1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457 |
- /* Copyright 1995-2016,2018-2019
- Free Software Foundation, Inc.
- Portions Copyright 1990-1993 by AT&T Bell Laboratories and Bellcore.
- See scm_divide.
- This file is part of Guile.
- Guile is free software: you can redistribute it and/or modify it
- under the terms of the GNU Lesser General Public License as published
- by the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- Guile is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
- License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with Guile. If not, see
- <https://www.gnu.org/licenses/>. */
- /* General assumptions:
- * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
- * If an object satisfies integer?, it's either an inum, a bignum, or a real.
- * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
- * XXX What about infinities? They are equal to their own floor! -mhw
- * All objects satisfying SCM_FRACTIONP are never an integer.
- */
- /* TODO:
-
- - see if special casing bignums and reals in integer-exponent when
- possible (to use mpz_pow and mpf_pow_ui) is faster.
- - look in to better short-circuiting of common cases in
- integer-expt and elsewhere.
- - see if direct mpz operations can help in ash and elsewhere.
- */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include <assert.h>
- #include <math.h>
- #include <stdarg.h>
- #include <string.h>
- #include <unicase.h>
- #include <unictype.h>
- #include <verify.h>
- #if HAVE_COMPLEX_H
- #include <complex.h>
- #endif
- #include "bdw-gc.h"
- #include "boolean.h"
- #include "deprecation.h"
- #include "eq.h"
- #include "feature.h"
- #include "finalizers.h"
- #include "goops.h"
- #include "gsubr.h"
- #include "modules.h"
- #include "pairs.h"
- #include "ports.h"
- #include "smob.h"
- #include "strings.h"
- #include "values.h"
- #include "numbers.h"
- /* values per glibc, if not already defined */
- #ifndef M_LOG10E
- #define M_LOG10E 0.43429448190325182765
- #endif
- #ifndef M_LN2
- #define M_LN2 0.69314718055994530942
- #endif
- #ifndef M_PI
- #define M_PI 3.14159265358979323846
- #endif
- /* FIXME: We assume that FLT_RADIX is 2 */
- verify (FLT_RADIX == 2);
- /* Make sure that scm_t_inum fits within a SCM value. */
- verify (sizeof (scm_t_inum) <= sizeof (scm_t_bits));
- /* Several functions below assume that fixnums fit within a long, and
- furthermore that there is some headroom to spare for other operations
- without overflowing. */
- verify (SCM_I_FIXNUM_BIT <= SCM_LONG_BIT - 2);
- /* Some functions that use GMP's mpn functions assume that a
- non-negative fixnum will always fit in a 'mp_limb_t'. */
- verify (SCM_MOST_POSITIVE_FIXNUM <= (mp_limb_t) -1);
- #define scm_from_inum(x) (scm_from_signed_integer (x))
- /* Test an inum to see if it can be converted to a double without loss
- of precision. Note that this will sometimes return 0 even when 1
- could have been returned, e.g. for large powers of 2. It is designed
- to be a fast check to optimize common cases. */
- #define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \
- (SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \
- || ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG))
- #if ! HAVE_DECL_MPZ_INITS
- /* GMP < 5.0.0 lacks `mpz_inits' and `mpz_clears'. Provide them. */
- #define VARARG_MPZ_ITERATOR(func) \
- static void \
- func ## s (mpz_t x, ...) \
- { \
- va_list ap; \
- \
- va_start (ap, x); \
- while (x != NULL) \
- { \
- func (x); \
- x = va_arg (ap, mpz_ptr); \
- } \
- va_end (ap); \
- }
- VARARG_MPZ_ITERATOR (mpz_init)
- VARARG_MPZ_ITERATOR (mpz_clear)
- #endif
- /*
- Wonder if this might be faster for some of our code? A switch on
- the numtag would jump directly to the right case, and the
- SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
- #define SCM_I_NUMTAG_NOTNUM 0
- #define SCM_I_NUMTAG_INUM 1
- #define SCM_I_NUMTAG_BIG scm_tc16_big
- #define SCM_I_NUMTAG_REAL scm_tc16_real
- #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
- #define SCM_I_NUMTAG(x) \
- (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
- : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
- : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
- : SCM_I_NUMTAG_NOTNUM)))
- */
- /* the macro above will not work as is with fractions */
- /* Default to 1, because as we used to hard-code `free' as the
- deallocator, we know that overriding these functions with
- instrumented `malloc' / `free' is OK. */
- int scm_install_gmp_memory_functions = 1;
- static SCM flo0;
- static SCM exactly_one_half;
- static SCM flo_log10e;
- #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
- /* FLOBUFLEN is the maximum number of characters necessary for the
- * printed or scm_string representation of an inexact number.
- */
- #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
- #if !defined (HAVE_ASINH)
- static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
- #endif
- #if !defined (HAVE_ACOSH)
- static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
- #endif
- #if !defined (HAVE_ATANH)
- static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
- #endif
- /* mpz_cmp_d in GMP before 4.2 didn't recognise infinities, so
- xmpz_cmp_d uses an explicit check. Starting with GMP 4.2 (released
- in March 2006), mpz_cmp_d now handles infinities properly. */
- #if 1
- #define xmpz_cmp_d(z, d) \
- (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
- #else
- #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
- #endif
- #if defined (GUILE_I)
- #if defined HAVE_COMPLEX_DOUBLE
- /* For an SCM object Z which is a complex number (ie. satisfies
- SCM_COMPLEXP), return its value as a C level "complex double". */
- #define SCM_COMPLEX_VALUE(z) \
- (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
- static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
- /* Convert a C "complex double" to an SCM value. */
- static inline SCM
- scm_from_complex_double (complex double z)
- {
- return scm_c_make_rectangular (creal (z), cimag (z));
- }
- #endif /* HAVE_COMPLEX_DOUBLE */
- #endif /* GUILE_I */
- static mpz_t z_negative_one;
- /* Clear the `mpz_t' embedded in bignum PTR. */
- static void
- finalize_bignum (void *ptr, void *data)
- {
- SCM bignum;
- bignum = SCM_PACK_POINTER (ptr);
- mpz_clear (SCM_I_BIG_MPZ (bignum));
- }
- /* The next three functions (custom_libgmp_*) are passed to
- mp_set_memory_functions (in GMP) so that memory used by the digits
- themselves is known to the garbage collector. This is needed so
- that GC will be run at appropriate times. Otherwise, a program which
- creates many large bignums would malloc a huge amount of memory
- before the GC runs. */
- static void *
- custom_gmp_malloc (size_t alloc_size)
- {
- return scm_malloc (alloc_size);
- }
- static void *
- custom_gmp_realloc (void *old_ptr, size_t old_size, size_t new_size)
- {
- return scm_realloc (old_ptr, new_size);
- }
- static void
- custom_gmp_free (void *ptr, size_t size)
- {
- free (ptr);
- }
- /* Return a new uninitialized bignum. */
- static inline SCM
- make_bignum (void)
- {
- scm_t_bits *p;
- /* Allocate one word for the type tag and enough room for an `mpz_t'. */
- p = scm_gc_malloc_pointerless (sizeof (scm_t_bits) + sizeof (mpz_t),
- "bignum");
- p[0] = scm_tc16_big;
- scm_i_set_finalizer (p, finalize_bignum, NULL);
- return SCM_PACK (p);
- }
- SCM
- scm_i_mkbig ()
- {
- /* Return a newly created bignum. */
- SCM z = make_bignum ();
- mpz_init (SCM_I_BIG_MPZ (z));
- return z;
- }
- static SCM
- scm_i_inum2big (scm_t_inum x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = make_bignum ();
- mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_long2big (long x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = make_bignum ();
- mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_ulong2big (unsigned long x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = make_bignum ();
- mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_clonebig (SCM src_big, int same_sign_p)
- {
- /* Copy src_big's value, negate it if same_sign_p is false, and return. */
- SCM z = make_bignum ();
- mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
- if (!same_sign_p)
- mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
- return z;
- }
- int
- scm_i_bigcmp (SCM x, SCM y)
- {
- /* Return neg if x < y, pos if x > y, and 0 if x == y */
- /* presume we already know x and y are bignums */
- int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return result;
- }
- SCM
- scm_i_dbl2big (double d)
- {
- /* results are only defined if d is an integer */
- SCM z = make_bignum ();
- mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
- return z;
- }
- /* Convert a integer in double representation to a SCM number. */
- SCM
- scm_i_dbl2num (double u)
- {
- /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
- powers of 2, so there's no rounding when making "double" values
- from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
- get rounded on a 64-bit machine, hence the "+1".
- The use of floor() to force to an integer value ensures we get a
- "numerically closest" value without depending on how a
- double->long cast or how mpz_set_d will round. For reference,
- double->long probably follows the hardware rounding mode,
- mpz_set_d truncates towards zero. */
- /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
- representable as a double? */
- if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
- && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
- return SCM_I_MAKINUM ((scm_t_inum) u);
- else
- return scm_i_dbl2big (u);
- }
- static SCM round_right_shift_exact_integer (SCM n, long count);
- /* scm_i_big2dbl_2exp() is like frexp for bignums: it converts the
- bignum b into a normalized significand and exponent such that
- b = significand * 2^exponent and 1/2 <= abs(significand) < 1.
- The return value is the significand rounded to the closest
- representable double, and the exponent is placed into *expon_p.
- If b is zero, then the returned exponent and significand are both
- zero. */
- static double
- scm_i_big2dbl_2exp (SCM b, long *expon_p)
- {
- size_t bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
- size_t shift = 0;
- if (bits > DBL_MANT_DIG)
- {
- shift = bits - DBL_MANT_DIG;
- b = round_right_shift_exact_integer (b, shift);
- if (SCM_I_INUMP (b))
- {
- int expon;
- double signif = frexp (SCM_I_INUM (b), &expon);
- *expon_p = expon + shift;
- return signif;
- }
- }
- {
- long expon;
- double signif = mpz_get_d_2exp (&expon, SCM_I_BIG_MPZ (b));
- scm_remember_upto_here_1 (b);
- *expon_p = expon + shift;
- return signif;
- }
- }
- /* scm_i_big2dbl() rounds to the closest representable double,
- in accordance with R5RS exact->inexact. */
- double
- scm_i_big2dbl (SCM b)
- {
- long expon;
- double signif = scm_i_big2dbl_2exp (b, &expon);
- return ldexp (signif, expon);
- }
- SCM
- scm_i_normbig (SCM b)
- {
- /* convert a big back to a fixnum if it'll fit */
- /* presume b is a bignum */
- if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
- {
- scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
- if (SCM_FIXABLE (val))
- b = SCM_I_MAKINUM (val);
- }
- return b;
- }
- static SCM_C_INLINE_KEYWORD SCM
- scm_i_mpz2num (mpz_t b)
- {
- /* convert a mpz number to a SCM number. */
- if (mpz_fits_slong_p (b))
- {
- scm_t_inum val = mpz_get_si (b);
- if (SCM_FIXABLE (val))
- return SCM_I_MAKINUM (val);
- }
- {
- SCM z = make_bignum ();
- mpz_init_set (SCM_I_BIG_MPZ (z), b);
- return z;
- }
- }
- /* Make the ratio NUMERATOR/DENOMINATOR, where:
- 1. NUMERATOR and DENOMINATOR are exact integers
- 2. NUMERATOR and DENOMINATOR are reduced to lowest terms: gcd(n,d) == 1 */
- static SCM
- scm_i_make_ratio_already_reduced (SCM numerator, SCM denominator)
- {
- /* Flip signs so that the denominator is positive. */
- if (scm_is_false (scm_positive_p (denominator)))
- {
- if (SCM_UNLIKELY (scm_is_eq (denominator, SCM_INUM0)))
- scm_num_overflow ("make-ratio");
- else
- {
- numerator = scm_difference (numerator, SCM_UNDEFINED);
- denominator = scm_difference (denominator, SCM_UNDEFINED);
- }
- }
- /* Check for the integer case */
- if (scm_is_eq (denominator, SCM_INUM1))
- return numerator;
- if (SCM_I_INUMP (numerator) && SCM_I_INUMP (denominator)
- && (SCM_I_INUM (denominator) < ((scm_t_inum) 1 << 53))) /* assumes 64-bit XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
- {
- scm_t_inum nn = SCM_I_INUM (numerator);
- int neg = (nn < 0);
- scm_t_bits abs_nn = neg ? -nn : nn;
- union { double f; uint64_t u; } dd;
- int rank;
- dd.f = SCM_I_INUM (denominator);
- rank = (dd.u >> 52) & 63; /* assumes 64-bit XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
- if ((abs_nn >> (52 - rank)) == 0)
- return SCM_PACK (scm_fixrat_tag
- | (abs_nn << scm_fixrat_tag_size)
- | (dd.u << (11 - scm_fixrat_rank_size))
- | ((uint64_t) neg << 63));
- }
- return scm_double_cell (scm_tc16_fraction,
- SCM_UNPACK (numerator),
- SCM_UNPACK (denominator), 0);
- }
- static SCM scm_exact_integer_quotient (SCM x, SCM y);
- /* Make the ratio NUMERATOR/DENOMINATOR */
- static SCM
- scm_i_make_ratio (SCM numerator, SCM denominator)
- #define FUNC_NAME "make-ratio"
- {
- /* Make sure the arguments are proper */
- if (!SCM_LIKELY (SCM_I_INUMP (numerator) || SCM_BIGP (numerator)))
- SCM_WRONG_TYPE_ARG (1, numerator);
- else if (!SCM_LIKELY (SCM_I_INUMP (denominator) || SCM_BIGP (denominator)))
- SCM_WRONG_TYPE_ARG (2, denominator);
- else
- {
- SCM the_gcd = scm_gcd (numerator, denominator);
- if (!(scm_is_eq (the_gcd, SCM_INUM1)))
- {
- /* Reduce to lowest terms */
- numerator = scm_exact_integer_quotient (numerator, the_gcd);
- denominator = scm_exact_integer_quotient (denominator, the_gcd);
- }
- return scm_i_make_ratio_already_reduced (numerator, denominator);
- }
- }
- #undef FUNC_NAME
- static mpz_t scm_i_divide2double_lo2b;
- /* Return the double that is closest to the exact rational N/D, with
- ties rounded toward even mantissas. N and D must be exact
- integers. */
- static double
- scm_i_divide2double (SCM n, SCM d)
- {
- int neg;
- mpz_t nn, dd, lo, hi, x;
- ssize_t e;
- if (SCM_LIKELY (SCM_I_INUMP (d)))
- {
- if (SCM_LIKELY
- (SCM_I_INUMP (n)
- && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n))
- && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d))))
- /* If both N and D can be losslessly converted to doubles, then
- we can rely on IEEE floating point to do proper rounding much
- faster than we can. */
- return ((double) SCM_I_INUM (n)) / ((double) SCM_I_INUM (d));
- if (SCM_UNLIKELY (scm_is_eq (d, SCM_INUM0)))
- {
- if (scm_is_true (scm_positive_p (n)))
- return 1.0 / 0.0;
- else if (scm_is_true (scm_negative_p (n)))
- return -1.0 / 0.0;
- else
- return 0.0 / 0.0;
- }
- mpz_init_set_si (dd, SCM_I_INUM (d));
- }
- else
- mpz_init_set (dd, SCM_I_BIG_MPZ (d));
- if (SCM_I_INUMP (n))
- mpz_init_set_si (nn, SCM_I_INUM (n));
- else
- mpz_init_set (nn, SCM_I_BIG_MPZ (n));
- neg = (mpz_sgn (nn) < 0) ^ (mpz_sgn (dd) < 0);
- mpz_abs (nn, nn);
- mpz_abs (dd, dd);
- /* Now we need to find the value of e such that:
-
- For e <= 0:
- b^{p-1} - 1/2b <= b^-e n / d < b^p - 1/2 [1A]
- (2 b^p - 1) <= 2 b b^-e n / d < (2 b^p - 1) b [2A]
- (2 b^p - 1) d <= 2 b b^-e n < (2 b^p - 1) d b [3A]
- For e >= 0:
- b^{p-1} - 1/2b <= n / b^e d < b^p - 1/2 [1B]
- (2 b^p - 1) <= 2 b n / b^e d < (2 b^p - 1) b [2B]
- (2 b^p - 1) d b^e <= 2 b n < (2 b^p - 1) d b b^e [3B]
- where: p = DBL_MANT_DIG
- b = FLT_RADIX (here assumed to be 2)
- After rounding, the mantissa must be an integer between b^{p-1} and
- (b^p - 1), except for subnormal numbers. In the inequations [1A]
- and [1B], the middle expression represents the mantissa *before*
- rounding, and therefore is bounded by the range of values that will
- round to a floating-point number with the exponent e. The upper
- bound is (b^p - 1 + 1/2) = (b^p - 1/2), and is exclusive because
- ties will round up to the next power of b. The lower bound is
- (b^{p-1} - 1/2b), and is inclusive because ties will round toward
- this power of b. Here we subtract 1/2b instead of 1/2 because it
- is in the range of the next smaller exponent, where the
- representable numbers are closer together by a factor of b.
- Inequations [2A] and [2B] are derived from [1A] and [1B] by
- multiplying by 2b, and in [3A] and [3B] we multiply by the
- denominator of the middle value to obtain integer expressions.
- In the code below, we refer to the three expressions in [3A] or
- [3B] as lo, x, and hi. If the number is normalizable, we will
- achieve the goal: lo <= x < hi */
- /* Make an initial guess for e */
- e = mpz_sizeinbase (nn, 2) - mpz_sizeinbase (dd, 2) - (DBL_MANT_DIG-1);
- if (e < DBL_MIN_EXP - DBL_MANT_DIG)
- e = DBL_MIN_EXP - DBL_MANT_DIG;
- /* Compute the initial values of lo, x, and hi
- based on the initial guess of e */
- mpz_inits (lo, hi, x, NULL);
- mpz_mul_2exp (x, nn, 2 + ((e < 0) ? -e : 0));
- mpz_mul (lo, dd, scm_i_divide2double_lo2b);
- if (e > 0)
- mpz_mul_2exp (lo, lo, e);
- mpz_mul_2exp (hi, lo, 1);
- /* Adjust e as needed to satisfy the inequality lo <= x < hi,
- (but without making e less than the minimum exponent) */
- while (mpz_cmp (x, lo) < 0 && e > DBL_MIN_EXP - DBL_MANT_DIG)
- {
- mpz_mul_2exp (x, x, 1);
- e--;
- }
- while (mpz_cmp (x, hi) >= 0)
- {
- /* If we ever used lo's value again,
- we would need to double lo here. */
- mpz_mul_2exp (hi, hi, 1);
- e++;
- }
- /* Now compute the rounded mantissa:
- n / b^e d (if e >= 0)
- n b^-e / d (if e <= 0) */
- {
- int cmp;
- double result;
- if (e < 0)
- mpz_mul_2exp (nn, nn, -e);
- else
- mpz_mul_2exp (dd, dd, e);
- /* mpz does not directly support rounded right
- shifts, so we have to do it the hard way.
- For efficiency, we reuse lo and hi.
- hi == quotient, lo == remainder */
- mpz_fdiv_qr (hi, lo, nn, dd);
- /* The fractional part of the unrounded mantissa would be
- remainder/dividend, i.e. lo/dd. So we have a tie if
- lo/dd = 1/2. Multiplying both sides by 2*dd yields the
- integer expression 2*lo = dd. Here we do that comparison
- to decide whether to round up or down. */
- mpz_mul_2exp (lo, lo, 1);
- cmp = mpz_cmp (lo, dd);
- if (cmp > 0 || (cmp == 0 && mpz_odd_p (hi)))
- mpz_add_ui (hi, hi, 1);
- result = ldexp (mpz_get_d (hi), e);
- if (neg)
- result = -result;
- mpz_clears (nn, dd, lo, hi, x, NULL);
- return result;
- }
- }
- double
- scm_i_fraction2double (SCM z)
- {
- return scm_i_divide2double (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z));
- }
- static SCM
- scm_i_from_double (double val)
- {
- union { double f64; uint64_t u64; } u;
- uint64_t bits;
- SCM result;
- u.f64 = val;
- bits = u.u64 + 0x1010000000000000;
- bits = (bits << 4) | (bits >> 60);
- result = SCM_PACK (bits);
- if (!SCM_I_IFLO_P (result))
- {
- result = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
- SCM_SET_CELL_TYPE (result, scm_tc16_real);
- ((scm_t_double *) SCM2PTR (result))->real = val;
- }
- return result;
- }
- SCM_PRIMITIVE_GENERIC (scm_exact_p, "exact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_exact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_F;
- else if (SCM_NUMBERP (x))
- return SCM_BOOL_T;
- else
- return scm_wta_dispatch_1 (g_scm_exact_p, x, 1, s_scm_exact_p);
- }
- #undef FUNC_NAME
- int
- scm_is_exact (SCM val)
- {
- return scm_is_true (scm_exact_p (val));
- }
- SCM_PRIMITIVE_GENERIC (scm_inexact_p, "inexact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
- "else.")
- #define FUNC_NAME s_scm_inexact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_T;
- else if (SCM_NUMBERP (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_inexact_p, x, 1, s_scm_inexact_p);
- }
- #undef FUNC_NAME
- int
- scm_is_inexact (SCM val)
- {
- return scm_is_true (scm_inexact_p (val));
- }
- SCM_PRIMITIVE_GENERIC (scm_odd_p, "odd?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_odd_p
- {
- if (SCM_I_INUMP (n))
- {
- scm_t_inum val = SCM_I_INUM (n);
- return scm_from_bool ((val & 1L) != 0);
- }
- else if (SCM_BIGP (n))
- {
- int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_from_bool (odd_p);
- }
- else if (SCM_REALP (n))
- {
- double val = SCM_REAL_VALUE (n);
- if (isfinite (val))
- {
- double rem = fabs (fmod (val, 2.0));
- if (rem == 1.0)
- return SCM_BOOL_T;
- else if (rem == 0.0)
- return SCM_BOOL_F;
- }
- }
- return scm_wta_dispatch_1 (g_scm_odd_p, n, 1, s_scm_odd_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_even_p, "even?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_even_p
- {
- if (SCM_I_INUMP (n))
- {
- scm_t_inum val = SCM_I_INUM (n);
- return scm_from_bool ((val & 1L) == 0);
- }
- else if (SCM_BIGP (n))
- {
- int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_from_bool (even_p);
- }
- else if (SCM_REALP (n))
- {
- double val = SCM_REAL_VALUE (n);
- if (isfinite (val))
- {
- double rem = fabs (fmod (val, 2.0));
- if (rem == 1.0)
- return SCM_BOOL_F;
- else if (rem == 0.0)
- return SCM_BOOL_T;
- }
- }
- return scm_wta_dispatch_1 (g_scm_even_p, n, 1, s_scm_even_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_finite_p, "finite?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is neither\n"
- "infinite nor a NaN, @code{#f} otherwise.")
- #define FUNC_NAME s_scm_finite_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_T;
- else
- return scm_wta_dispatch_1 (g_scm_finite_p, x, 1, s_scm_finite_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_inf_p, "inf?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
- "@samp{-inf.0}. Otherwise return @code{#f}.")
- #define FUNC_NAME s_scm_inf_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_inf_p, x, 1, s_scm_inf_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_nan_p, "nan?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is a NaN,\n"
- "or @code{#f} otherwise.")
- #define FUNC_NAME s_scm_nan_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_nan_p, x, 1, s_scm_nan_p);
- }
- #undef FUNC_NAME
- /* Guile's idea of infinity. */
- static double guile_Inf;
- /* Guile's idea of not a number. */
- static double guile_NaN;
- static void
- guile_ieee_init (void)
- {
- /* Some version of gcc on some old version of Linux used to crash when
- trying to make Inf and NaN. */
- #ifdef INFINITY
- /* C99 INFINITY, when available.
- FIXME: The standard allows for INFINITY to be something that overflows
- at compile time. We ought to have a configure test to check for that
- before trying to use it. (But in practice we believe this is not a
- problem on any system guile is likely to target.) */
- guile_Inf = INFINITY;
- #elif defined HAVE_DINFINITY
- /* OSF */
- extern unsigned int DINFINITY[2];
- guile_Inf = (*((double *) (DINFINITY)));
- #else
- double tmp = 1e+10;
- guile_Inf = tmp;
- for (;;)
- {
- guile_Inf *= 1e+10;
- if (guile_Inf == tmp)
- break;
- tmp = guile_Inf;
- }
- #endif
- #ifdef NAN
- /* C99 NAN, when available */
- guile_NaN = NAN;
- #elif defined HAVE_DQNAN
- {
- /* OSF */
- extern unsigned int DQNAN[2];
- guile_NaN = (*((double *)(DQNAN)));
- }
- #else
- guile_NaN = guile_Inf / guile_Inf;
- #endif
- }
- SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
- (void),
- "Return Inf.")
- #define FUNC_NAME s_scm_inf
- {
- static int initialized = 0;
- if (! initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_i_from_double (guile_Inf);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
- (void),
- "Return NaN.")
- #define FUNC_NAME s_scm_nan
- {
- static int initialized = 0;
- if (!initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_i_from_double (guile_NaN);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
- (SCM x),
- "Return the absolute value of @var{x}.")
- #define FUNC_NAME s_scm_abs
- {
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (xx >= 0)
- return x;
- else if (SCM_POSFIXABLE (-xx))
- return SCM_I_MAKINUM (-xx);
- else
- return scm_i_inum2big (-xx);
- }
- else if (SCM_LIKELY (SCM_REALP (x)))
- {
- double xx = SCM_REAL_VALUE (x);
- /* If x is a NaN then xx<0 is false so we return x unchanged */
- if (xx < 0.0)
- return scm_i_from_double (-xx);
- /* Handle signed zeroes properly */
- else if (SCM_UNLIKELY (xx == 0.0))
- return flo0;
- else
- return x;
- }
- else if (SCM_BIGP (x))
- {
- const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- if (sgn < 0)
- return scm_i_clonebig (x, 0);
- else
- return x;
- }
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
- return x;
- return scm_i_make_ratio_already_reduced
- (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- }
- else
- return scm_wta_dispatch_1 (g_scm_abs, x, 1, s_scm_abs);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_quotient, "quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the quotient of the numbers @var{x} and @var{y}.")
- #define FUNC_NAME s_scm_quotient
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG2, s_scm_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG1, s_scm_quotient);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_remainder, "remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the remainder of the numbers @var{x} and @var{y}.\n"
- "@lisp\n"
- "(remainder 13 4) @result{} 1\n"
- "(remainder -13 4) @result{} -1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_remainder
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG2, s_scm_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG1, s_scm_remainder);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_modulo, "modulo", 2, 0, 0,
- (SCM x, SCM y),
- "Return the modulo of the numbers @var{x} and @var{y}.\n"
- "@lisp\n"
- "(modulo 13 4) @result{} 1\n"
- "(modulo -13 4) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG2, s_scm_modulo);
- }
- else
- return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG1, s_scm_modulo);
- }
- #undef FUNC_NAME
- /* Return the exact integer q such that n = q*d, for exact integers n
- and d, where d is known in advance to divide n evenly (with zero
- remainder). For large integers, this can be computed more
- efficiently than when the remainder is unknown. */
- static SCM
- scm_exact_integer_quotient (SCM n, SCM d)
- #define FUNC_NAME "exact-integer-quotient"
- {
- if (SCM_LIKELY (SCM_I_INUMP (n)))
- {
- scm_t_inum nn = SCM_I_INUM (n);
- if (SCM_LIKELY (SCM_I_INUMP (d)))
- {
- scm_t_inum dd = SCM_I_INUM (d);
- if (SCM_UNLIKELY (dd == 0))
- scm_num_overflow ("exact-integer-quotient");
- else
- {
- scm_t_inum qq = nn / dd;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_LIKELY (SCM_BIGP (d)))
- {
- /* n is an inum and d is a bignum. Given that d is known to
- divide n evenly, there are only two possibilities: n is 0,
- or else n is fixnum-min and d is abs(fixnum-min). */
- if (nn == 0)
- return SCM_INUM0;
- else
- return SCM_I_MAKINUM (-1);
- }
- else
- SCM_WRONG_TYPE_ARG (2, d);
- }
- else if (SCM_LIKELY (SCM_BIGP (n)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (d)))
- {
- scm_t_inum dd = SCM_I_INUM (d);
- if (SCM_UNLIKELY (dd == 0))
- scm_num_overflow ("exact-integer-quotient");
- else if (SCM_UNLIKELY (dd == 1))
- return n;
- else
- {
- SCM q = scm_i_mkbig ();
- if (dd > 0)
- mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), dd);
- else
- {
- mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), -dd);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (n);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_LIKELY (SCM_BIGP (d)))
- {
- SCM q = scm_i_mkbig ();
- mpz_divexact (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (n),
- SCM_I_BIG_MPZ (d));
- scm_remember_upto_here_2 (n, d);
- return scm_i_normbig (q);
- }
- else
- SCM_WRONG_TYPE_ARG (2, d);
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- /* two_valued_wta_dispatch_2 is a version of SCM_WTA_DISPATCH_2 for
- two-valued functions. It is called from primitive generics that take
- two arguments and return two values, when the core procedure is
- unable to handle the given argument types. If there are GOOPS
- methods for this primitive generic, it dispatches to GOOPS and, if
- successful, expects two values to be returned, which are placed in
- *rp1 and *rp2. If there are no GOOPS methods, it throws a
- wrong-type-arg exception.
- FIXME: This obviously belongs somewhere else, but until we decide on
- the right API, it is here as a static function, because it is needed
- by the *_divide functions below.
- */
- static void
- two_valued_wta_dispatch_2 (SCM gf, SCM a1, SCM a2, int pos,
- const char *subr, SCM *rp1, SCM *rp2)
- {
- SCM vals = scm_wta_dispatch_2 (gf, a1, a2, pos, subr);
-
- scm_i_extract_values_2 (vals, rp1, rp2);
- }
- SCM_DEFINE (scm_euclidean_quotient, "euclidean-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{0 <= @var{r} < abs(@var{y})}.\n"
- "@lisp\n"
- "(euclidean-quotient 123 10) @result{} 12\n"
- "(euclidean-quotient 123 -10) @result{} -12\n"
- "(euclidean-quotient -123 10) @result{} -13\n"
- "(euclidean-quotient -123 -10) @result{} 13\n"
- "(euclidean-quotient -123.2 -63.5) @result{} 2.0\n"
- "(euclidean-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_euclidean_quotient
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_quotient (x, y);
- else
- return scm_ceiling_quotient (x, y);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_euclidean_remainder, "euclidean-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{0 <= @var{r} < abs(@var{y})} and\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "for some integer @var{q}.\n"
- "@lisp\n"
- "(euclidean-remainder 123 10) @result{} 3\n"
- "(euclidean-remainder 123 -10) @result{} 3\n"
- "(euclidean-remainder -123 10) @result{} 7\n"
- "(euclidean-remainder -123 -10) @result{} 7\n"
- "(euclidean-remainder -123.2 -63.5) @result{} 3.8\n"
- "(euclidean-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_euclidean_remainder
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_remainder (x, y);
- else
- return scm_ceiling_remainder (x, y);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_euclidean_divide, "euclidean/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{0 <= @var{r} < abs(@var{y})}.\n"
- "@lisp\n"
- "(euclidean/ 123 10) @result{} 12 and 3\n"
- "(euclidean/ 123 -10) @result{} -12 and 3\n"
- "(euclidean/ -123 10) @result{} -13 and 7\n"
- "(euclidean/ -123 -10) @result{} 13 and 7\n"
- "(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(euclidean/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_euclidean_divide
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_i_floor_divide (x, y);
- else
- return scm_i_ceiling_divide (x, y);
- }
- #undef FUNC_NAME
- void
- scm_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (scm_is_false (scm_negative_p (y)))
- scm_floor_divide (x, y, qp, rp);
- else
- scm_ceiling_divide (x, y, qp, rp);
- }
- static SCM scm_i_inexact_floor_quotient (double x, double y);
- static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the floor of @math{@var{x} / @var{y}}.\n"
- "@lisp\n"
- "(floor-quotient 123 10) @result{} 12\n"
- "(floor-quotient 123 -10) @result{} -13\n"
- "(floor-quotient -123 10) @result{} -13\n"
- "(floor-quotient -123 -10) @result{} 12\n"
- "(floor-quotient -123.2 -63.5) @result{} 1.0\n"
- "(floor-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_floor_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- scm_t_inum xx1 = xx;
- scm_t_inum qq;
- if (SCM_LIKELY (yy > 0))
- {
- if (SCM_UNLIKELY (xx < 0))
- xx1 = xx - yy + 1;
- }
- else if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_quotient);
- else if (xx > 0)
- xx1 = xx - yy - 1;
- qq = xx1 / yy;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (sign > 0)
- return SCM_I_MAKINUM ((xx < 0) ? -1 : 0);
- else
- return SCM_I_MAKINUM ((xx > 0) ? -1 : 0);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- if (yy > 0)
- mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- mpz_fdiv_q (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (q);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG1,
- s_scm_floor_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_floor_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (floor (x / y));
- }
- static SCM
- scm_i_exact_rational_floor_quotient (SCM x, SCM y)
- {
- return scm_floor_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_floor_remainder (double x, double y);
- static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = floor(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(floor-remainder 123 10) @result{} 3\n"
- "(floor-remainder 123 -10) @result{} -7\n"
- "(floor-remainder -123 10) @result{} 7\n"
- "(floor-remainder -123 -10) @result{} -3\n"
- "(floor-remainder -123.2 -63.5) @result{} -59.7\n"
- "(floor-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_floor_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_remainder);
- else
- {
- scm_t_inum rr = xx % yy;
- int needs_adjustment;
- if (SCM_LIKELY (yy > 0))
- needs_adjustment = (rr < 0);
- else
- needs_adjustment = (rr > 0);
- if (needs_adjustment)
- rr += yy;
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (sign > 0)
- {
- if (xx < 0)
- {
- SCM r = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
- scm_remember_upto_here_1 (y);
- return scm_i_normbig (r);
- }
- else
- return x;
- }
- else if (xx <= 0)
- return x;
- else
- {
- SCM r = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- return scm_i_normbig (r);
- }
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_remainder);
- else
- {
- scm_t_inum rr;
- if (yy > 0)
- rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), yy);
- else
- rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM r = scm_i_mkbig ();
- mpz_fdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG1,
- s_scm_floor_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_floor_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_floor_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or y, but those two cases must
- correspond to different choices of q. If r = 0.0 then q must be
- x/y, and if r = y then q must be x/y-1. If quotient chooses one
- and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * floor (x / y));
- }
- static SCM
- scm_i_exact_rational_floor_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_floor_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_floor_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = floor(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(floor/ 123 10) @result{} 12 and 3\n"
- "(floor/ 123 -10) @result{} -13 and -7\n"
- "(floor/ -123 10) @result{} -13 and 7\n"
- "(floor/ -123 -10) @result{} 12 and -3\n"
- "(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
- "(floor/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_floor_divide
- {
- SCM q, r;
- scm_floor_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_floor_divide s_scm_i_floor_divide
- #define g_scm_floor_divide g_scm_i_floor_divide
- void
- scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- int needs_adjustment;
- if (SCM_LIKELY (yy > 0))
- needs_adjustment = (rr < 0);
- else
- needs_adjustment = (rr > 0);
- if (needs_adjustment)
- {
- rr += yy;
- qq--;
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (sign > 0)
- {
- if (xx < 0)
- {
- SCM r = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
- scm_remember_upto_here_1 (y);
- *qp = SCM_I_MAKINUM (-1);
- *rp = scm_i_normbig (r);
- }
- else
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- }
- else if (xx <= 0)
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- else
- {
- SCM r = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- *qp = SCM_I_MAKINUM (-1);
- *rp = scm_i_normbig (r);
- }
- }
- else if (SCM_REALP (y))
- scm_i_inexact_floor_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_floor_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- if (yy > 0)
- mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- scm_i_inexact_floor_divide (scm_i_big2dbl (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_floor_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_floor_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1,
- s_scm_floor_divide, qp, rp);
- }
- static void
- scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_divide); /* or return a NaN? */
- else
- {
- double q = floor (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_floor_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_ceiling_quotient (double x, double y);
- static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the ceiling of @math{@var{x} / @var{y}}.\n"
- "@lisp\n"
- "(ceiling-quotient 123 10) @result{} 13\n"
- "(ceiling-quotient 123 -10) @result{} -12\n"
- "(ceiling-quotient -123 10) @result{} -12\n"
- "(ceiling-quotient -123 -10) @result{} 13\n"
- "(ceiling-quotient -123.2 -63.5) @result{} 2.0\n"
- "(ceiling-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ceiling_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_quotient);
- else
- {
- scm_t_inum xx1 = xx;
- scm_t_inum qq;
- if (SCM_LIKELY (yy > 0))
- {
- if (SCM_LIKELY (xx >= 0))
- xx1 = xx + yy - 1;
- }
- else if (xx < 0)
- xx1 = xx + yy + 1;
- qq = xx1 / yy;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (SCM_LIKELY (sign > 0))
- {
- if (SCM_LIKELY (xx > 0))
- return SCM_INUM1;
- else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_I_MAKINUM (-1);
- }
- else
- return SCM_INUM0;
- }
- else if (xx >= 0)
- return SCM_INUM0;
- else
- return SCM_INUM1;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- if (yy > 0)
- mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- mpz_cdiv_q (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (q);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1,
- s_scm_ceiling_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_ceiling_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (ceil (x / y));
- }
- static SCM
- scm_i_exact_rational_ceiling_quotient (SCM x, SCM y)
- {
- return scm_ceiling_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_ceiling_remainder (double x, double y);
- static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(ceiling-remainder 123 10) @result{} -7\n"
- "(ceiling-remainder 123 -10) @result{} 3\n"
- "(ceiling-remainder -123 10) @result{} -3\n"
- "(ceiling-remainder -123 -10) @result{} 7\n"
- "(ceiling-remainder -123.2 -63.5) @result{} 3.8\n"
- "(ceiling-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ceiling_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_remainder);
- else
- {
- scm_t_inum rr = xx % yy;
- int needs_adjustment;
- if (SCM_LIKELY (yy > 0))
- needs_adjustment = (rr > 0);
- else
- needs_adjustment = (rr < 0);
- if (needs_adjustment)
- rr -= yy;
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (SCM_LIKELY (sign > 0))
- {
- if (SCM_LIKELY (xx > 0))
- {
- SCM r = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
- return scm_i_normbig (r);
- }
- else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_INUM0;
- }
- else
- return x;
- }
- else if (xx >= 0)
- return x;
- else
- {
- SCM r = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
- scm_remember_upto_here_1 (y);
- mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
- return scm_i_normbig (r);
- }
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_remainder);
- else
- {
- scm_t_inum rr;
- if (yy > 0)
- rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
- else
- rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM r = scm_i_mkbig ();
- mpz_cdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1,
- s_scm_ceiling_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_ceiling_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_ceiling_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or -y, but those two cases must
- correspond to different choices of q. If r = 0.0 then q must be
- x/y, and if r = -y then q must be x/y+1. If quotient chooses one
- and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * ceil (x / y));
- }
- static SCM
- scm_i_exact_rational_ceiling_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_ceiling_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(ceiling/ 123 10) @result{} 13 and -7\n"
- "(ceiling/ 123 -10) @result{} -12 and 3\n"
- "(ceiling/ -123 10) @result{} -12 and -3\n"
- "(ceiling/ -123 -10) @result{} 13 and 7\n"
- "(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_ceiling_divide
- {
- SCM q, r;
- scm_ceiling_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_ceiling_divide s_scm_i_ceiling_divide
- #define g_scm_ceiling_divide g_scm_i_ceiling_divide
- void
- scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- int needs_adjustment;
- if (SCM_LIKELY (yy > 0))
- needs_adjustment = (rr > 0);
- else
- needs_adjustment = (rr < 0);
- if (needs_adjustment)
- {
- rr -= yy;
- qq++;
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- if (SCM_LIKELY (sign > 0))
- {
- if (SCM_LIKELY (xx > 0))
- {
- SCM r = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
- *qp = SCM_INUM1;
- *rp = scm_i_normbig (r);
- }
- else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- *qp = SCM_I_MAKINUM (-1);
- *rp = SCM_INUM0;
- }
- else
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- }
- else if (xx >= 0)
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- else
- {
- SCM r = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
- scm_remember_upto_here_1 (y);
- mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
- *qp = SCM_INUM1;
- *rp = scm_i_normbig (r);
- }
- }
- else if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_ceiling_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- if (yy > 0)
- mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide (scm_i_big2dbl (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_ceiling_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1,
- s_scm_ceiling_divide, qp, rp);
- }
- static void
- scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_divide); /* or return a NaN? */
- else
- {
- double q = ceil (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_ceiling_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_truncate_quotient (double x, double y);
- static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return @math{@var{x} / @var{y}} rounded toward zero.\n"
- "@lisp\n"
- "(truncate-quotient 123 10) @result{} 12\n"
- "(truncate-quotient 123 -10) @result{} -12\n"
- "(truncate-quotient -123 10) @result{} -12\n"
- "(truncate-quotient -123 -10) @result{} 12\n"
- "(truncate-quotient -123.2 -63.5) @result{} 1.0\n"
- "(truncate-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_truncate_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_quotient);
- else
- {
- scm_t_inum qq = xx / yy;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_BIGP (y))
- {
- if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_I_MAKINUM (-1);
- }
- else
- return SCM_INUM0;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- if (yy > 0)
- mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
- else
- {
- mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- mpz_tdiv_q (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (q);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG1,
- s_scm_truncate_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_truncate_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (trunc (x / y));
- }
- static SCM
- scm_i_exact_rational_truncate_quotient (SCM x, SCM y)
- {
- return scm_truncate_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_truncate_remainder (double x, double y);
- static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(truncate-remainder 123 10) @result{} 3\n"
- "(truncate-remainder 123 -10) @result{} 3\n"
- "(truncate-remainder -123 10) @result{} -3\n"
- "(truncate-remainder -123 -10) @result{} -3\n"
- "(truncate-remainder -123.2 -63.5) @result{} -59.7\n"
- "(truncate-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_truncate_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_remainder);
- else
- return SCM_I_MAKINUM (xx % yy);
- }
- else if (SCM_BIGP (y))
- {
- if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_INUM0;
- }
- else
- return x;
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_remainder);
- else
- {
- scm_t_inum rr = (mpz_tdiv_ui (SCM_I_BIG_MPZ (x),
- (yy > 0) ? yy : -yy)
- * mpz_sgn (SCM_I_BIG_MPZ (x)));
- scm_remember_upto_here_1 (x);
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM r = scm_i_mkbig ();
- mpz_tdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG1,
- s_scm_truncate_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_truncate_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_truncate_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or sgn(x)*|y|, but those two cases must
- correspond to different choices of q. If quotient chooses one and
- remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * trunc (x / y));
- }
- static SCM
- scm_i_exact_rational_truncate_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_truncate_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_truncate_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(truncate/ 123 10) @result{} 12 and 3\n"
- "(truncate/ 123 -10) @result{} -12 and 3\n"
- "(truncate/ -123 10) @result{} -12 and -3\n"
- "(truncate/ -123 -10) @result{} 12 and -3\n"
- "(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
- "(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_truncate_divide
- {
- SCM q, r;
- scm_truncate_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_truncate_divide s_scm_i_truncate_divide
- #define g_scm_truncate_divide g_scm_i_truncate_divide
- void
- scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
- && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- *qp = SCM_I_MAKINUM (-1);
- *rp = SCM_INUM0;
- }
- else
- {
- *qp = SCM_INUM0;
- *rp = x;
- }
- }
- else if (SCM_REALP (y))
- scm_i_inexact_truncate_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_truncate_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- if (yy > 0)
- rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- else
- {
- rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- }
- rr *= mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- *qp = scm_i_normbig (q);
- *rp = SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM q = scm_i_mkbig ();
- SCM r = scm_i_mkbig ();
- mpz_tdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- else if (SCM_REALP (y))
- scm_i_inexact_truncate_divide (scm_i_big2dbl (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_truncate_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_truncate_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1,
- s_scm_truncate_divide, qp, rp);
- }
- static void
- scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_divide); /* or return a NaN? */
- else
- {
- double q = trunc (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_truncate_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_centered_quotient (double x, double y);
- static SCM scm_i_bigint_centered_quotient (SCM x, SCM y);
- static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
- "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
- "@lisp\n"
- "(centered-quotient 123 10) @result{} 12\n"
- "(centered-quotient 123 -10) @result{} -12\n"
- "(centered-quotient -123 10) @result{} -12\n"
- "(centered-quotient -123 -10) @result{} 12\n"
- "(centered-quotient -123.2 -63.5) @result{} 2.0\n"
- "(centered-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_centered_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_quotient);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- if (SCM_LIKELY (xx > 0))
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr >= (yy + 1) / 2)
- qq++;
- }
- else
- {
- if (rr >= (1 - yy) / 2)
- qq--;
- }
- }
- else
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr < -yy / 2)
- qq--;
- }
- else
- {
- if (rr < yy / 2)
- qq++;
- }
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_centered_quotient */
- return scm_i_bigint_centered_quotient (scm_i_long2big (xx), y);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (yy > 0)
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- if (rr < -yy / 2)
- mpz_sub_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- if (rr < yy / 2)
- mpz_add_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- }
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_centered_quotient (x, y);
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
- s_scm_centered_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_centered_quotient (double x, double y)
- {
- if (SCM_LIKELY (y > 0))
- return scm_i_from_double (floor (x/y + 0.5));
- else if (SCM_LIKELY (y < 0))
- return scm_i_from_double (ceil (x/y - 0.5));
- else if (y == 0)
- scm_num_overflow (s_scm_centered_quotient); /* or return a NaN? */
- else
- return scm_nan ();
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static SCM
- scm_i_bigint_centered_quotient (SCM x, SCM y)
- {
- SCM q, r, min_r;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- /* min_r will eventually become -abs(y)/2 */
- min_r = scm_i_mkbig ();
- mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
- SCM_I_BIG_MPZ (y), 1);
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
- {
- mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- mpz_sub_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- }
- else
- {
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- mpz_add_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- }
- scm_remember_upto_here_2 (r, min_r);
- return scm_i_normbig (q);
- }
- static SCM
- scm_i_exact_rational_centered_quotient (SCM x, SCM y)
- {
- return scm_centered_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_centered_remainder (double x, double y);
- static SCM scm_i_bigint_centered_remainder (SCM x, SCM y);
- static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
- "and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "for some integer @var{q}.\n"
- "@lisp\n"
- "(centered-remainder 123 10) @result{} 3\n"
- "(centered-remainder 123 -10) @result{} 3\n"
- "(centered-remainder -123 10) @result{} -3\n"
- "(centered-remainder -123 -10) @result{} -3\n"
- "(centered-remainder -123.2 -63.5) @result{} 3.8\n"
- "(centered-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_centered_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_remainder);
- else
- {
- scm_t_inum rr = xx % yy;
- if (SCM_LIKELY (xx > 0))
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr >= (yy + 1) / 2)
- rr -= yy;
- }
- else
- {
- if (rr >= (1 - yy) / 2)
- rr += yy;
- }
- }
- else
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr < -yy / 2)
- rr += yy;
- }
- else
- {
- if (rr < yy / 2)
- rr -= yy;
- }
- }
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_centered_remainder */
- return scm_i_bigint_centered_remainder (scm_i_long2big (xx), y);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_remainder);
- else
- {
- scm_t_inum rr;
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (yy > 0)
- {
- rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- if (rr < -yy / 2)
- rr += yy;
- }
- else
- {
- rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- if (rr < yy / 2)
- rr -= yy;
- }
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_centered_remainder (x, y);
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
- s_scm_centered_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_centered_remainder (double x, double y)
- {
- double q;
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_centered_quotient, such that x != r + q * y (not even
- close). In particular, when x-y/2 is very close to a multiple of
- y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
- two cases must correspond to different choices of q. If quotient
- chooses one and remainder chooses the other, it would be bad. */
- if (SCM_LIKELY (y > 0))
- q = floor (x/y + 0.5);
- else if (SCM_LIKELY (y < 0))
- q = ceil (x/y - 0.5);
- else if (y == 0)
- scm_num_overflow (s_scm_centered_remainder); /* or return a NaN? */
- else
- return scm_nan ();
- return scm_i_from_double (x - q * y);
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static SCM
- scm_i_bigint_centered_remainder (SCM x, SCM y)
- {
- SCM r, min_r;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- r = scm_i_mkbig ();
- /* min_r will eventually become -abs(y)/2 */
- min_r = scm_i_mkbig ();
- mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
- SCM_I_BIG_MPZ (y), 1);
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
- {
- mpz_cdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- mpz_add (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (y));
- }
- else
- {
- mpz_fdiv_r (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- mpz_sub (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (y));
- }
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (r);
- }
- static SCM
- scm_i_exact_rational_centered_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_centered_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp);
- static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
- "@lisp\n"
- "(centered/ 123 10) @result{} 12 and 3\n"
- "(centered/ 123 -10) @result{} -12 and 3\n"
- "(centered/ -123 10) @result{} -12 and -3\n"
- "(centered/ -123 -10) @result{} 12 and -3\n"
- "(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_centered_divide
- {
- SCM q, r;
- scm_centered_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_centered_divide s_scm_i_centered_divide
- #define g_scm_centered_divide g_scm_i_centered_divide
- void
- scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- if (SCM_LIKELY (xx > 0))
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr >= (yy + 1) / 2)
- { qq++; rr -= yy; }
- }
- else
- {
- if (rr >= (1 - yy) / 2)
- { qq--; rr += yy; }
- }
- }
- else
- {
- if (SCM_LIKELY (yy > 0))
- {
- if (rr < -yy / 2)
- { qq--; rr += yy; }
- }
- else
- {
- if (rr < yy / 2)
- { qq++; rr -= yy; }
- }
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_centered_divide */
- scm_i_bigint_centered_divide (scm_i_long2big (xx), y, qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_centered_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_centered_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (yy > 0)
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- if (rr < -yy / 2)
- {
- mpz_sub_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- rr += yy;
- }
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- if (rr < yy / 2)
- {
- mpz_add_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- rr -= yy;
- }
- }
- *qp = scm_i_normbig (q);
- *rp = SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- scm_i_bigint_centered_divide (x, y, qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_centered_divide (scm_i_big2dbl (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_centered_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_centered_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
- s_scm_centered_divide, qp, rp);
- }
- static void
- scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
- {
- double q, r;
- if (SCM_LIKELY (y > 0))
- q = floor (x/y + 0.5);
- else if (SCM_LIKELY (y < 0))
- q = ceil (x/y - 0.5);
- else if (y == 0)
- scm_num_overflow (s_scm_centered_divide); /* or return a NaN? */
- else
- q = guile_NaN;
- r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static void
- scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM q, r, min_r;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- /* min_r will eventually become -abs(y/2) */
- min_r = scm_i_mkbig ();
- mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
- SCM_I_BIG_MPZ (y), 1);
- /* Arrange for rr to initially be non-positive,
- because that simplifies the test to see
- if it is within the needed bounds. */
- if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
- {
- mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- {
- mpz_sub_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- mpz_add (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (y));
- }
- }
- else
- {
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
- {
- mpz_add_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (q), 1);
- mpz_sub (SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (y));
- }
- }
- scm_remember_upto_here_2 (x, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- static void
- scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_centered_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_round_quotient (double x, double y);
- static SCM scm_i_bigint_round_quotient (SCM x, SCM y);
- static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return @math{@var{x} / @var{y}} to the nearest integer,\n"
- "with ties going to the nearest even integer.\n"
- "@lisp\n"
- "(round-quotient 123 10) @result{} 12\n"
- "(round-quotient 123 -10) @result{} -12\n"
- "(round-quotient -123 10) @result{} -12\n"
- "(round-quotient -123 -10) @result{} 12\n"
- "(round-quotient 125 10) @result{} 12\n"
- "(round-quotient 127 10) @result{} 13\n"
- "(round-quotient 135 10) @result{} 14\n"
- "(round-quotient -123.2 -63.5) @result{} 2.0\n"
- "(round-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_quotient
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_quotient);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- scm_t_inum ay = yy;
- scm_t_inum r2 = 2 * rr;
- if (SCM_LIKELY (yy < 0))
- {
- ay = -ay;
- r2 = -r2;
- }
- if (qq & 1L)
- {
- if (r2 >= ay)
- qq++;
- else if (r2 <= -ay)
- qq--;
- }
- else
- {
- if (r2 > ay)
- qq++;
- else if (r2 < -ay)
- qq--;
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- return SCM_I_MAKINUM (qq);
- else
- return scm_i_inum2big (qq);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_round_quotient */
- return scm_i_bigint_round_quotient (scm_i_long2big (xx), y);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_round_quotient (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_quotient);
- else if (SCM_UNLIKELY (yy == 1))
- return x;
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- int needs_adjustment;
- if (yy > 0)
- {
- rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr >= yy);
- else
- needs_adjustment = (2*rr > yy);
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr <= yy);
- else
- needs_adjustment = (2*rr < yy);
- }
- scm_remember_upto_here_1 (x);
- if (needs_adjustment)
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- return scm_i_normbig (q);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_round_quotient (x, y);
- else if (SCM_REALP (y))
- return scm_i_inexact_round_quotient
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG1,
- s_scm_round_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_round_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (scm_c_round (x / y));
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static SCM
- scm_i_bigint_round_quotient (SCM x, SCM y)
- {
- SCM q, r, r2;
- int cmp, needs_adjustment;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- r2 = scm_i_mkbig ();
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
- scm_remember_upto_here_2 (x, r);
- cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (cmp >= 0);
- else
- needs_adjustment = (cmp > 0);
- scm_remember_upto_here_2 (r2, y);
- if (needs_adjustment)
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- return scm_i_normbig (q);
- }
- static SCM
- scm_i_exact_rational_round_quotient (SCM x, SCM y)
- {
- return scm_round_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_round_remainder (double x, double y);
- static SCM scm_i_bigint_round_remainder (SCM x, SCM y);
- static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n"
- "@var{q} is @math{@var{x} / @var{y}} rounded to the\n"
- "nearest integer, with ties going to the nearest\n"
- "even integer.\n"
- "@lisp\n"
- "(round-remainder 123 10) @result{} 3\n"
- "(round-remainder 123 -10) @result{} 3\n"
- "(round-remainder -123 10) @result{} -3\n"
- "(round-remainder -123 -10) @result{} -3\n"
- "(round-remainder 125 10) @result{} 5\n"
- "(round-remainder 127 10) @result{} -3\n"
- "(round-remainder 135 10) @result{} -5\n"
- "(round-remainder -123.2 -63.5) @result{} 3.8\n"
- "(round-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_remainder);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- scm_t_inum ay = yy;
- scm_t_inum r2 = 2 * rr;
- if (SCM_LIKELY (yy < 0))
- {
- ay = -ay;
- r2 = -r2;
- }
- if (qq & 1L)
- {
- if (r2 >= ay)
- rr -= yy;
- else if (r2 <= -ay)
- rr += yy;
- }
- else
- {
- if (r2 > ay)
- rr -= yy;
- else if (r2 < -ay)
- rr += yy;
- }
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_round_remainder */
- return scm_i_bigint_round_remainder
- (scm_i_long2big (xx), y);
- }
- else if (SCM_REALP (y))
- return scm_i_inexact_round_remainder (xx, SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_remainder);
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- int needs_adjustment;
- if (yy > 0)
- {
- rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr >= yy);
- else
- needs_adjustment = (2*rr > yy);
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr <= yy);
- else
- needs_adjustment = (2*rr < yy);
- }
- scm_remember_upto_here_2 (x, q);
- if (needs_adjustment)
- rr -= yy;
- return SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_bigint_round_remainder (x, y);
- else if (SCM_REALP (y))
- return scm_i_inexact_round_remainder
- (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG1,
- s_scm_round_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_round_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_round_quotient, such that x != r + q * y (not even
- close). In particular, when x-y/2 is very close to a multiple of
- y, then r might be either -abs(y/2) or abs(y/2), but those two
- cases must correspond to different choices of q. If quotient
- chooses one and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_remainder); /* or return a NaN? */
- else
- {
- double q = scm_c_round (x / y);
- return scm_i_from_double (x - q * y);
- }
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static SCM
- scm_i_bigint_round_remainder (SCM x, SCM y)
- {
- SCM q, r, r2;
- int cmp, needs_adjustment;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- r2 = scm_i_mkbig ();
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (x);
- mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
- cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (cmp >= 0);
- else
- needs_adjustment = (cmp > 0);
- scm_remember_upto_here_2 (q, r2);
- if (needs_adjustment)
- mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_i_normbig (r);
- }
- static SCM
- scm_i_exact_rational_round_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp);
- static void scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
- static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @var{q} is @math{@var{x} / @var{y}} rounded to the\n"
- "nearest integer, with ties going to the nearest even integer.\n"
- "@lisp\n"
- "(round/ 123 10) @result{} 12 and 3\n"
- "(round/ 123 -10) @result{} -12 and 3\n"
- "(round/ -123 10) @result{} -12 and -3\n"
- "(round/ -123 -10) @result{} 12 and -3\n"
- "(round/ 125 10) @result{} 12 and 5\n"
- "(round/ 127 10) @result{} 13 and -3\n"
- "(round/ 135 10) @result{} 14 and -5\n"
- "(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(round/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_round_divide
- {
- SCM q, r;
- scm_round_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_round_divide s_scm_i_round_divide
- #define g_scm_round_divide g_scm_i_round_divide
- void
- scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_divide);
- else
- {
- scm_t_inum qq = xx / yy;
- scm_t_inum rr = xx % yy;
- scm_t_inum ay = yy;
- scm_t_inum r2 = 2 * rr;
- if (SCM_LIKELY (yy < 0))
- {
- ay = -ay;
- r2 = -r2;
- }
- if (qq & 1L)
- {
- if (r2 >= ay)
- { qq++; rr -= yy; }
- else if (r2 <= -ay)
- { qq--; rr += yy; }
- }
- else
- {
- if (r2 > ay)
- { qq++; rr -= yy; }
- else if (r2 < -ay)
- { qq--; rr += yy; }
- }
- if (SCM_LIKELY (SCM_FIXABLE (qq)))
- *qp = SCM_I_MAKINUM (qq);
- else
- *qp = scm_i_inum2big (qq);
- *rp = SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- /* Pass a denormalized bignum version of x (even though it
- can fit in a fixnum) to scm_i_bigint_round_divide */
- scm_i_bigint_round_divide (scm_i_long2big (SCM_I_INUM (x)), y, qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_round_divide (xx, SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (SCM_UNLIKELY (yy == 0))
- scm_num_overflow (s_scm_round_divide);
- else
- {
- SCM q = scm_i_mkbig ();
- scm_t_inum rr;
- int needs_adjustment;
- if (yy > 0)
- {
- rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), yy);
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr >= yy);
- else
- needs_adjustment = (2*rr > yy);
- }
- else
- {
- rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
- SCM_I_BIG_MPZ (x), -yy);
- mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (2*rr <= yy);
- else
- needs_adjustment = (2*rr < yy);
- }
- scm_remember_upto_here_1 (x);
- if (needs_adjustment)
- {
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- rr -= yy;
- }
- *qp = scm_i_normbig (q);
- *rp = SCM_I_MAKINUM (rr);
- }
- }
- else if (SCM_BIGP (y))
- scm_i_bigint_round_divide (x, y, qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_round_divide (scm_i_big2dbl (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_round_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_round_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1,
- s_scm_round_divide, qp, rp);
- }
- static void
- scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_divide); /* or return a NaN? */
- else
- {
- double q = scm_c_round (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- /* Assumes that both x and y are bigints, though
- x might be able to fit into a fixnum. */
- static void
- scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM q, r, r2;
- int cmp, needs_adjustment;
- /* Note that x might be small enough to fit into a
- fixnum, so we must not let it escape into the wild */
- q = scm_i_mkbig ();
- r = scm_i_mkbig ();
- r2 = scm_i_mkbig ();
- mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
- SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (x);
- mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
- cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
- if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
- needs_adjustment = (cmp >= 0);
- else
- needs_adjustment = (cmp > 0);
- if (needs_adjustment)
- {
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
- }
- scm_remember_upto_here_2 (r2, y);
- *qp = scm_i_normbig (q);
- *rp = scm_i_normbig (r);
- }
- static void
- scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_round_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the greatest common divisor of all parameter values.\n"
- "If called without arguments, 0 is returned.")
- #define FUNC_NAME s_scm_i_gcd
- {
- while (!scm_is_null (rest))
- { x = scm_gcd (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_gcd (x, y);
- }
- #undef FUNC_NAME
-
- #define s_gcd s_scm_i_gcd
- #define g_gcd g_scm_i_gcd
- SCM
- scm_gcd (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- scm_t_inum yy = SCM_I_INUM (y);
- scm_t_inum u = xx < 0 ? -xx : xx;
- scm_t_inum v = yy < 0 ? -yy : yy;
- scm_t_inum result;
- if (SCM_UNLIKELY (xx == 0))
- result = v;
- else if (SCM_UNLIKELY (yy == 0))
- result = u;
- else
- {
- int k = 0;
- /* Determine a common factor 2^k */
- while (((u | v) & 1) == 0)
- {
- k++;
- u >>= 1;
- v >>= 1;
- }
- /* Now, any factor 2^n can be eliminated */
- if ((u & 1) == 0)
- while ((u & 1) == 0)
- u >>= 1;
- else
- while ((v & 1) == 0)
- v >>= 1;
- /* Both u and v are now odd. Subtract the smaller one
- from the larger one to produce an even number, remove
- more factors of two, and repeat. */
- while (u != v)
- {
- if (u > v)
- {
- u -= v;
- while ((u & 1) == 0)
- u >>= 1;
- }
- else
- {
- v -= u;
- while ((v & 1) == 0)
- v >>= 1;
- }
- }
- result = u << k;
- }
- return (SCM_POSFIXABLE (result)
- ? SCM_I_MAKINUM (result)
- : scm_i_inum2big (result));
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_inum;
- }
- else if (SCM_REALP (y) && scm_is_integer (y))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_bits result;
- scm_t_inum yy;
- big_inum:
- yy = SCM_I_INUM (y);
- if (yy == 0)
- return scm_abs (x);
- if (yy < 0)
- yy = -yy;
- result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- return (SCM_POSFIXABLE (result)
- ? SCM_I_MAKINUM (result)
- : scm_from_unsigned_integer (result));
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_gcd (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y) && scm_is_integer (y))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_REALP (x) && scm_is_integer (x))
- {
- if (SCM_I_INUMP (y) || SCM_BIGP (y)
- || (SCM_REALP (y) && scm_is_integer (y)))
- {
- handle_inexacts:
- return scm_exact_to_inexact (scm_gcd (scm_inexact_to_exact (x),
- scm_inexact_to_exact (y)));
- }
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
- }
- SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the least common multiple of the arguments.\n"
- "If called without arguments, 1 is returned.")
- #define FUNC_NAME s_scm_i_lcm
- {
- while (!scm_is_null (rest))
- { x = scm_lcm (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_lcm (x, y);
- }
- #undef FUNC_NAME
-
- #define s_lcm s_scm_i_lcm
- #define g_lcm g_scm_i_lcm
- SCM
- scm_lcm (SCM n1, SCM n2)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (n2)))
- return SCM_UNBNDP (n1) ? SCM_INUM1 : scm_abs (n1);
- if (SCM_LIKELY (SCM_I_INUMP (n1)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (n2)))
- {
- SCM d = scm_gcd (n1, n2);
- if (scm_is_eq (d, SCM_INUM0))
- return d;
- else
- return scm_abs (scm_product (n1, scm_quotient (n2, d)));
- }
- else if (SCM_LIKELY (SCM_BIGP (n2)))
- {
- /* inum n1, big n2 */
- inumbig:
- {
- SCM result = scm_i_mkbig ();
- scm_t_inum nn1 = SCM_I_INUM (n1);
- if (nn1 == 0) return SCM_INUM0;
- if (nn1 < 0) nn1 = - nn1;
- mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
- scm_remember_upto_here_1 (n2);
- return result;
- }
- }
- else if (SCM_REALP (n2) && scm_is_integer (n2))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else if (SCM_LIKELY (SCM_BIGP (n1)))
- {
- /* big n1 */
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- goto inumbig;
- }
- else if (SCM_LIKELY (SCM_BIGP (n2)))
- {
- SCM result = scm_i_mkbig ();
- mpz_lcm(SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2(n1, n2);
- /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
- return result;
- }
- else if (SCM_REALP (n2) && scm_is_integer (n2))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else if (SCM_REALP (n1) && scm_is_integer (n1))
- {
- if (SCM_I_INUMP (n2) || SCM_BIGP (n2)
- || (SCM_REALP (n2) && scm_is_integer (n2)))
- {
- handle_inexacts:
- return scm_exact_to_inexact (scm_lcm (scm_inexact_to_exact (n1),
- scm_inexact_to_exact (n2)));
- }
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG1, s_lcm);
- }
- /* Emulating 2's complement bignums with sign magnitude arithmetic:
- Logand:
- X Y Result Method:
- (len)
- + + + x (map digit:logand X Y)
- + - + x (map digit:logand X (lognot (+ -1 Y)))
- - + + y (map digit:logand (lognot (+ -1 X)) Y)
- - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
- Logior:
- X Y Result Method:
- + + + (map digit:logior X Y)
- + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
- - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
- - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
- Logxor:
- X Y Result Method:
- + + + (map digit:logxor X Y)
- + - - (+ 1 (map digit:logxor X (+ -1 Y)))
- - + - (+ 1 (map digit:logxor (+ -1 X) Y))
- - - + (map digit:logxor (+ -1 X) (+ -1 Y))
- Logtest:
- X Y Result
- + + (any digit:logand X Y)
- + - (any digit:logand X (lognot (+ -1 Y)))
- - + (any digit:logand (lognot (+ -1 X)) Y)
- - - #t
- */
- SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise AND of the integer arguments.\n\n"
- "@lisp\n"
- "(logand) @result{} -1\n"
- "(logand 7) @result{} 7\n"
- "(logand #b111 #b011 #b001) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logand
- {
- while (!scm_is_null (rest))
- { x = scm_logand (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logand (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logand s_scm_i_logand
- SCM scm_logand (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logand
- {
- scm_t_inum nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_I_MAKINUM (-1);
- else if (!SCM_NUMBERP (n1))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- scm_t_inum nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 & nn2);
- }
- else if SCM_BIGP (n2)
- {
- intbig:
- if (nn1 == 0)
- return SCM_INUM0;
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_and (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise OR of the integer arguments.\n\n"
- "@lisp\n"
- "(logior) @result{} 0\n"
- "(logior 7) @result{} 7\n"
- "(logior #b000 #b001 #b011) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logior
- {
- while (!scm_is_null (rest))
- { x = scm_logior (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logior (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logior s_scm_i_logior
- SCM scm_logior (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logior
- {
- scm_t_inum nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- long nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 | nn2);
- }
- else if (SCM_BIGP (n2))
- {
- intbig:
- if (nn1 == 0)
- return n2;
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_ior (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise XOR of the integer arguments. A bit is\n"
- "set in the result if it is set in an odd number of arguments.\n"
- "@lisp\n"
- "(logxor) @result{} 0\n"
- "(logxor 7) @result{} 7\n"
- "(logxor #b000 #b001 #b011) @result{} 2\n"
- "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logxor
- {
- while (!scm_is_null (rest))
- { x = scm_logxor (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logxor (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logxor s_scm_i_logxor
- SCM scm_logxor (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logxor
- {
- scm_t_inum nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- scm_t_inum nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 ^ nn2);
- }
- else if (SCM_BIGP (n2))
- {
- intbig:
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_xor (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
- (SCM j, SCM k),
- "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
- "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
- "without actually calculating the @code{logand}, just testing\n"
- "for non-zero.\n"
- "\n"
- "@lisp\n"
- "(logtest #b0100 #b1011) @result{} #f\n"
- "(logtest #b0100 #b0111) @result{} #t\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logtest
- {
- scm_t_inum nj;
- if (SCM_I_INUMP (j))
- {
- nj = SCM_I_INUM (j);
- if (SCM_I_INUMP (k))
- {
- scm_t_inum nk = SCM_I_INUM (k);
- return scm_from_bool (nj & nk);
- }
- else if (SCM_BIGP (k))
- {
- intbig:
- if (nj == 0)
- return SCM_BOOL_F;
- {
- SCM result;
- mpz_t nj_z;
- mpz_init_set_si (nj_z, nj);
- mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- result = scm_from_bool (mpz_sgn (nj_z) != 0);
- mpz_clear (nj_z);
- return result;
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else if (SCM_BIGP (j))
- {
- if (SCM_I_INUMP (k))
- {
- SCM_SWAP (j, k);
- nj = SCM_I_INUM (j);
- goto intbig;
- }
- else if (SCM_BIGP (k))
- {
- SCM result;
- mpz_t result_z;
- mpz_init (result_z);
- mpz_and (result_z,
- SCM_I_BIG_MPZ (j),
- SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_2 (j, k);
- result = scm_from_bool (mpz_sgn (result_z) != 0);
- mpz_clear (result_z);
- return result;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
- (SCM index, SCM j),
- "Test whether bit number @var{index} in @var{j} is set.\n"
- "@var{index} starts from 0 for the least significant bit.\n"
- "\n"
- "@lisp\n"
- "(logbit? 0 #b1101) @result{} #t\n"
- "(logbit? 1 #b1101) @result{} #f\n"
- "(logbit? 2 #b1101) @result{} #t\n"
- "(logbit? 3 #b1101) @result{} #t\n"
- "(logbit? 4 #b1101) @result{} #f\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logbit_p
- {
- unsigned long int iindex;
- iindex = scm_to_ulong (index);
- if (SCM_I_INUMP (j))
- {
- if (iindex < SCM_LONG_BIT - 1)
- /* Arrange for the number to be converted to unsigned before
- checking the bit, to ensure that we're testing the bit in a
- two's complement representation (regardless of the native
- representation. */
- return scm_from_bool ((1UL << iindex) & SCM_I_INUM (j));
- else
- /* Portably check the sign. */
- return scm_from_bool (SCM_I_INUM (j) < 0);
- }
- else if (SCM_BIGP (j))
- {
- int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
- scm_remember_upto_here_1 (j);
- return scm_from_bool (val);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
- (SCM n),
- "Return the integer which is the ones-complement of the integer\n"
- "argument.\n"
- "\n"
- "@lisp\n"
- "(number->string (lognot #b10000000) 2)\n"
- " @result{} \"-10000001\"\n"
- "(number->string (lognot #b0) 2)\n"
- " @result{} \"-1\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_lognot
- {
- if (SCM_I_INUMP (n)) {
- /* No overflow here, just need to toggle all the bits making up the inum.
- Enhancement: No need to strip the tag and add it back, could just xor
- a block of 1 bits, if that worked with the various debug versions of
- the SCM typedef. */
- return SCM_I_MAKINUM (~ SCM_I_INUM (n));
- } else if (SCM_BIGP (n)) {
- SCM result = scm_i_mkbig ();
- mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return result;
- } else {
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- }
- #undef FUNC_NAME
- /* returns 0 if IN is not an integer. OUT must already be
- initialized. */
- static int
- coerce_to_big (SCM in, mpz_t out)
- {
- if (SCM_BIGP (in))
- mpz_set (out, SCM_I_BIG_MPZ (in));
- else if (SCM_I_INUMP (in))
- mpz_set_si (out, SCM_I_INUM (in));
- else
- return 0;
- return 1;
- }
- SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
- (SCM n, SCM k, SCM m),
- "Return @var{n} raised to the integer exponent\n"
- "@var{k}, modulo @var{m}.\n"
- "\n"
- "@lisp\n"
- "(modulo-expt 2 3 5)\n"
- " @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo_expt
- {
- mpz_t n_tmp;
- mpz_t k_tmp;
- mpz_t m_tmp;
-
- /* There are two classes of error we might encounter --
- 1) Math errors, which we'll report by calling scm_num_overflow,
- and
- 2) wrong-type errors, which of course we'll report by calling
- SCM_WRONG_TYPE_ARG.
- We don't report those errors immediately, however; instead we do
- some cleanup first. These variables tell us which error (if
- any) we should report after cleaning up.
- */
- int report_overflow = 0;
- int position_of_wrong_type = 0;
- SCM value_of_wrong_type = SCM_INUM0;
- SCM result = SCM_UNDEFINED;
- mpz_init (n_tmp);
- mpz_init (k_tmp);
- mpz_init (m_tmp);
-
- if (scm_is_eq (m, SCM_INUM0))
- {
- report_overflow = 1;
- goto cleanup;
- }
-
- if (!coerce_to_big (n, n_tmp))
- {
- value_of_wrong_type = n;
- position_of_wrong_type = 1;
- goto cleanup;
- }
- if (!coerce_to_big (k, k_tmp))
- {
- value_of_wrong_type = k;
- position_of_wrong_type = 2;
- goto cleanup;
- }
- if (!coerce_to_big (m, m_tmp))
- {
- value_of_wrong_type = m;
- position_of_wrong_type = 3;
- goto cleanup;
- }
- /* if the exponent K is negative, and we simply call mpz_powm, we
- will get a divide-by-zero exception when an inverse 1/n mod m
- doesn't exist (or is not unique). Since exceptions are hard to
- handle, we'll attempt the inversion "by hand" -- that way, we get
- a simple failure code, which is easy to handle. */
-
- if (-1 == mpz_sgn (k_tmp))
- {
- if (!mpz_invert (n_tmp, n_tmp, m_tmp))
- {
- report_overflow = 1;
- goto cleanup;
- }
- mpz_neg (k_tmp, k_tmp);
- }
- result = scm_i_mkbig ();
- mpz_powm (SCM_I_BIG_MPZ (result),
- n_tmp,
- k_tmp,
- m_tmp);
- if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
- mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
- cleanup:
- mpz_clear (m_tmp);
- mpz_clear (k_tmp);
- mpz_clear (n_tmp);
- if (report_overflow)
- scm_num_overflow (FUNC_NAME);
- if (position_of_wrong_type)
- SCM_WRONG_TYPE_ARG (position_of_wrong_type,
- value_of_wrong_type);
-
- return scm_i_normbig (result);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
- (SCM n, SCM k),
- "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
- "exact integer, @var{n} can be any number.\n"
- "\n"
- "Negative @var{k} is supported, and results in\n"
- "@math{1/@var{n}^abs(@var{k})} in the usual way.\n"
- "@math{@var{n}^0} is 1, as usual, and that\n"
- "includes @math{0^0} is 1.\n"
- "\n"
- "@lisp\n"
- "(integer-expt 2 5) @result{} 32\n"
- "(integer-expt -3 3) @result{} -27\n"
- "(integer-expt 5 -3) @result{} 1/125\n"
- "(integer-expt 0 0) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_expt
- {
- scm_t_inum i2 = 0;
- SCM z_i2 = SCM_BOOL_F;
- int i2_is_big = 0;
- SCM acc = SCM_I_MAKINUM (1L);
- /* Specifically refrain from checking the type of the first argument.
- This allows us to exponentiate any object that can be multiplied.
- If we must raise to a negative power, we must also be able to
- take its reciprocal. */
- if (!SCM_LIKELY (SCM_I_INUMP (k)) && !SCM_LIKELY (SCM_BIGP (k)))
- SCM_WRONG_TYPE_ARG (2, k);
- if (SCM_UNLIKELY (scm_is_eq (k, SCM_INUM0)))
- return SCM_INUM1; /* n^(exact0) is exact 1, regardless of n */
- else if (SCM_UNLIKELY (scm_is_eq (n, SCM_I_MAKINUM (-1L))))
- return scm_is_false (scm_even_p (k)) ? n : SCM_INUM1;
- /* The next check is necessary only because R6RS specifies different
- behavior for 0^(-k) than for (/ 0). If n is not a scheme number,
- we simply skip this case and move on. */
- else if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
- {
- /* k cannot be 0 at this point, because we
- have already checked for that case above */
- if (scm_is_true (scm_positive_p (k)))
- return n;
- else /* return NaN for (0 ^ k) for negative k per R6RS */
- return scm_nan ();
- }
- else if (SCM_FRACTIONP (n))
- {
- /* Optimize the fraction case by (a/b)^k ==> (a^k)/(b^k), to avoid
- needless reduction of intermediate products to lowest terms.
- If a and b have no common factors, then a^k and b^k have no
- common factors. Use 'scm_i_make_ratio_already_reduced' to
- construct the final result, so that no gcd computations are
- needed to exponentiate a fraction. */
- if (scm_is_true (scm_positive_p (k)))
- return scm_i_make_ratio_already_reduced
- (scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k),
- scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k));
- else
- {
- k = scm_difference (k, SCM_UNDEFINED);
- return scm_i_make_ratio_already_reduced
- (scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k),
- scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k));
- }
- }
- if (SCM_I_INUMP (k))
- i2 = SCM_I_INUM (k);
- else if (SCM_BIGP (k))
- {
- z_i2 = scm_i_clonebig (k, 1);
- scm_remember_upto_here_1 (k);
- i2_is_big = 1;
- }
- else
- SCM_WRONG_TYPE_ARG (2, k);
-
- if (i2_is_big)
- {
- if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
- {
- mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
- n = scm_divide (n, SCM_UNDEFINED);
- }
- while (1)
- {
- if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
- {
- return acc;
- }
- if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
- {
- return scm_product (acc, n);
- }
- if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
- }
- }
- else
- {
- if (i2 < 0)
- {
- i2 = -i2;
- n = scm_divide (n, SCM_UNDEFINED);
- }
- while (1)
- {
- if (0 == i2)
- return acc;
- if (1 == i2)
- return scm_product (acc, n);
- if (i2 & 1)
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- i2 >>= 1;
- }
- }
- }
- #undef FUNC_NAME
- /* Efficiently compute (N * 2^COUNT),
- where N is an exact integer, and COUNT > 0. */
- static SCM
- left_shift_exact_integer (SCM n, long count)
- {
- if (SCM_I_INUMP (n))
- {
- scm_t_inum nn = SCM_I_INUM (n);
- /* Left shift of count >= SCM_I_FIXNUM_BIT-1 will almost[*] always
- overflow a non-zero fixnum. For smaller shifts we check the
- bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
- all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
- Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 - count)".
- [*] There's one exception:
- (-1) << SCM_I_FIXNUM_BIT-1 == SCM_MOST_NEGATIVE_FIXNUM */
- if (nn == 0)
- return n;
- else if (count < SCM_I_FIXNUM_BIT-1 &&
- ((scm_t_bits) (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - count)) + 1)
- <= 1))
- return SCM_I_MAKINUM (nn < 0 ? -(-nn << count) : (nn << count));
- else
- {
- SCM result = scm_i_inum2big (nn);
- mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
- count);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (n))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n), count);
- scm_remember_upto_here_1 (n);
- return result;
- }
- else
- assert (0);
- }
- /* Efficiently compute floor (N / 2^COUNT),
- where N is an exact integer and COUNT > 0. */
- static SCM
- floor_right_shift_exact_integer (SCM n, long count)
- {
- if (SCM_I_INUMP (n))
- {
- scm_t_inum nn = SCM_I_INUM (n);
- if (count >= SCM_I_FIXNUM_BIT)
- return (nn >= 0 ? SCM_INUM0 : SCM_I_MAKINUM (-1));
- else
- return SCM_I_MAKINUM (SCM_SRS (nn, count));
- }
- else if (SCM_BIGP (n))
- {
- SCM result = scm_i_mkbig ();
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
- count);
- scm_remember_upto_here_1 (n);
- return scm_i_normbig (result);
- }
- else
- assert (0);
- }
- /* Efficiently compute round (N / 2^COUNT),
- where N is an exact integer and COUNT > 0. */
- static SCM
- round_right_shift_exact_integer (SCM n, long count)
- {
- if (SCM_I_INUMP (n))
- {
- if (count >= SCM_I_FIXNUM_BIT)
- return SCM_INUM0;
- else
- {
- scm_t_inum nn = SCM_I_INUM (n);
- scm_t_inum qq = SCM_SRS (nn, count);
- if (0 == (nn & (1L << (count-1))))
- return SCM_I_MAKINUM (qq); /* round down */
- else if (nn & ((1L << (count-1)) - 1))
- return SCM_I_MAKINUM (qq + 1); /* round up */
- else
- return SCM_I_MAKINUM ((~1L) & (qq + 1)); /* round to even */
- }
- }
- else if (SCM_BIGP (n))
- {
- SCM q = scm_i_mkbig ();
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), count);
- if (mpz_tstbit (SCM_I_BIG_MPZ (n), count-1)
- && (mpz_odd_p (SCM_I_BIG_MPZ (q))
- || (mpz_scan1 (SCM_I_BIG_MPZ (n), 0) < count-1)))
- mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
- scm_remember_upto_here_1 (n);
- return scm_i_normbig (q);
- }
- else
- assert (0);
- }
- /* 'scm_ash' and 'scm_round_ash' assume that fixnums fit within a long,
- and moreover that they can be negated without overflow. */
- verify (SCM_MOST_NEGATIVE_FIXNUM >= LONG_MIN + 1
- && SCM_MOST_POSITIVE_FIXNUM <= LONG_MAX);
- SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
- (SCM n, SCM count),
- "Return @math{floor(@var{n} * 2^@var{count})}.\n"
- "@var{n} and @var{count} must be exact integers.\n"
- "\n"
- "With @var{n} viewed as an infinite-precision twos-complement\n"
- "integer, @code{ash} means a left shift introducing zero bits\n"
- "when @var{count} is positive, or a right shift dropping bits\n"
- "when @var{count} is negative. This is an ``arithmetic'' shift.\n"
- "\n"
- "@lisp\n"
- "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
- "\n"
- ";; -23 is bits ...11101001, -6 is bits ...111010\n"
- "(ash -23 -2) @result{} -6\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ash
- {
- if (SCM_I_INUMP (n) || SCM_BIGP (n))
- {
- long bits_to_shift;
- if (SCM_I_INUMP (count)) /* fast path, not strictly needed */
- bits_to_shift = SCM_I_INUM (count);
- else if (scm_is_signed_integer (count, LONG_MIN + 1, LONG_MAX))
- /* We exclude LONG_MIN to ensure that 'bits_to_shift' can be
- negated without overflowing. */
- bits_to_shift = scm_to_long (count);
- else if (scm_is_false (scm_positive_p (scm_sum (scm_integer_length (n),
- count))))
- /* Huge right shift that eliminates all but the sign bit */
- return scm_is_false (scm_negative_p (n))
- ? SCM_INUM0 : SCM_I_MAKINUM (-1);
- else if (scm_is_true (scm_zero_p (n)))
- return SCM_INUM0;
- else
- scm_num_overflow ("ash");
- if (bits_to_shift > 0)
- return left_shift_exact_integer (n, bits_to_shift);
- else if (SCM_LIKELY (bits_to_shift < 0))
- return floor_right_shift_exact_integer (n, -bits_to_shift);
- else
- return n;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_round_ash, "round-ash", 2, 0, 0,
- (SCM n, SCM count),
- "Return @math{round(@var{n} * 2^@var{count})}.\n"
- "@var{n} and @var{count} must be exact integers.\n"
- "\n"
- "With @var{n} viewed as an infinite-precision twos-complement\n"
- "integer, @code{round-ash} means a left shift introducing zero\n"
- "bits when @var{count} is positive, or a right shift rounding\n"
- "to the nearest integer (with ties going to the nearest even\n"
- "integer) when @var{count} is negative. This is a rounded\n"
- "``arithmetic'' shift.\n"
- "\n"
- "@lisp\n"
- "(number->string (round-ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (round-ash #b1010 -1) 2) @result{} \"101\"\n"
- "(number->string (round-ash #b1010 -2) 2) @result{} \"10\"\n"
- "(number->string (round-ash #b1011 -2) 2) @result{} \"11\"\n"
- "(number->string (round-ash #b1101 -2) 2) @result{} \"11\"\n"
- "(number->string (round-ash #b1110 -2) 2) @result{} \"100\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_ash
- {
- if (SCM_I_INUMP (n) || SCM_BIGP (n))
- {
- long bits_to_shift;
- if (SCM_I_INUMP (count)) /* fast path, not strictly needed */
- bits_to_shift = SCM_I_INUM (count);
- else if (scm_is_signed_integer (count, LONG_MIN + 1, LONG_MAX))
- /* We exclude LONG_MIN to ensure that 'bits_to_shift' can be
- negated without overflowing. */
- bits_to_shift = scm_to_long (count);
- else if (scm_is_true (scm_negative_p (scm_sum (scm_integer_length (n),
- count)))
- || scm_is_true (scm_zero_p (n)))
- /* If N is zero, or the right shift count exceeds the integer
- length, the result is zero. */
- return SCM_INUM0;
- else
- scm_num_overflow ("round-ash");
- if (bits_to_shift > 0)
- return left_shift_exact_integer (n, bits_to_shift);
- else if (SCM_LIKELY (bits_to_shift < 0))
- return round_right_shift_exact_integer (n, -bits_to_shift);
- else
- return n;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- #define MIN(A, B) ((A) <= (B) ? (A) : (B))
- SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
- (SCM n, SCM start, SCM end),
- "Return the integer composed of the @var{start} (inclusive)\n"
- "through @var{end} (exclusive) bits of @var{n}. The\n"
- "@var{start}th bit becomes the 0-th bit in the result.\n"
- "\n"
- "@lisp\n"
- "(number->string (bit-extract #b1101101010 0 4) 2)\n"
- " @result{} \"1010\"\n"
- "(number->string (bit-extract #b1101101010 4 9) 2)\n"
- " @result{} \"10110\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_bit_extract
- {
- unsigned long int istart, iend, bits;
- istart = scm_to_ulong (start);
- iend = scm_to_ulong (end);
- SCM_ASSERT_RANGE (3, end, (iend >= istart));
- /* how many bits to keep */
- bits = iend - istart;
- if (SCM_I_INUMP (n))
- {
- scm_t_inum in = SCM_I_INUM (n);
- /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
- SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
- in = SCM_SRS (in, MIN (istart, SCM_I_FIXNUM_BIT-1));
- if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
- {
- /* Since we emulate two's complement encoded numbers, this
- * special case requires us to produce a result that has
- * more bits than can be stored in a fixnum.
- */
- SCM result = scm_i_inum2big (in);
- mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
- bits);
- return result;
- }
- /* mask down to requisite bits */
- bits = MIN (bits, SCM_I_FIXNUM_BIT);
- return SCM_I_MAKINUM (in & ((1L << bits) - 1));
- }
- else if (SCM_BIGP (n))
- {
- SCM result;
- if (bits == 1)
- {
- result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
- }
- else
- {
- /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
- bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
- such bits into a ulong. */
- result = scm_i_mkbig ();
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
- mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
- result = scm_i_normbig (result);
- }
- scm_remember_upto_here_1 (n);
- return result;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- static const char scm_logtab[] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
- };
- SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
- (SCM n),
- "Return the number of bits in integer @var{n}. If integer is\n"
- "positive, the 1-bits in its binary representation are counted.\n"
- "If negative, the 0-bits in its two's-complement binary\n"
- "representation are counted. If 0, 0 is returned.\n"
- "\n"
- "@lisp\n"
- "(logcount #b10101010)\n"
- " @result{} 4\n"
- "(logcount 0)\n"
- " @result{} 0\n"
- "(logcount -2)\n"
- " @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logcount
- {
- if (SCM_I_INUMP (n))
- {
- unsigned long c = 0;
- scm_t_inum nn = SCM_I_INUM (n);
- if (nn < 0)
- nn = -1 - nn;
- while (nn)
- {
- c += scm_logtab[15 & nn];
- nn >>= 4;
- }
- return SCM_I_MAKINUM (c);
- }
- else if (SCM_BIGP (n))
- {
- unsigned long count;
- if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
- count = mpz_popcount (SCM_I_BIG_MPZ (n));
- else
- count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
- scm_remember_upto_here_1 (n);
- return SCM_I_MAKINUM (count);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- static const char scm_ilentab[] = {
- 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
- };
- SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
- (SCM n),
- "Return the number of bits necessary to represent @var{n}.\n"
- "\n"
- "@lisp\n"
- "(integer-length #b10101010)\n"
- " @result{} 8\n"
- "(integer-length 0)\n"
- " @result{} 0\n"
- "(integer-length #b1111)\n"
- " @result{} 4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_length
- {
- if (SCM_I_INUMP (n))
- {
- unsigned long c = 0;
- unsigned int l = 4;
- scm_t_inum nn = SCM_I_INUM (n);
- if (nn < 0)
- nn = -1 - nn;
- while (nn)
- {
- c += 4;
- l = scm_ilentab [15 & nn];
- nn >>= 4;
- }
- return SCM_I_MAKINUM (c - 4 + l);
- }
- else if (SCM_BIGP (n))
- {
- /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
- want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
- 1 too big, so check for that and adjust. */
- size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
- if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
- && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
- mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
- size--;
- scm_remember_upto_here_1 (n);
- return SCM_I_MAKINUM (size);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- /*** NUMBERS -> STRINGS ***/
- #define SCM_MAX_DBL_RADIX 36
- /* use this array as a way to generate a single digit */
- static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
- static mpz_t dbl_minimum_normal_mantissa;
- static size_t
- idbl2str (double dbl, char *a, int radix)
- {
- int ch = 0;
- if (radix < 2 || radix > SCM_MAX_DBL_RADIX)
- /* revert to existing behavior */
- radix = 10;
- if (isinf (dbl))
- {
- strcpy (a, (dbl > 0.0) ? "+inf.0" : "-inf.0");
- return 6;
- }
- else if (dbl > 0.0)
- ;
- else if (dbl < 0.0)
- {
- dbl = -dbl;
- a[ch++] = '-';
- }
- else if (dbl == 0.0)
- {
- if (copysign (1.0, dbl) < 0.0)
- a[ch++] = '-';
- strcpy (a + ch, "0.0");
- return ch + 3;
- }
- else if (isnan (dbl))
- {
- strcpy (a, "+nan.0");
- return 6;
- }
- /* Algorithm taken from "Printing Floating-Point Numbers Quickly and
- Accurately" by Robert G. Burger and R. Kent Dybvig */
- {
- int e, k;
- mpz_t f, r, s, mplus, mminus, hi, digit;
- int f_is_even, f_is_odd;
- int expon;
- int show_exp = 0;
- mpz_inits (f, r, s, mplus, mminus, hi, digit, NULL);
- mpz_set_d (f, ldexp (frexp (dbl, &e), DBL_MANT_DIG));
- if (e < DBL_MIN_EXP)
- {
- mpz_tdiv_q_2exp (f, f, DBL_MIN_EXP - e);
- e = DBL_MIN_EXP;
- }
- e -= DBL_MANT_DIG;
- f_is_even = !mpz_odd_p (f);
- f_is_odd = !f_is_even;
- /* Initialize r, s, mplus, and mminus according
- to Table 1 from the paper. */
- if (e < 0)
- {
- mpz_set_ui (mminus, 1);
- if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0
- || e == DBL_MIN_EXP - DBL_MANT_DIG)
- {
- mpz_set_ui (mplus, 1);
- mpz_mul_2exp (r, f, 1);
- mpz_mul_2exp (s, mminus, 1 - e);
- }
- else
- {
- mpz_set_ui (mplus, 2);
- mpz_mul_2exp (r, f, 2);
- mpz_mul_2exp (s, mminus, 2 - e);
- }
- }
- else
- {
- mpz_set_ui (mminus, 1);
- mpz_mul_2exp (mminus, mminus, e);
- if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0)
- {
- mpz_set (mplus, mminus);
- mpz_mul_2exp (r, f, 1 + e);
- mpz_set_ui (s, 2);
- }
- else
- {
- mpz_mul_2exp (mplus, mminus, 1);
- mpz_mul_2exp (r, f, 2 + e);
- mpz_set_ui (s, 4);
- }
- }
- /* Find the smallest k such that:
- (r + mplus) / s < radix^k (if f is even)
- (r + mplus) / s <= radix^k (if f is odd) */
- {
- /* IMPROVE-ME: Make an initial guess to speed this up */
- mpz_add (hi, r, mplus);
- k = 0;
- while (mpz_cmp (hi, s) >= f_is_odd)
- {
- mpz_mul_ui (s, s, radix);
- k++;
- }
- if (k == 0)
- {
- mpz_mul_ui (hi, hi, radix);
- while (mpz_cmp (hi, s) < f_is_odd)
- {
- mpz_mul_ui (r, r, radix);
- mpz_mul_ui (mplus, mplus, radix);
- mpz_mul_ui (mminus, mminus, radix);
- mpz_mul_ui (hi, hi, radix);
- k--;
- }
- }
- }
- expon = k - 1;
- if (k <= 0)
- {
- if (k <= -3)
- {
- /* Use scientific notation */
- show_exp = 1;
- k = 1;
- }
- else
- {
- int i;
- /* Print leading zeroes */
- a[ch++] = '0';
- a[ch++] = '.';
- for (i = 0; i > k; i--)
- a[ch++] = '0';
- }
- }
- for (;;)
- {
- int end_1_p, end_2_p;
- int d;
- mpz_mul_ui (mplus, mplus, radix);
- mpz_mul_ui (mminus, mminus, radix);
- mpz_mul_ui (r, r, radix);
- mpz_fdiv_qr (digit, r, r, s);
- d = mpz_get_ui (digit);
- mpz_add (hi, r, mplus);
- end_1_p = (mpz_cmp (r, mminus) < f_is_even);
- end_2_p = (mpz_cmp (s, hi) < f_is_even);
- if (end_1_p || end_2_p)
- {
- mpz_mul_2exp (r, r, 1);
- if (!end_2_p)
- ;
- else if (!end_1_p)
- d++;
- else if (mpz_cmp (r, s) >= !(d & 1))
- d++;
- a[ch++] = number_chars[d];
- if (--k == 0)
- a[ch++] = '.';
- break;
- }
- else
- {
- a[ch++] = number_chars[d];
- if (--k == 0)
- a[ch++] = '.';
- }
- }
- if (k > 0)
- {
- if (expon >= 7 && k >= 4 && expon >= k)
- {
- /* Here we would have to print more than three zeroes
- followed by a decimal point and another zero. It
- makes more sense to use scientific notation. */
- /* Adjust k to what it would have been if we had chosen
- scientific notation from the beginning. */
- k -= expon;
- /* k will now be <= 0, with magnitude equal to the number of
- digits that we printed which should now be put after the
- decimal point. */
- /* Insert a decimal point */
- memmove (a + ch + k + 1, a + ch + k, -k);
- a[ch + k] = '.';
- ch++;
- show_exp = 1;
- }
- else
- {
- for (; k > 0; k--)
- a[ch++] = '0';
- a[ch++] = '.';
- }
- }
- if (k == 0)
- a[ch++] = '0';
- if (show_exp)
- {
- a[ch++] = 'e';
- ch += scm_iint2str (expon, radix, a + ch);
- }
- mpz_clears (f, r, s, mplus, mminus, hi, digit, NULL);
- }
- return ch;
- }
- static size_t
- icmplx2str (double real, double imag, char *str, int radix)
- {
- size_t i;
- double sgn;
-
- i = idbl2str (real, str, radix);
- #ifdef HAVE_COPYSIGN
- sgn = copysign (1.0, imag);
- #else
- sgn = imag;
- #endif
- /* Don't output a '+' for negative numbers or for Inf and
- NaN. They will provide their own sign. */
- if (sgn >= 0 && isfinite (imag))
- str[i++] = '+';
- i += idbl2str (imag, &str[i], radix);
- str[i++] = 'i';
- return i;
- }
- static size_t
- iflo2str (SCM flt, char *str, int radix)
- {
- size_t i;
- if (SCM_REALP (flt))
- i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
- else
- i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
- str, radix);
- return i;
- }
- /* convert a intmax_t to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iint2str (intmax_t num, int rad, char *p)
- {
- if (num < 0)
- {
- *p++ = '-';
- return scm_iuint2str (-num, rad, p) + 1;
- }
- else
- return scm_iuint2str (num, rad, p);
- }
- /* convert a intmax_t to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iuint2str (uintmax_t num, int rad, char *p)
- {
- size_t j = 1;
- size_t i;
- uintmax_t n = num;
- if (rad < 2 || rad > 36)
- scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
- for (n /= rad; n > 0; n /= rad)
- j++;
- i = j;
- n = num;
- while (i--)
- {
- int d = n % rad;
- n /= rad;
- p[i] = number_chars[d];
- }
- return j;
- }
- SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
- (SCM n, SCM radix),
- "Return a string holding the external representation of the\n"
- "number @var{n} in the given @var{radix}. If @var{n} is\n"
- "inexact, a radix of 10 will be used.")
- #define FUNC_NAME s_scm_number_to_string
- {
- int base;
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_signed_integer (radix, 2, 36);
- if (SCM_I_INUMP (n))
- {
- char num_buf [SCM_INTBUFLEN];
- size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
- return scm_from_latin1_stringn (num_buf, length);
- }
- else if (SCM_BIGP (n))
- {
- char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
- size_t len = strlen (str);
- void (*freefunc) (void *, size_t);
- SCM ret;
- mp_get_memory_functions (NULL, NULL, &freefunc);
- scm_remember_upto_here_1 (n);
- ret = scm_from_latin1_stringn (str, len);
- freefunc (str, len + 1);
- return ret;
- }
- else if (SCM_FRACTIONP (n))
- {
- return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
- scm_from_latin1_string ("/"),
- scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
- }
- else if (SCM_INEXACTP (n))
- {
- char num_buf [FLOBUFLEN];
- return scm_from_latin1_stringn (num_buf, iflo2str (n, num_buf, base));
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- /* These print routines used to be stubbed here so that scm_repl.c
- wouldn't need SCM_BIGDIG conditionals (pre GMP) */
- int
- scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_double (double val, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
- }
- int
- scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_complex (double real, double imag, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
- }
- int
- scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- SCM str;
- str = scm_number_to_string (sexp, SCM_UNDEFINED);
- scm_display (str, port);
- scm_remember_upto_here_1 (str);
- return !0;
- }
- int
- scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
- size_t len = strlen (str);
- void (*freefunc) (void *, size_t);
- mp_get_memory_functions (NULL, NULL, &freefunc);
- scm_remember_upto_here_1 (exp);
- scm_lfwrite (str, len, port);
- freefunc (str, len + 1);
- return !0;
- }
- /*** END nums->strs ***/
- /*** STRINGS -> NUMBERS ***/
- /* The following functions implement the conversion from strings to numbers.
- * The implementation somehow follows the grammar for numbers as it is given
- * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
- * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
- * points should be noted about the implementation:
- *
- * * Each function keeps a local index variable 'idx' that points at the
- * current position within the parsed string. The global index is only
- * updated if the function could parse the corresponding syntactic unit
- * successfully.
- *
- * * Similarly, the functions keep track of indicators of inexactness ('#',
- * '.' or exponents) using local variables ('hash_seen', 'x').
- *
- * * Sequences of digits are parsed into temporary variables holding fixnums.
- * Only if these fixnums would overflow, the result variables are updated
- * using the standard functions scm_add, scm_product, scm_divide etc. Then,
- * the temporary variables holding the fixnums are cleared, and the process
- * starts over again. If for example fixnums were able to store five decimal
- * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
- * and the result was computed as 12345 * 100000 + 67890. In other words,
- * only every five digits two bignum operations were performed.
- *
- * Notes on the handling of exactness specifiers:
- *
- * When parsing non-real complex numbers, we apply exactness specifiers on
- * per-component basis, as is done in PLT Scheme. For complex numbers
- * written in rectangular form, exactness specifiers are applied to the
- * real and imaginary parts before calling scm_make_rectangular. For
- * complex numbers written in polar form, exactness specifiers are applied
- * to the magnitude and angle before calling scm_make_polar.
- *
- * There are two kinds of exactness specifiers: forced and implicit. A
- * forced exactness specifier is a "#e" or "#i" prefix at the beginning of
- * the entire number, and applies to both components of a complex number.
- * "#e" causes each component to be made exact, and "#i" causes each
- * component to be made inexact. If no forced exactness specifier is
- * present, then the exactness of each component is determined
- * independently by the presence or absence of a decimal point or hash mark
- * within that component. If a decimal point or hash mark is present, the
- * component is made inexact, otherwise it is made exact.
- *
- * After the exactness specifiers have been applied to each component, they
- * are passed to either scm_make_rectangular or scm_make_polar to produce
- * the final result. Note that this will result in a real number if the
- * imaginary part, magnitude, or angle is an exact 0.
- *
- * For example, (string->number "#i5.0+0i") does the equivalent of:
- *
- * (make-rectangular (exact->inexact 5) (exact->inexact 0))
- */
- enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
- /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
- /* Caller is responsible for checking that the return value is in range
- for the given radix, which should be <= 36. */
- static unsigned int
- char_decimal_value (uint32_t c)
- {
- if (c >= (uint32_t) '0' && c <= (uint32_t) '9')
- return c - (uint32_t) '0';
- else
- {
- /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
- that's certainly above any valid decimal, so we take advantage of
- that to elide some tests. */
- unsigned int d = (unsigned int) uc_decimal_value (c);
- /* If that failed, try extended hexadecimals, then. Only accept ascii
- hexadecimals. */
- if (d >= 10U)
- {
- c = uc_tolower (c);
- if (c >= (uint32_t) 'a')
- d = c - (uint32_t)'a' + 10U;
- }
- return d;
- }
- }
- /* Parse the substring of MEM starting at *P_IDX for an unsigned integer
- in base RADIX. Upon success, return the unsigned integer and update
- *P_IDX and *P_EXACTNESS accordingly. Return #f on failure. */
- static SCM
- mem2uinteger (SCM mem, unsigned int *p_idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- unsigned int hash_seen = 0;
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM result;
- char c;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return SCM_BOOL_F;
- c = scm_i_string_ref (mem, idx);
- digit_value = char_decimal_value (c);
- if (digit_value >= radix)
- return SCM_BOOL_F;
- idx++;
- result = SCM_I_MAKINUM (digit_value);
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (c == '#')
- {
- hash_seen = 1;
- digit_value = 0;
- }
- else if (hash_seen)
- break;
- else
- {
- digit_value = char_decimal_value (c);
- /* This check catches non-decimals in addition to out-of-range
- decimals. */
- if (digit_value >= radix)
- break;
- }
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
- {
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- shift = radix;
- add = digit_value;
- }
- else
- {
- shift = shift * radix;
- add = add * radix + digit_value;
- }
- };
- if (shift > 1)
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- *p_idx = idx;
- if (hash_seen)
- *p_exactness = INEXACT;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
- * covers the parts of the rules that start at a potential point. The value
- * of the digits up to the point have been parsed by the caller and are given
- * in variable result. The content of *p_exactness indicates, whether a hash
- * has already been seen in the digits before the point.
- */
- #define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
- static SCM
- mem2decimal_from_point (SCM result, SCM mem,
- unsigned int *p_idx, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- enum t_exactness x = *p_exactness;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return result;
- if (scm_i_string_ref (mem, idx) == '.')
- {
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM big_shift = SCM_INUM1;
- idx++;
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (uc_is_property_decimal_digit ((uint32_t) c))
- {
- if (x == INEXACT)
- return SCM_BOOL_F;
- else
- digit_value = DIGIT2UINT (c);
- }
- else if (c == '#')
- {
- x = INEXACT;
- digit_value = 0;
- }
- else
- break;
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
-
- shift = 10;
- add = digit_value;
- }
- else
- {
- shift = shift * 10;
- add = add * 10 + digit_value;
- }
- };
- if (add > 0)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- result = scm_sum (result, SCM_I_MAKINUM (add));
- }
- result = scm_divide (result, big_shift);
- /* We've seen a decimal point, thus the value is implicitly inexact. */
- x = INEXACT;
- }
- if (idx != len)
- {
- int sign = 1;
- unsigned int start;
- scm_t_wchar c;
- int exponent;
- SCM e;
- /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
- switch (scm_i_string_ref (mem, idx))
- {
- case 'd': case 'D':
- case 'e': case 'E':
- case 'f': case 'F':
- case 'l': case 'L':
- case 's': case 'S':
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- start = idx;
- c = scm_i_string_ref (mem, idx);
- if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- c = scm_i_string_ref (mem, idx);
- }
- else if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- c = scm_i_string_ref (mem, idx);
- }
- else
- sign = 1;
- if (!uc_is_property_decimal_digit ((uint32_t) c))
- return SCM_BOOL_F;
- idx++;
- exponent = DIGIT2UINT (c);
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (uc_is_property_decimal_digit ((uint32_t) c))
- {
- idx++;
- if (exponent <= SCM_MAXEXP)
- exponent = exponent * 10 + DIGIT2UINT (c);
- }
- else
- break;
- }
- if (exponent > ((sign == 1) ? SCM_MAXEXP : SCM_MAXEXP + DBL_DIG + 1))
- {
- size_t exp_len = idx - start;
- SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
- SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
- scm_out_of_range ("string->number", exp_num);
- }
- e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
- if (sign == 1)
- result = scm_product (result, e);
- else
- result = scm_divide (result, e);
- /* We've seen an exponent, thus the value is implicitly inexact. */
- x = INEXACT;
- break;
- default:
- break;
- }
- }
- *p_idx = idx;
- if (x == INEXACT)
- *p_exactness = x;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
- static SCM
- mem2ureal (SCM mem, unsigned int *p_idx,
- unsigned int radix, enum t_exactness forced_x,
- int allow_inf_or_nan)
- {
- unsigned int idx = *p_idx;
- SCM result;
- size_t len = scm_i_string_length (mem);
- /* Start off believing that the number will be exact. This changes
- to INEXACT if we see a decimal point or a hash. */
- enum t_exactness implicit_x = EXACT;
- if (idx == len)
- return SCM_BOOL_F;
- if (allow_inf_or_nan && forced_x != EXACT && idx+5 <= len)
- switch (scm_i_string_ref (mem, idx))
- {
- case 'i': case 'I':
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'n': case 'N':
- switch (scm_i_string_ref (mem, idx + 2))
- {
- case 'f': case 'F':
- if (scm_i_string_ref (mem, idx + 3) == '.'
- && scm_i_string_ref (mem, idx + 4) == '0')
- {
- *p_idx = idx+5;
- return scm_inf ();
- }
- }
- }
- case 'n': case 'N':
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'a': case 'A':
- switch (scm_i_string_ref (mem, idx + 2))
- {
- case 'n': case 'N':
- if (scm_i_string_ref (mem, idx + 3) == '.')
- {
- /* Cobble up the fractional part. We might want to
- set the NaN's mantissa from it. */
- idx += 4;
- if (!scm_is_eq (mem2uinteger (mem, &idx, 10, &implicit_x),
- SCM_INUM0))
- return SCM_BOOL_F;
-
- *p_idx = idx;
- return scm_nan ();
- }
- }
- }
- }
- if (scm_i_string_ref (mem, idx) == '.')
- {
- if (radix != 10)
- return SCM_BOOL_F;
- else if (idx + 1 == len)
- return SCM_BOOL_F;
- else if (!uc_is_property_decimal_digit ((uint32_t) scm_i_string_ref (mem, idx+1)))
- return SCM_BOOL_F;
- else
- result = mem2decimal_from_point (SCM_INUM0, mem,
- p_idx, &implicit_x);
- }
- else
- {
- SCM uinteger;
- uinteger = mem2uinteger (mem, &idx, radix, &implicit_x);
- if (scm_is_false (uinteger))
- return SCM_BOOL_F;
- if (idx == len)
- result = uinteger;
- else if (scm_i_string_ref (mem, idx) == '/')
- {
- SCM divisor;
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- divisor = mem2uinteger (mem, &idx, radix, &implicit_x);
- if (scm_is_false (divisor) || scm_is_eq (divisor, SCM_INUM0))
- return SCM_BOOL_F;
- /* both are int/big here, I assume */
- result = scm_i_make_ratio (uinteger, divisor);
- }
- else if (radix == 10)
- {
- result = mem2decimal_from_point (uinteger, mem, &idx, &implicit_x);
- if (scm_is_false (result))
- return SCM_BOOL_F;
- }
- else
- result = uinteger;
- *p_idx = idx;
- }
- switch (forced_x)
- {
- case EXACT:
- if (SCM_INEXACTP (result))
- return scm_inexact_to_exact (result);
- else
- return result;
- case INEXACT:
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- case NO_EXACTNESS:
- if (implicit_x == INEXACT)
- {
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- }
- else
- return result;
- }
- /* We should never get here */
- assert (0);
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- static SCM
- mem2complex (SCM mem, unsigned int idx,
- unsigned int radix, enum t_exactness forced_x)
- {
- scm_t_wchar c;
- int sign = 0;
- SCM ureal;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return SCM_BOOL_F;
- c = scm_i_string_ref (mem, idx);
- if (c == '+')
- {
- idx++;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- sign = -1;
- }
- if (idx == len)
- return SCM_BOOL_F;
- ureal = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (ureal))
- {
- /* input must be either +i or -i */
- if (sign == 0)
- return SCM_BOOL_F;
- if (scm_i_string_ref (mem, idx) == 'i'
- || scm_i_string_ref (mem, idx) == 'I')
- {
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
-
- return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
- }
- else
- return SCM_BOOL_F;
- }
- else
- {
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- ureal = scm_difference (ureal, SCM_UNDEFINED);
- if (idx == len)
- return ureal;
- c = scm_i_string_ref (mem, idx);
- switch (c)
- {
- case 'i': case 'I':
- /* either +<ureal>i or -<ureal>i */
- idx++;
- if (sign == 0)
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (SCM_INUM0, ureal);
- case '@':
- /* polar input: <real>@<real>. */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign;
- SCM angle;
- SCM result;
- c = scm_i_string_ref (mem, idx);
- if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- }
- else
- sign = 0;
- angle = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (angle))
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- angle = scm_difference (angle, SCM_UNDEFINED);
- result = scm_make_polar (ureal, angle);
- return result;
- }
- case '+':
- case '-':
- /* expecting input matching <real>[+-]<ureal>?i */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign = (c == '+') ? 1 : -1;
- SCM imag = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (imag))
- imag = SCM_I_MAKINUM (sign);
- else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
- imag = scm_difference (imag, SCM_UNDEFINED);
- if (idx == len)
- return SCM_BOOL_F;
- if (scm_i_string_ref (mem, idx) != 'i'
- && scm_i_string_ref (mem, idx) != 'I')
- return SCM_BOOL_F;
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (ureal, imag);
- }
- default:
- return SCM_BOOL_F;
- }
- }
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
- enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
- SCM
- scm_i_string_to_number (SCM mem, unsigned int default_radix)
- {
- unsigned int idx = 0;
- unsigned int radix = NO_RADIX;
- enum t_exactness forced_x = NO_EXACTNESS;
- size_t len = scm_i_string_length (mem);
- /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
- while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
- {
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'b': case 'B':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DUAL;
- break;
- case 'd': case 'D':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DEC;
- break;
- case 'i': case 'I':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = INEXACT;
- break;
- case 'e': case 'E':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = EXACT;
- break;
- case 'o': case 'O':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = OCT;
- break;
- case 'x': case 'X':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = HEX;
- break;
- default:
- return SCM_BOOL_F;
- }
- idx += 2;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- if (radix == NO_RADIX)
- radix = default_radix;
- return mem2complex (mem, idx, radix, forced_x);
- }
- SCM
- scm_c_locale_stringn_to_number (const char* mem, size_t len,
- unsigned int default_radix)
- {
- SCM str = scm_from_locale_stringn (mem, len);
- return scm_i_string_to_number (str, default_radix);
- }
- SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
- (SCM string, SCM radix),
- "Return a number of the maximally precise representation\n"
- "expressed by the given @var{string}. @var{radix} must be an\n"
- "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
- "is a default radix that may be overridden by an explicit radix\n"
- "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
- "supplied, then the default radix is 10. If string is not a\n"
- "syntactically valid notation for a number, then\n"
- "@code{string->number} returns @code{#f}.")
- #define FUNC_NAME s_scm_string_to_number
- {
- SCM answer;
- unsigned int base;
- SCM_VALIDATE_STRING (1, string);
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_unsigned_integer (radix, 2, INT_MAX);
- answer = scm_i_string_to_number (string, base);
- scm_remember_upto_here_1 (string);
- return answer;
- }
- #undef FUNC_NAME
- /*** END strs->nums ***/
- SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_number_p
- {
- return scm_from_bool (SCM_NUMBERP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
- "otherwise. Note that the sets of real, rational and integer\n"
- "values form subsets of the set of complex numbers, i. e. the\n"
- "predicate will also be fulfilled if @var{x} is a real,\n"
- "rational or integer number.")
- #define FUNC_NAME s_scm_complex_p
- {
- /* all numbers are complex. */
- return scm_number_p (x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of real numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_real_p
- {
- return scm_from_bool
- (SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of rational numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_rational_p
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x))
- return SCM_BOOL_T;
- else if (SCM_REALP (x))
- /* due to their limited precision, finite floating point numbers are
- rational as well. (finite means neither infinity nor a NaN) */
- return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an integer number,\n"
- "else return @code{#f}.")
- #define FUNC_NAME s_scm_integer_p
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return SCM_BOOL_T;
- else if (SCM_REALP (x))
- {
- double val = SCM_REAL_VALUE (x);
- return scm_from_bool (!isinf (val) && (val == floor (val)));
- }
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_exact_integer_p, "exact-integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact integer number,\n"
- "else return @code{#f}.")
- #define FUNC_NAME s_scm_exact_integer_p
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return SCM_BOOL_T;
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM scm_i_num_eq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if all parameters are numerically equal.")
- #define FUNC_NAME s_scm_i_num_eq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_num_eq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_num_eq_p (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_num_eq_p (SCM x, SCM y)
- {
- again:
- if (SCM_I_INUMP (x))
- {
- scm_t_signed_bits xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_signed_bits yy = SCM_I_INUM (y);
- return scm_from_bool (xx == yy);
- }
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- {
- /* On a 32-bit system an inum fits a double, we can cast the inum
- to a double and compare.
- But on a 64-bit system an inum is bigger than a double and
- casting it to a double (call that dxx) will round.
- Although dxx will not in general be equal to xx, dxx will
- always be an integer and within a factor of 2 of xx, so if
- dxx==yy, we know that yy is an integer and fits in
- scm_t_signed_bits. So we cast yy to scm_t_signed_bits and
- compare with plain xx.
- An alternative (for any size system actually) would be to check
- yy is an integer (with floor) and is in range of an inum
- (compare against appropriate powers of 2) then test
- xx==(scm_t_signed_bits)yy. It's just a matter of which
- casts/comparisons might be fastest or easiest for the cpu. */
- double yy = SCM_REAL_VALUE (y);
- return scm_from_bool ((double) xx == yy
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || xx == (scm_t_signed_bits) yy));
- }
- else if (SCM_COMPLEXP (y))
- {
- /* see comments with inum/real above */
- double ry = SCM_COMPLEX_REAL (y);
- return scm_from_bool ((double) xx == ry
- && 0.0 == SCM_COMPLEX_IMAG (y)
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || xx == (scm_t_signed_bits) ry));
- }
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_BOOL_F;
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- {
- int cmp;
- if (isnan (SCM_REAL_VALUE (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_COMPLEXP (y))
- {
- int cmp;
- if (0.0 != SCM_COMPLEX_IMAG (y))
- return SCM_BOOL_F;
- if (isnan (SCM_COMPLEX_REAL (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else if (SCM_REALP (x))
- {
- double xx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- {
- /* see comments with inum/real above */
- scm_t_signed_bits yy = SCM_I_INUM (y);
- return scm_from_bool (xx == (double) yy
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || (scm_t_signed_bits) xx == yy));
- }
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (isnan (xx))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- return scm_from_bool (xx == SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool ((xx == SCM_COMPLEX_REAL (y))
- && (0.0 == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- if (isnan (xx) || isinf (xx))
- return SCM_BOOL_F;
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* see comments with inum/real above */
- double rx = SCM_COMPLEX_REAL (x);
- scm_t_signed_bits yy = SCM_I_INUM (y);
- return scm_from_bool (rx == (double) yy
- && 0.0 == SCM_COMPLEX_IMAG (x)
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || (scm_t_signed_bits) rx == yy));
- }
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (0.0 != SCM_COMPLEX_IMAG (x))
- return SCM_BOOL_F;
- if (isnan (SCM_COMPLEX_REAL (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
- && (SCM_COMPLEX_IMAG (x) == 0.0));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
- && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- double xx;
- if (SCM_COMPLEX_IMAG (x) != 0.0)
- return SCM_BOOL_F;
- xx = SCM_COMPLEX_REAL (x);
- if (isnan (xx) || isinf (xx))
- return SCM_BOOL_F;
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_BOOL_F;
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- if (isnan (yy) || isinf (yy))
- return SCM_BOOL_F;
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_COMPLEXP (y))
- {
- double yy;
- if (SCM_COMPLEX_IMAG (y) != 0.0)
- return SCM_BOOL_F;
- yy = SCM_COMPLEX_REAL (y);
- if (isnan (yy) || isinf(yy))
- return SCM_BOOL_F;
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_fraction_equalp (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
- s_scm_i_num_eq_p);
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1,
- s_scm_i_num_eq_p);
- }
- /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
- done are good for inums, but for bignums an answer can almost always be
- had by just examining a few high bits of the operands, as done by GMP in
- mpq_cmp. flonum/frac compares likewise, but with the slight complication
- of the float exponent to take into account. */
- SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "increasing.")
- #define FUNC_NAME s_scm_i_num_less_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_less_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_less_p (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_less_p (SCM x, SCM y)
- {
- again:
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- return scm_from_bool (xx < yy);
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (sgn > 0);
- }
- else if (SCM_REALP (y))
- {
- /* We can safely take the ceiling of y without changing the
- result of x<y, given that x is an integer. */
- double yy = ceil (SCM_REAL_VALUE (y));
- /* In the following comparisons, it's important that the right
- hand side always be a power of 2, so that it can be
- losslessly converted to a double even on 64-bit
- machines. */
- if (yy >= (double) (SCM_MOST_POSITIVE_FIXNUM+1))
- return SCM_BOOL_T;
- else if (!(yy > (double) SCM_MOST_NEGATIVE_FIXNUM))
- /* The condition above is carefully written to include the
- case where yy==NaN. */
- return SCM_BOOL_F;
- else
- /* yy is a finite integer that fits in an inum. */
- return scm_from_bool (xx < (scm_t_inum) yy);
- }
- else if (SCM_FRACTIONP (y))
- {
- /* "x < a/b" becomes "x*b < a" */
- int_frac:
- x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
- y = SCM_FRACTION_NUMERATOR (y);
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
- s_scm_i_num_less_p);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn < 0);
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (cmp < 0);
- }
- else if (SCM_REALP (y))
- {
- int cmp;
- if (isnan (SCM_REAL_VALUE (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (cmp < 0);
- }
- else if (SCM_FRACTIONP (y))
- goto int_frac;
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
- s_scm_i_num_less_p);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* We can safely take the floor of x without changing the
- result of x<y, given that y is an integer. */
- double xx = floor (SCM_REAL_VALUE (x));
- /* In the following comparisons, it's important that the right
- hand side always be a power of 2, so that it can be
- losslessly converted to a double even on 64-bit
- machines. */
- if (xx < (double) SCM_MOST_NEGATIVE_FIXNUM)
- return SCM_BOOL_T;
- else if (!(xx < (double) (SCM_MOST_POSITIVE_FIXNUM+1)))
- /* The condition above is carefully written to include the
- case where xx==NaN. */
- return SCM_BOOL_F;
- else
- /* xx is a finite integer that fits in an inum. */
- return scm_from_bool ((scm_t_inum) xx < SCM_I_INUM (y));
- }
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (isnan (SCM_REAL_VALUE (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (cmp > 0);
- }
- else if (SCM_REALP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- if (isnan (xx))
- return SCM_BOOL_F;
- if (isinf (xx))
- return scm_from_bool (xx < 0.0);
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
- s_scm_i_num_less_p);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y) || SCM_BIGP (y))
- {
- /* "a/b < y" becomes "a < y*b" */
- y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
- x = SCM_FRACTION_NUMERATOR (x);
- goto again;
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- if (isnan (yy))
- return SCM_BOOL_F;
- if (isinf (yy))
- return scm_from_bool (0.0 < yy);
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_FRACTIONP (y))
- {
- /* "a/b < c/d" becomes "a*d < c*b" */
- SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (y));
- SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
- SCM_FRACTION_DENOMINATOR (x));
- x = new_x;
- y = new_y;
- goto again;
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
- s_scm_i_num_less_p);
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG1,
- s_scm_i_num_less_p);
- }
- SCM scm_i_num_gr_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "decreasing.")
- #define FUNC_NAME s_scm_i_num_gr_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_gr_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_gr_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_gr_p
- SCM
- scm_gr_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
- else
- return scm_less_p (y, x);
- }
- #undef FUNC_NAME
- SCM scm_i_num_leq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "non-decreasing.")
- #define FUNC_NAME s_scm_i_num_leq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_leq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_leq_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_leq_p
- SCM
- scm_leq_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
- else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
- return SCM_BOOL_F;
- else
- return scm_not (scm_less_p (y, x));
- }
- #undef FUNC_NAME
- SCM scm_i_num_geq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "non-increasing.")
- #define FUNC_NAME s_scm_i_num_geq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_geq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_geq_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_geq_p
- SCM
- scm_geq_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
- else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
- return SCM_BOOL_F;
- else
- return scm_not (scm_less_p (x, y));
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_zero_p, "zero?", 1, 0, 0,
- (SCM z),
- "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
- "zero.")
- #define FUNC_NAME s_scm_zero_p
- {
- if (SCM_I_INUMP (z))
- return scm_from_bool (scm_is_eq (z, SCM_INUM0));
- else if (SCM_BIGP (z))
- return SCM_BOOL_F;
- else if (SCM_REALP (z))
- return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
- else if (SCM_COMPLEXP (z))
- return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
- && SCM_COMPLEX_IMAG (z) == 0.0);
- else if (SCM_FRACTIONP (z))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_zero_p, z, SCM_ARG1, s_scm_zero_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_positive_p, "positive?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
- "zero.")
- #define FUNC_NAME s_scm_positive_p
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) > 0);
- else if (SCM_BIGP (x))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn > 0);
- }
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_positive_p, x, SCM_ARG1, s_scm_positive_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_negative_p, "negative?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
- "zero.")
- #define FUNC_NAME s_scm_negative_p
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) < 0);
- else if (SCM_BIGP (x))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn < 0);
- }
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_negative_p, x, SCM_ARG1, s_scm_negative_p);
- }
- #undef FUNC_NAME
- /* scm_min and scm_max return an inexact when either argument is inexact, as
- required by r5rs. On that basis, for exact/inexact combinations the
- exact is converted to inexact to compare and possibly return. This is
- unlike scm_less_p above which takes some trouble to preserve all bits in
- its test, such trouble is not required for min and max. */
- SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the maximum of all parameter values.")
- #define FUNC_NAME s_scm_i_max
- {
- while (!scm_is_null (rest))
- { x = scm_max (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_max (x, y);
- }
- #undef FUNC_NAME
-
- #define s_max s_scm_i_max
- #define g_max g_scm_i_max
- SCM
- scm_max (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_max, s_max);
- else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
- return x;
- else
- return scm_wta_dispatch_1 (g_max, x, SCM_ARG1, s_max);
- }
-
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- return (xx < yy) ? y : x;
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return (sgn < 0) ? x : y;
- }
- else if (SCM_REALP (y))
- {
- double xxd = xx;
- double yyd = SCM_REAL_VALUE (y);
- if (xxd > yyd)
- return scm_i_from_double (xxd);
- /* If y is a NaN, then "==" is false and we return the NaN */
- else if (SCM_LIKELY (!(xxd == yyd)))
- return y;
- /* Handle signed zeroes properly */
- else if (xx == 0)
- return flo0;
- else
- return y;
- }
- else if (SCM_FRACTIONP (y))
- {
- use_less:
- return (scm_is_false (scm_less_p (x, y)) ? x : y);
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn < 0) ? y : x;
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return (cmp > 0) ? x : y;
- }
- else if (SCM_REALP (y))
- {
- /* if y==NaN then xx>yy is false, so we return the NaN y */
- double xx, yy;
- big_real:
- xx = scm_i_big2dbl (x);
- yy = SCM_REAL_VALUE (y);
- return (xx > yy ? scm_i_from_double (xx) : y);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- double xxd = SCM_REAL_VALUE (x);
- double yyd = yy;
- if (yyd > xxd)
- return scm_i_from_double (yyd);
- /* If x is a NaN, then "==" is false and we return the NaN */
- else if (SCM_LIKELY (!(xxd == yyd)))
- return x;
- /* Handle signed zeroes properly */
- else if (yy == 0)
- return flo0;
- else
- return x;
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_real;
- }
- else if (SCM_REALP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- double yy = SCM_REAL_VALUE (y);
- /* For purposes of max: nan > +inf.0 > everything else,
- per the R6RS errata */
- if (xx > yy)
- return x;
- else if (SCM_LIKELY (xx < yy))
- return y;
- /* If neither (xx > yy) nor (xx < yy), then
- either they're equal or one is a NaN */
- else if (SCM_UNLIKELY (xx != yy))
- return (xx != xx) ? x : y; /* Return the NaN */
- /* xx == yy, but handle signed zeroes properly */
- else if (copysign (1.0, yy) < 0.0)
- return x;
- else
- return y;
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- double xx = SCM_REAL_VALUE (x);
- return (xx < yy) ? scm_i_from_double (yy) : x;
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- goto use_less;
- }
- else if (SCM_BIGP (y))
- {
- goto use_less;
- }
- else if (SCM_REALP (y))
- {
- double xx = scm_i_fraction2double (x);
- /* if y==NaN then ">" is false, so we return the NaN y */
- return (xx > SCM_REAL_VALUE (y)) ? scm_i_from_double (xx) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else
- return scm_wta_dispatch_2 (g_max, x, y, SCM_ARG1, s_max);
- }
- SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the minimum of all parameter values.")
- #define FUNC_NAME s_scm_i_min
- {
- while (!scm_is_null (rest))
- { x = scm_min (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_min (x, y);
- }
- #undef FUNC_NAME
-
- #define s_min s_scm_i_min
- #define g_min g_scm_i_min
- SCM
- scm_min (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_min, s_min);
- else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
- return x;
- else
- return scm_wta_dispatch_1 (g_min, x, SCM_ARG1, s_min);
- }
-
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- return (xx < yy) ? x : y;
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return (sgn < 0) ? y : x;
- }
- else if (SCM_REALP (y))
- {
- double z = xx;
- /* if y==NaN then "<" is false and we return NaN */
- return (z < SCM_REAL_VALUE (y)) ? scm_i_from_double (z) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- use_less:
- return (scm_is_false (scm_less_p (x, y)) ? y : x);
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn < 0) ? x : y;
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return (cmp > 0) ? y : x;
- }
- else if (SCM_REALP (y))
- {
- /* if y==NaN then xx<yy is false, so we return the NaN y */
- double xx, yy;
- big_real:
- xx = scm_i_big2dbl (x);
- yy = SCM_REAL_VALUE (y);
- return (xx < yy ? scm_i_from_double (xx) : y);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- double z = SCM_I_INUM (y);
- /* if x==NaN then "<" is false and we return NaN */
- return (z < SCM_REAL_VALUE (x)) ? scm_i_from_double (z) : x;
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_real;
- }
- else if (SCM_REALP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- double yy = SCM_REAL_VALUE (y);
- /* For purposes of min: nan < -inf.0 < everything else,
- per the R6RS errata */
- if (xx < yy)
- return x;
- else if (SCM_LIKELY (xx > yy))
- return y;
- /* If neither (xx < yy) nor (xx > yy), then
- either they're equal or one is a NaN */
- else if (SCM_UNLIKELY (xx != yy))
- return (xx != xx) ? x : y; /* Return the NaN */
- /* xx == yy, but handle signed zeroes properly */
- else if (copysign (1.0, xx) < 0.0)
- return x;
- else
- return y;
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- double xx = SCM_REAL_VALUE (x);
- return (yy < xx) ? scm_i_from_double (yy) : x;
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- goto use_less;
- }
- else if (SCM_BIGP (y))
- {
- goto use_less;
- }
- else if (SCM_REALP (y))
- {
- double xx = scm_i_fraction2double (x);
- /* if y==NaN then "<" is false, so we return the NaN y */
- return (xx < SCM_REAL_VALUE (y)) ? scm_i_from_double (xx) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else
- return scm_wta_dispatch_2 (g_min, x, y, SCM_ARG1, s_min);
- }
- SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the sum of all parameter values. Return 0 if called without\n"
- "any parameters." )
- #define FUNC_NAME s_scm_i_sum
- {
- while (!scm_is_null (rest))
- { x = scm_sum (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_sum (x, y);
- }
- #undef FUNC_NAME
-
- #define s_sum s_scm_i_sum
- #define g_sum g_scm_i_sum
- SCM
- scm_sum (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_NUMBERP (x)) return x;
- if (SCM_UNBNDP (x)) return SCM_INUM0;
- return scm_wta_dispatch_1 (g_sum, x, SCM_ARG1, s_sum);
- }
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- scm_t_inum yy = SCM_I_INUM (y);
- scm_t_inum z = xx + yy;
- return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_inum2big (z);
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto add_big_inum;
- }
- else if (SCM_REALP (y))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- return scm_i_from_double (xx + SCM_REAL_VALUE (y));
- }
- else if (SCM_COMPLEXP (y))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_inum inum;
- int bigsgn;
- add_big_inum:
- inum = SCM_I_INUM (y);
- if (inum == 0)
- return x;
- bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- if (inum < 0)
- {
- SCM result = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
- scm_remember_upto_here_1 (x);
- /* we know the result will have to be a bignum */
- if (bigsgn == -1)
- return result;
- return scm_i_normbig (result);
- }
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
- scm_remember_upto_here_1 (x);
- /* we know the result will have to be a bignum */
- if (bigsgn == 1)
- return result;
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- mpz_add (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- /* we know the result will have to be a bignum */
- if (sgn_x == sgn_y)
- return result;
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_i_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
- + SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
- scm_remember_upto_here_1 (y);
- return scm_i_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_BIGP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
- + SCM_COMPLEX_REAL (x));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a/b + c/d = (ad + bc) / bd */
- return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
- scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else
- return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARG1, s_sum);
- }
- SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}+1}.")
- #define FUNC_NAME s_scm_oneplus
- {
- return scm_sum (x, SCM_INUM1);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
- "the sum of all but the first argument are subtracted from the first\n"
- "argument.")
- #define FUNC_NAME s_scm_i_difference
- {
- while (!scm_is_null (rest))
- { x = scm_difference (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_difference (x, y);
- }
- #undef FUNC_NAME
-
- #define s_difference s_scm_i_difference
- #define g_difference g_scm_i_difference
- SCM
- scm_difference (SCM x, SCM y)
- #define FUNC_NAME s_difference
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_difference, s_difference);
- else
- if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = -SCM_I_INUM (x);
- if (SCM_FIXABLE (xx))
- return SCM_I_MAKINUM (xx);
- else
- return scm_i_inum2big (xx);
- }
- else if (SCM_BIGP (x))
- /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
- bignum, but negating that gives a fixnum. */
- return scm_i_normbig (scm_i_clonebig (x, 0));
- else if (SCM_REALP (x))
- return scm_i_from_double (-SCM_REAL_VALUE (x));
- else if (SCM_COMPLEXP (x))
- return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
- -SCM_COMPLEX_IMAG (x));
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio_already_reduced
- (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_difference, x, SCM_ARG1, s_difference);
- }
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- scm_t_inum yy = SCM_I_INUM (y);
- scm_t_inum z = xx - yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_inum2big (z);
- }
- else if (SCM_BIGP (y))
- {
- /* inum-x - big-y */
- scm_t_inum xx = SCM_I_INUM (x);
- if (xx == 0)
- {
- /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
- bignum, but negating that gives a fixnum. */
- return scm_i_normbig (scm_i_clonebig (y, 0));
- }
- else
- {
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM result = scm_i_mkbig ();
- if (xx >= 0)
- mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
- else
- {
- /* x - y == -(y + -x) */
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- }
- scm_remember_upto_here_1 (y);
- if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
- /* we know the result will have to be a bignum */
- return result;
- else
- return scm_i_normbig (result);
- }
- }
- else if (SCM_REALP (y))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- /*
- * We need to handle x == exact 0
- * specially because R6RS states that:
- * (- 0.0) ==> -0.0 and
- * (- 0.0 0.0) ==> 0.0
- * and the scheme compiler changes
- * (- 0.0) into (- 0 0.0)
- * So we need to treat (- 0 0.0) like (- 0.0).
- * At the C level, (-x) is different than (0.0 - x).
- * (0.0 - 0.0) ==> 0.0, but (- 0.0) ==> -0.0.
- */
- if (xx == 0)
- return scm_i_from_double (- SCM_REAL_VALUE (y));
- else
- return scm_i_from_double (xx - SCM_REAL_VALUE (y));
- }
- else if (SCM_COMPLEXP (y))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- /* We need to handle x == exact 0 specially.
- See the comment above (for SCM_REALP (y)) */
- if (xx == 0)
- return scm_c_make_rectangular (- SCM_COMPLEX_REAL (y),
- - SCM_COMPLEX_IMAG (y));
- else
- return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
- - SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- /* a - b/c = (ac - b) / c */
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* big-x - inum-y */
- scm_t_inum yy = SCM_I_INUM (y);
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- if (sgn_x == 0)
- return (SCM_FIXABLE (-yy) ?
- SCM_I_MAKINUM (-yy) : scm_from_inum (-yy));
- else
- {
- SCM result = scm_i_mkbig ();
- if (yy >= 0)
- mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
- else
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
- /* we know the result will have to be a bignum */
- return result;
- else
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM result = scm_i_mkbig ();
- mpz_sub (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- /* we know the result will have to be a bignum */
- if ((sgn_x == 1) && (sgn_y == -1))
- return result;
- if ((sgn_x == -1) && (sgn_y == 1))
- return result;
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_i_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
- - SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (x);
- return scm_i_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_BIGP (y))
- {
- double real_part = (SCM_COMPLEX_REAL (x)
- - mpz_get_d (SCM_I_BIG_MPZ (y)));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- /* a/b - c = (a - cb) / b */
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
- scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
- scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a/b - c/d = (ad - bc) / bd */
- return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
- scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else
- return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARG1, s_difference);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}-1}.")
- #define FUNC_NAME s_scm_oneminus
- {
- return scm_difference (x, SCM_INUM1);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the product of all arguments. If called without arguments,\n"
- "1 is returned.")
- #define FUNC_NAME s_scm_i_product
- {
- while (!scm_is_null (rest))
- { x = scm_product (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_product (x, y);
- }
- #undef FUNC_NAME
-
- #define s_product s_scm_i_product
- #define g_product g_scm_i_product
- SCM
- scm_product (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- return SCM_I_MAKINUM (1L);
- else if (SCM_NUMBERP (x))
- return x;
- else
- return scm_wta_dispatch_1 (g_product, x, SCM_ARG1, s_product);
- }
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx;
- xinum:
- xx = SCM_I_INUM (x);
- switch (xx)
- {
- case 1:
- /* exact1 is the universal multiplicative identity */
- return y;
- break;
- case 0:
- /* exact0 times a fixnum is exact0: optimize this case */
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- return SCM_INUM0;
- /* if the other argument is inexact, the result is inexact,
- and we must do the multiplication in order to handle
- infinities and NaNs properly. */
- else if (SCM_REALP (y))
- return scm_i_from_double (0.0 * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (0.0 * SCM_COMPLEX_REAL (y),
- 0.0 * SCM_COMPLEX_IMAG (y));
- /* we've already handled inexact numbers,
- so y must be exact, and we return exact0 */
- else if (SCM_NUMBERP (y))
- return SCM_INUM0;
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- break;
- }
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- #if SCM_I_FIXNUM_BIT < 32 && SCM_HAVE_T_INT64
- int64_t kk = xx * (int64_t) yy;
- if (SCM_FIXABLE (kk))
- return SCM_I_MAKINUM (kk);
- #else
- scm_t_inum axx = (xx > 0) ? xx : -xx;
- scm_t_inum ayy = (yy > 0) ? yy : -yy;
- if (SCM_MOST_POSITIVE_FIXNUM / axx >= ayy)
- return SCM_I_MAKINUM (xx * yy);
- #endif
- else
- {
- SCM result = scm_i_inum2big (xx);
- mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* There is one bignum which, when multiplied by negative one,
- becomes a non-zero fixnum: (1+ most-positive-fixum). Since
- we know the type of X and Y are numbers, delegate this
- special case to scm_difference. */
- if (xx == -1)
- return scm_difference (y, SCM_UNDEFINED);
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- return result;
- }
- }
- else if (SCM_REALP (y))
- return scm_i_from_double (xx * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
- xx * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- SCM_SWAP (x, y);
- goto xinum;
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return result;
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_i_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double z = mpz_get_d (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
- z * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- SCM_SWAP (x, y);
- goto xinum;
- }
- else if (SCM_BIGP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
- scm_remember_upto_here_1 (y);
- return scm_i_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
- SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- {
- SCM_SWAP (x, y);
- goto xinum;
- }
- else if (SCM_BIGP (y))
- {
- double z = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
- z * SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
- SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- {
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
- - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
- SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
- + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
- yy * SCM_COMPLEX_IMAG (x));
- }
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- {
- double xx = scm_i_fraction2double (x);
- return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
- xx * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- /* a/b * c/d = ac / bd */
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_NUMERATOR (y)),
- scm_product (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_DENOMINATOR (y)));
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else
- return scm_wta_dispatch_2 (g_product, x, y, SCM_ARG1, s_product);
- }
- #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
- || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
- #define ALLOW_DIVIDE_BY_ZERO
- /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
- #endif
- /* The code below for complex division is adapted from the GNU
- libstdc++, which adapted it from f2c's libF77, and is subject to
- this copyright: */
- /****************************************************************
- Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
- Permission to use, copy, modify, and distribute this software
- and its documentation for any purpose and without fee is hereby
- granted, provided that the above copyright notice appear in all
- copies and that both that the copyright notice and this
- permission notice and warranty disclaimer appear in supporting
- documentation, and that the names of AT&T Bell Laboratories or
- Bellcore or any of their entities not be used in advertising or
- publicity pertaining to distribution of the software without
- specific, written prior permission.
- AT&T and Bellcore disclaim all warranties with regard to this
- software, including all implied warranties of merchantability
- and fitness. In no event shall AT&T or Bellcore be liable for
- any special, indirect or consequential damages or any damages
- whatsoever resulting from loss of use, data or profits, whether
- in an action of contract, negligence or other tortious action,
- arising out of or in connection with the use or performance of
- this software.
- ****************************************************************/
- SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Divide the first argument by the product of the remaining\n"
- "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
- "returned.")
- #define FUNC_NAME s_scm_i_divide
- {
- while (!scm_is_null (rest))
- { x = scm_divide (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_divide (x, y);
- }
- #undef FUNC_NAME
-
- #define s_divide s_scm_i_divide
- #define g_divide g_scm_i_divide
- SCM
- scm_divide (SCM x, SCM y)
- #define FUNC_NAME s_divide
- {
- double a;
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_divide, s_divide);
- else if (SCM_I_INUMP (x))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (xx == 1 || xx == -1)
- return x;
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- else if (xx == 0)
- scm_num_overflow (s_divide);
- #endif
- else
- return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
- }
- else if (SCM_BIGP (x))
- return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
- else if (SCM_REALP (x))
- {
- double xx = SCM_REAL_VALUE (x);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (xx == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_i_from_double (1.0 / xx);
- }
- else if (SCM_COMPLEXP (x))
- {
- double r = SCM_COMPLEX_REAL (x);
- double i = SCM_COMPLEX_IMAG (x);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular (t / d, -1.0 / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (1.0 / d, -t / d);
- }
- }
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_divide, x, SCM_ARG1, s_divide);
- }
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (yy == 0)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- return scm_i_from_double ((double) xx / (double) yy);
- #endif
- }
- else if (xx % yy != 0)
- return scm_i_make_ratio (x, y);
- else
- {
- scm_t_inum z = xx / yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_inum2big (z);
- }
- }
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (x, y);
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- /* FIXME: Precision may be lost here due to:
- (1) The cast from 'scm_t_inum' to 'double'
- (2) Double rounding */
- return scm_i_from_double ((double) xx / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = xx;
- complex_div: /* y _must_ be a complex number */
- {
- double r = SCM_COMPLEX_REAL (y);
- double i = SCM_COMPLEX_IMAG (y);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular ((a * t) / d, -a / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (a / d, -(a * t) / d);
- }
- }
- }
- else if (SCM_FRACTIONP (y))
- /* a / b/c = ac / b */
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- if (yy == 0)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn == 0) ? scm_nan () : scm_inf ();
- #endif
- }
- else if (yy == 1)
- return x;
- else
- {
- /* FIXME: HMM, what are the relative performance issues here?
- We need to test. Is it faster on average to test
- divisible_p, then perform whichever operation, or is it
- faster to perform the integer div opportunistically and
- switch to real if there's a remainder? For now we take the
- middle ground: test, then if divisible, use the faster div
- func. */
- scm_t_inum abs_yy = yy < 0 ? -yy : yy;
- int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
- if (divisible_p)
- {
- SCM result = scm_i_mkbig ();
- mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
- scm_remember_upto_here_1 (x);
- if (yy < 0)
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- return scm_i_normbig (result);
- }
- else
- return scm_i_make_ratio (x, y);
- }
- }
- else if (SCM_BIGP (y))
- {
- int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- if (divisible_p)
- {
- SCM result = scm_i_mkbig ();
- mpz_divexact (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- return scm_i_make_ratio (x, y);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- /* FIXME: Precision may be lost here due to:
- (1) scm_i_big2dbl (2) Double rounding */
- return scm_i_from_double (scm_i_big2dbl (x) / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = scm_i_big2dbl (x);
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_REALP (x))
- {
- double rx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- /* FIXME: Precision may be lost here due to:
- (1) The cast from 'scm_t_inum' to 'double'
- (2) Double rounding */
- return scm_i_from_double (rx / (double) yy);
- }
- else if (SCM_BIGP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from bignum to double
- (2) Double rounding */
- double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_i_from_double (rx / dby);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_i_from_double (rx / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = rx;
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (rx / scm_i_fraction2double (y));
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_COMPLEXP (x))
- {
- double rx = SCM_COMPLEX_REAL (x);
- double ix = SCM_COMPLEX_IMAG (x);
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from 'scm_t_inum' to double
- (2) Double rounding */
- double d = yy;
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- }
- else if (SCM_BIGP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from bignum to double
- (2) Double rounding */
- double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (rx / dby, ix / dby);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_c_make_rectangular (rx / yy, ix / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- double ry = SCM_COMPLEX_REAL (y);
- double iy = SCM_COMPLEX_IMAG (y);
- if (fabs(ry) <= fabs(iy))
- {
- double t = ry / iy;
- double d = iy * (1.0 + t * t);
- return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
- }
- else
- {
- double t = iy / ry;
- double d = ry * (1.0 + t * t);
- return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
- }
- }
- else if (SCM_FRACTIONP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (rx / yy, ix / yy);
- }
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- scm_t_inum yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- }
- else if (SCM_BIGP (y))
- {
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- return scm_i_from_double (scm_i_fraction2double (x) / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- a = scm_i_fraction2double (x);
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else
- return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARG1, s_divide);
- }
- #undef FUNC_NAME
- double
- scm_c_truncate (double x)
- {
- return trunc (x);
- }
- /* scm_c_round is done using floor(x+0.5) to round to nearest and with
- half-way case (ie. when x is an integer plus 0.5) going upwards.
- Then half-way cases are identified and adjusted down if the
- round-upwards didn't give the desired even integer.
- "plus_half == result" identifies a half-way case. If plus_half, which is
- x + 0.5, is an integer then x must be an integer plus 0.5.
- An odd "result" value is identified with result/2 != floor(result/2).
- This is done with plus_half, since that value is ready for use sooner in
- a pipelined cpu, and we're already requiring plus_half == result.
- Note however that we need to be careful when x is big and already an
- integer. In that case "x+0.5" may round to an adjacent integer, causing
- us to return such a value, incorrectly. For instance if the hardware is
- in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
- (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
- returned. Or if the hardware is in round-upwards mode, then other bigger
- values like say x == 2^128 will see x+0.5 rounding up to the next higher
- representable value, 2^128+2^76 (or whatever), again incorrect.
- These bad roundings of x+0.5 are avoided by testing at the start whether
- x is already an integer. If it is then clearly that's the desired result
- already. And if it's not then the exponent must be small enough to allow
- an 0.5 to be represented, and hence added without a bad rounding. */
- double
- scm_c_round (double x)
- {
- double plus_half, result;
- if (x == floor (x))
- return x;
- plus_half = x + 0.5;
- result = floor (plus_half);
- /* Adjust so that the rounding is towards even. */
- return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
- ? result - 1
- : result);
- }
- SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards zero.")
- #define FUNC_NAME s_scm_truncate_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (trunc (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_truncate_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_truncate_number, x, SCM_ARG1,
- s_scm_truncate_number);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards the nearest integer. "
- "When it is exactly halfway between two integers, "
- "round towards the even one.")
- #define FUNC_NAME s_scm_round_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (scm_c_round (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_round_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_round_number, x, SCM_ARG1,
- s_scm_round_number);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards minus infinity.")
- #define FUNC_NAME s_scm_floor
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (floor (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_floor_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_floor, x, 1, s_scm_floor);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards infinity.")
- #define FUNC_NAME s_scm_ceiling
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (ceil (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_ceiling_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_expt, "expt", 2, 0, 0,
- (SCM x, SCM y),
- "Return @var{x} raised to the power of @var{y}.")
- #define FUNC_NAME s_scm_expt
- {
- if (scm_is_integer (y))
- {
- if (scm_is_true (scm_exact_p (y)))
- return scm_integer_expt (x, y);
- else
- {
- /* Here we handle the case where the exponent is an inexact
- integer. We make the exponent exact in order to use
- scm_integer_expt, and thus avoid the spurious imaginary
- parts that may result from round-off errors in the general
- e^(y log x) method below (for example when squaring a large
- negative number). In this case, we must return an inexact
- result for correctness. We also make the base inexact so
- that scm_integer_expt will use fast inexact arithmetic
- internally. Note that making the base inexact is not
- sufficient to guarantee an inexact result, because
- scm_integer_expt will return an exact 1 when the exponent
- is 0, even if the base is inexact. */
- return scm_exact_to_inexact
- (scm_integer_expt (scm_exact_to_inexact (x),
- scm_inexact_to_exact (y)));
- }
- }
- else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
- {
- return scm_i_from_double (pow (scm_to_double (x), scm_to_double (y)));
- }
- else if (scm_is_complex (x) && scm_is_complex (y))
- return scm_exp (scm_product (scm_log (x), y));
- else if (scm_is_complex (x))
- return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG2, s_scm_expt);
- else
- return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG1, s_scm_expt);
- }
- #undef FUNC_NAME
- /* sin/cos/tan/asin/acos/atan
- sinh/cosh/tanh/asinh/acosh/atanh
- Derived from "Transcen.scm", Complex trancendental functions for SCM.
- Written by Jerry D. Hedden, (C) FSF.
- See the file `COPYING' for terms applying to this program. */
- SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
- (SCM z),
- "Compute the sine of @var{z}.")
- #define FUNC_NAME s_scm_sin
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* sin(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (sin (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (sin (x) * cosh (y),
- cos (x) * sinh (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sin, z, 1, s_scm_sin);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
- (SCM z),
- "Compute the cosine of @var{z}.")
- #define FUNC_NAME s_scm_cos
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return SCM_INUM1; /* cos(exact0) = exact1 */
- else if (scm_is_real (z))
- return scm_i_from_double (cos (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (cos (x) * cosh (y),
- -sin (x) * sinh (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_cos, z, 1, s_scm_cos);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
- (SCM z),
- "Compute the tangent of @var{z}.")
- #define FUNC_NAME s_scm_tan
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* tan(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (tan (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y, w;
- x = 2.0 * SCM_COMPLEX_REAL (z);
- y = 2.0 * SCM_COMPLEX_IMAG (z);
- w = cos (x) + cosh (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (w == 0.0)
- scm_num_overflow (s_scm_tan);
- #endif
- return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
- }
- else
- return scm_wta_dispatch_1 (g_scm_tan, z, 1, s_scm_tan);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic sine of @var{z}.")
- #define FUNC_NAME s_scm_sinh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* sinh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (sinh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (sinh (x) * cos (y),
- cosh (x) * sin (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sinh, z, 1, s_scm_sinh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic cosine of @var{z}.")
- #define FUNC_NAME s_scm_cosh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return SCM_INUM1; /* cosh(exact0) = exact1 */
- else if (scm_is_real (z))
- return scm_i_from_double (cosh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (cosh (x) * cos (y),
- sinh (x) * sin (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_cosh, z, 1, s_scm_cosh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic tangent of @var{z}.")
- #define FUNC_NAME s_scm_tanh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* tanh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (tanh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y, w;
- x = 2.0 * SCM_COMPLEX_REAL (z);
- y = 2.0 * SCM_COMPLEX_IMAG (z);
- w = cosh (x) + cos (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (w == 0.0)
- scm_num_overflow (s_scm_tanh);
- #endif
- return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
- }
- else
- return scm_wta_dispatch_1 (g_scm_tanh, z, 1, s_scm_tanh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
- (SCM z),
- "Compute the arc sine of @var{z}.")
- #define FUNC_NAME s_scm_asin
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* asin(exact0) = exact0 */
- else if (scm_is_real (z))
- {
- double w = scm_to_double (z);
- if (w >= -1.0 && w <= 1.0)
- return scm_i_from_double (asin (w));
- else
- return scm_product (scm_c_make_rectangular (0, -1),
- scm_sys_asinh (scm_c_make_rectangular (0, w)));
- }
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_product (scm_c_make_rectangular (0, -1),
- scm_sys_asinh (scm_c_make_rectangular (-y, x)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_asin, z, 1, s_scm_asin);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
- (SCM z),
- "Compute the arc cosine of @var{z}.")
- #define FUNC_NAME s_scm_acos
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
- return SCM_INUM0; /* acos(exact1) = exact0 */
- else if (scm_is_real (z))
- {
- double w = scm_to_double (z);
- if (w >= -1.0 && w <= 1.0)
- return scm_i_from_double (acos (w));
- else
- return scm_sum (scm_i_from_double (acos (0.0)),
- scm_product (scm_c_make_rectangular (0, 1),
- scm_sys_asinh (scm_c_make_rectangular (0, w))));
- }
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_sum (scm_i_from_double (acos (0.0)),
- scm_product (scm_c_make_rectangular (0, 1),
- scm_sys_asinh (scm_c_make_rectangular (-y, x))));
- }
- else
- return scm_wta_dispatch_1 (g_scm_acos, z, 1, s_scm_acos);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
- (SCM z, SCM y),
- "With one argument, compute the arc tangent of @var{z}.\n"
- "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
- "using the sign of @var{z} and @var{y} to determine the quadrant.")
- #define FUNC_NAME s_scm_atan
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* atan(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (atan (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- {
- double v, w;
- v = SCM_COMPLEX_REAL (z);
- w = SCM_COMPLEX_IMAG (z);
- return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (-v, 1.0 - w),
- scm_c_make_rectangular ( v, 1.0 + w))),
- scm_c_make_rectangular (0, 2));
- }
- else
- return scm_wta_dispatch_1 (g_scm_atan, z, SCM_ARG1, s_scm_atan);
- }
- else if (scm_is_real (z))
- {
- if (scm_is_real (y))
- return scm_i_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
- else
- return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
- }
- else
- return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic sine of @var{z}.")
- #define FUNC_NAME s_scm_sys_asinh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* asinh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (asinh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_log (scm_sum (z,
- scm_sqrt (scm_sum (scm_product (z, z),
- SCM_INUM1))));
- else
- return scm_wta_dispatch_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic cosine of @var{z}.")
- #define FUNC_NAME s_scm_sys_acosh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
- return SCM_INUM0; /* acosh(exact1) = exact0 */
- else if (scm_is_real (z) && scm_to_double (z) >= 1.0)
- return scm_i_from_double (acosh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_log (scm_sum (z,
- scm_sqrt (scm_difference (scm_product (z, z),
- SCM_INUM1))));
- else
- return scm_wta_dispatch_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic tangent of @var{z}.")
- #define FUNC_NAME s_scm_sys_atanh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* atanh(exact0) = exact0 */
- else if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
- return scm_i_from_double (atanh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
- scm_difference (SCM_INUM1, z))),
- SCM_I_MAKINUM (2));
- else
- return scm_wta_dispatch_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_rectangular (double re, double im)
- {
- SCM z;
- z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
- "complex"));
- SCM_SET_CELL_TYPE (z, scm_tc16_complex);
- SCM_COMPLEX_REAL (z) = re;
- SCM_COMPLEX_IMAG (z) = im;
- return z;
- }
- SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
- (SCM real_part, SCM imaginary_part),
- "Return a complex number constructed of the given @var{real_part} "
- "and @var{imaginary_part} parts.")
- #define FUNC_NAME s_scm_make_rectangular
- {
- SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
- SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
- SCM_ARG2, FUNC_NAME, "real");
- /* Return a real if and only if the imaginary_part is an _exact_ 0 */
- if (scm_is_eq (imaginary_part, SCM_INUM0))
- return real_part;
- else
- return scm_c_make_rectangular (scm_to_double (real_part),
- scm_to_double (imaginary_part));
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_polar (double mag, double ang)
- {
- double s, c;
- /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
- use it on Glibc-based systems that have it (it's a GNU extension). See
- http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
- details. */
- #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
- sincos (ang, &s, &c);
- #elif (defined HAVE___SINCOS)
- __sincos (ang, &s, &c);
- #else
- s = sin (ang);
- c = cos (ang);
- #endif
- /* If s and c are NaNs, this indicates that the angle is a NaN,
- infinite, or perhaps simply too large to determine its value
- mod 2*pi. However, we know something that the floating-point
- implementation doesn't know: We know that s and c are finite.
- Therefore, if the magnitude is zero, return a complex zero.
- The reason we check for the NaNs instead of using this case
- whenever mag == 0.0 is because when the angle is known, we'd
- like to return the correct kind of non-real complex zero:
- +0.0+0.0i, -0.0+0.0i, -0.0-0.0i, or +0.0-0.0i, depending
- on which quadrant the angle is in.
- */
- if (SCM_UNLIKELY (isnan(s)) && isnan(c) && (mag == 0.0))
- return scm_c_make_rectangular (0.0, 0.0);
- else
- return scm_c_make_rectangular (mag * c, mag * s);
- }
- SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
- (SCM mag, SCM ang),
- "Return the complex number @var{mag} * e^(i * @var{ang}).")
- #define FUNC_NAME s_scm_make_polar
- {
- SCM_ASSERT_TYPE (scm_is_real (mag), mag, SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (ang), ang, SCM_ARG2, FUNC_NAME, "real");
- /* If mag is exact0, return exact0 */
- if (scm_is_eq (mag, SCM_INUM0))
- return SCM_INUM0;
- /* Return a real if ang is exact0 */
- else if (scm_is_eq (ang, SCM_INUM0))
- return mag;
- else
- return scm_c_make_polar (scm_to_double (mag), scm_to_double (ang));
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_real_part, "real-part", 1, 0, 0,
- (SCM z),
- "Return the real part of the number @var{z}.")
- #define FUNC_NAME s_scm_real_part
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (SCM_COMPLEX_REAL (z));
- else if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_REALP (z) || SCM_FRACTIONP (z))
- return z;
- else
- return scm_wta_dispatch_1 (g_scm_real_part, z, SCM_ARG1, s_scm_real_part);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_imag_part, "imag-part", 1, 0, 0,
- (SCM z),
- "Return the imaginary part of the number @var{z}.")
- #define FUNC_NAME s_scm_imag_part
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (SCM_COMPLEX_IMAG (z));
- else if (SCM_I_INUMP (z) || SCM_REALP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
- return SCM_INUM0;
- else
- return scm_wta_dispatch_1 (g_scm_imag_part, z, SCM_ARG1, s_scm_imag_part);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_numerator, "numerator", 1, 0, 0,
- (SCM z),
- "Return the numerator of the number @var{z}.")
- #define FUNC_NAME s_scm_numerator
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z))
- return z;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_NUMERATOR (z);
- else if (SCM_REALP (z))
- {
- double zz = SCM_REAL_VALUE (z);
- if (zz == floor (zz))
- /* Handle -0.0 and infinities in accordance with R6RS
- flnumerator, and optimize handling of integers. */
- return z;
- else
- return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_numerator, z, SCM_ARG1, s_scm_numerator);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_denominator, "denominator", 1, 0, 0,
- (SCM z),
- "Return the denominator of the number @var{z}.")
- #define FUNC_NAME s_scm_denominator
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z))
- return SCM_INUM1;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_DENOMINATOR (z);
- else if (SCM_REALP (z))
- {
- double zz = SCM_REAL_VALUE (z);
- if (zz == floor (zz))
- /* Handle infinities in accordance with R6RS fldenominator, and
- optimize handling of integers. */
- return scm_i_from_double (1.0);
- else
- return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_denominator, z, SCM_ARG1,
- s_scm_denominator);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_magnitude, "magnitude", 1, 0, 0,
- (SCM z),
- "Return the magnitude of the number @var{z}. This is the same as\n"
- "@code{abs} for real arguments, but also allows complex numbers.")
- #define FUNC_NAME s_scm_magnitude
- {
- if (SCM_I_INUMP (z))
- {
- scm_t_inum zz = SCM_I_INUM (z);
- if (zz >= 0)
- return z;
- else if (SCM_POSFIXABLE (-zz))
- return SCM_I_MAKINUM (-zz);
- else
- return scm_i_inum2big (-zz);
- }
- else if (SCM_BIGP (z))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- if (sgn < 0)
- return scm_i_clonebig (z, 0);
- else
- return z;
- }
- else if (SCM_REALP (z))
- return scm_i_from_double (fabs (SCM_REAL_VALUE (z)));
- else if (SCM_COMPLEXP (z))
- return scm_i_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
- else if (SCM_FRACTIONP (z))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
- return z;
- return scm_i_make_ratio_already_reduced
- (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (z));
- }
- else
- return scm_wta_dispatch_1 (g_scm_magnitude, z, SCM_ARG1,
- s_scm_magnitude);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_angle, "angle", 1, 0, 0,
- (SCM z),
- "Return the angle of the complex number @var{z}.")
- #define FUNC_NAME s_scm_angle
- {
- /* atan(0,-1) is pi and it'd be possible to have that as a constant like
- flo0 to save allocating a new flonum with scm_i_from_double each time.
- But if atan2 follows the floating point rounding mode, then the value
- is not a constant. Maybe it'd be close enough though. */
- if (SCM_I_INUMP (z))
- {
- if (SCM_I_INUM (z) >= 0)
- return flo0;
- else
- return scm_i_from_double (atan2 (0.0, -1.0));
- }
- else if (SCM_BIGP (z))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- if (sgn < 0)
- return scm_i_from_double (atan2 (0.0, -1.0));
- else
- return flo0;
- }
- else if (SCM_REALP (z))
- {
- double x = SCM_REAL_VALUE (z);
- if (copysign (1.0, x) > 0.0)
- return flo0;
- else
- return scm_i_from_double (atan2 (0.0, -1.0));
- }
- else if (SCM_COMPLEXP (z))
- return scm_i_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
- else if (SCM_FRACTIONP (z))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
- return flo0;
- else return scm_i_from_double (atan2 (0.0, -1.0));
- }
- else
- return scm_wta_dispatch_1 (g_scm_angle, z, SCM_ARG1, s_scm_angle);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_exact_to_inexact, "exact->inexact", 1, 0, 0,
- (SCM z),
- "Convert the number @var{z} to its inexact representation.\n")
- #define FUNC_NAME s_scm_exact_to_inexact
- {
- if (SCM_I_INUMP (z))
- return scm_i_from_double ((double) SCM_I_INUM (z));
- else if (SCM_BIGP (z))
- return scm_i_from_double (scm_i_big2dbl (z));
- else if (SCM_FRACTIONP (z))
- return scm_i_from_double (scm_i_fraction2double (z));
- else if (SCM_INEXACTP (z))
- return z;
- else
- return scm_wta_dispatch_1 (g_scm_exact_to_inexact, z, 1,
- s_scm_exact_to_inexact);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
- (SCM z),
- "Return an exact number that is numerically closest to @var{z}.")
- #define FUNC_NAME s_scm_inexact_to_exact
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
- return z;
- else
- {
- double val;
- if (SCM_REALP (z))
- val = SCM_REAL_VALUE (z);
- else if (SCM_COMPLEXP (z) && SCM_COMPLEX_IMAG (z) == 0.0)
- val = SCM_COMPLEX_REAL (z);
- else
- return scm_wta_dispatch_1 (g_scm_inexact_to_exact, z, 1,
- s_scm_inexact_to_exact);
- if (!SCM_LIKELY (isfinite (val)))
- SCM_OUT_OF_RANGE (1, z);
- else if (val == 0.0)
- return SCM_INUM0;
- else
- {
- int expon;
- SCM numerator;
- numerator = scm_i_dbl2big (ldexp (frexp (val, &expon),
- DBL_MANT_DIG));
- expon -= DBL_MANT_DIG;
- if (expon < 0)
- {
- int shift = mpz_scan1 (SCM_I_BIG_MPZ (numerator), 0);
- if (shift > -expon)
- shift = -expon;
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (numerator),
- SCM_I_BIG_MPZ (numerator),
- shift);
- expon += shift;
- }
- numerator = scm_i_normbig (numerator);
- if (expon < 0)
- return scm_i_make_ratio_already_reduced
- (numerator, left_shift_exact_integer (SCM_INUM1, -expon));
- else if (expon > 0)
- return left_shift_exact_integer (numerator, expon);
- else
- return numerator;
- }
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
- (SCM x, SCM eps),
- "Returns the @emph{simplest} rational number differing\n"
- "from @var{x} by no more than @var{eps}.\n"
- "\n"
- "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
- "exact result when both its arguments are exact. Thus, you might need\n"
- "to use @code{inexact->exact} on the arguments.\n"
- "\n"
- "@lisp\n"
- "(rationalize (inexact->exact 1.2) 1/100)\n"
- "@result{} 6/5\n"
- "@end lisp")
- #define FUNC_NAME s_scm_rationalize
- {
- SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (eps), eps, SCM_ARG2, FUNC_NAME, "real");
- if (SCM_UNLIKELY (!scm_is_exact (eps) || !scm_is_exact (x)))
- {
- if (SCM_UNLIKELY (scm_is_false (scm_finite_p (eps))))
- {
- if (scm_is_false (scm_nan_p (eps)) && scm_is_true (scm_finite_p (x)))
- return flo0;
- else
- return scm_nan ();
- }
- else if (SCM_UNLIKELY (scm_is_false (scm_finite_p (x))))
- return x;
- else
- return scm_exact_to_inexact
- (scm_rationalize (scm_inexact_to_exact (x),
- scm_inexact_to_exact (eps)));
- }
- else
- {
- /* X and EPS are exact rationals.
- The code that follows is equivalent to the following Scheme code:
- (define (exact-rationalize x eps)
- (let ((n1 (if (negative? x) -1 1))
- (x (abs x))
- (eps (abs eps)))
- (let ((lo (- x eps))
- (hi (+ x eps)))
- (if (<= lo 0)
- 0
- (let loop ((nlo (numerator lo)) (dlo (denominator lo))
- (nhi (numerator hi)) (dhi (denominator hi))
- (n1 n1) (d1 0) (n2 0) (d2 1))
- (let-values (((qlo rlo) (floor/ nlo dlo))
- ((qhi rhi) (floor/ nhi dhi)))
- (let ((n0 (+ n2 (* n1 qlo)))
- (d0 (+ d2 (* d1 qlo))))
- (cond ((zero? rlo) (/ n0 d0))
- ((< qlo qhi) (/ (+ n0 n1) (+ d0 d1)))
- (else (loop dhi rhi dlo rlo n0 d0 n1 d1))))))))))
- */
- int n1_init = 1;
- SCM lo, hi;
- eps = scm_abs (eps);
- if (scm_is_true (scm_negative_p (x)))
- {
- n1_init = -1;
- x = scm_difference (x, SCM_UNDEFINED);
- }
- /* X and EPS are non-negative exact rationals. */
- lo = scm_difference (x, eps);
- hi = scm_sum (x, eps);
- if (scm_is_false (scm_positive_p (lo)))
- /* If zero is included in the interval, return it.
- It is the simplest rational of all. */
- return SCM_INUM0;
- else
- {
- SCM result;
- mpz_t n0, d0, n1, d1, n2, d2;
- mpz_t nlo, dlo, nhi, dhi;
- mpz_t qlo, rlo, qhi, rhi;
- /* LO and HI are positive exact rationals. */
- /* Our approach here follows the method described by Alan
- Bawden in a message entitled "(rationalize x y)" on the
- rrrs-authors mailing list, dated 16 Feb 1988 14:08:28 EST:
- http://groups.csail.mit.edu/mac/ftpdir/scheme-mail/HTML/rrrs-1988/msg00063.html
- In brief, we compute the continued fractions of the two
- endpoints of the interval (LO and HI). The continued
- fraction of the result consists of the common prefix of the
- continued fractions of LO and HI, plus one final term. The
- final term of the result is the smallest integer contained
- in the interval between the remainders of LO and HI after
- the common prefix has been removed.
- The following code lazily computes the continued fraction
- representations of LO and HI, and simultaneously converts
- the continued fraction of the result into a rational
- number. We use MPZ functions directly to avoid type
- dispatch and GC allocation during the loop. */
- mpz_inits (n0, d0, n1, d1, n2, d2,
- nlo, dlo, nhi, dhi,
- qlo, rlo, qhi, rhi,
- NULL);
- /* The variables N1, D1, N2 and D2 are used to compute the
- resulting rational from its continued fraction. At each
- step, N2/D2 and N1/D1 are the last two convergents. They
- are normally initialized to 0/1 and 1/0, respectively.
- However, if we negated X then we must negate the result as
- well, and we do that by initializing N1/D1 to -1/0. */
- mpz_set_si (n1, n1_init);
- mpz_set_ui (d1, 0);
- mpz_set_ui (n2, 0);
- mpz_set_ui (d2, 1);
- /* The variables NLO, DLO, NHI, and DHI are used to lazily
- compute the continued fraction representations of LO and HI
- using Euclid's algorithm. Initially, NLO/DLO == LO and
- NHI/DHI == HI. */
- scm_to_mpz (scm_numerator (lo), nlo);
- scm_to_mpz (scm_denominator (lo), dlo);
- scm_to_mpz (scm_numerator (hi), nhi);
- scm_to_mpz (scm_denominator (hi), dhi);
- /* As long as we're using exact arithmetic, the following loop
- is guaranteed to terminate. */
- for (;;)
- {
- /* Compute the next terms (QLO and QHI) of the continued
- fractions of LO and HI. */
- mpz_fdiv_qr (qlo, rlo, nlo, dlo); /* QLO <-- floor (NLO/DLO), RLO <-- NLO - QLO * DLO */
- mpz_fdiv_qr (qhi, rhi, nhi, dhi); /* QHI <-- floor (NHI/DHI), RHI <-- NHI - QHI * DHI */
- /* The next term of the result will be either QLO or
- QLO+1. Here we compute the next convergent of the
- result based on the assumption that QLO is the next
- term. If that turns out to be wrong, we'll adjust
- these later by adding N1 to N0 and D1 to D0. */
- mpz_set (n0, n2); mpz_addmul (n0, n1, qlo); /* N0 <-- N2 + (QLO * N1) */
- mpz_set (d0, d2); mpz_addmul (d0, d1, qlo); /* D0 <-- D2 + (QLO * D1) */
- /* We stop iterating when an integer is contained in the
- interval between the remainders NLO/DLO and NHI/DHI.
- There are two cases to consider: either NLO/DLO == QLO
- is an integer (indicated by RLO == 0), or QLO < QHI. */
- if (mpz_sgn (rlo) == 0 || mpz_cmp (qlo, qhi) != 0)
- break;
- /* Efficiently shuffle variables around for the next
- iteration. First we shift the recent convergents. */
- mpz_swap (n2, n1); mpz_swap (n1, n0); /* N2 <-- N1 <-- N0 */
- mpz_swap (d2, d1); mpz_swap (d1, d0); /* D2 <-- D1 <-- D0 */
- /* The following shuffling is a bit confusing, so some
- explanation is in order. Conceptually, we're doing a
- couple of things here. After substracting the floor of
- NLO/DLO, the remainder is RLO/DLO. The rest of the
- continued fraction will represent the remainder's
- reciprocal DLO/RLO. Similarly for the HI endpoint.
- So in the next iteration, the new endpoints will be
- DLO/RLO and DHI/RHI. However, when we take the
- reciprocals of these endpoints, their order is
- switched. So in summary, we want NLO/DLO <-- DHI/RHI
- and NHI/DHI <-- DLO/RLO. */
- mpz_swap (nlo, dhi); mpz_swap (dhi, rlo); /* NLO <-- DHI <-- RLO */
- mpz_swap (nhi, dlo); mpz_swap (dlo, rhi); /* NHI <-- DLO <-- RHI */
- }
- /* There is now an integer in the interval [NLO/DLO NHI/DHI].
- The last term of the result will be the smallest integer in
- that interval, which is ceiling(NLO/DLO). We have already
- computed floor(NLO/DLO) in QLO, so now we adjust QLO to be
- equal to the ceiling. */
- if (mpz_sgn (rlo) != 0)
- {
- /* If RLO is non-zero, then NLO/DLO is not an integer and
- the next term will be QLO+1. QLO was used in the
- computation of N0 and D0 above. Here we adjust N0 and
- D0 to be based on QLO+1 instead of QLO. */
- mpz_add (n0, n0, n1); /* N0 <-- N0 + N1 */
- mpz_add (d0, d0, d1); /* D0 <-- D0 + D1 */
- }
- /* The simplest rational in the interval is N0/D0 */
- result = scm_i_make_ratio_already_reduced (scm_from_mpz (n0),
- scm_from_mpz (d0));
- mpz_clears (n0, d0, n1, d1, n2, d2,
- nlo, dlo, nhi, dhi,
- qlo, rlo, qhi, rhi,
- NULL);
- return result;
- }
- }
- }
- #undef FUNC_NAME
- /* conversion functions */
- int
- scm_is_integer (SCM val)
- {
- return scm_is_true (scm_integer_p (val));
- }
- int
- scm_is_exact_integer (SCM val)
- {
- return scm_is_true (scm_exact_integer_p (val));
- }
- int
- scm_is_signed_integer (SCM val, intmax_t min, intmax_t max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= min && n <= max;
- }
- else if (SCM_BIGP (val))
- {
- if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
- return 0;
- else if (min >= LONG_MIN && max <= LONG_MAX)
- {
- if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
- {
- long n = mpz_get_si (SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- else
- return 0;
- }
- else
- {
- uintmax_t abs_n;
- intmax_t n;
- size_t count;
- if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
- > CHAR_BIT*sizeof (uintmax_t))
- return 0;
-
- mpz_export (&abs_n, &count, 1, sizeof (uintmax_t), 0, 0,
- SCM_I_BIG_MPZ (val));
- if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
- {
- if (abs_n <= max)
- n = abs_n;
- else
- return 0;
- }
- else
- {
- /* Carefully avoid signed integer overflow. */
- if (min < 0 && abs_n - 1 <= -(min + 1))
- n = -1 - (intmax_t)(abs_n - 1);
- else
- return 0;
- }
- return n >= min && n <= max;
- }
- }
- else
- return 0;
- }
- int
- scm_is_unsigned_integer (SCM val, uintmax_t min, uintmax_t max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= 0 && ((uintmax_t)n) >= min && ((uintmax_t)n) <= max;
- }
- else if (SCM_BIGP (val))
- {
- if (max <= SCM_MOST_POSITIVE_FIXNUM)
- return 0;
- else if (max <= ULONG_MAX)
- {
- if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
- {
- unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- else
- return 0;
- }
- else
- {
- uintmax_t n;
- size_t count;
- if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
- return 0;
- if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
- > CHAR_BIT*sizeof (uintmax_t))
- return 0;
-
- mpz_export (&n, &count, 1, sizeof (uintmax_t), 0, 0,
- SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- }
- else
- return 0;
- }
- static void
- scm_i_range_error (SCM bad_val, SCM min, SCM max)
- {
- scm_error (scm_out_of_range_key,
- NULL,
- "Value out of range ~S to ~S: ~S",
- scm_list_3 (min, max, bad_val),
- scm_list_1 (bad_val));
- }
- #define TYPE intmax_t
- #define TYPE_MIN min
- #define TYPE_MAX max
- #define SIZEOF_TYPE 0
- #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, intmax_t min, intmax_t max)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
- #include "conv-integer.i.c"
- #define TYPE uintmax_t
- #define TYPE_MIN min
- #define TYPE_MAX max
- #define SIZEOF_TYPE 0
- #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, uintmax_t min, uintmax_t max)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
- #include "conv-uinteger.i.c"
- #define TYPE int8_t
- #define TYPE_MIN INT8_MIN
- #define TYPE_MAX INT8_MAX
- #define SIZEOF_TYPE 1
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
- #include "conv-integer.i.c"
- #define TYPE uint8_t
- #define TYPE_MIN 0
- #define TYPE_MAX UINT8_MAX
- #define SIZEOF_TYPE 1
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
- #include "conv-uinteger.i.c"
- #define TYPE int16_t
- #define TYPE_MIN INT16_MIN
- #define TYPE_MAX INT16_MAX
- #define SIZEOF_TYPE 2
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
- #include "conv-integer.i.c"
- #define TYPE uint16_t
- #define TYPE_MIN 0
- #define TYPE_MAX UINT16_MAX
- #define SIZEOF_TYPE 2
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
- #include "conv-uinteger.i.c"
- #define TYPE int32_t
- #define TYPE_MIN INT32_MIN
- #define TYPE_MAX INT32_MAX
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
- #include "conv-integer.i.c"
- #define TYPE uint32_t
- #define TYPE_MIN 0
- #define TYPE_MAX UINT32_MAX
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
- #include "conv-uinteger.i.c"
- #define TYPE scm_t_wchar
- #define TYPE_MIN (int32_t)-1
- #define TYPE_MAX (int32_t)0x10ffff
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
- #include "conv-integer.i.c"
- #define TYPE int64_t
- #define TYPE_MIN INT64_MIN
- #define TYPE_MAX INT64_MAX
- #define SIZEOF_TYPE 8
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
- #include "conv-integer.i.c"
- #define TYPE uint64_t
- #define TYPE_MIN 0
- #define TYPE_MAX UINT64_MAX
- #define SIZEOF_TYPE 8
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
- #include "conv-uinteger.i.c"
- void
- scm_to_mpz (SCM val, mpz_t rop)
- {
- if (SCM_I_INUMP (val))
- mpz_set_si (rop, SCM_I_INUM (val));
- else if (SCM_BIGP (val))
- mpz_set (rop, SCM_I_BIG_MPZ (val));
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
- }
- SCM
- scm_from_mpz (mpz_t val)
- {
- return scm_i_mpz2num (val);
- }
- int
- scm_is_real (SCM val)
- {
- return scm_is_true (scm_real_p (val));
- }
- int
- scm_is_rational (SCM val)
- {
- return scm_is_true (scm_rational_p (val));
- }
- double
- scm_to_double (SCM val)
- {
- if (SCM_I_INUMP (val))
- return SCM_I_INUM (val);
- else if (SCM_BIGP (val))
- return scm_i_big2dbl (val);
- else if (SCM_FRACTIONP (val))
- return scm_i_fraction2double (val);
- else if (SCM_REALP (val))
- return SCM_REAL_VALUE (val);
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "real number");
- }
- SCM
- scm_from_double (double val)
- {
- return scm_i_from_double (val);
- }
- int
- scm_is_complex (SCM val)
- {
- return scm_is_true (scm_complex_p (val));
- }
- double
- scm_c_real_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_REAL (z);
- else
- {
- /* Use the scm_real_part to get proper error checking and
- dispatching.
- */
- return scm_to_double (scm_real_part (z));
- }
- }
- double
- scm_c_imag_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_IMAG (z);
- else
- {
- /* Use the scm_imag_part to get proper error checking and
- dispatching. The result will almost always be 0.0, but not
- always.
- */
- return scm_to_double (scm_imag_part (z));
- }
- }
- double
- scm_c_magnitude (SCM z)
- {
- return scm_to_double (scm_magnitude (z));
- }
- double
- scm_c_angle (SCM z)
- {
- return scm_to_double (scm_angle (z));
- }
- int
- scm_is_number (SCM z)
- {
- return scm_is_true (scm_number_p (z));
- }
- /* Returns log(x * 2^shift) */
- static SCM
- log_of_shifted_double (double x, long shift)
- {
- double ans = log (fabs (x)) + shift * M_LN2;
- if (copysign (1.0, x) > 0.0)
- return scm_i_from_double (ans);
- else
- return scm_c_make_rectangular (ans, M_PI);
- }
- /* Returns log(n), for exact integer n */
- static SCM
- log_of_exact_integer (SCM n)
- {
- if (SCM_I_INUMP (n))
- return log_of_shifted_double (SCM_I_INUM (n), 0);
- else if (SCM_BIGP (n))
- {
- long expon;
- double signif = scm_i_big2dbl_2exp (n, &expon);
- return log_of_shifted_double (signif, expon);
- }
- else
- scm_wrong_type_arg ("log_of_exact_integer", SCM_ARG1, n);
- }
- /* Returns log(n/d), for exact non-zero integers n and d */
- static SCM
- log_of_fraction (SCM n, SCM d)
- {
- long n_size = scm_to_long (scm_integer_length (n));
- long d_size = scm_to_long (scm_integer_length (d));
- if (labs (n_size - d_size) > 1)
- return (scm_difference (log_of_exact_integer (n),
- log_of_exact_integer (d)));
- else if (scm_is_false (scm_negative_p (n)))
- return scm_i_from_double
- (log1p (scm_i_divide2double (scm_difference (n, d), d)));
- else
- return scm_c_make_rectangular
- (log1p (scm_i_divide2double (scm_difference (scm_abs (n), d),
- d)),
- M_PI);
- }
- /* In the following functions we dispatch to the real-arg funcs like log()
- when we know the arg is real, instead of just handing everything to
- clog() for instance. This is in case clog() doesn't optimize for a
- real-only case, and because we have to test SCM_COMPLEXP anyway so may as
- well use it to go straight to the applicable C func. */
- SCM_PRIMITIVE_GENERIC (scm_log, "log", 1, 0, 0,
- (SCM z),
- "Return the natural logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG \
- && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log (hypot (re, im)),
- atan2 (im, re));
- #endif
- }
- else if (SCM_REALP (z))
- return log_of_shifted_double (SCM_REAL_VALUE (z), 0);
- else if (SCM_I_INUMP (z))
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (scm_is_eq (z, SCM_INUM0))
- scm_num_overflow (s_scm_log);
- #endif
- return log_of_shifted_double (SCM_I_INUM (z), 0);
- }
- else if (SCM_BIGP (z))
- return log_of_exact_integer (z);
- else if (SCM_FRACTIONP (z))
- return log_of_fraction (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z));
- else
- return scm_wta_dispatch_1 (g_scm_log, z, 1, s_scm_log);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_log10, "log10", 1, 0, 0,
- (SCM z),
- "Return the base 10 logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log10
- {
- if (SCM_COMPLEXP (z))
- {
- /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
- clog() and a multiply by M_LOG10E, rather than the fallback
- log10+hypot+atan2.) */
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
- && defined SCM_COMPLEX_VALUE
- return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log10 (hypot (re, im)),
- M_LOG10E * atan2 (im, re));
- #endif
- }
- else if (SCM_REALP (z) || SCM_I_INUMP (z))
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (scm_is_eq (z, SCM_INUM0))
- scm_num_overflow (s_scm_log10);
- #endif
- {
- double re = scm_to_double (z);
- double l = log10 (fabs (re));
- if (copysign (1.0, re) > 0.0)
- return scm_i_from_double (l);
- else
- return scm_c_make_rectangular (l, M_LOG10E * M_PI);
- }
- }
- else if (SCM_BIGP (z))
- return scm_product (flo_log10e, log_of_exact_integer (z));
- else if (SCM_FRACTIONP (z))
- return scm_product (flo_log10e,
- log_of_fraction (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z)));
- else
- return scm_wta_dispatch_1 (g_scm_log10, z, 1, s_scm_log10);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_exp, "exp", 1, 0, 0,
- (SCM z),
- "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
- "base of natural logarithms (2.71828@dots{}).")
- #define FUNC_NAME s_scm_exp
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CEXP \
- && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
- #else
- return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
- SCM_COMPLEX_IMAG (z));
- #endif
- }
- else if (SCM_NUMBERP (z))
- {
- /* When z is a negative bignum the conversion to double overflows,
- giving -infinity, but that's ok, the exp is still 0.0. */
- return scm_i_from_double (exp (scm_to_double (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_exp, z, 1, s_scm_exp);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_exact_integer_sqrt, "exact-integer-sqrt", 1, 0, 0,
- (SCM k),
- "Return two exact non-negative integers @var{s} and @var{r}\n"
- "such that @math{@var{k} = @var{s}^2 + @var{r}} and\n"
- "@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.\n"
- "An error is raised if @var{k} is not an exact non-negative integer.\n"
- "\n"
- "@lisp\n"
- "(exact-integer-sqrt 10) @result{} 3 and 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_exact_integer_sqrt
- {
- SCM s, r;
- scm_exact_integer_sqrt (k, &s, &r);
- return scm_values_2 (s, r);
- }
- #undef FUNC_NAME
- void
- scm_exact_integer_sqrt (SCM k, SCM *sp, SCM *rp)
- {
- if (SCM_LIKELY (SCM_I_INUMP (k)))
- {
- if (SCM_I_INUM (k) > 0)
- {
- mp_limb_t kk, ss, rr;
- kk = SCM_I_INUM (k);
- if (mpn_sqrtrem (&ss, &rr, &kk, 1) == 0)
- rr = 0;
- *sp = SCM_I_MAKINUM (ss);
- *rp = SCM_I_MAKINUM (rr);
- }
- else if (SCM_I_INUM (k) == 0)
- *sp = *rp = SCM_INUM0;
- else
- scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
- "exact non-negative integer");
- }
- else if (SCM_LIKELY (SCM_BIGP (k)))
- {
- SCM s, r;
- if (mpz_sgn (SCM_I_BIG_MPZ (k)) < 0)
- scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
- "exact non-negative integer");
- s = scm_i_mkbig ();
- r = scm_i_mkbig ();
- mpz_sqrtrem (SCM_I_BIG_MPZ (s), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- *sp = scm_i_normbig (s);
- *rp = scm_i_normbig (r);
- }
- else
- scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
- "exact non-negative integer");
- }
- /* Return true iff K is a perfect square.
- K must be an exact integer. */
- static int
- exact_integer_is_perfect_square (SCM k)
- {
- int result;
- if (SCM_LIKELY (SCM_I_INUMP (k)))
- {
- if (SCM_I_INUM (k) > 0)
- {
- mp_limb_t kk = SCM_I_INUM (k);
- result = mpn_perfect_square_p (&kk, 1);
- }
- else
- result = (SCM_I_INUM (k) == 0);
- }
- else
- {
- result = mpz_perfect_square_p (SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- }
- return result;
- }
- /* Return the floor of the square root of K.
- K must be an exact non-negative integer. */
- static SCM
- exact_integer_floor_square_root (SCM k)
- {
- if (SCM_LIKELY (SCM_I_INUMP (k)))
- {
- if (SCM_I_INUM (k) > 0)
- {
- mp_limb_t kk, ss, rr;
- kk = SCM_I_INUM (k);
- mpn_sqrtrem (&ss, &rr, &kk, 1);
- return SCM_I_MAKINUM (ss);
- }
- else
- return SCM_INUM0;
- }
- else
- {
- SCM s;
- s = scm_i_mkbig ();
- mpz_sqrt (SCM_I_BIG_MPZ (s), SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- return scm_i_normbig (s);
- }
- }
- SCM_PRIMITIVE_GENERIC (scm_sqrt, "sqrt", 1, 0, 0,
- (SCM z),
- "Return the square root of @var{z}. Of the two possible roots\n"
- "(positive and negative), the one with positive real part\n"
- "is returned, or if that's zero then a positive imaginary part.\n"
- "Thus,\n"
- "\n"
- "@example\n"
- "(sqrt 9.0) @result{} 3.0\n"
- "(sqrt -9.0) @result{} 0.0+3.0i\n"
- "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
- "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
- "@end example")
- #define FUNC_NAME s_scm_sqrt
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
- && defined SCM_COMPLEX_VALUE
- return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_polar (sqrt (hypot (re, im)),
- 0.5 * atan2 (im, re));
- #endif
- }
- else if (SCM_NUMBERP (z))
- {
- if (SCM_I_INUMP (z))
- {
- scm_t_inum x = SCM_I_INUM (z);
- if (SCM_LIKELY (x >= 0))
- {
- if (SCM_LIKELY (SCM_I_FIXNUM_BIT < DBL_MANT_DIG
- || x < (1L << (DBL_MANT_DIG - 1))))
- {
- double root = sqrt (x);
- /* If 0 <= x < 2^(DBL_MANT_DIG-1) and sqrt(x) is an
- integer, then the result is exact. */
- if (root == floor (root))
- return SCM_I_MAKINUM ((scm_t_inum) root);
- else
- return scm_i_from_double (root);
- }
- else
- {
- mp_limb_t xx, root, rem;
- assert (x != 0);
- xx = x;
- if (mpn_perfect_square_p (&xx, 1))
- {
- mpn_sqrtrem (&root, &rem, &xx, 1);
- return SCM_I_MAKINUM (root);
- }
- }
- }
- }
- else if (SCM_BIGP (z))
- {
- if (mpz_perfect_square_p (SCM_I_BIG_MPZ (z)))
- {
- SCM root = scm_i_mkbig ();
- mpz_sqrt (SCM_I_BIG_MPZ (root), SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- return scm_i_normbig (root);
- }
- else
- {
- long expon;
- double signif = scm_i_big2dbl_2exp (z, &expon);
- if (expon & 1)
- {
- signif *= 2;
- expon--;
- }
- if (signif < 0)
- return scm_c_make_rectangular
- (0.0, ldexp (sqrt (-signif), expon / 2));
- else
- return scm_i_from_double (ldexp (sqrt (signif), expon / 2));
- }
- }
- else if (SCM_FRACTIONP (z))
- {
- SCM n = SCM_FRACTION_NUMERATOR (z);
- SCM d = SCM_FRACTION_DENOMINATOR (z);
- if (exact_integer_is_perfect_square (n)
- && exact_integer_is_perfect_square (d))
- return scm_i_make_ratio_already_reduced
- (exact_integer_floor_square_root (n),
- exact_integer_floor_square_root (d));
- else
- {
- double xx = scm_i_divide2double (n, d);
- double abs_xx = fabs (xx);
- long shift = 0;
- if (SCM_UNLIKELY (abs_xx > DBL_MAX || abs_xx < DBL_MIN))
- {
- shift = (scm_to_long (scm_integer_length (n))
- - scm_to_long (scm_integer_length (d))) / 2;
- if (shift > 0)
- d = left_shift_exact_integer (d, 2 * shift);
- else
- n = left_shift_exact_integer (n, -2 * shift);
- xx = scm_i_divide2double (n, d);
- }
- if (xx < 0)
- return scm_c_make_rectangular (0.0, ldexp (sqrt (-xx), shift));
- else
- return scm_i_from_double (ldexp (sqrt (xx), shift));
- }
- }
- /* Fallback method, when the cases above do not apply. */
- {
- double xx = scm_to_double (z);
- if (xx < 0)
- return scm_c_make_rectangular (0.0, sqrt (-xx));
- else
- return scm_i_from_double (sqrt (xx));
- }
- }
- else
- return scm_wta_dispatch_1 (g_scm_sqrt, z, 1, s_scm_sqrt);
- }
- #undef FUNC_NAME
- void
- scm_init_numbers ()
- {
- if (scm_install_gmp_memory_functions)
- mp_set_memory_functions (custom_gmp_malloc,
- custom_gmp_realloc,
- custom_gmp_free);
- mpz_init_set_si (z_negative_one, -1);
- /* It may be possible to tune the performance of some algorithms by using
- * the following constants to avoid the creation of bignums. Please, before
- * using these values, remember the two rules of program optimization:
- * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
- scm_c_define ("most-positive-fixnum",
- SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
- scm_c_define ("most-negative-fixnum",
- SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
- scm_add_feature ("complex");
- scm_add_feature ("inexact");
- flo0 = scm_i_from_double (0.0);
- flo_log10e = scm_i_from_double (M_LOG10E);
- exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
- {
- /* Set scm_i_divide2double_lo2b to (2 b^p - 1) */
- mpz_init_set_ui (scm_i_divide2double_lo2b, 1);
- mpz_mul_2exp (scm_i_divide2double_lo2b,
- scm_i_divide2double_lo2b,
- DBL_MANT_DIG + 1); /* 2 b^p */
- mpz_sub_ui (scm_i_divide2double_lo2b, scm_i_divide2double_lo2b, 1);
- }
- {
- /* Set dbl_minimum_normal_mantissa to b^{p-1} */
- mpz_init_set_ui (dbl_minimum_normal_mantissa, 1);
- mpz_mul_2exp (dbl_minimum_normal_mantissa,
- dbl_minimum_normal_mantissa,
- DBL_MANT_DIG - 1);
- }
- #include "numbers.x"
- }
|