inexact representation.\n"
- */
- SCM
- scm_exact_to_inexact (SCM z)
- {
- if (SCM_I_INUMP (z))
- return scm_from_double ((double) SCM_I_INUM (z));
- else if (SCM_BIGP (z))
- return scm_from_double (scm_i_big2dbl (z));
- else if (SCM_FRACTIONP (z))
- return scm_from_double (scm_i_fraction2double (z));
- else if (SCM_INEXACTP (z))
- return z;
- else
- SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
- }
- SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
- (SCM z),
- "Return an exact number that is numerically closest to @var{z}.")
- #define FUNC_NAME s_scm_inexact_to_exact
- {
- if (SCM_I_INUMP (z))
- return z;
- else if (SCM_BIGP (z))
- return z;
- else if (SCM_REALP (z))
- {
- if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
- SCM_OUT_OF_RANGE (1, z);
- else
- {
- mpq_t frac;
- SCM q;
-
- mpq_init (frac);
- mpq_set_d (frac, SCM_REAL_VALUE (z));
- q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
- scm_i_mpz2num (mpq_denref (frac)));
- /* When scm_i_make_ratio throws, we leak the memory allocated
- for frac...
- */
- mpq_clear (frac);
- return q;
- }
- }
- else if (SCM_FRACTIONP (z))
- return z;
- else
- SCM_WRONG_TYPE_ARG (1, z);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
- (SCM x, SCM eps),
- "Returns the @emph{simplest} rational number differing\n"
- "from @var{x} by no more than @var{eps}.\n"
- "\n"
- "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
- "exact result when both its arguments are exact. Thus, you might need\n"
- "to use @code{inexact->exact} on the arguments.\n"
- "\n"
- "@lisp\n"
- "(rationalize (inexact->exact 1.2) 1/100)\n"
- "@result{} 6/5\n"
- "@end lisp")
- #define FUNC_NAME s_scm_rationalize
- {
- if (SCM_I_INUMP (x))
- return x;
- else if (SCM_BIGP (x))
- return x;
- else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
- {
- /* Use continued fractions to find closest ratio. All
- arithmetic is done with exact numbers.
- */
- SCM ex = scm_inexact_to_exact (x);
- SCM int_part = scm_floor (ex);
- SCM tt = SCM_I_MAKINUM (1);
- SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
- SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
- SCM rx;
- int i = 0;
- if (scm_is_true (scm_num_eq_p (ex, int_part)))
- return ex;
-
- ex = scm_difference (ex, int_part); /* x = x-int_part */
- rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
- /* We stop after a million iterations just to be absolutely sure
- that we don't go into an infinite loop. The process normally
- converges after less than a dozen iterations.
- */
- eps = scm_abs (eps);
- while (++i < 1000000)
- {
- a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
- b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
- if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
- scm_is_false
- (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
- eps))) /* abs(x-a/b) <= eps */
- {
- SCM res = scm_sum (int_part, scm_divide (a, b));
- if (scm_is_false (scm_exact_p (x))
- || scm_is_false (scm_exact_p (eps)))
- return scm_exact_to_inexact (res);
- else
- return res;
- }
- rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
- SCM_UNDEFINED);
- tt = scm_floor (rx); /* tt = floor (rx) */
- a2 = a1;
- b2 = b1;
- a1 = a;
- b1 = b;
- }
- scm_num_overflow (s_scm_rationalize);
- }
- else
- SCM_WRONG_TYPE_ARG (1, x);
- }
- #undef FUNC_NAME
- /* conversion functions */
- int
- scm_is_integer (SCM val)
- {
- return scm_is_true (scm_integer_p (val));
- }
- int
- scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= min && n <= max;
- }
- else if (SCM_BIGP (val))
- {
- if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
- return 0;
- else if (min >= LONG_MIN && max <= LONG_MAX)
- {
- if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
- {
- long n = mpz_get_si (SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- else
- return 0;
- }
- else
- {
- scm_t_intmax n;
- size_t count;
- if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
- > CHAR_BIT*sizeof (scm_t_uintmax))
- return 0;
-
- mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
- SCM_I_BIG_MPZ (val));
- if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
- {
- if (n < 0)
- return 0;
- }
- else
- {
- n = -n;
- if (n >= 0)
- return 0;
- }
- return n >= min && n <= max;
- }
- }
- else
- return 0;
- }
- int
- scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
- }
- else if (SCM_BIGP (val))
- {
- if (max <= SCM_MOST_POSITIVE_FIXNUM)
- return 0;
- else if (max <= ULONG_MAX)
- {
- if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
- {
- unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- else
- return 0;
- }
- else
- {
- scm_t_uintmax n;
- size_t count;
- if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
- return 0;
- if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
- > CHAR_BIT*sizeof (scm_t_uintmax))
- return 0;
-
- mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
- SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- }
- else
- return 0;
- }
- static void
- scm_i_range_error (SCM bad_val, SCM min, SCM max)
- {
- scm_error (scm_out_of_range_key,
- NULL,
- "Value out of range ~S to ~S: ~S",
- scm_list_3 (min, max, bad_val),
- scm_list_1 (bad_val));
- }
- #define TYPE scm_t_intmax
- #define TYPE_MIN min
- #define TYPE_MAX max
- #define SIZEOF_TYPE 0
- #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uintmax
- #define TYPE_MIN min
- #define TYPE_MAX max
- #define SIZEOF_TYPE 0
- #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int8
- #define TYPE_MIN SCM_T_INT8_MIN
- #define TYPE_MAX SCM_T_INT8_MAX
- #define SIZEOF_TYPE 1
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint8
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT8_MAX
- #define SIZEOF_TYPE 1
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int16
- #define TYPE_MIN SCM_T_INT16_MIN
- #define TYPE_MAX SCM_T_INT16_MAX
- #define SIZEOF_TYPE 2
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint16
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT16_MAX
- #define SIZEOF_TYPE 2
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int32
- #define TYPE_MIN SCM_T_INT32_MIN
- #define TYPE_MAX SCM_T_INT32_MAX
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint32
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT32_MAX
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
- #include "libguile/conv-uinteger.i.c"
- #if SCM_HAVE_T_INT64
- #define TYPE scm_t_int64
- #define TYPE_MIN SCM_T_INT64_MIN
- #define TYPE_MAX SCM_T_INT64_MAX
- #define SIZEOF_TYPE 8
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint64
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT64_MAX
- #define SIZEOF_TYPE 8
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
- #include "libguile/conv-uinteger.i.c"
- #endif
- void
- scm_to_mpz (SCM val, mpz_t rop)
- {
- if (SCM_I_INUMP (val))
- mpz_set_si (rop, SCM_I_INUM (val));
- else if (SCM_BIGP (val))
- mpz_set (rop, SCM_I_BIG_MPZ (val));
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
- }
- SCM
- scm_from_mpz (mpz_t val)
- {
- return scm_i_mpz2num (val);
- }
- int
- scm_is_real (SCM val)
- {
- return scm_is_true (scm_real_p (val));
- }
- int
- scm_is_rational (SCM val)
- {
- return scm_is_true (scm_rational_p (val));
- }
- double
- scm_to_double (SCM val)
- {
- if (SCM_I_INUMP (val))
- return SCM_I_INUM (val);
- else if (SCM_BIGP (val))
- return scm_i_big2dbl (val);
- else if (SCM_FRACTIONP (val))
- return scm_i_fraction2double (val);
- else if (SCM_REALP (val))
- return SCM_REAL_VALUE (val);
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "real number");
- }
- SCM
- scm_from_double (double val)
- {
- SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
- SCM_REAL_VALUE (z) = val;
- return z;
- }
- #if SCM_ENABLE_DISCOURAGED == 1
- float
- scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
- {
- if (SCM_BIGP (num))
- {
- float res = mpz_get_d (SCM_I_BIG_MPZ (num));
- if (!xisinf (res))
- return res;
- else
- scm_out_of_range (NULL, num);
- }
- else
- return scm_to_double (num);
- }
- double
- scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
- {
- if (SCM_BIGP (num))
- {
- double res = mpz_get_d (SCM_I_BIG_MPZ (num));
- if (!xisinf (res))
- return res;
- else
- scm_out_of_range (NULL, num);
- }
- else
- return scm_to_double (num);
- }
- #endif
- int
- scm_is_complex (SCM val)
- {
- return scm_is_true (scm_complex_p (val));
- }
- double
- scm_c_real_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_REAL (z);
- else
- {
- /* Use the scm_real_part to get proper error checking and
- dispatching.
- */
- return scm_to_double (scm_real_part (z));
- }
- }
- double
- scm_c_imag_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_IMAG (z);
- else
- {
- /* Use the scm_imag_part to get proper error checking and
- dispatching. The result will almost always be 0.0, but not
- always.
- */
- return scm_to_double (scm_imag_part (z));
- }
- }
- double
- scm_c_magnitude (SCM z)
- {
- return scm_to_double (scm_magnitude (z));
- }
- double
- scm_c_angle (SCM z)
- {
- return scm_to_double (scm_angle (z));
- }
- int
- scm_is_number (SCM z)
- {
- return scm_is_true (scm_number_p (z));
- }
- /* In the following functions we dispatch to the real-arg funcs like log()
- when we know the arg is real, instead of just handing everything to
- clog() for instance. This is in case clog() doesn't optimize for a
- real-only case, and because we have to test SCM_COMPLEXP anyway so may as
- well use it to go straight to the applicable C func. */
- SCM_DEFINE (scm_log, "log", 1, 0, 0,
- (SCM z),
- "Return the natural logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log
- {
- if (SCM_COMPLEXP (z))
- {
- #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log (hypot (re, im)),
- atan2 (im, re));
- #endif
- }
- else
- {
- /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
- although the value itself overflows. */
- double re = scm_to_double (z);
- double l = log (fabs (re));
- if (re >= 0.0)
- return scm_from_double (l);
- else
- return scm_c_make_rectangular (l, M_PI);
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
- (SCM z),
- "Return the base 10 logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log10
- {
- if (SCM_COMPLEXP (z))
- {
- /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
- clog() and a multiply by M_LOG10E, rather than the fallback
- log10+hypot+atan2.) */
- #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log10 (hypot (re, im)),
- M_LOG10E * atan2 (im, re));
- #endif
- }
- else
- {
- /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
- although the value itself overflows. */
- double re = scm_to_double (z);
- double l = log10 (fabs (re));
- if (re >= 0.0)
- return scm_from_double (l);
- else
- return scm_c_make_rectangular (l, M_LOG10E * M_PI);
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
- (SCM z),
- "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
- "base of natural logarithms (2.71828@dots{}).")
- #define FUNC_NAME s_scm_exp
- {
- if (SCM_COMPLEXP (z))
- {
- #if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
- #else
- return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
- SCM_COMPLEX_IMAG (z));
- #endif
- }
- else
- {
- /* When z is a negative bignum the conversion to double overflows,
- giving -infinity, but that's ok, the exp is still 0.0. */
- return scm_from_double (exp (scm_to_double (z)));
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
- (SCM x),
- "Return the square root of @var{z}. Of the two possible roots\n"
- "(positive and negative), the one with the a positive real part\n"
- "is returned, or if that's zero then a positive imaginary part.\n"
- "Thus,\n"
- "\n"
- "@example\n"
- "(sqrt 9.0) @result{} 3.0\n"
- "(sqrt -9.0) @result{} 0.0+3.0i\n"
- "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
- "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
- "@end example")
- #define FUNC_NAME s_scm_sqrt
- {
- if (SCM_COMPLEXP (x))
- {
- #if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
- #else
- double re = SCM_COMPLEX_REAL (x);
- double im = SCM_COMPLEX_IMAG (x);
- return scm_c_make_polar (sqrt (hypot (re, im)),
- 0.5 * atan2 (im, re));
- #endif
- }
- else
- {
- double xx = scm_to_double (x);
- if (xx < 0)
- return scm_c_make_rectangular (0.0, sqrt (-xx));
- else
- return scm_from_double (sqrt (xx));
- }
- }
- #undef FUNC_NAME
- void
- scm_init_numbers ()
- {
- int i;
- mpz_init_set_si (z_negative_one, -1);
- /* It may be possible to tune the performance of some algorithms by using
- * the following constants to avoid the creation of bignums. Please, before
- * using these values, remember the two rules of program optimization:
- * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
- scm_c_define ("most-positive-fixnum",
- SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
- scm_c_define ("most-negative-fixnum",
- SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
- scm_add_feature ("complex");
- scm_add_feature ("inexact");
- scm_flo0 = scm_from_double (0.0);
- /* determine floating point precision */
- for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
- {
- init_dblprec(&scm_dblprec[i-2],i);
- init_fx_radix(fx_per_radix[i-2],i);
- }
- #ifdef DBL_DIG
- /* hard code precision for base 10 if the preprocessor tells us to... */
- scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
- #endif
- exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
- SCM_I_MAKINUM (2)));
- #include "libguile/numbers.x"
- }
- /*
- Local Variables:
- c-file-style: "gnu"
- End:
- */
|