1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417 |
- ;;;; tree-il.test --- test suite for compiling tree-il -*- scheme -*-
- ;;;; Andy Wingo <wingo@pobox.com> --- May 2009
- ;;;;
- ;;;; Copyright (C) 2009-2014 Free Software Foundation, Inc.
- ;;;;
- ;;;; This library is free software; you can redistribute it and/or
- ;;;; modify it under the terms of the GNU Lesser General Public
- ;;;; License as published by the Free Software Foundation; either
- ;;;; version 3 of the License, or (at your option) any later version.
- ;;;;
- ;;;; This library is distributed in the hope that it will be useful,
- ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ;;;; Lesser General Public License for more details.
- ;;;;
- ;;;; You should have received a copy of the GNU Lesser General Public
- ;;;; License along with this library; if not, write to the Free Software
- ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- (define-module (test-suite tree-il)
- #:use-module (test-suite lib)
- #:use-module (system base compile)
- #:use-module (system base pmatch)
- #:use-module (system base message)
- #:use-module (language tree-il)
- #:use-module (language tree-il primitives)
- #:use-module (rnrs bytevectors) ;; for the bytevector primitives
- #:use-module (srfi srfi-13))
- (define peval
- ;; The partial evaluator.
- (@@ (language tree-il optimize) peval))
- (define-syntax pass-if-peval
- (syntax-rules ()
- ((_ in pat)
- (pass-if-peval in pat
- (expand-primitives
- (resolve-primitives
- (compile 'in #:from 'scheme #:to 'tree-il)
- (current-module)))))
- ((_ in pat code)
- (pass-if 'in
- (let ((evaled (unparse-tree-il (peval code))))
- (pmatch evaled
- (pat #t)
- (_ (pk 'peval-mismatch)
- ((@ (ice-9 pretty-print) pretty-print)
- 'in)
- (newline)
- ((@ (ice-9 pretty-print) pretty-print)
- evaled)
- (newline)
- ((@ (ice-9 pretty-print) pretty-print)
- 'pat)
- (newline)
- #f)))))))
- (with-test-prefix "partial evaluation"
- (pass-if-peval
- ;; First order, primitive.
- (let ((x 1) (y 2)) (+ x y))
- (const 3))
- (pass-if-peval
- ;; First order, thunk.
- (let ((x 1) (y 2))
- (let ((f (lambda () (+ x y))))
- (f)))
- (const 3))
- (pass-if-peval
- ;; First order, let-values (requires primitive expansion for
- ;; `call-with-values'.)
- (let ((x 0))
- (call-with-values
- (lambda () (if (zero? x) (values 1 2) (values 3 4)))
- (lambda (a b)
- (+ a b))))
- (const 3))
- (pass-if-peval
- ;; First order, multiple values.
- (let ((x 1) (y 2))
- (values x y))
- (primcall values (const 1) (const 2)))
- (pass-if-peval
- ;; First order, multiple values truncated.
- (let ((x (values 1 'a)) (y 2))
- (values x y))
- (primcall values (const 1) (const 2)))
- (pass-if-peval
- ;; First order, multiple values truncated.
- (or (values 1 2) 3)
- (const 1))
- (pass-if-peval
- ;; First order, coalesced, mutability preserved.
- (cons 0 (cons 1 (cons 2 (list 3 4 5))))
- (primcall list
- (const 0) (const 1) (const 2) (const 3) (const 4) (const 5)))
- (pass-if-peval
- ;; First order, coalesced, immutability preserved.
- (cons 0 (cons 1 (cons 2 '(3 4 5))))
- (primcall cons (const 0)
- (primcall cons (const 1)
- (primcall cons (const 2)
- (const (3 4 5))))))
- ;; These two tests doesn't work any more because we changed the way we
- ;; deal with constants -- now the algorithm will see a construction as
- ;; being bound to the lexical, so it won't propagate it. It can't
- ;; even propagate it in the case that it is only referenced once,
- ;; because:
- ;;
- ;; (let ((x (cons 1 2))) (lambda () x))
- ;;
- ;; is not the same as
- ;;
- ;; (lambda () (cons 1 2))
- ;;
- ;; Perhaps if we determined that not only was it only referenced once,
- ;; it was not closed over by a lambda, then we could propagate it, and
- ;; re-enable these two tests.
- ;;
- #;
- (pass-if-peval
- ;; First order, mutability preserved.
- (let loop ((i 3) (r '()))
- (if (zero? i)
- r
- (loop (1- i) (cons (cons i i) r))))
- (primcall list
- (primcall cons (const 1) (const 1))
- (primcall cons (const 2) (const 2))
- (primcall cons (const 3) (const 3))))
- ;;
- ;; See above.
- #;
- (pass-if-peval
- ;; First order, evaluated.
- (let loop ((i 7)
- (r '()))
- (if (<= i 0)
- (car r)
- (loop (1- i) (cons i r))))
- (const 1))
- ;; Instead here are tests for what happens for the above cases: they
- ;; unroll but they don't fold.
- (pass-if-peval
- (let loop ((i 3) (r '()))
- (if (zero? i)
- r
- (loop (1- i) (cons (cons i i) r))))
- (let (r) (_)
- ((primcall list
- (primcall cons (const 3) (const 3))))
- (let (r) (_)
- ((primcall cons
- (primcall cons (const 2) (const 2))
- (lexical r _)))
- (primcall cons
- (primcall cons (const 1) (const 1))
- (lexical r _)))))
- ;; See above.
- (pass-if-peval
- (let loop ((i 4)
- (r '()))
- (if (<= i 0)
- (car r)
- (loop (1- i) (cons i r))))
- (let (r) (_)
- ((primcall list (const 4)))
- (let (r) (_)
- ((primcall cons
- (const 3)
- (lexical r _)))
- (let (r) (_)
- ((primcall cons
- (const 2)
- (lexical r _)))
- (let (r) (_)
- ((primcall cons
- (const 1)
- (lexical r _)))
- (primcall car
- (lexical r _)))))))
- ;; Static sums.
- (pass-if-peval
- (let loop ((l '(1 2 3 4)) (sum 0))
- (if (null? l)
- sum
- (loop (cdr l) (+ sum (car l)))))
- (const 10))
- (pass-if-peval
- (let ((string->chars
- (lambda (s)
- (define (char-at n)
- (string-ref s n))
- (define (len)
- (string-length s))
- (let loop ((i 0))
- (if (< i (len))
- (cons (char-at i)
- (loop (1+ i)))
- '())))))
- (string->chars "yo"))
- (primcall list (const #\y) (const #\o)))
- (pass-if-peval
- ;; Primitives in module-refs are resolved (the expansion of `pmatch'
- ;; below leads to calls to (@@ (system base pmatch) car) and
- ;; similar, which is what we want to be inlined.)
- (begin
- (use-modules (system base pmatch))
- (pmatch '(a b c d)
- ((a b . _)
- #t)))
- (seq (call . _)
- (const #t)))
- (pass-if-peval
- ;; Mutability preserved.
- ((lambda (x y z) (list x y z)) 1 2 3)
- (primcall list (const 1) (const 2) (const 3)))
- (pass-if-peval
- ;; Don't propagate effect-free expressions that operate on mutable
- ;; objects.
- (let* ((x (list 1))
- (y (car x)))
- (set-car! x 0)
- y)
- (let (x) (_) ((primcall list (const 1)))
- (let (y) (_) ((primcall car (lexical x _)))
- (seq
- (primcall set-car! (lexical x _) (const 0))
- (lexical y _)))))
-
- (pass-if-peval
- ;; Don't propagate effect-free expressions that operate on objects we
- ;; don't know about.
- (let ((y (car x)))
- (set-car! x 0)
- y)
- (let (y) (_) ((primcall car (toplevel x)))
- (seq
- (primcall set-car! (toplevel x) (const 0))
- (lexical y _))))
-
- (pass-if-peval
- ;; Infinite recursion
- ((lambda (x) (x x)) (lambda (x) (x x)))
- (let (x) (_)
- ((lambda _
- (lambda-case
- (((x) _ _ _ _ _)
- (call (lexical x _) (lexical x _))))))
- (call (lexical x _) (lexical x _))))
- (pass-if-peval
- ;; First order, aliased primitive.
- (let* ((x *) (y (x 1 2))) y)
- (const 2))
- (pass-if-peval
- ;; First order, shadowed primitive.
- (begin
- (define (+ x y) (pk x y))
- (+ 1 2))
- (seq
- (define +
- (lambda (_)
- (lambda-case
- (((x y) #f #f #f () (_ _))
- (call (toplevel pk) (lexical x _) (lexical y _))))))
- (call (toplevel +) (const 1) (const 2))))
- (pass-if-peval
- ;; First-order, effects preserved.
- (let ((x 2))
- (do-something!)
- x)
- (seq
- (call (toplevel do-something!))
- (const 2)))
- (pass-if-peval
- ;; First order, residual bindings removed.
- (let ((x 2) (y 3))
- (* (+ x y) z))
- (primcall * (const 5) (toplevel z)))
- (pass-if-peval
- ;; First order, with lambda.
- (define (foo x)
- (define (bar z) (* z z))
- (+ x (bar 3)))
- (define foo
- (lambda (_)
- (lambda-case
- (((x) #f #f #f () (_))
- (primcall + (lexical x _) (const 9)))))))
- (pass-if-peval
- ;; First order, with lambda inlined & specialized twice.
- (let ((f (lambda (x y)
- (+ (* x top) y)))
- (x 2)
- (y 3))
- (+ (* x (f x y))
- (f something x)))
- (primcall +
- (primcall *
- (const 2)
- (primcall + ; (f 2 3)
- (primcall *
- (const 2)
- (toplevel top))
- (const 3)))
- (let (x) (_) ((toplevel something)) ; (f something 2)
- ;; `something' is not const, so preserve order of
- ;; effects with a lexical binding.
- (primcall +
- (primcall *
- (lexical x _)
- (toplevel top))
- (const 2)))))
-
- (pass-if-peval
- ;; First order, with lambda inlined & specialized 3 times.
- (let ((f (lambda (x y) (if (> x 0) y x))))
- (+ (f -1 0)
- (f 1 0)
- (f -1 y)
- (f 2 y)
- (f z y)))
- (primcall
- +
- (primcall
- +
- (primcall
- +
- (const -1) ; (f -1 0)
- (seq (toplevel y) (const -1))) ; (f -1 y)
- (toplevel y)) ; (f 2 y)
- (let (x y) (_ _) ((toplevel z) (toplevel y)) ; (f z y)
- (if (primcall > (lexical x _) (const 0))
- (lexical y _)
- (lexical x _)))))
- (pass-if-peval
- ;; First order, conditional.
- (let ((y 2))
- (lambda (x)
- (if (> y 0)
- (display x)
- 'never-reached)))
- (lambda ()
- (lambda-case
- (((x) #f #f #f () (_))
- (call (toplevel display) (lexical x _))))))
- (pass-if-peval
- ;; First order, recursive procedure.
- (letrec ((fibo (lambda (n)
- (if (<= n 1)
- n
- (+ (fibo (- n 1))
- (fibo (- n 2)))))))
- (fibo 4))
- (const 3))
- (pass-if-peval
- ;; Don't propagate toplevel references, as intervening expressions
- ;; could alter their bindings.
- (let ((x top))
- (foo)
- x)
- (let (x) (_) ((toplevel top))
- (seq
- (call (toplevel foo))
- (lexical x _))))
- (pass-if-peval
- ;; Higher order.
- ((lambda (f x)
- (f (* (car x) (cadr x))))
- (lambda (x)
- (+ x 1))
- '(2 3))
- (const 7))
- (pass-if-peval
- ;; Higher order with optional argument (default value).
- ((lambda* (f x #:optional (y 0))
- (+ y (f (* (car x) (cadr x)))))
- (lambda (x)
- (+ x 1))
- '(2 3))
- (const 7))
- (pass-if-peval
- ;; Higher order with optional argument (default uses earlier argument).
- ;; <http://bugs.gnu.org/17634>
- ((lambda* (f x #:optional (y (+ 3 (car x))))
- (+ y (f (* (car x) (cadr x)))))
- (lambda (x)
- (+ x 1))
- '(2 3))
- (const 12))
- (pass-if-peval
- ;; Higher order with optional arguments
- ;; (default uses earlier optional argument).
- ((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y)))
- (+ y z (f (* (car x) (cadr x)))))
- (lambda (x)
- (+ x 1))
- '(2 3))
- (const 20))
- (pass-if-peval
- ;; Higher order with optional arguments (one caller-supplied value,
- ;; one default that uses earlier optional argument).
- ((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y)))
- (+ y z (f (* (car x) (cadr x)))))
- (lambda (x)
- (+ x 1))
- '(2 3)
- -3)
- (const 4))
- (pass-if-peval
- ;; Higher order with optional arguments (caller-supplied values).
- ((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y)))
- (+ y z (f (* (car x) (cadr x)))))
- (lambda (x)
- (+ x 1))
- '(2 3)
- -3
- 17)
- (const 21))
- (pass-if-peval
- ;; Higher order with optional and rest arguments (one
- ;; caller-supplied value, one default that uses earlier optional
- ;; argument).
- ((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y))
- #:rest r)
- (list r (+ y z (f (* (car x) (cadr x))))))
- (lambda (x)
- (+ x 1))
- '(2 3)
- -3)
- (primcall list (const ()) (const 4)))
- (pass-if-peval
- ;; Higher order with optional and rest arguments
- ;; (caller-supplied values for optionals).
- ((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y))
- #:rest r)
- (list r (+ y z (f (* (car x) (cadr x))))))
- (lambda (x)
- (+ x 1))
- '(2 3)
- -3
- 17)
- (primcall list (const ()) (const 21)))
- (pass-if-peval
- ;; Higher order with optional and rest arguments
- ;; (caller-supplied values for optionals and rest).
- ((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y))
- #:rest r)
- (list r (+ y z (f (* (car x) (cadr x))))))
- (lambda (x)
- (+ x 1))
- '(2 3)
- -3
- 17
- 8
- 3)
- (let (r) (_) ((primcall list (const 8) (const 3)))
- (primcall list (lexical r _) (const 21))))
- (pass-if-peval
- ;; Higher order with optional argument (caller-supplied value).
- ((lambda* (f x #:optional (y 0))
- (+ y (f (* (car x) (cadr x)))))
- (lambda (x)
- (+ x 1))
- '(2 3)
- 35)
- (const 42))
- (pass-if-peval
- ;; Higher order with optional argument (side-effecting default
- ;; value).
- ((lambda* (f x #:optional (y (foo)))
- (+ y (f (* (car x) (cadr x)))))
- (lambda (x)
- (+ x 1))
- '(2 3))
- (let (y) (_) ((call (toplevel foo)))
- (primcall + (lexical y _) (const 7))))
- (pass-if-peval
- ;; Higher order with optional argument (caller-supplied value).
- ((lambda* (f x #:optional (y (foo)))
- (+ y (f (* (car x) (cadr x)))))
- (lambda (x)
- (+ x 1))
- '(2 3)
- 35)
- (const 42))
- (pass-if-peval
- ;; Higher order.
- ((lambda (f) (f x)) (lambda (x) x))
- (toplevel x))
- (pass-if-peval
- ;; Bug reported at
- ;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html>.
- (let ((fold (lambda (f g) (f (g top)))))
- (fold 1+ (lambda (x) x)))
- (primcall + (toplevel top) (const 1)))
-
- (pass-if-peval
- ;; Procedure not inlined when residual code contains recursive calls.
- ;; <http://debbugs.gnu.org/9542>
- (letrec ((fold (lambda (f x3 b null? car cdr)
- (if (null? x3)
- b
- (f (car x3) (fold f (cdr x3) b null? car cdr))))))
- (fold * x 1 zero? (lambda (x1) x1) (lambda (x2) (- x2 1))))
- (letrec (fold) (_) (_)
- (call (lexical fold _)
- (primitive *)
- (toplevel x)
- (const 1)
- (primitive zero?)
- (lambda ()
- (lambda-case
- (((x1) #f #f #f () (_))
- (lexical x1 _))))
- (lambda ()
- (lambda-case
- (((x2) #f #f #f () (_))
- (primcall - (lexical x2 _) (const 1))))))))
- (pass-if "inlined lambdas are alpha-renamed"
- ;; In this example, `make-adder' is inlined more than once; thus,
- ;; they should use different gensyms for their arguments, because
- ;; the various optimization passes assume uniquely-named variables.
- ;;
- ;; Bug reported at
- ;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html> and
- ;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00029.html>.
- (pmatch (unparse-tree-il
- (peval (expand-primitives
- (resolve-primitives
- (compile
- '(let ((make-adder
- (lambda (x) (lambda (y) (+ x y)))))
- (cons (make-adder 1) (make-adder 2)))
- #:to 'tree-il)
- (current-module)))))
- ((primcall cons
- (lambda ()
- (lambda-case
- (((y) #f #f #f () (,gensym1))
- (primcall +
- (const 1)
- (lexical y ,ref1)))))
- (lambda ()
- (lambda-case
- (((y) #f #f #f () (,gensym2))
- (primcall +
- (const 2)
- (lexical y ,ref2))))))
- (and (eq? gensym1 ref1)
- (eq? gensym2 ref2)
- (not (eq? gensym1 gensym2))))
- (_ #f)))
- (pass-if-peval
- ;; Unused letrec bindings are pruned.
- (letrec ((a (lambda () (b)))
- (b (lambda () (a)))
- (c (lambda (x) x)))
- (c 10))
- (const 10))
- (pass-if-peval
- ;; Unused letrec bindings are pruned.
- (letrec ((a (foo!))
- (b (lambda () (a)))
- (c (lambda (x) x)))
- (c 10))
- (seq (call (toplevel foo!))
- (const 10)))
- (pass-if-peval
- ;; Higher order, mutually recursive procedures.
- (letrec ((even? (lambda (x)
- (or (= 0 x)
- (odd? (- x 1)))))
- (odd? (lambda (x)
- (not (even? x)))))
- (and (even? 4) (odd? 7)))
- (const #t))
- (pass-if-peval
- ;; Memv with constants.
- (memv 1 '(3 2 1))
- (const '(1)))
- (pass-if-peval
- ;; Memv with non-constant list. It could fold but doesn't
- ;; currently.
- (memv 1 (list 3 2 1))
- (primcall memv
- (const 1)
- (primcall list (const 3) (const 2) (const 1))))
- (pass-if-peval
- ;; Memv with non-constant key, constant list, test context
- (case foo
- ((3 2 1) 'a)
- (else 'b))
- (let (key) (_) ((toplevel foo))
- (if (if (primcall eqv? (lexical key _) (const 3))
- (const #t)
- (if (primcall eqv? (lexical key _) (const 2))
- (const #t)
- (primcall eqv? (lexical key _) (const 1))))
- (const a)
- (const b))))
- (pass-if-peval
- ;; Memv with non-constant key, empty list, test context.
- (case foo
- (() 'a)
- (else 'b))
- (seq (toplevel foo) (const 'b)))
- ;;
- ;; Below are cases where constant propagation should bail out.
- ;;
- (pass-if-peval
- ;; Non-constant lexical is not propagated.
- (let ((v (make-vector 6 #f)))
- (lambda (n)
- (vector-set! v n n)))
- (let (v) (_)
- ((primcall make-vector (const 6) (const #f)))
- (lambda ()
- (lambda-case
- (((n) #f #f #f () (_))
- (primcall vector-set!
- (lexical v _) (lexical n _) (lexical n _)))))))
- (pass-if-peval
- ;; Mutable lexical is not propagated.
- (let ((v (vector 1 2 3)))
- (lambda ()
- v))
- (let (v) (_)
- ((primcall vector (const 1) (const 2) (const 3)))
- (lambda ()
- (lambda-case
- ((() #f #f #f () ())
- (lexical v _))))))
- (pass-if-peval
- ;; Lexical that is not provably pure is not inlined nor propagated.
- (let* ((x (if (> p q) (frob!) (display 'chbouib)))
- (y (* x 2)))
- (+ x x y))
- (let (x) (_) ((if (primcall > (toplevel p) (toplevel q))
- (call (toplevel frob!))
- (call (toplevel display) (const chbouib))))
- (let (y) (_) ((primcall * (lexical x _) (const 2)))
- (primcall +
- (primcall + (lexical x _) (lexical x _))
- (lexical y _)))))
- (pass-if-peval
- ;; Non-constant arguments not propagated to lambdas.
- ((lambda (x y z)
- (vector-set! x 0 0)
- (set-car! y 0)
- (set-cdr! z '()))
- (vector 1 2 3)
- (make-list 10)
- (list 1 2 3))
- (let (x y z) (_ _ _)
- ((primcall vector (const 1) (const 2) (const 3))
- (call (toplevel make-list) (const 10))
- (primcall list (const 1) (const 2) (const 3)))
- (seq
- (primcall vector-set!
- (lexical x _) (const 0) (const 0))
- (seq (primcall set-car!
- (lexical y _) (const 0))
- (primcall set-cdr!
- (lexical z _) (const ()))))))
- (pass-if-peval
- (let ((foo top-foo) (bar top-bar))
- (let* ((g (lambda (x y) (+ x y)))
- (f (lambda (g x) (g x x))))
- (+ (f g foo) (f g bar))))
- (let (foo bar) (_ _) ((toplevel top-foo) (toplevel top-bar))
- (primcall +
- (primcall + (lexical foo _) (lexical foo _))
- (primcall + (lexical bar _) (lexical bar _)))))
- (pass-if-peval
- ;; Fresh objects are not turned into constants, nor are constants
- ;; turned into fresh objects.
- (let* ((c '(2 3))
- (x (cons 1 c))
- (y (cons 0 x)))
- y)
- (let (x) (_) ((primcall cons (const 1) (const (2 3))))
- (primcall cons (const 0) (lexical x _))))
- (pass-if-peval
- ;; Bindings mutated.
- (let ((x 2))
- (set! x 3)
- x)
- (let (x) (_) ((const 2))
- (seq
- (set! (lexical x _) (const 3))
- (lexical x _))))
- (pass-if-peval
- ;; Bindings mutated.
- (letrec ((x 0)
- (f (lambda ()
- (set! x (+ 1 x))
- x)))
- (frob f) ; may mutate `x'
- x)
- (letrec (x) (_) ((const 0))
- (seq
- (call (toplevel frob) (lambda _ _))
- (lexical x _))))
- (pass-if-peval
- ;; Bindings mutated.
- (letrec ((f (lambda (x)
- (set! f (lambda (_) x))
- x)))
- (f 2))
- (letrec _ . _))
- (pass-if-peval
- ;; Bindings possibly mutated.
- (let ((x (make-foo)))
- (frob! x) ; may mutate `x'
- x)
- (let (x) (_) ((call (toplevel make-foo)))
- (seq
- (call (toplevel frob!) (lexical x _))
- (lexical x _))))
- (pass-if-peval
- ;; Inlining stops at recursive calls with dynamic arguments.
- (let loop ((x x))
- (if (< x 0) x (loop (1- x))))
- (letrec (loop) (_) ((lambda (_)
- (lambda-case
- (((x) #f #f #f () (_))
- (if _ _
- (call (lexical loop _)
- (primcall - (lexical x _)
- (const 1))))))))
- (call (lexical loop _) (toplevel x))))
- (pass-if-peval
- ;; Recursion on the 2nd argument is fully evaluated.
- (let ((x (top)))
- (let loop ((x x) (y 10))
- (if (> y 0)
- (loop x (1- y))
- (foo x y))))
- (let (x) (_) ((call (toplevel top)))
- (call (toplevel foo) (lexical x _) (const 0))))
- (pass-if-peval
- ;; Inlining aborted when residual code contains recursive calls.
- ;;
- ;; <http://debbugs.gnu.org/9542>
- (let loop ((x x) (y 0))
- (if (> y 0)
- (loop (1- x) (1- y))
- (if (< x 0)
- x
- (loop (1+ x) (1+ y)))))
- (letrec (loop) (_) ((lambda (_)
- (lambda-case
- (((x y) #f #f #f () (_ _))
- (if (primcall >
- (lexical y _) (const 0))
- _ _)))))
- (call (lexical loop _) (toplevel x) (const 0))))
- (pass-if-peval
- ;; Infinite recursion: `peval' gives up and leaves it as is.
- (letrec ((f (lambda (x) (g (1- x))))
- (g (lambda (x) (h (1+ x))))
- (h (lambda (x) (f x))))
- (f 0))
- (letrec _ . _))
- (pass-if-peval
- ;; Infinite recursion: all the arguments to `loop' are static, but
- ;; unrolling it would lead `peval' to enter an infinite loop.
- (let loop ((x 0))
- (and (< x top)
- (loop (1+ x))))
- (letrec (loop) (_) ((lambda . _))
- (call (lexical loop _) (const 0))))
- (pass-if-peval
- ;; This test checks that the `start' binding is indeed residualized.
- ;; See the `referenced?' procedure in peval's `prune-bindings'.
- (let ((pos 0))
- (let ((here (let ((start pos)) (lambda () start))))
- (set! pos 1) ;; Cause references to `pos' to residualize.
- (here)))
- (let (pos) (_) ((const 0))
- (let (here) (_) (_)
- (seq
- (set! (lexical pos _) (const 1))
- (call (lexical here _))))))
- (pass-if-peval
- ;; FIXME: should this one residualize the binding?
- (letrec ((a a))
- 1)
- (const 1))
- (pass-if-peval
- ;; This is a fun one for peval to handle.
- (letrec ((a a))
- a)
- (letrec (a) (_) ((lexical a _))
- (lexical a _)))
- (pass-if-peval
- ;; Another interesting recursive case.
- (letrec ((a b) (b a))
- a)
- (letrec (a) (_) ((lexical a _))
- (lexical a _)))
- (pass-if-peval
- ;; Another pruning case, that `a' is residualized.
- (letrec ((a (lambda () (a)))
- (b (lambda () (a)))
- (c (lambda (x) x)))
- (let ((d (foo b)))
- (c d)))
- ;; "b c a" is the current order that we get with unordered letrec,
- ;; but it's not important to this test, so if it changes, just adapt
- ;; the test.
- (letrec (b a) (_ _)
- ((lambda _
- (lambda-case
- ((() #f #f #f () ())
- (call (lexical a _)))))
- (lambda _
- (lambda-case
- ((() #f #f #f () ())
- (call (lexical a _))))))
- (call (toplevel foo) (lexical b _))))
- (pass-if-peval
- ;; In this case, we can prune the bindings. `a' ends up being copied
- ;; because it is only referenced once in the source program. Oh
- ;; well.
- (letrec* ((a (lambda (x) (top x)))
- (b (lambda () a)))
- (foo (b) (b)))
- (call (toplevel foo)
- (lambda _
- (lambda-case
- (((x) #f #f #f () (_))
- (call (toplevel top) (lexical x _)))))
- (lambda _
- (lambda-case
- (((x) #f #f #f () (_))
- (call (toplevel top) (lexical x _)))))))
-
- (pass-if-peval
- ;; The inliner sees through a `let'.
- ((let ((a 10)) (lambda (b) (* b 2))) 30)
- (const 60))
- (pass-if-peval
- ((lambda ()
- (define (const x) (lambda (_) x))
- (let ((v #f))
- ((const #t) v))))
- (const #t))
- (pass-if-peval
- ;; Applications of procedures with rest arguments can get inlined.
- ((lambda (x y . z)
- (list x y z))
- 1 2 3 4)
- (let (z) (_) ((primcall list (const 3) (const 4)))
- (primcall list (const 1) (const 2) (lexical z _))))
- (pass-if-peval
- ;; Unmutated lists can get inlined.
- (let ((args (list 2 3)))
- (apply (lambda (x y z w)
- (list x y z w))
- 0 1 args))
- (primcall list (const 0) (const 1) (const 2) (const 3)))
- (pass-if-peval
- ;; However if the list might have been mutated, it doesn't propagate.
- (let ((args (list 2 3)))
- (foo! args)
- (apply (lambda (x y z w)
- (list x y z w))
- 0 1 args))
- (let (args) (_) ((primcall list (const 2) (const 3)))
- (seq
- (call (toplevel foo!) (lexical args _))
- (primcall apply
- (lambda ()
- (lambda-case
- (((x y z w) #f #f #f () (_ _ _ _))
- (primcall list
- (lexical x _) (lexical y _)
- (lexical z _) (lexical w _)))))
- (const 0)
- (const 1)
- (lexical args _)))))
- (pass-if-peval
- ;; Here the `args' that gets built by the application of the lambda
- ;; takes more than effort "10" to visit. Test that we fall back to
- ;; the source expression of the operand, which is still a call to
- ;; `list', so the inlining still happens.
- (lambda (bv offset n)
- (let ((x (bytevector-ieee-single-native-ref
- bv
- (+ offset 0)))
- (y (bytevector-ieee-single-native-ref
- bv
- (+ offset 4))))
- (let ((args (list x y)))
- (apply
- (lambda (bv offset x y)
- (bytevector-ieee-single-native-set!
- bv
- (+ offset 0)
- x)
- (bytevector-ieee-single-native-set!
- bv
- (+ offset 4)
- y))
- bv
- offset
- args))))
- (lambda ()
- (lambda-case
- (((bv offset n) #f #f #f () (_ _ _))
- (let (x y) (_ _) ((primcall bytevector-ieee-single-native-ref
- (lexical bv _)
- (primcall +
- (lexical offset _) (const 0)))
- (primcall bytevector-ieee-single-native-ref
- (lexical bv _)
- (primcall +
- (lexical offset _) (const 4))))
- (seq
- (primcall bytevector-ieee-single-native-set!
- (lexical bv _)
- (primcall +
- (lexical offset _) (const 0))
- (lexical x _))
- (primcall bytevector-ieee-single-native-set!
- (lexical bv _)
- (primcall +
- (lexical offset _) (const 4))
- (lexical y _))))))))
- (pass-if-peval
- ;; Here we ensure that non-constant expressions are not copied.
- (lambda ()
- (let ((args (list (foo!))))
- (apply
- (lambda (z x)
- (list z x))
- ;; This toplevel ref might raise an unbound variable exception.
- ;; The effects of `(foo!)' must be visible before this effect.
- z
- args)))
- (lambda ()
- (lambda-case
- ((() #f #f #f () ())
- (let (_) (_) ((call (toplevel foo!)))
- (let (z) (_) ((toplevel z))
- (primcall 'list
- (lexical z _)
- (lexical _ _))))))))
- (pass-if-peval
- ;; Rest args referenced more than once are not destructured.
- (lambda ()
- (let ((args (list 'foo)))
- (set-car! args 'bar)
- (apply
- (lambda (z x)
- (list z x))
- z
- args)))
- (lambda ()
- (lambda-case
- ((() #f #f #f () ())
- (let (args) (_)
- ((primcall list (const foo)))
- (seq
- (primcall set-car! (lexical args _) (const bar))
- (primcall apply
- (lambda . _)
- (toplevel z)
- (lexical args _))))))))
- (pass-if-peval
- ;; Let-values inlining, even with consumers with rest args.
- (call-with-values (lambda () (values 1 2))
- (lambda args
- (apply list args)))
- (primcall list (const 1) (const 2)))
- (pass-if-peval
- ;; When we can't inline let-values but can prove that the producer
- ;; has just one value, reduce to "let" (which can then fold
- ;; further).
- (call-with-values (lambda () (if foo 1 2))
- (lambda args
- (apply values args)))
- (if (toplevel foo) (const 1) (const 2)))
- (pass-if-peval
- ;; Constant folding: cons of #nil does not make list
- (cons 1 #nil)
- (primcall cons (const 1) (const '#nil)))
-
- (pass-if-peval
- ;; Constant folding: cons
- (begin (cons 1 2) #f)
- (const #f))
-
- (pass-if-peval
- ;; Constant folding: cons
- (begin (cons (foo) 2) #f)
- (seq (call (toplevel foo)) (const #f)))
-
- (pass-if-peval
- ;; Constant folding: cons
- (if (cons 0 0) 1 2)
- (const 1))
-
- (pass-if-peval
- ;; Constant folding: car+cons
- (car (cons 1 0))
- (const 1))
-
- (pass-if-peval
- ;; Constant folding: cdr+cons
- (cdr (cons 1 0))
- (const 0))
-
- (pass-if-peval
- ;; Constant folding: car+cons, impure
- (car (cons 1 (bar)))
- (seq (call (toplevel bar)) (const 1)))
-
- (pass-if-peval
- ;; Constant folding: cdr+cons, impure
- (cdr (cons (bar) 0))
- (seq (call (toplevel bar)) (const 0)))
-
- (pass-if-peval
- ;; Constant folding: car+list
- (car (list 1 0))
- (const 1))
-
- (pass-if-peval
- ;; Constant folding: cdr+list
- (cdr (list 1 0))
- (primcall list (const 0)))
-
- (pass-if-peval
- ;; Constant folding: car+list, impure
- (car (list 1 (bar)))
- (seq (call (toplevel bar)) (const 1)))
-
- (pass-if-peval
- ;; Constant folding: cdr+list, impure
- (cdr (list (bar) 0))
- (seq (call (toplevel bar)) (primcall list (const 0))))
- (pass-if-peval
- ;; Equality primitive: same lexical
- (let ((x (random))) (eq? x x))
- (seq (call (toplevel random)) (const #t)))
- (pass-if-peval
- ;; Equality primitive: merge lexical identities
- (let* ((x (random)) (y x)) (eq? x y))
- (seq (call (toplevel random)) (const #t)))
-
- (pass-if-peval
- ;; Non-constant guards get lexical bindings, invocation of winder and
- ;; unwinder lifted out. Unfortunately both have the generic variable
- ;; name "tmp", so we can't distinguish them in this test, and they
- ;; also collide in generic names with the single-value result from
- ;; the dynwind; alack.
- (dynamic-wind foo (lambda () bar) baz)
- (let (tmp tmp) (_ _) ((toplevel foo) (toplevel baz))
- (seq (seq (if (primcall thunk? (lexical tmp _))
- (call (lexical tmp _))
- (primcall scm-error . _))
- (primcall wind (lexical tmp _) (lexical tmp _)))
- (let (tmp) (_) ((toplevel bar))
- (seq (seq (primcall unwind)
- (call (lexical tmp _)))
- (lexical tmp _))))))
-
- (pass-if-peval
- ;; Constant guards don't need lexical bindings or thunk? checks.
- (dynamic-wind (lambda () foo) (lambda () bar) (lambda () baz))
- (seq (seq (toplevel foo)
- (primcall wind
- (lambda ()
- (lambda-case
- ((() #f #f #f () ()) (toplevel foo))))
- (lambda ()
- (lambda-case
- ((() #f #f #f () ()) (toplevel baz))))))
- (let (tmp) (_) ((toplevel bar))
- (seq (seq (primcall unwind)
- (toplevel baz))
- (lexical tmp _)))))
-
- (pass-if-peval
- ;; Dynwind bodies that return an unknown number of values need a
- ;; let-values.
- (dynamic-wind (lambda () foo) (lambda () (bar)) (lambda () baz))
- (seq (seq (toplevel foo)
- (primcall wind
- (lambda ()
- (lambda-case
- ((() #f #f #f () ()) (toplevel foo))))
- (lambda ()
- (lambda-case
- ((() #f #f #f () ()) (toplevel baz))))))
- (let-values (call (toplevel bar))
- (lambda-case
- ((() #f vals #f () (_))
- (seq (seq (primcall unwind)
- (toplevel baz))
- (primcall apply (primitive values) (lexical vals _))))))))
-
- (pass-if-peval
- ;; Prompt is removed if tag is unreferenced
- (let ((tag (make-prompt-tag)))
- (call-with-prompt tag
- (lambda () 1)
- (lambda args args)))
- (const 1))
-
- (pass-if-peval
- ;; Prompt is removed if tag is unreferenced, with explicit stem
- (let ((tag (make-prompt-tag "foo")))
- (call-with-prompt tag
- (lambda () 1)
- (lambda args args)))
- (const 1))
- ;; Handler lambda inlined
- (pass-if-peval
- (call-with-prompt tag
- (lambda () 1)
- (lambda (k x) x))
- (prompt #t
- (toplevel tag)
- (const 1)
- (lambda _
- (lambda-case
- (((k x) #f #f #f () (_ _))
- (lexical x _))))))
- ;; Handler toplevel not inlined
- (pass-if-peval
- (call-with-prompt tag
- (lambda () 1)
- handler)
- (prompt #f
- (toplevel tag)
- (lambda _
- (lambda-case
- ((() #f #f #f () ())
- (const 1))))
- (toplevel handler)))
- (pass-if-peval
- ;; `while' without `break' or `continue' has no prompts and gets its
- ;; condition folded. Unfortunately the outer `lp' does not yet get
- ;; elided, and the continuation tag stays around. (The continue tag
- ;; stays around because although it is not referenced, recursively
- ;; visiting the loop in the continue handler manages to visit the tag
- ;; twice before aborting. The abort doesn't unroll the recursive
- ;; reference.)
- (while #t #t)
- (let (_) (_) ((primcall make-prompt-tag . _))
- (letrec (lp) (_)
- ((lambda _
- (lambda-case
- ((() #f #f #f () ())
- (letrec (loop) (_)
- ((lambda _
- (lambda-case
- ((() #f #f #f () ())
- (call (lexical loop _))))))
- (call (lexical loop _)))))))
- (call (lexical lp _)))))
- (pass-if-peval
- (lambda (a . rest)
- (apply (lambda (x y) (+ x y))
- a rest))
- (lambda _
- (lambda-case
- (((x y) #f #f #f () (_ _))
- _))))
- (pass-if-peval
- (car '(1 2))
- (const 1))
- ;; If we bail out when inlining an identifier because it's too big,
- ;; but the identifier simply aliases some other identifier, then avoid
- ;; residualizing a reference to the leaf identifier. The bailout is
- ;; driven by the recursive-effort-limit, which is currently 100. We
- ;; make sure to trip it with this recursive sum thing.
- (pass-if-peval
- (let ((x (let sum ((n 0) (out 0))
- (if (< n 10000)
- (sum (1+ n) (+ out n))
- out))))
- ((lambda (y) (list y)) x))
- (let (x) (_) (_)
- (primcall list (lexical x _))))
- ;; Here we test that a common test in a chain of ifs gets lifted.
- (pass-if-peval
- (if (and (struct? x) (eq? (struct-vtable x) A))
- (foo x)
- (if (and (struct? x) (eq? (struct-vtable x) B))
- (bar x)
- (if (and (struct? x) (eq? (struct-vtable x) C))
- (baz x)
- (qux x))))
- (let (failure) (_) ((lambda _
- (lambda-case
- ((() #f #f #f () ())
- (call (toplevel qux) (toplevel x))))))
- (if (primcall struct? (toplevel x))
- (if (primcall eq?
- (primcall struct-vtable (toplevel x))
- (toplevel A))
- (call (toplevel foo) (toplevel x))
- (if (primcall eq?
- (primcall struct-vtable (toplevel x))
- (toplevel B))
- (call (toplevel bar) (toplevel x))
- (if (primcall eq?
- (primcall struct-vtable (toplevel x))
- (toplevel C))
- (call (toplevel baz) (toplevel x))
- (call (lexical failure _)))))
- (call (lexical failure _)))))
- ;; Multiple common tests should get lifted as well.
- (pass-if-peval
- (if (and (struct? x) (eq? (struct-vtable x) A) B)
- (foo x)
- (if (and (struct? x) (eq? (struct-vtable x) A) C)
- (bar x)
- (if (and (struct? x) (eq? (struct-vtable x) A) D)
- (baz x)
- (qux x))))
- (let (failure) (_) ((lambda _
- (lambda-case
- ((() #f #f #f () ())
- (call (toplevel qux) (toplevel x))))))
- (if (primcall struct? (toplevel x))
- (if (primcall eq?
- (primcall struct-vtable (toplevel x))
- (toplevel A))
- (if (toplevel B)
- (call (toplevel foo) (toplevel x))
- (if (toplevel C)
- (call (toplevel bar) (toplevel x))
- (if (toplevel D)
- (call (toplevel baz) (toplevel x))
- (call (lexical failure _)))))
- (call (lexical failure _)))
- (call (lexical failure _)))))
- (pass-if-peval
- (apply (lambda (x y) (cons x y)) '(1 2))
- (primcall cons (const 1) (const 2)))
- (pass-if-peval
- (apply (lambda (x y) (cons x y)) (list 1 2))
- (primcall cons (const 1) (const 2)))
- ;; Disable after removal of abort-in-tail-position optimization, in
- ;; hopes that CPS does a uniformly better job.
- #;
- (pass-if-peval
- (let ((t (make-prompt-tag)))
- (call-with-prompt t
- (lambda () (abort-to-prompt t 1 2 3))
- (lambda (k x y z) (list x y z))))
- (primcall list (const 1) (const 2) (const 3)))
- (pass-if-peval
- (call-with-values foo (lambda (x) (bar x)))
- (let-values (call (toplevel foo))
- (lambda-case
- (((x) #f #f #f () (_))
- (call (toplevel bar) (lexical x _))))))
- (pass-if-peval
- (eq? '(a b) '(a b))
- (const #t))
- (pass-if-peval
- (eqv? '(a b) '(a b))
- (const #t))
- (pass-if-peval
- ((lambda (foo)
- (define* (bar a #:optional (b (1+ a)))
- (list a b))
- (bar 1))
- 1)
- (primcall list (const 1) (const 2)))
- (pass-if-peval
- ;; Should not inline tail list to apply if it is mutable.
- ;; <http://debbugs.gnu.org/15533>
- (let ((l '()))
- (if (pair? arg)
- (set! l arg))
- (apply f l))
- (let (l) (_) ((const ()))
- (seq
- (if (primcall pair? (toplevel arg))
- (set! (lexical l _) (toplevel arg))
- (void))
- (primcall apply (toplevel f) (lexical l _)))))
- (pass-if-peval
- (lambda (f x)
- (let lp ((x x))
- (let ((x* (f x)))
- (if (eq? x x*) x* (lp x*)))))
- (lambda ()
- (lambda-case
- (((f x) #f #f #f () (_ _))
- (letrec (lp)
- (_)
- ((lambda ((name . lp))
- (lambda-case
- (((x) #f #f #f () (_))
- (let (x*)
- (_)
- ((call (lexical f _) (lexical x _)))
- (if (primcall
- eq?
- (lexical x _)
- (lexical x* _))
- (lexical x* _)
- (call (lexical lp _)
- (lexical x* _))))))))
- (call (lexical lp _)
- (lexical x _))))))))
|