api-macros.texi 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453
  1. @c -*-texinfo-*-
  2. @c This is part of the GNU Guile Reference Manual.
  3. @c Copyright (C) 1996, 1997, 2000-2004, 2009-2015
  4. @c Free Software Foundation, Inc.
  5. @c See the file guile.texi for copying conditions.
  6. @node Macros
  7. @section Macros
  8. At its best, programming in Lisp is an iterative process of building up a
  9. language appropriate to the problem at hand, and then solving the problem in
  10. that language. Defining new procedures is part of that, but Lisp also allows
  11. the user to extend its syntax, with its famous @dfn{macros}.
  12. @cindex macros
  13. @cindex transformation
  14. Macros are syntactic extensions which cause the expression that they appear in
  15. to be transformed in some way @emph{before} being evaluated. In expressions that
  16. are intended for macro transformation, the identifier that names the relevant
  17. macro must appear as the first element, like this:
  18. @lisp
  19. (@var{macro-name} @var{macro-args} @dots{})
  20. @end lisp
  21. @cindex macro expansion
  22. @cindex domain-specific language
  23. @cindex embedded domain-specific language
  24. @cindex DSL
  25. @cindex EDSL
  26. Macro expansion is a separate phase of evaluation, run before code is
  27. interpreted or compiled. A macro is a program that runs on programs, translating
  28. an embedded language into core Scheme@footnote{These days such embedded
  29. languages are often referred to as @dfn{embedded domain-specific
  30. languages}, or EDSLs.}.
  31. @menu
  32. * Defining Macros:: Binding macros, globally and locally.
  33. * Syntax Rules:: Pattern-driven macros.
  34. * Syntax Case:: Procedural, hygienic macros.
  35. * Syntax Transformer Helpers:: Helpers for use in procedural macros.
  36. * Defmacros:: Lisp-style macros.
  37. * Identifier Macros:: Identifier macros.
  38. * Syntax Parameters:: Syntax Parameters.
  39. * Eval When:: Affecting the expand-time environment.
  40. * Macro Expansion:: Procedurally expanding macros.
  41. * Hygiene and the Top-Level:: A hack you might want to know about.
  42. * Internal Macros:: Macros as first-class values.
  43. @end menu
  44. @node Defining Macros
  45. @subsection Defining Macros
  46. A macro is a binding between a keyword and a syntax transformer. Since it's
  47. difficult to discuss @code{define-syntax} without discussing the format of
  48. transformers, consider the following example macro definition:
  49. @example
  50. (define-syntax when
  51. (syntax-rules ()
  52. ((when condition exp ...)
  53. (if condition
  54. (begin exp ...)))))
  55. (when #t
  56. (display "hey ho\n")
  57. (display "let's go\n"))
  58. @print{} hey ho
  59. @print{} let's go
  60. @end example
  61. In this example, the @code{when} binding is bound with @code{define-syntax}.
  62. Syntax transformers are discussed in more depth in @ref{Syntax Rules} and
  63. @ref{Syntax Case}.
  64. @deffn {Syntax} define-syntax keyword transformer
  65. Bind @var{keyword} to the syntax transformer obtained by evaluating
  66. @var{transformer}.
  67. After a macro has been defined, further instances of @var{keyword} in Scheme
  68. source code will invoke the syntax transformer defined by @var{transformer}.
  69. @end deffn
  70. One can also establish local syntactic bindings with @code{let-syntax}.
  71. @deffn {Syntax} let-syntax ((keyword transformer) @dots{}) exp1 exp2 @dots{}
  72. Bind each @var{keyword} to its corresponding @var{transformer} while
  73. expanding @var{exp1} @var{exp2} @enddots{}.
  74. A @code{let-syntax} binding only exists at expansion-time.
  75. @example
  76. (let-syntax ((unless
  77. (syntax-rules ()
  78. ((unless condition exp ...)
  79. (if (not condition)
  80. (begin exp ...))))))
  81. (unless #t
  82. (primitive-exit 1))
  83. "rock rock rock")
  84. @result{} "rock rock rock"
  85. @end example
  86. @end deffn
  87. A @code{define-syntax} form is valid anywhere a definition may appear: at the
  88. top-level, or locally. Just as a local @code{define} expands out to an instance
  89. of @code{letrec}, a local @code{define-syntax} expands out to
  90. @code{letrec-syntax}.
  91. @deffn {Syntax} letrec-syntax ((keyword transformer) @dots{}) exp1 exp2 @dots{}
  92. Bind each @var{keyword} to its corresponding @var{transformer} while
  93. expanding @var{exp1} @var{exp2} @enddots{}.
  94. In the spirit of @code{letrec} versus @code{let}, an expansion produced by
  95. @var{transformer} may reference a @var{keyword} bound by the
  96. same @var{letrec-syntax}.
  97. @example
  98. (letrec-syntax ((my-or
  99. (syntax-rules ()
  100. ((my-or)
  101. #t)
  102. ((my-or exp)
  103. exp)
  104. ((my-or exp rest ...)
  105. (let ((t exp))
  106. (if t
  107. t
  108. (my-or rest ...)))))))
  109. (my-or #f "rockaway beach"))
  110. @result{} "rockaway beach"
  111. @end example
  112. @end deffn
  113. @node Syntax Rules
  114. @subsection Syntax-rules Macros
  115. @code{syntax-rules} macros are simple, pattern-driven syntax transformers, with
  116. a beauty worthy of Scheme.
  117. @deffn {Syntax} syntax-rules literals (pattern template) @dots{}
  118. Create a syntax transformer that will rewrite an expression using the rules
  119. embodied in the @var{pattern} and @var{template} clauses.
  120. @end deffn
  121. A @code{syntax-rules} macro consists of three parts: the literals (if any), the
  122. patterns, and as many templates as there are patterns.
  123. When the syntax expander sees the invocation of a @code{syntax-rules} macro, it
  124. matches the expression against the patterns, in order, and rewrites the
  125. expression using the template from the first matching pattern. If no pattern
  126. matches, a syntax error is signalled.
  127. @subsubsection Patterns
  128. We have already seen some examples of patterns in the previous section:
  129. @code{(unless condition exp ...)}, @code{(my-or exp)}, and so on. A pattern is
  130. structured like the expression that it is to match. It can have nested structure
  131. as well, like @code{(let ((var val) ...) exp exp* ...)}. Broadly speaking,
  132. patterns are made of lists, improper lists, vectors, identifiers, and datums.
  133. Users can match a sequence of patterns using the ellipsis (@code{...}).
  134. Identifiers in a pattern are called @dfn{literals} if they are present in the
  135. @code{syntax-rules} literals list, and @dfn{pattern variables} otherwise. When
  136. building up the macro output, the expander replaces instances of a pattern
  137. variable in the template with the matched subexpression.
  138. @example
  139. (define-syntax kwote
  140. (syntax-rules ()
  141. ((kwote exp)
  142. (quote exp))))
  143. (kwote (foo . bar))
  144. @result{} (foo . bar)
  145. @end example
  146. An improper list of patterns matches as rest arguments do:
  147. @example
  148. (define-syntax let1
  149. (syntax-rules ()
  150. ((_ (var val) . exps)
  151. (let ((var val)) . exps))))
  152. @end example
  153. However this definition of @code{let1} probably isn't what you want, as the tail
  154. pattern @var{exps} will match non-lists, like @code{(let1 (foo 'bar) . baz)}. So
  155. often instead of using improper lists as patterns, ellipsized patterns are
  156. better. Instances of a pattern variable in the template must be followed by an
  157. ellipsis.
  158. @example
  159. (define-syntax let1
  160. (syntax-rules ()
  161. ((_ (var val) exp ...)
  162. (let ((var val)) exp ...))))
  163. @end example
  164. This @code{let1} probably still doesn't do what we want, because the body
  165. matches sequences of zero expressions, like @code{(let1 (foo 'bar))}. In this
  166. case we need to assert we have at least one body expression. A common idiom for
  167. this is to name the ellipsized pattern variable with an asterisk:
  168. @example
  169. (define-syntax let1
  170. (syntax-rules ()
  171. ((_ (var val) exp exp* ...)
  172. (let ((var val)) exp exp* ...))))
  173. @end example
  174. A vector of patterns matches a vector whose contents match the patterns,
  175. including ellipsizing and tail patterns.
  176. @example
  177. (define-syntax letv
  178. (syntax-rules ()
  179. ((_ #((var val) ...) exp exp* ...)
  180. (let ((var val) ...) exp exp* ...))))
  181. (letv #((foo 'bar)) foo)
  182. @result{} bar
  183. @end example
  184. Literals are used to match specific datums in an expression, like the use of
  185. @code{=>} and @code{else} in @code{cond} expressions.
  186. @example
  187. (define-syntax cond1
  188. (syntax-rules (=> else)
  189. ((cond1 test => fun)
  190. (let ((exp test))
  191. (if exp (fun exp) #f)))
  192. ((cond1 test exp exp* ...)
  193. (if test (begin exp exp* ...)))
  194. ((cond1 else exp exp* ...)
  195. (begin exp exp* ...))))
  196. (define (square x) (* x x))
  197. (cond1 10 => square)
  198. @result{} 100
  199. (let ((=> #t))
  200. (cond1 10 => square))
  201. @result{} #<procedure square (x)>
  202. @end example
  203. A literal matches an input expression if the input expression is an identifier
  204. with the same name as the literal, and both are unbound@footnote{Language
  205. lawyers probably see the need here for use of @code{literal-identifier=?} rather
  206. than @code{free-identifier=?}, and would probably be correct. Patches
  207. accepted.}.
  208. If a pattern is not a list, vector, or an identifier, it matches as a literal,
  209. with @code{equal?}.
  210. @example
  211. (define-syntax define-matcher-macro
  212. (syntax-rules ()
  213. ((_ name lit)
  214. (define-syntax name
  215. (syntax-rules ()
  216. ((_ lit) #t)
  217. ((_ else) #f))))))
  218. (define-matcher-macro is-literal-foo? "foo")
  219. (is-literal-foo? "foo")
  220. @result{} #t
  221. (is-literal-foo? "bar")
  222. @result{} #f
  223. (let ((foo "foo"))
  224. (is-literal-foo? foo))
  225. @result{} #f
  226. @end example
  227. The last example indicates that matching happens at expansion-time, not
  228. at run-time.
  229. Syntax-rules macros are always used as @code{(@var{macro} . @var{args})}, and
  230. the @var{macro} will always be a symbol. Correspondingly, a @code{syntax-rules}
  231. pattern must be a list (proper or improper), and the first pattern in that list
  232. must be an identifier. Incidentally it can be any identifier -- it doesn't have
  233. to actually be the name of the macro. Thus the following three are equivalent:
  234. @example
  235. (define-syntax when
  236. (syntax-rules ()
  237. ((when c e ...)
  238. (if c (begin e ...)))))
  239. (define-syntax when
  240. (syntax-rules ()
  241. ((_ c e ...)
  242. (if c (begin e ...)))))
  243. (define-syntax when
  244. (syntax-rules ()
  245. ((something-else-entirely c e ...)
  246. (if c (begin e ...)))))
  247. @end example
  248. For clarity, use one of the first two variants. Also note that since the pattern
  249. variable will always match the macro itself (e.g., @code{cond1}), it is actually
  250. left unbound in the template.
  251. @subsubsection Hygiene
  252. @code{syntax-rules} macros have a magical property: they preserve referential
  253. transparency. When you read a macro definition, any free bindings in that macro
  254. are resolved relative to the macro definition; and when you read a macro
  255. instantiation, all free bindings in that expression are resolved relative to the
  256. expression.
  257. This property is sometimes known as @dfn{hygiene}, and it does aid in code
  258. cleanliness. In your macro definitions, you can feel free to introduce temporary
  259. variables, without worrying about inadvertently introducing bindings into the
  260. macro expansion.
  261. Consider the definition of @code{my-or} from the previous section:
  262. @example
  263. (define-syntax my-or
  264. (syntax-rules ()
  265. ((my-or)
  266. #t)
  267. ((my-or exp)
  268. exp)
  269. ((my-or exp rest ...)
  270. (let ((t exp))
  271. (if t
  272. t
  273. (my-or rest ...))))))
  274. @end example
  275. A naive expansion of @code{(let ((t #t)) (my-or #f t))} would yield:
  276. @example
  277. (let ((t #t))
  278. (let ((t #f))
  279. (if t t t)))
  280. @result{} #f
  281. @end example
  282. @noindent
  283. Which clearly is not what we want. Somehow the @code{t} in the definition is
  284. distinct from the @code{t} at the site of use; and it is indeed this distinction
  285. that is maintained by the syntax expander, when expanding hygienic macros.
  286. This discussion is mostly relevant in the context of traditional Lisp macros
  287. (@pxref{Defmacros}), which do not preserve referential transparency. Hygiene
  288. adds to the expressive power of Scheme.
  289. @subsubsection Shorthands
  290. One often ends up writing simple one-clause @code{syntax-rules} macros.
  291. There is a convenient shorthand for this idiom, in the form of
  292. @code{define-syntax-rule}.
  293. @deffn {Syntax} define-syntax-rule (keyword . pattern) [docstring] template
  294. Define @var{keyword} as a new @code{syntax-rules} macro with one clause.
  295. @end deffn
  296. Cast into this form, our @code{when} example is significantly shorter:
  297. @example
  298. (define-syntax-rule (when c e ...)
  299. (if c (begin e ...)))
  300. @end example
  301. @subsubsection Reporting Syntax Errors in Macros
  302. @deffn {Syntax} syntax-error message [arg ...]
  303. Report an error at macro-expansion time. @var{message} must be a string
  304. literal, and the optional @var{arg} operands can be arbitrary expressions
  305. providing additional information.
  306. @end deffn
  307. @code{syntax-error} is intended to be used within @code{syntax-rules}
  308. templates. For example:
  309. @example
  310. (define-syntax simple-let
  311. (syntax-rules ()
  312. ((_ (head ... ((x . y) val) . tail)
  313. body1 body2 ...)
  314. (syntax-error
  315. "expected an identifier but got"
  316. (x . y)))
  317. ((_ ((name val) ...) body1 body2 ...)
  318. ((lambda (name ...) body1 body2 ...)
  319. val ...))))
  320. @end example
  321. @subsubsection Specifying a Custom Ellipsis Identifier
  322. When writing macros that generate macro definitions, it is convenient to
  323. use a different ellipsis identifier at each level. Guile allows the
  324. desired ellipsis identifier to be specified as the first operand to
  325. @code{syntax-rules}, as specified by SRFI-46 and R7RS. For example:
  326. @example
  327. (define-syntax define-quotation-macros
  328. (syntax-rules ()
  329. ((_ (macro-name head-symbol) ...)
  330. (begin (define-syntax macro-name
  331. (syntax-rules ::: ()
  332. ((_ x :::)
  333. (quote (head-symbol x :::)))))
  334. ...))))
  335. (define-quotation-macros (quote-a a) (quote-b b) (quote-c c))
  336. (quote-a 1 2 3) @result{} (a 1 2 3)
  337. @end example
  338. @subsubsection Further Information
  339. For a formal definition of @code{syntax-rules} and its pattern language, see
  340. @xref{Macros, , Macros, r5rs, Revised(5) Report on the Algorithmic Language
  341. Scheme}.
  342. @code{syntax-rules} macros are simple and clean, but do they have limitations.
  343. They do not lend themselves to expressive error messages: patterns either match
  344. or they don't. Their ability to generate code is limited to template-driven
  345. expansion; often one needs to define a number of helper macros to get real work
  346. done. Sometimes one wants to introduce a binding into the lexical context of the
  347. generated code; this is impossible with @code{syntax-rules}. Relatedly, they
  348. cannot programmatically generate identifiers.
  349. The solution to all of these problems is to use @code{syntax-case} if you need
  350. its features. But if for some reason you're stuck with @code{syntax-rules}, you
  351. might enjoy Joe Marshall's
  352. @uref{http://sites.google.com/site/evalapply/eccentric.txt,@code{syntax-rules}
  353. Primer for the Merely Eccentric}.
  354. @node Syntax Case
  355. @subsection Support for the @code{syntax-case} System
  356. @code{syntax-case} macros are procedural syntax transformers, with a power
  357. worthy of Scheme.
  358. @deffn {Syntax} syntax-case syntax literals (pattern [guard] exp) @dots{}
  359. Match the syntax object @var{syntax} against the given patterns, in order. If a
  360. @var{pattern} matches, return the result of evaluating the associated @var{exp}.
  361. @end deffn
  362. Compare the following definitions of @code{when}:
  363. @example
  364. (define-syntax when
  365. (syntax-rules ()
  366. ((_ test e e* ...)
  367. (if test (begin e e* ...)))))
  368. (define-syntax when
  369. (lambda (x)
  370. (syntax-case x ()
  371. ((_ test e e* ...)
  372. #'(if test (begin e e* ...))))))
  373. @end example
  374. Clearly, the @code{syntax-case} definition is similar to its @code{syntax-rules}
  375. counterpart, and equally clearly there are some differences. The
  376. @code{syntax-case} definition is wrapped in a @code{lambda}, a function of one
  377. argument; that argument is passed to the @code{syntax-case} invocation; and the
  378. ``return value'' of the macro has a @code{#'} prefix.
  379. All of these differences stem from the fact that @code{syntax-case} does not
  380. define a syntax transformer itself -- instead, @code{syntax-case} expressions
  381. provide a way to destructure a @dfn{syntax object}, and to rebuild syntax
  382. objects as output.
  383. So the @code{lambda} wrapper is simply a leaky implementation detail, that
  384. syntax transformers are just functions that transform syntax to syntax. This
  385. should not be surprising, given that we have already described macros as
  386. ``programs that write programs''. @code{syntax-case} is simply a way to take
  387. apart and put together program text, and to be a valid syntax transformer it
  388. needs to be wrapped in a procedure.
  389. Unlike traditional Lisp macros (@pxref{Defmacros}), @code{syntax-case} macros
  390. transform syntax objects, not raw Scheme forms. Recall the naive expansion of
  391. @code{my-or} given in the previous section:
  392. @example
  393. (let ((t #t))
  394. (my-or #f t))
  395. ;; naive expansion:
  396. (let ((t #t))
  397. (let ((t #f))
  398. (if t t t)))
  399. @end example
  400. Raw Scheme forms simply don't have enough information to distinguish the first
  401. two @code{t} instances in @code{(if t t t)} from the third @code{t}. So instead
  402. of representing identifiers as symbols, the syntax expander represents
  403. identifiers as annotated syntax objects, attaching such information to those
  404. syntax objects as is needed to maintain referential transparency.
  405. @deffn {Syntax} syntax form
  406. Create a syntax object wrapping @var{form} within the current lexical context.
  407. @end deffn
  408. Syntax objects are typically created internally to the process of expansion, but
  409. it is possible to create them outside of syntax expansion:
  410. @example
  411. (syntax (foo bar baz))
  412. @result{} #<some representation of that syntax>
  413. @end example
  414. @noindent
  415. However it is more common, and useful, to create syntax objects when building
  416. output from a @code{syntax-case} expression.
  417. @example
  418. (define-syntax add1
  419. (lambda (x)
  420. (syntax-case x ()
  421. ((_ exp)
  422. (syntax (+ exp 1))))))
  423. @end example
  424. It is not strictly necessary for a @code{syntax-case} expression to return a
  425. syntax object, because @code{syntax-case} expressions can be used in helper
  426. functions, or otherwise used outside of syntax expansion itself. However a
  427. syntax transformer procedure must return a syntax object, so most uses of
  428. @code{syntax-case} do end up returning syntax objects.
  429. Here in this case, the form that built the return value was @code{(syntax (+ exp
  430. 1))}. The interesting thing about this is that within a @code{syntax}
  431. expression, any appearance of a pattern variable is substituted into the
  432. resulting syntax object, carrying with it all relevant metadata from the source
  433. expression, such as lexical identity and source location.
  434. Indeed, a pattern variable may only be referenced from inside a @code{syntax}
  435. form. The syntax expander would raise an error when defining @code{add1} if it
  436. found @var{exp} referenced outside a @code{syntax} form.
  437. Since @code{syntax} appears frequently in macro-heavy code, it has a special
  438. reader macro: @code{#'}. @code{#'foo} is transformed by the reader into
  439. @code{(syntax foo)}, just as @code{'foo} is transformed into @code{(quote foo)}.
  440. The pattern language used by @code{syntax-case} is conveniently the same
  441. language used by @code{syntax-rules}. Given this, Guile actually defines
  442. @code{syntax-rules} in terms of @code{syntax-case}:
  443. @example
  444. (define-syntax syntax-rules
  445. (lambda (x)
  446. (syntax-case x ()
  447. ((_ (k ...) ((keyword . pattern) template) ...)
  448. #'(lambda (x)
  449. (syntax-case x (k ...)
  450. ((dummy . pattern) #'template)
  451. ...))))))
  452. @end example
  453. And that's that.
  454. @subsubsection Why @code{syntax-case}?
  455. The examples we have shown thus far could just as well have been expressed with
  456. @code{syntax-rules}, and have just shown that @code{syntax-case} is more
  457. verbose, which is true. But there is a difference: @code{syntax-case} creates
  458. @emph{procedural} macros, giving the full power of Scheme to the macro expander.
  459. This has many practical applications.
  460. A common desire is to be able to match a form only if it is an identifier. This
  461. is impossible with @code{syntax-rules}, given the datum matching forms. But with
  462. @code{syntax-case} it is easy:
  463. @deffn {Scheme Procedure} identifier? syntax-object
  464. Returns @code{#t} if @var{syntax-object} is an identifier, or @code{#f}
  465. otherwise.
  466. @end deffn
  467. @example
  468. ;; relying on previous add1 definition
  469. (define-syntax add1!
  470. (lambda (x)
  471. (syntax-case x ()
  472. ((_ var) (identifier? #'var)
  473. #'(set! var (add1 var))))))
  474. (define foo 0)
  475. (add1! foo)
  476. foo @result{} 1
  477. (add1! "not-an-identifier") @result{} error
  478. @end example
  479. With @code{syntax-rules}, the error for @code{(add1! "not-an-identifier")} would
  480. be something like ``invalid @code{set!}''. With @code{syntax-case}, it will say
  481. something like ``invalid @code{add1!}'', because we attach the @dfn{guard
  482. clause} to the pattern: @code{(identifier? #'var)}. This becomes more important
  483. with more complicated macros. It is necessary to use @code{identifier?}, because
  484. to the expander, an identifier is more than a bare symbol.
  485. Note that even in the guard clause, we reference the @var{var} pattern variable
  486. within a @code{syntax} form, via @code{#'var}.
  487. Another common desire is to introduce bindings into the lexical context of the
  488. output expression. One example would be in the so-called ``anaphoric macros'',
  489. like @code{aif}. Anaphoric macros bind some expression to a well-known
  490. identifier, often @code{it}, within their bodies. For example, in @code{(aif
  491. (foo) (bar it))}, @code{it} would be bound to the result of @code{(foo)}.
  492. To begin with, we should mention a solution that doesn't work:
  493. @example
  494. ;; doesn't work
  495. (define-syntax aif
  496. (lambda (x)
  497. (syntax-case x ()
  498. ((_ test then else)
  499. #'(let ((it test))
  500. (if it then else))))))
  501. @end example
  502. The reason that this doesn't work is that, by default, the expander will
  503. preserve referential transparency; the @var{then} and @var{else} expressions
  504. won't have access to the binding of @code{it}.
  505. But they can, if we explicitly introduce a binding via @code{datum->syntax}.
  506. @deffn {Scheme Procedure} datum->syntax template-id datum
  507. Create a syntax object that wraps @var{datum}, within the lexical context
  508. corresponding to the identifier @var{template-id}.
  509. @end deffn
  510. For completeness, we should mention that it is possible to strip the metadata
  511. from a syntax object, returning a raw Scheme datum:
  512. @deffn {Scheme Procedure} syntax->datum syntax-object
  513. Strip the metadata from @var{syntax-object}, returning its contents as a raw
  514. Scheme datum.
  515. @end deffn
  516. In this case we want to introduce @code{it} in the context of the whole
  517. expression, so we can create a syntax object as @code{(datum->syntax x 'it)},
  518. where @code{x} is the whole expression, as passed to the transformer procedure.
  519. Here's another solution that doesn't work:
  520. @example
  521. ;; doesn't work either
  522. (define-syntax aif
  523. (lambda (x)
  524. (syntax-case x ()
  525. ((_ test then else)
  526. (let ((it (datum->syntax x 'it)))
  527. #'(let ((it test))
  528. (if it then else)))))))
  529. @end example
  530. The reason that this one doesn't work is that there are really two
  531. environments at work here -- the environment of pattern variables, as
  532. bound by @code{syntax-case}, and the environment of lexical variables,
  533. as bound by normal Scheme. The outer let form establishes a binding in
  534. the environment of lexical variables, but the inner let form is inside a
  535. syntax form, where only pattern variables will be substituted. Here we
  536. need to introduce a piece of the lexical environment into the pattern
  537. variable environment, and we can do so using @code{syntax-case} itself:
  538. @example
  539. ;; works, but is obtuse
  540. (define-syntax aif
  541. (lambda (x)
  542. (syntax-case x ()
  543. ((_ test then else)
  544. ;; invoking syntax-case on the generated
  545. ;; syntax object to expose it to `syntax'
  546. (syntax-case (datum->syntax x 'it) ()
  547. (it
  548. #'(let ((it test))
  549. (if it then else))))))))
  550. (aif (getuid) (display it) (display "none")) (newline)
  551. @print{} 500
  552. @end example
  553. However there are easier ways to write this. @code{with-syntax} is often
  554. convenient:
  555. @deffn {Syntax} with-syntax ((pat val) @dots{}) exp @dots{}
  556. Bind patterns @var{pat} from their corresponding values @var{val}, within the
  557. lexical context of @var{exp} @enddots{}.
  558. @example
  559. ;; better
  560. (define-syntax aif
  561. (lambda (x)
  562. (syntax-case x ()
  563. ((_ test then else)
  564. (with-syntax ((it (datum->syntax x 'it)))
  565. #'(let ((it test))
  566. (if it then else)))))))
  567. @end example
  568. @end deffn
  569. As you might imagine, @code{with-syntax} is defined in terms of
  570. @code{syntax-case}. But even that might be off-putting to you if you are an old
  571. Lisp macro hacker, used to building macro output with @code{quasiquote}. The
  572. issue is that @code{with-syntax} creates a separation between the point of
  573. definition of a value and its point of substitution.
  574. @pindex quasisyntax
  575. @pindex unsyntax
  576. @pindex unsyntax-splicing
  577. So for cases in which a @code{quasiquote} style makes more sense,
  578. @code{syntax-case} also defines @code{quasisyntax}, and the related
  579. @code{unsyntax} and @code{unsyntax-splicing}, abbreviated by the reader as
  580. @code{#`}, @code{#,}, and @code{#,@@}, respectively.
  581. For example, to define a macro that inserts a compile-time timestamp into a
  582. source file, one may write:
  583. @example
  584. (define-syntax display-compile-timestamp
  585. (lambda (x)
  586. (syntax-case x ()
  587. ((_)
  588. #`(begin
  589. (display "The compile timestamp was: ")
  590. (display #,(current-time))
  591. (newline))))))
  592. @end example
  593. Readers interested in further information on @code{syntax-case} macros should
  594. see R. Kent Dybvig's excellent @cite{The Scheme Programming Language}, either
  595. edition 3 or 4, in the chapter on syntax. Dybvig was the primary author of the
  596. @code{syntax-case} system. The book itself is available online at
  597. @uref{http://scheme.com/tspl4/}.
  598. @subsubsection Custom Ellipsis Identifiers for syntax-case Macros
  599. When writing procedural macros that generate macro definitions, it is
  600. convenient to use a different ellipsis identifier at each level. Guile
  601. supports this for procedural macros using the @code{with-ellipsis}
  602. special form:
  603. @deffn {Syntax} with-ellipsis ellipsis body @dots{}
  604. @var{ellipsis} must be an identifier. Evaluate @var{body} in a special
  605. lexical environment such that all macro patterns and templates within
  606. @var{body} will use @var{ellipsis} as the ellipsis identifier instead of
  607. the usual three dots (@code{...}).
  608. @end deffn
  609. For example:
  610. @example
  611. (define-syntax define-quotation-macros
  612. (lambda (x)
  613. (syntax-case x ()
  614. ((_ (macro-name head-symbol) ...)
  615. #'(begin (define-syntax macro-name
  616. (lambda (x)
  617. (with-ellipsis :::
  618. (syntax-case x ()
  619. ((_ x :::)
  620. #'(quote (head-symbol x :::)))))))
  621. ...)))))
  622. (define-quotation-macros (quote-a a) (quote-b b) (quote-c c))
  623. (quote-a 1 2 3) @result{} (a 1 2 3)
  624. @end example
  625. Note that @code{with-ellipsis} does not affect the ellipsis identifier
  626. of the generated code, unless @code{with-ellipsis} is included around
  627. the generated code.
  628. @node Syntax Transformer Helpers
  629. @subsection Syntax Transformer Helpers
  630. As noted in the previous section, Guile's syntax expander operates on
  631. syntax objects. Procedural macros consume and produce syntax objects.
  632. This section describes some of the auxiliary helpers that procedural
  633. macros can use to compare, generate, and query objects of this data
  634. type.
  635. @deffn {Scheme Procedure} bound-identifier=? a b
  636. Return @code{#t} if the syntax objects @var{a} and @var{b} refer to the
  637. same lexically-bound identifier, or @code{#f} otherwise.
  638. @end deffn
  639. @deffn {Scheme Procedure} free-identifier=? a b
  640. Return @code{#t} if the syntax objects @var{a} and @var{b} refer to the
  641. same free identifier, or @code{#f} otherwise.
  642. @end deffn
  643. @deffn {Scheme Procedure} generate-temporaries ls
  644. Return a list of temporary identifiers as long as @var{ls} is long.
  645. @end deffn
  646. @deffn {Scheme Procedure} syntax-source x
  647. Return the source properties that correspond to the syntax object
  648. @var{x}. @xref{Source Properties}, for more information.
  649. @end deffn
  650. Guile also offers some more experimental interfaces in a separate
  651. module. As was the case with the Large Hadron Collider, it is unclear
  652. to our senior macrologists whether adding these interfaces will result
  653. in awesomeness or in the destruction of Guile via the creation of a
  654. singularity. We will preserve their functionality through the 2.0
  655. series, but we reserve the right to modify them in a future stable
  656. series, to a more than usual degree.
  657. @example
  658. (use-modules (system syntax))
  659. @end example
  660. @deffn {Scheme Procedure} syntax-module id
  661. Return the name of the module whose source contains the identifier
  662. @var{id}.
  663. @end deffn
  664. @deffn {Scheme Procedure} syntax-local-binding id [#:resolve-syntax-parameters?=#t]
  665. Resolve the identifer @var{id}, a syntax object, within the current
  666. lexical environment, and return two values, the binding type and a
  667. binding value. The binding type is a symbol, which may be one of the
  668. following:
  669. @table @code
  670. @item lexical
  671. A lexically-bound variable. The value is a unique token (in the sense
  672. of @code{eq?}) identifying this binding.
  673. @item macro
  674. A syntax transformer, either local or global. The value is the
  675. transformer procedure.
  676. @item syntax-parameter
  677. A syntax parameter (@pxref{Syntax Parameters}). By default,
  678. @code{syntax-local-binding} will resolve syntax parameters, so that this
  679. value will not be returned. Pass @code{#:resolve-syntax-parameters? #f}
  680. to indicate that you are interested in syntax parameters. The value is
  681. the default transformer procedure, as in @code{macro}.
  682. @item pattern-variable
  683. A pattern variable, bound via @code{syntax-case}. The value is an
  684. opaque object, internal to the expander.
  685. @item ellipsis
  686. An internal binding, bound via @code{with-ellipsis}. The value is the
  687. (anti-marked) local ellipsis identifier.
  688. @item displaced-lexical
  689. A lexical variable that has gone out of scope. This can happen if a
  690. badly-written procedural macro saves a syntax object, then attempts to
  691. introduce it in a context in which it is unbound. The value is
  692. @code{#f}.
  693. @item global
  694. A global binding. The value is a pair, whose head is the symbol, and
  695. whose tail is the name of the module in which to resolve the symbol.
  696. @item other
  697. Some other binding, like @code{lambda} or other core bindings. The
  698. value is @code{#f}.
  699. @end table
  700. This is a very low-level procedure, with limited uses. One case in
  701. which it is useful is to build abstractions that associate auxiliary
  702. information with macros:
  703. @example
  704. (define aux-property (make-object-property))
  705. (define-syntax-rule (with-aux aux value)
  706. (let ((trans value))
  707. (set! (aux-property trans) aux)
  708. trans))
  709. (define-syntax retrieve-aux
  710. (lambda (x)
  711. (syntax-case x ()
  712. ((x id)
  713. (call-with-values (lambda () (syntax-local-binding #'id))
  714. (lambda (type val)
  715. (with-syntax ((aux (datum->syntax #'here
  716. (and (eq? type 'macro)
  717. (aux-property val)))))
  718. #''aux)))))))
  719. (define-syntax foo
  720. (with-aux 'bar
  721. (syntax-rules () ((_) 'foo))))
  722. (foo)
  723. @result{} foo
  724. (retrieve-aux foo)
  725. @result{} bar
  726. @end example
  727. @code{syntax-local-binding} must be called within the dynamic extent of
  728. a syntax transformer; to call it otherwise will signal an error.
  729. @end deffn
  730. @deffn {Scheme Procedure} syntax-locally-bound-identifiers id
  731. Return a list of identifiers that were visible lexically when the
  732. identifier @var{id} was created, in order from outermost to innermost.
  733. This procedure is intended to be used in specialized procedural macros,
  734. to provide a macro with the set of bound identifiers that the macro can
  735. reference.
  736. As a technical implementation detail, the identifiers returned by
  737. @code{syntax-locally-bound-identifiers} will be anti-marked, like the
  738. syntax object that is given as input to a macro. This is to signal to
  739. the macro expander that these bindings were present in the original
  740. source, and do not need to be hygienically renamed, as would be the case
  741. with other introduced identifiers. See the discussion of hygiene in
  742. section 12.1 of the R6RS, for more information on marks.
  743. @example
  744. (define (local-lexicals id)
  745. (filter (lambda (x)
  746. (eq? (syntax-local-binding x) 'lexical))
  747. (syntax-locally-bound-identifiers id)))
  748. (define-syntax lexicals
  749. (lambda (x)
  750. (syntax-case x ()
  751. ((lexicals) #'(lexicals lexicals))
  752. ((lexicals scope)
  753. (with-syntax (((id ...) (local-lexicals #'scope)))
  754. #'(list (cons 'id id) ...))))))
  755. (let* ((x 10) (x 20)) (lexicals))
  756. @result{} ((x . 10) (x . 20))
  757. @end example
  758. @end deffn
  759. @node Defmacros
  760. @subsection Lisp-style Macro Definitions
  761. The traditional way to define macros in Lisp is very similar to procedure
  762. definitions. The key differences are that the macro definition body should
  763. return a list that describes the transformed expression, and that the definition
  764. is marked as a macro definition (rather than a procedure definition) by the use
  765. of a different definition keyword: in Lisp, @code{defmacro} rather than
  766. @code{defun}, and in Scheme, @code{define-macro} rather than @code{define}.
  767. @fnindex defmacro
  768. @fnindex define-macro
  769. Guile supports this style of macro definition using both @code{defmacro}
  770. and @code{define-macro}. The only difference between them is how the
  771. macro name and arguments are grouped together in the definition:
  772. @lisp
  773. (defmacro @var{name} (@var{args} @dots{}) @var{body} @dots{})
  774. @end lisp
  775. @noindent
  776. is the same as
  777. @lisp
  778. (define-macro (@var{name} @var{args} @dots{}) @var{body} @dots{})
  779. @end lisp
  780. @noindent
  781. The difference is analogous to the corresponding difference between
  782. Lisp's @code{defun} and Scheme's @code{define}.
  783. Having read the previous section on @code{syntax-case}, it's probably clear that
  784. Guile actually implements defmacros in terms of @code{syntax-case}, applying the
  785. transformer on the expression between invocations of @code{syntax->datum} and
  786. @code{datum->syntax}. This realization leads us to the problem with defmacros,
  787. that they do not preserve referential transparency. One can be careful to not
  788. introduce bindings into expanded code, via liberal use of @code{gensym}, but
  789. there is no getting around the lack of referential transparency for free
  790. bindings in the macro itself.
  791. Even a macro as simple as our @code{when} from before is difficult to get right:
  792. @example
  793. (define-macro (when cond exp . rest)
  794. `(if ,cond
  795. (begin ,exp . ,rest)))
  796. (when #f (display "Launching missiles!\n"))
  797. @result{} #f
  798. (let ((if list))
  799. (when #f (display "Launching missiles!\n")))
  800. @print{} Launching missiles!
  801. @result{} (#f #<unspecified>)
  802. @end example
  803. Guile's perspective is that defmacros have had a good run, but that modern
  804. macros should be written with @code{syntax-rules} or @code{syntax-case}. There
  805. are still many uses of defmacros within Guile itself, but we will be phasing
  806. them out over time. Of course we won't take away @code{defmacro} or
  807. @code{define-macro} themselves, as there is lots of code out there that uses
  808. them.
  809. @node Identifier Macros
  810. @subsection Identifier Macros
  811. When the syntax expander sees a form in which the first element is a macro, the
  812. whole form gets passed to the macro's syntax transformer. One may visualize this
  813. as:
  814. @example
  815. (define-syntax foo foo-transformer)
  816. (foo @var{arg}...)
  817. ;; expands via
  818. (foo-transformer #'(foo @var{arg}...))
  819. @end example
  820. If, on the other hand, a macro is referenced in some other part of a form, the
  821. syntax transformer is invoked with only the macro reference, not the whole form.
  822. @example
  823. (define-syntax foo foo-transformer)
  824. foo
  825. ;; expands via
  826. (foo-transformer #'foo)
  827. @end example
  828. This allows bare identifier references to be replaced programmatically via a
  829. macro. @code{syntax-rules} provides some syntax to effect this transformation
  830. more easily.
  831. @deffn {Syntax} identifier-syntax exp
  832. Returns a macro transformer that will replace occurrences of the macro with
  833. @var{exp}.
  834. @end deffn
  835. For example, if you are importing external code written in terms of @code{fx+},
  836. the fixnum addition operator, but Guile doesn't have @code{fx+}, you may use the
  837. following to replace @code{fx+} with @code{+}:
  838. @example
  839. (define-syntax fx+ (identifier-syntax +))
  840. @end example
  841. There is also special support for recognizing identifiers on the
  842. left-hand side of a @code{set!} expression, as in the following:
  843. @example
  844. (define-syntax foo foo-transformer)
  845. (set! foo @var{val})
  846. ;; expands via
  847. (foo-transformer #'(set! foo @var{val}))
  848. ;; if foo-transformer is a "variable transformer"
  849. @end example
  850. As the example notes, the transformer procedure must be explicitly
  851. marked as being a ``variable transformer'', as most macros aren't
  852. written to discriminate on the form in the operator position.
  853. @deffn {Scheme Procedure} make-variable-transformer transformer
  854. Mark the @var{transformer} procedure as being a ``variable
  855. transformer''. In practice this means that, when bound to a syntactic
  856. keyword, it may detect references to that keyword on the left-hand-side
  857. of a @code{set!}.
  858. @example
  859. (define bar 10)
  860. (define-syntax bar-alias
  861. (make-variable-transformer
  862. (lambda (x)
  863. (syntax-case x (set!)
  864. ((set! var val) #'(set! bar val))
  865. ((var arg ...) #'(bar arg ...))
  866. (var (identifier? #'var) #'bar)))))
  867. bar-alias @result{} 10
  868. (set! bar-alias 20)
  869. bar @result{} 20
  870. (set! bar 30)
  871. bar-alias @result{} 30
  872. @end example
  873. @end deffn
  874. There is an extension to identifier-syntax which allows it to handle the
  875. @code{set!} case as well:
  876. @deffn {Syntax} identifier-syntax (var exp1) ((set! var val) exp2)
  877. Create a variable transformer. The first clause is used for references
  878. to the variable in operator or operand position, and the second for
  879. appearances of the variable on the left-hand-side of an assignment.
  880. For example, the previous @code{bar-alias} example could be expressed
  881. more succinctly like this:
  882. @example
  883. (define-syntax bar-alias
  884. (identifier-syntax
  885. (var bar)
  886. ((set! var val) (set! bar val))))
  887. @end example
  888. @noindent
  889. As before, the templates in @code{identifier-syntax} forms do not need
  890. wrapping in @code{#'} syntax forms.
  891. @end deffn
  892. @node Syntax Parameters
  893. @subsection Syntax Parameters
  894. Syntax parameters@footnote{Described in the paper @cite{Keeping it Clean
  895. with Syntax Parameters} by Barzilay, Culpepper and Flatt.} are a
  896. mechanism for rebinding a macro definition within the dynamic extent of
  897. a macro expansion. This provides a convenient solution to one of the
  898. most common types of unhygienic macro: those that introduce a unhygienic
  899. binding each time the macro is used. Examples include a @code{lambda}
  900. form with a @code{return} keyword, or class macros that introduce a
  901. special @code{self} binding.
  902. With syntax parameters, instead of introducing the binding
  903. unhygienically each time, we instead create one binding for the keyword,
  904. which we can then adjust later when we want the keyword to have a
  905. different meaning. As no new bindings are introduced, hygiene is
  906. preserved. This is similar to the dynamic binding mechanisms we have at
  907. run-time (@pxref{SRFI-39, parameters}), except that the dynamic binding
  908. only occurs during macro expansion. The code after macro expansion
  909. remains lexically scoped.
  910. @deffn {Syntax} define-syntax-parameter keyword transformer
  911. Binds @var{keyword} to the value obtained by evaluating
  912. @var{transformer}. The @var{transformer} provides the default expansion
  913. for the syntax parameter, and in the absence of
  914. @code{syntax-parameterize}, is functionally equivalent to
  915. @code{define-syntax}. Usually, you will just want to have the
  916. @var{transformer} throw a syntax error indicating that the @var{keyword}
  917. is supposed to be used in conjunction with another macro, for example:
  918. @example
  919. (define-syntax-parameter return
  920. (lambda (stx)
  921. (syntax-violation 'return "return used outside of a lambda^" stx)))
  922. @end example
  923. @end deffn
  924. @deffn {Syntax} syntax-parameterize ((keyword transformer) @dots{}) exp @dots{}
  925. Adjusts @var{keyword} @dots{} to use the values obtained by evaluating
  926. their @var{transformer} @dots{}, in the expansion of the @var{exp}
  927. @dots{} forms. Each @var{keyword} must be bound to a syntax-parameter.
  928. @code{syntax-parameterize} differs from @code{let-syntax}, in that the
  929. binding is not shadowed, but adjusted, and so uses of the keyword in the
  930. expansion of @var{exp} @dots{} use the new transformers. This is
  931. somewhat similar to how @code{parameterize} adjusts the values of
  932. regular parameters, rather than creating new bindings.
  933. @example
  934. (define-syntax lambda^
  935. (syntax-rules ()
  936. [(lambda^ argument-list body body* ...)
  937. (lambda argument-list
  938. (call-with-current-continuation
  939. (lambda (escape)
  940. ;; In the body we adjust the 'return' keyword so that calls
  941. ;; to 'return' are replaced with calls to the escape
  942. ;; continuation.
  943. (syntax-parameterize ([return (syntax-rules ()
  944. [(return vals (... ...))
  945. (escape vals (... ...))])])
  946. body body* ...))))]))
  947. ;; Now we can write functions that return early. Here, 'product' will
  948. ;; return immediately if it sees any 0 element.
  949. (define product
  950. (lambda^ (list)
  951. (fold (lambda (n o)
  952. (if (zero? n)
  953. (return 0)
  954. (* n o)))
  955. 1
  956. list)))
  957. @end example
  958. @end deffn
  959. @node Eval When
  960. @subsection Eval-when
  961. As @code{syntax-case} macros have the whole power of Scheme available to them,
  962. they present a problem regarding time: when a macro runs, what parts of the
  963. program are available for the macro to use?
  964. The default answer to this question is that when you import a module (via
  965. @code{define-module} or @code{use-modules}), that module will be loaded up at
  966. expansion-time, as well as at run-time. Additionally, top-level syntactic
  967. definitions within one compilation unit made by @code{define-syntax} are also
  968. evaluated at expansion time, in the order that they appear in the compilation
  969. unit (file).
  970. But if a syntactic definition needs to call out to a normal procedure at
  971. expansion-time, it might well need need special declarations to indicate that
  972. the procedure should be made available at expansion-time.
  973. For example, the following code will work at a REPL, but not in a file:
  974. @example
  975. ;; incorrect
  976. (use-modules (srfi srfi-19))
  977. (define (date) (date->string (current-date)))
  978. (define-syntax %date (identifier-syntax (date)))
  979. (define *compilation-date* %date)
  980. @end example
  981. It works at a REPL because the expressions are evaluated one-by-one, in order,
  982. but if placed in a file, the expressions are expanded one-by-one, but not
  983. evaluated until the compiled file is loaded.
  984. The fix is to use @code{eval-when}.
  985. @example
  986. ;; correct: using eval-when
  987. (use-modules (srfi srfi-19))
  988. (eval-when (expand load eval)
  989. (define (date) (date->string (current-date))))
  990. (define-syntax %date (identifier-syntax (date)))
  991. (define *compilation-date* %date)
  992. @end example
  993. @deffn {Syntax} eval-when conditions exp...
  994. Evaluate @var{exp...} under the given @var{conditions}. Valid
  995. conditions include:
  996. @table @code
  997. @item expand
  998. Evaluate during macro expansion, whether compiling or not.
  999. @item load
  1000. Evaluate during the evaluation phase of compiled code, e.g. when loading
  1001. a compiled module or running compiled code at the REPL.
  1002. @item eval
  1003. Evaluate during the evaluation phase of non-compiled code.
  1004. @item compile
  1005. Evaluate during macro expansion, but only when compiling.
  1006. @end table
  1007. In other words, when using the primitive evaluator, @code{eval-when}
  1008. expressions with @code{expand} are run during macro expansion, and those
  1009. with @code{eval} are run during the evaluation phase.
  1010. When using the compiler, @code{eval-when} expressions with either
  1011. @code{expand} or @code{compile} are run during macro expansion, and
  1012. those with @code{load} are run during the evaluation phase.
  1013. When in doubt, use the three conditions @code{(expand load eval)}, as in
  1014. the example above. Other uses of @code{eval-when} may void your
  1015. warranty or poison your cat.
  1016. @end deffn
  1017. @node Macro Expansion
  1018. @subsection Macro Expansion
  1019. Usually, macros are expanded on behalf of the user as needed. Macro
  1020. expansion is an integral part of @code{eval} and @code{compile}. Users
  1021. can also expand macros at the REPL prompt via the @code{expand} REPL
  1022. command; @xref{Compile Commands}.
  1023. Macros can also be expanded programmatically, via @code{macroexpand},
  1024. but the details get a bit hairy for two reasons.
  1025. The first complication is that the result of macro-expansion isn't
  1026. Scheme: it's Tree-IL, Guile's high-level intermediate language.
  1027. @xref{Tree-IL}. As ``hygienic macros'' can produce identifiers that are
  1028. distinct but have the same name, the output format needs to be able to
  1029. represent distinctions between variable identities and names. Again,
  1030. @xref{Tree-IL}, for all the details. The easiest thing is to just run
  1031. @code{tree-il->scheme} on the result of macro-expansion:
  1032. @lisp
  1033. (macroexpand '(+ 1 2))
  1034. @result{}
  1035. #<tree-il (call (toplevel +) (const 1) (const 2))>
  1036. (use-modules (language tree-il))
  1037. (tree-il->scheme (macroexpand '(+ 1 2)))
  1038. @result{}
  1039. (+ 1 2)
  1040. @end lisp
  1041. The second complication involves @code{eval-when}. As an example, what
  1042. would it mean to macro-expand the definition of a macro?
  1043. @lisp
  1044. (macroexpand '(define-syntax qux (identifier-syntax 'bar)))
  1045. @result{}
  1046. ?
  1047. @end lisp
  1048. The answer is that it depends who is macro-expanding, and why. Do you
  1049. define the macro in the current environment? Residualize a macro
  1050. definition? Both? Neither? The default is to expand in ``eval'' mode,
  1051. which means an @code{eval-when} clauses will only proceed when
  1052. @code{eval} (or @code{expand}) is in its condition set. Top-level
  1053. macros will be @code{eval}'d in the top-level environment.
  1054. In this way @code{(macroexpand @var{foo})} is equivalent to
  1055. @code{(macroexpand @var{foo} 'e '(eval))}. The second argument is the
  1056. mode (@code{'e} for ``eval'') and the second is the
  1057. eval-syntax-expanders-when parameter (only @code{eval} in this default
  1058. setting).
  1059. But if you are compiling the macro definition, probably you want to
  1060. reify the macro definition itself. In that case you pass @code{'c} as
  1061. the second argument to @code{macroexpand}. But probably you want the
  1062. macro definition to be present at compile time as well, so you pass
  1063. @code{'(compile load eval)} as the @var{esew} parameter. In fact
  1064. @code{(compile @var{foo} #:to 'tree-il)} is entirely equivalent to
  1065. @code{(macroexpand @var{foo} 'c '(compile load eval))}; @xref{The Scheme
  1066. Compiler}.
  1067. It's a terrible interface; we know. The macroexpander is somewhat
  1068. tricksy regarding modes, so unless you are building a macro-expanding
  1069. tool, we suggest to avoid invoking it directly.
  1070. @node Hygiene and the Top-Level
  1071. @subsection Hygiene and the Top-Level
  1072. Consider the following macro.
  1073. @lisp
  1074. (define-syntax-rule (defconst name val)
  1075. (begin
  1076. (define t val)
  1077. (define-syntax-rule (name) t)))
  1078. @end lisp
  1079. If we use it to make a couple of bindings:
  1080. @lisp
  1081. (defconst foo 42)
  1082. (defconst bar 37)
  1083. @end lisp
  1084. The expansion would look something like this:
  1085. @lisp
  1086. (begin
  1087. (define t 42)
  1088. (define-syntax-rule (foo) t))
  1089. (begin
  1090. (define t 37)
  1091. (define-syntax-rule (bar) t))
  1092. @end lisp
  1093. As the two @code{t} bindings were introduced by the macro, they should
  1094. be introduced hygienically -- and indeed they are, inside a lexical
  1095. contour (a @code{let} or some other lexical scope). The @code{t}
  1096. reference in @code{foo} is distinct to the reference in @code{bar}.
  1097. At the top-level things are more complicated. Before Guile 2.2, a use
  1098. of @code{defconst} at the top-level would not introduce a fresh binding
  1099. for @code{t}. This was consistent with a weaselly interpretation of the
  1100. Scheme standard, in which all possible bindings may be assumed to exist,
  1101. at the top-level, and in which we merely take advantage of toplevel
  1102. @code{define} of an existing binding being equivalent to @code{set!}.
  1103. But it's not a good reason.
  1104. The solution is to create fresh names for all bindings introduced by
  1105. macros -- not just bindings in lexical contours, but also bindings
  1106. introduced at the top-level.
  1107. However, the obvious strategy of just giving random names to introduced
  1108. toplevel identifiers poses a problem for separate compilation. Consider
  1109. without loss of generality a @code{defconst} of @code{foo} in module
  1110. @code{a} that introduces the fresh top-level name @code{t-1}. If we
  1111. then compile a module @code{b} that uses @code{foo}, there is now a
  1112. reference to @code{t-1} in module @code{b}. If module @code{a} is then
  1113. expanded again, for whatever reason, for example in a simple
  1114. recompilation, the introduced @code{t} gets a fresh name; say,
  1115. @code{t-2}. Now module @code{b} has broken because module @code{a} no
  1116. longer has a binding for @code{t-1}.
  1117. If introduced top-level identifiers ``escape'' a module, in whatever
  1118. way, they then form part of the binary interface (ABI) of a module. It
  1119. is unacceptable from an engineering point of view to allow the ABI to
  1120. change randomly. (It also poses practical problems in meeting the
  1121. recompilation conditions of the Lesser GPL license, for such modules.)
  1122. For this reason many people prefer to never use identifier-introducing
  1123. macros at the top-level, instead making those macros receive the names
  1124. for their introduced identifiers as part of their arguments, or to
  1125. construct them programmatically and use @code{datum->syntax}. But this
  1126. approach requires omniscience as to the implementation of all macros one
  1127. might use, and also limits the expressive power of Scheme macros.
  1128. There is no perfect solution to this issue. Guile does a terrible thing
  1129. here. When it goes to introduce a top-level identifier, Guile gives the
  1130. identifier a pseudo-fresh name: a name that depends on the hash of the
  1131. source expression in which the name occurs. The result in this case is
  1132. that the introduced definitions expand as:
  1133. @lisp
  1134. (begin
  1135. (define t-1dc5e42de7c1050c 42)
  1136. (define-syntax-rule (foo) t-1dc5e42de7c1050c))
  1137. (begin
  1138. (define t-10cb8ce9fdddd6e9 37)
  1139. (define-syntax-rule (bar) t-10cb8ce9fdddd6e9))
  1140. @end lisp
  1141. However, note that as the hash depends solely on the expression
  1142. introducing the definition, we also have:
  1143. @lisp
  1144. (defconst baz 42)
  1145. @result{} (begin
  1146. (define t-1dc5e42de7c1050c 42)
  1147. (define-syntax-rule (baz) t-1dc5e42de7c1050c))
  1148. @end lisp
  1149. Note that the introduced binding has the same name! This is because the
  1150. source expression, @code{(define t 42)}, was the same. Probably you
  1151. will never see an error in this area, but it is important to understand
  1152. the components of the interface of a module, and that interface may
  1153. include macro-introduced identifiers.
  1154. @node Internal Macros
  1155. @subsection Internal Macros
  1156. @deffn {Scheme Procedure} make-syntax-transformer name type binding
  1157. Construct a syntax transformer object. This is part of Guile's low-level support
  1158. for syntax-case.
  1159. @end deffn
  1160. @deffn {Scheme Procedure} macro? obj
  1161. @deffnx {C Function} scm_macro_p (obj)
  1162. Return @code{#t} if @var{obj} is a syntax transformer, or @code{#f}
  1163. otherwise.
  1164. Note that it's a bit difficult to actually get a macro as a first-class object;
  1165. simply naming it (like @code{case}) will produce a syntax error. But it is
  1166. possible to get these objects using @code{module-ref}:
  1167. @example
  1168. (macro? (module-ref (current-module) 'case))
  1169. @result{} #t
  1170. @end example
  1171. @end deffn
  1172. @deffn {Scheme Procedure} macro-type m
  1173. @deffnx {C Function} scm_macro_type (m)
  1174. Return the @var{type} that was given when @var{m} was constructed, via
  1175. @code{make-syntax-transformer}.
  1176. @end deffn
  1177. @deffn {Scheme Procedure} macro-name m
  1178. @deffnx {C Function} scm_macro_name (m)
  1179. Return the name of the macro @var{m}.
  1180. @end deffn
  1181. @deffn {Scheme Procedure} macro-binding m
  1182. @deffnx {C Function} scm_macro_binding (m)
  1183. Return the binding of the macro @var{m}.
  1184. @end deffn
  1185. @deffn {Scheme Procedure} macro-transformer m
  1186. @deffnx {C Function} scm_macro_transformer (m)
  1187. Return the transformer of the macro @var{m}. This will return a procedure, for
  1188. which one may ask the docstring. That's the whole reason this section is
  1189. documented. Actually a part of the result of @code{macro-binding}.
  1190. @end deffn
  1191. @c Local Variables:
  1192. @c TeX-master: "guile.texi"
  1193. @c End: