123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579 |
- /* Convert a 'struct tm' to a time_t value.
- Copyright (C) 1993-2022 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Paul Eggert <eggert@twinsun.com>.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <https://www.gnu.org/licenses/>. */
- /* The following macros influence what gets defined when this file is compiled:
- Macro/expression Which gnulib module This compilation unit
- should define
- _LIBC (glibc proper) mktime
- NEED_MKTIME_WORKING mktime rpl_mktime
- || NEED_MKTIME_WINDOWS
- NEED_MKTIME_INTERNAL mktime-internal mktime_internal
- */
- #ifndef _LIBC
- # include <libc-config.h>
- #endif
- /* Assume that leap seconds are possible, unless told otherwise.
- If the host has a 'zic' command with a '-L leapsecondfilename' option,
- then it supports leap seconds; otherwise it probably doesn't. */
- #ifndef LEAP_SECONDS_POSSIBLE
- # define LEAP_SECONDS_POSSIBLE 1
- #endif
- #include <time.h>
- #include <errno.h>
- #include <limits.h>
- #include <stdbool.h>
- #include <stdlib.h>
- #include <string.h>
- #include <intprops.h>
- #include <verify.h>
- #ifndef NEED_MKTIME_INTERNAL
- # define NEED_MKTIME_INTERNAL 0
- #endif
- #ifndef NEED_MKTIME_WINDOWS
- # define NEED_MKTIME_WINDOWS 0
- #endif
- #ifndef NEED_MKTIME_WORKING
- # define NEED_MKTIME_WORKING 0
- #endif
- #include "mktime-internal.h"
- #if !defined _LIBC && (NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS)
- static void
- my_tzset (void)
- {
- # if NEED_MKTIME_WINDOWS
- /* Rectify the value of the environment variable TZ.
- There are four possible kinds of such values:
- - Traditional US time zone names, e.g. "PST8PDT". Syntax: see
- <https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/tzset>
- - Time zone names based on geography, that contain one or more
- slashes, e.g. "Europe/Moscow".
- - Time zone names based on geography, without slashes, e.g.
- "Singapore".
- - Time zone names that contain explicit DST rules. Syntax: see
- <https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03>
- The Microsoft CRT understands only the first kind. It produces incorrect
- results if the value of TZ is of the other kinds.
- But in a Cygwin environment, /etc/profile.d/tzset.sh sets TZ to a value
- of the second kind for most geographies, or of the first kind in a few
- other geographies. If it is of the second kind, neutralize it. For the
- Microsoft CRT, an absent or empty TZ means the time zone that the user
- has set in the Windows Control Panel.
- If the value of TZ is of the third or fourth kind -- Cygwin programs
- understand these syntaxes as well --, it does not matter whether we
- neutralize it or not, since these values occur only when a Cygwin user
- has set TZ explicitly; this case is 1. rare and 2. under the user's
- responsibility. */
- const char *tz = getenv ("TZ");
- if (tz != NULL && strchr (tz, '/') != NULL)
- _putenv ("TZ=");
- # else
- tzset ();
- # endif
- }
- # undef __tzset
- # define __tzset() my_tzset ()
- #endif
- #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL
- /* A signed type that can represent an integer number of years
- multiplied by four times the number of seconds in a year. It is
- needed when converting a tm_year value times the number of seconds
- in a year. The factor of four comes because these products need
- to be subtracted from each other, and sometimes with an offset
- added to them, and then with another timestamp added, without
- worrying about overflow.
- Much of the code uses long_int to represent __time64_t values, to
- lessen the hassle of dealing with platforms where __time64_t is
- unsigned, and because long_int should suffice to represent all
- __time64_t values that mktime can generate even on platforms where
- __time64_t is wider than the int components of struct tm. */
- #if INT_MAX <= LONG_MAX / 4 / 366 / 24 / 60 / 60
- typedef long int long_int;
- #else
- typedef long long int long_int;
- #endif
- verify (INT_MAX <= TYPE_MAXIMUM (long_int) / 4 / 366 / 24 / 60 / 60);
- /* Shift A right by B bits portably, by dividing A by 2**B and
- truncating towards minus infinity. B should be in the range 0 <= B
- <= LONG_INT_BITS - 2, where LONG_INT_BITS is the number of useful
- bits in a long_int. LONG_INT_BITS is at least 32.
- ISO C99 says that A >> B is implementation-defined if A < 0. Some
- implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
- right in the usual way when A < 0, so SHR falls back on division if
- ordinary A >> B doesn't seem to be the usual signed shift. */
- static long_int
- shr (long_int a, int b)
- {
- long_int one = 1;
- return (-one >> 1 == -1
- ? a >> b
- : (a + (a < 0)) / (one << b) - (a < 0));
- }
- /* Bounds for the intersection of __time64_t and long_int. */
- static long_int const mktime_min
- = ((TYPE_SIGNED (__time64_t)
- && TYPE_MINIMUM (__time64_t) < TYPE_MINIMUM (long_int))
- ? TYPE_MINIMUM (long_int) : TYPE_MINIMUM (__time64_t));
- static long_int const mktime_max
- = (TYPE_MAXIMUM (long_int) < TYPE_MAXIMUM (__time64_t)
- ? TYPE_MAXIMUM (long_int) : TYPE_MAXIMUM (__time64_t));
- #define EPOCH_YEAR 1970
- #define TM_YEAR_BASE 1900
- verify (TM_YEAR_BASE % 100 == 0);
- /* Is YEAR + TM_YEAR_BASE a leap year? */
- static bool
- leapyear (long_int year)
- {
- /* Don't add YEAR to TM_YEAR_BASE, as that might overflow.
- Also, work even if YEAR is negative. */
- return
- ((year & 3) == 0
- && (year % 100 != 0
- || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3)));
- }
- /* How many days come before each month (0-12). */
- #ifndef _LIBC
- static
- #endif
- const unsigned short int __mon_yday[2][13] =
- {
- /* Normal years. */
- { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
- /* Leap years. */
- { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
- };
- /* Do the values A and B differ according to the rules for tm_isdst?
- A and B differ if one is zero and the other positive. */
- static bool
- isdst_differ (int a, int b)
- {
- return (!a != !b) && (0 <= a) && (0 <= b);
- }
- /* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) -
- (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks
- were not adjusted between the timestamps.
- The YEAR values uses the same numbering as TP->tm_year. Values
- need not be in the usual range. However, YEAR1 - YEAR0 must not
- overflow even when multiplied by three times the number of seconds
- in a year, and likewise for YDAY1 - YDAY0 and three times the
- number of seconds in a day. */
- static long_int
- ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1,
- int year0, int yday0, int hour0, int min0, int sec0)
- {
- verify (-1 / 2 == 0);
- /* Compute intervening leap days correctly even if year is negative.
- Take care to avoid integer overflow here. */
- int a4 = shr (year1, 2) + shr (TM_YEAR_BASE, 2) - ! (year1 & 3);
- int b4 = shr (year0, 2) + shr (TM_YEAR_BASE, 2) - ! (year0 & 3);
- int a100 = (a4 + (a4 < 0)) / 25 - (a4 < 0);
- int b100 = (b4 + (b4 < 0)) / 25 - (b4 < 0);
- int a400 = shr (a100, 2);
- int b400 = shr (b100, 2);
- int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
- /* Compute the desired time without overflowing. */
- long_int years = year1 - year0;
- long_int days = 365 * years + yday1 - yday0 + intervening_leap_days;
- long_int hours = 24 * days + hour1 - hour0;
- long_int minutes = 60 * hours + min1 - min0;
- long_int seconds = 60 * minutes + sec1 - sec0;
- return seconds;
- }
- /* Return the average of A and B, even if A + B would overflow.
- Round toward positive infinity. */
- static long_int
- long_int_avg (long_int a, long_int b)
- {
- return shr (a, 1) + shr (b, 1) + ((a | b) & 1);
- }
- /* Return a long_int value corresponding to (YEAR-YDAY HOUR:MIN:SEC)
- minus *TP seconds, assuming no clock adjustments occurred between
- the two timestamps.
- YEAR and YDAY must not be so large that multiplying them by three times the
- number of seconds in a year (or day, respectively) would overflow long_int.
- *TP should be in the usual range. */
- static long_int
- tm_diff (long_int year, long_int yday, int hour, int min, int sec,
- struct tm const *tp)
- {
- return ydhms_diff (year, yday, hour, min, sec,
- tp->tm_year, tp->tm_yday,
- tp->tm_hour, tp->tm_min, tp->tm_sec);
- }
- /* Use CONVERT to convert T to a struct tm value in *TM. T must be in
- range for __time64_t. Return TM if successful, NULL (setting errno) on
- failure. */
- static struct tm *
- convert_time (struct tm *(*convert) (const __time64_t *, struct tm *),
- long_int t, struct tm *tm)
- {
- __time64_t x = t;
- return convert (&x, tm);
- }
- /* Use CONVERT to convert *T to a broken down time in *TP.
- If *T is out of range for conversion, adjust it so that
- it is the nearest in-range value and then convert that.
- A value is in range if it fits in both __time64_t and long_int.
- Return TP on success, NULL (setting errno) on failure. */
- static struct tm *
- ranged_convert (struct tm *(*convert) (const __time64_t *, struct tm *),
- long_int *t, struct tm *tp)
- {
- long_int t1 = (*t < mktime_min ? mktime_min
- : *t <= mktime_max ? *t : mktime_max);
- struct tm *r = convert_time (convert, t1, tp);
- if (r)
- {
- *t = t1;
- return r;
- }
- if (errno != EOVERFLOW)
- return NULL;
- long_int bad = t1;
- long_int ok = 0;
- struct tm oktm; oktm.tm_sec = -1;
- /* BAD is a known out-of-range value, and OK is a known in-range one.
- Use binary search to narrow the range between BAD and OK until
- they differ by 1. */
- while (true)
- {
- long_int mid = long_int_avg (ok, bad);
- if (mid == ok || mid == bad)
- break;
- if (convert_time (convert, mid, tp))
- ok = mid, oktm = *tp;
- else if (errno != EOVERFLOW)
- return NULL;
- else
- bad = mid;
- }
- if (oktm.tm_sec < 0)
- return NULL;
- *t = ok;
- *tp = oktm;
- return tp;
- }
- /* Convert *TP to a __time64_t value, inverting
- the monotonic and mostly-unit-linear conversion function CONVERT.
- Use *OFFSET to keep track of a guess at the offset of the result,
- compared to what the result would be for UTC without leap seconds.
- If *OFFSET's guess is correct, only one CONVERT call is needed.
- If successful, set *TP to the canonicalized struct tm;
- otherwise leave *TP alone, return ((time_t) -1) and set errno.
- This function is external because it is used also by timegm.c. */
- __time64_t
- __mktime_internal (struct tm *tp,
- struct tm *(*convert) (const __time64_t *, struct tm *),
- mktime_offset_t *offset)
- {
- struct tm tm;
- /* The maximum number of probes (calls to CONVERT) should be enough
- to handle any combinations of time zone rule changes, solar time,
- leap seconds, and oscillations around a spring-forward gap.
- POSIX.1 prohibits leap seconds, but some hosts have them anyway. */
- int remaining_probes = 6;
- /* Time requested. Copy it in case CONVERT modifies *TP; this can
- occur if TP is localtime's returned value and CONVERT is localtime. */
- int sec = tp->tm_sec;
- int min = tp->tm_min;
- int hour = tp->tm_hour;
- int mday = tp->tm_mday;
- int mon = tp->tm_mon;
- int year_requested = tp->tm_year;
- int isdst = tp->tm_isdst;
- /* 1 if the previous probe was DST. */
- int dst2 = 0;
- /* Ensure that mon is in range, and set year accordingly. */
- int mon_remainder = mon % 12;
- int negative_mon_remainder = mon_remainder < 0;
- int mon_years = mon / 12 - negative_mon_remainder;
- long_int lyear_requested = year_requested;
- long_int year = lyear_requested + mon_years;
- /* The other values need not be in range:
- the remaining code handles overflows correctly. */
- /* Calculate day of year from year, month, and day of month.
- The result need not be in range. */
- int mon_yday = ((__mon_yday[leapyear (year)]
- [mon_remainder + 12 * negative_mon_remainder])
- - 1);
- long_int lmday = mday;
- long_int yday = mon_yday + lmday;
- mktime_offset_t off = *offset;
- int negative_offset_guess;
- int sec_requested = sec;
- if (LEAP_SECONDS_POSSIBLE)
- {
- /* Handle out-of-range seconds specially,
- since ydhms_diff assumes every minute has 60 seconds. */
- if (sec < 0)
- sec = 0;
- if (59 < sec)
- sec = 59;
- }
- /* Invert CONVERT by probing. First assume the same offset as last
- time. */
- INT_SUBTRACT_WRAPV (0, off, &negative_offset_guess);
- long_int t0 = ydhms_diff (year, yday, hour, min, sec,
- EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0,
- negative_offset_guess);
- long_int t = t0, t1 = t0, t2 = t0;
- /* Repeatedly use the error to improve the guess. */
- while (true)
- {
- if (! ranged_convert (convert, &t, &tm))
- return -1;
- long_int dt = tm_diff (year, yday, hour, min, sec, &tm);
- if (dt == 0)
- break;
- if (t == t1 && t != t2
- && (tm.tm_isdst < 0
- || (isdst < 0
- ? dst2 <= (tm.tm_isdst != 0)
- : (isdst != 0) != (tm.tm_isdst != 0))))
- /* We can't possibly find a match, as we are oscillating
- between two values. The requested time probably falls
- within a spring-forward gap of size DT. Follow the common
- practice in this case, which is to return a time that is DT
- away from the requested time, preferring a time whose
- tm_isdst differs from the requested value. (If no tm_isdst
- was requested and only one of the two values has a nonzero
- tm_isdst, prefer that value.) In practice, this is more
- useful than returning -1. */
- goto offset_found;
- remaining_probes--;
- if (remaining_probes == 0)
- {
- __set_errno (EOVERFLOW);
- return -1;
- }
- t1 = t2, t2 = t, t += dt, dst2 = tm.tm_isdst != 0;
- }
- /* We have a match. Check whether tm.tm_isdst has the requested
- value, if any. */
- if (isdst_differ (isdst, tm.tm_isdst))
- {
- /* tm.tm_isdst has the wrong value. Look for a neighboring
- time with the right value, and use its UTC offset.
- Heuristic: probe the adjacent timestamps in both directions,
- looking for the desired isdst. If none is found within a
- reasonable duration bound, assume a one-hour DST difference.
- This should work for all real time zone histories in the tz
- database. */
- /* +1 if we wanted standard time but got DST, -1 if the reverse. */
- int dst_difference = (isdst == 0) - (tm.tm_isdst == 0);
- /* Distance between probes when looking for a DST boundary. In
- tzdata2003a, the shortest period of DST is 601200 seconds
- (e.g., America/Recife starting 2000-10-08 01:00), and the
- shortest period of non-DST surrounded by DST is 694800
- seconds (Africa/Tunis starting 1943-04-17 01:00). Use the
- minimum of these two values, so we don't miss these short
- periods when probing. */
- int stride = 601200;
- /* In TZDB 2021e, the longest period of DST (or of non-DST), in
- which the DST (or adjacent DST) difference is not one hour,
- is 457243209 seconds: e.g., America/Cambridge_Bay with leap
- seconds, starting 1965-10-31 00:00 in a switch from
- double-daylight time (-05) to standard time (-07), and
- continuing to 1980-04-27 02:00 in a switch from standard time
- (-07) to daylight time (-06). */
- int duration_max = 457243209;
- /* Search in both directions, so the maximum distance is half
- the duration; add the stride to avoid off-by-1 problems. */
- int delta_bound = duration_max / 2 + stride;
- int delta, direction;
- for (delta = stride; delta < delta_bound; delta += stride)
- for (direction = -1; direction <= 1; direction += 2)
- {
- long_int ot;
- if (! INT_ADD_WRAPV (t, delta * direction, &ot))
- {
- struct tm otm;
- if (! ranged_convert (convert, &ot, &otm))
- return -1;
- if (! isdst_differ (isdst, otm.tm_isdst))
- {
- /* We found the desired tm_isdst.
- Extrapolate back to the desired time. */
- long_int gt = ot + tm_diff (year, yday, hour, min, sec,
- &otm);
- if (mktime_min <= gt && gt <= mktime_max)
- {
- if (convert_time (convert, gt, &tm))
- {
- t = gt;
- goto offset_found;
- }
- if (errno != EOVERFLOW)
- return -1;
- }
- }
- }
- }
- /* No unusual DST offset was found nearby. Assume one-hour DST. */
- t += 60 * 60 * dst_difference;
- if (mktime_min <= t && t <= mktime_max && convert_time (convert, t, &tm))
- goto offset_found;
- __set_errno (EOVERFLOW);
- return -1;
- }
- offset_found:
- /* Set *OFFSET to the low-order bits of T - T0 - NEGATIVE_OFFSET_GUESS.
- This is just a heuristic to speed up the next mktime call, and
- correctness is unaffected if integer overflow occurs here. */
- INT_SUBTRACT_WRAPV (t, t0, offset);
- INT_SUBTRACT_WRAPV (*offset, negative_offset_guess, offset);
- if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec)
- {
- /* Adjust time to reflect the tm_sec requested, not the normalized value.
- Also, repair any damage from a false match due to a leap second. */
- long_int sec_adjustment = sec == 0 && tm.tm_sec == 60;
- sec_adjustment -= sec;
- sec_adjustment += sec_requested;
- if (INT_ADD_WRAPV (t, sec_adjustment, &t)
- || ! (mktime_min <= t && t <= mktime_max))
- {
- __set_errno (EOVERFLOW);
- return -1;
- }
- if (! convert_time (convert, t, &tm))
- return -1;
- }
- *tp = tm;
- return t;
- }
- #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL */
- #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS
- /* Convert *TP to a __time64_t value. */
- __time64_t
- __mktime64 (struct tm *tp)
- {
- /* POSIX.1 8.1.1 requires that whenever mktime() is called, the
- time zone names contained in the external variable 'tzname' shall
- be set as if the tzset() function had been called. */
- __tzset ();
- # if defined _LIBC || NEED_MKTIME_WORKING
- static mktime_offset_t localtime_offset;
- return __mktime_internal (tp, __localtime64_r, &localtime_offset);
- # else
- # undef mktime
- return mktime (tp);
- # endif
- }
- #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS */
- #if defined _LIBC && __TIMESIZE != 64
- libc_hidden_def (__mktime64)
- time_t
- mktime (struct tm *tp)
- {
- struct tm tm = *tp;
- __time64_t t = __mktime64 (&tm);
- if (in_time_t_range (t))
- {
- *tp = tm;
- return t;
- }
- else
- {
- __set_errno (EOVERFLOW);
- return -1;
- }
- }
- #endif
- weak_alias (mktime, timelocal)
- libc_hidden_def (mktime)
- libc_hidden_weak (timelocal)
|