1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309 |
- /* Copyright 1995-2016,2018-2022
- Free Software Foundation, Inc.
- Portions Copyright 1990-1993 by AT&T Bell Laboratories and Bellcore.
- See scm_divide.
- This file is part of Guile.
- Guile is free software: you can redistribute it and/or modify it
- under the terms of the GNU Lesser General Public License as published
- by the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- Guile is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
- License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with Guile. If not, see
- <https://www.gnu.org/licenses/>. */
- /* General assumptions:
- * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
- * If an object satisfies integer?, it's either an inum, a bignum, or a real.
- * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
- * XXX What about infinities? They are equal to their own floor! -mhw
- * All objects satisfying SCM_FRACTIONP are never an integer.
- */
- /* TODO:
-
- - see if special casing bignums and reals in integer-exponent when
- possible (to use mpz_pow and mpf_pow_ui) is faster.
- - look in to better short-circuiting of common cases in
- integer-expt and elsewhere.
- - see if direct mpz operations can help in ash and elsewhere.
- */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include <assert.h>
- #include <math.h>
- #include <stdarg.h>
- #include <string.h>
- #include <unicase.h>
- #include <unictype.h>
- #include <verify.h>
- #if HAVE_COMPLEX_H
- #include <complex.h>
- #endif
- #include "bdw-gc.h"
- #include "boolean.h"
- #include "deprecation.h"
- #include "dynwind.h"
- #include "eq.h"
- #include "feature.h"
- #include "finalizers.h"
- #include "goops.h"
- #include "gsubr.h"
- #include "integers.h"
- #include "modules.h"
- #include "pairs.h"
- #include "ports.h"
- #include "simpos.h"
- #include "smob.h"
- #include "strings.h"
- #include "values.h"
- #include "numbers.h"
- /* values per glibc, if not already defined */
- #ifndef M_LOG10E
- #define M_LOG10E 0.43429448190325182765
- #endif
- #ifndef M_LN2
- #define M_LN2 0.69314718055994530942
- #endif
- #ifndef M_PI
- #define M_PI 3.14159265358979323846
- #endif
- /* FIXME: We assume that FLT_RADIX is 2 */
- verify (FLT_RADIX == 2);
- /* Make sure that scm_t_inum fits within a SCM value. */
- verify (sizeof (scm_t_inum) <= sizeof (scm_t_bits));
- /* Several functions below assume that fixnums fit within a long, and
- furthermore that there is some headroom to spare for other operations
- without overflowing. */
- verify (SCM_I_FIXNUM_BIT <= SCM_LONG_BIT - 2);
- /* Some functions that use GMP's mpn functions assume that a
- non-negative fixnum will always fit in a 'mp_limb_t'. */
- verify (SCM_MOST_POSITIVE_FIXNUM <= (mp_limb_t) -1);
- #define scm_from_inum(x) (scm_from_signed_integer (x))
- /* Test an inum to see if it can be converted to a double without loss
- of precision. Note that this will sometimes return 0 even when 1
- could have been returned, e.g. for large powers of 2. It is designed
- to be a fast check to optimize common cases. */
- #define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \
- (SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \
- || ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG))
- #if (! HAVE_DECL_MPZ_INITS) || SCM_ENABLE_MINI_GMP
- /* GMP < 5.0.0 and mini-gmp lack `mpz_inits' and `mpz_clears'. Provide
- them. */
- #define VARARG_MPZ_ITERATOR(func) \
- static void \
- func ## s (mpz_t x, ...) \
- { \
- va_list ap; \
- \
- va_start (ap, x); \
- while (x != NULL) \
- { \
- func (x); \
- x = va_arg (ap, mpz_ptr); \
- } \
- va_end (ap); \
- }
- VARARG_MPZ_ITERATOR (mpz_init)
- VARARG_MPZ_ITERATOR (mpz_clear)
- #endif
- /*
- Wonder if this might be faster for some of our code? A switch on
- the numtag would jump directly to the right case, and the
- SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
- #define SCM_I_NUMTAG_NOTNUM 0
- #define SCM_I_NUMTAG_INUM 1
- #define SCM_I_NUMTAG_BIG scm_tc16_big
- #define SCM_I_NUMTAG_REAL scm_tc16_real
- #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
- #define SCM_I_NUMTAG(x) \
- (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
- : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
- : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
- : SCM_I_NUMTAG_NOTNUM)))
- */
- /* the macro above will not work as is with fractions */
- static SCM flo0;
- static SCM exactly_one_half;
- static SCM flo_log10e;
- #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
- /* FLOBUFLEN is the maximum number of characters necessary for the
- * printed or scm_string representation of an inexact number.
- */
- #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
- #if !defined (HAVE_ASINH)
- static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
- #endif
- #if !defined (HAVE_ACOSH)
- static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
- #endif
- #if !defined (HAVE_ATANH)
- static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
- #endif
- /* mpz_cmp_d in GMP before 4.2 didn't recognise infinities, so
- xmpz_cmp_d uses an explicit check. Starting with GMP 4.2 (released
- in March 2006), mpz_cmp_d now handles infinities properly. */
- #if 1
- #define xmpz_cmp_d(z, d) \
- (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
- #else
- #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
- #endif
- #if defined (GUILE_I)
- #if defined HAVE_COMPLEX_DOUBLE
- /* For an SCM object Z which is a complex number (ie. satisfies
- SCM_COMPLEXP), return its value as a C level "complex double". */
- #define SCM_COMPLEX_VALUE(z) \
- (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
- static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
- /* Convert a C "complex double" to an SCM value. */
- static inline SCM
- scm_from_complex_double (complex double z)
- {
- return scm_c_make_rectangular (creal (z), cimag (z));
- }
- #endif /* HAVE_COMPLEX_DOUBLE */
- #endif /* GUILE_I */
- /* Make the ratio NUMERATOR/DENOMINATOR, where:
- 1. NUMERATOR and DENOMINATOR are exact integers
- 2. NUMERATOR and DENOMINATOR are reduced to lowest terms: gcd(n,d) == 1 */
- static SCM
- scm_i_make_ratio_already_reduced (SCM numerator, SCM denominator)
- {
- /* Flip signs so that the denominator is positive. */
- if (scm_is_false (scm_positive_p (denominator)))
- {
- if (SCM_UNLIKELY (scm_is_eq (denominator, SCM_INUM0)))
- scm_num_overflow ("make-ratio");
- else
- {
- numerator = scm_difference (numerator, SCM_UNDEFINED);
- denominator = scm_difference (denominator, SCM_UNDEFINED);
- }
- }
- /* Check for the integer case */
- if (scm_is_eq (denominator, SCM_INUM1))
- return numerator;
- return scm_double_cell (scm_tc16_fraction,
- SCM_UNPACK (numerator),
- SCM_UNPACK (denominator), 0);
- }
- static SCM scm_exact_integer_quotient (SCM x, SCM y);
- /* Make the ratio NUMERATOR/DENOMINATOR */
- static SCM
- scm_i_make_ratio (SCM numerator, SCM denominator)
- #define FUNC_NAME "make-ratio"
- {
- if (!scm_is_exact_integer (numerator))
- abort();
- if (!scm_is_exact_integer (denominator))
- abort();
- SCM the_gcd = scm_gcd (numerator, denominator);
- if (!(scm_is_eq (the_gcd, SCM_INUM1)))
- {
- /* Reduce to lowest terms */
- numerator = scm_exact_integer_quotient (numerator, the_gcd);
- denominator = scm_exact_integer_quotient (denominator, the_gcd);
- }
- return scm_i_make_ratio_already_reduced (numerator, denominator);
- }
- #undef FUNC_NAME
- static mpz_t scm_i_divide2double_lo2b;
- /* Return the double that is closest to the exact rational N/D, with
- ties rounded toward even mantissas. N and D must be exact
- integers. */
- static double
- scm_i_divide2double (SCM n, SCM d)
- {
- int neg;
- mpz_t nn, dd, lo, hi, x;
- ssize_t e;
- if (SCM_I_INUMP (d))
- {
- if (SCM_I_INUMP (n)
- && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n))
- && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d)))
- /* If both N and D can be losslessly converted to doubles, then
- we can rely on IEEE floating point to do proper rounding much
- faster than we can. */
- return ((double) SCM_I_INUM (n)) / ((double) SCM_I_INUM (d));
- if (scm_is_eq (d, SCM_INUM0))
- {
- if (scm_is_true (scm_positive_p (n)))
- return 1.0 / 0.0;
- else if (scm_is_true (scm_negative_p (n)))
- return -1.0 / 0.0;
- else
- return 0.0 / 0.0;
- }
- mpz_init_set_si (dd, SCM_I_INUM (d));
- }
- else
- scm_integer_init_set_mpz_z (scm_bignum (d), dd);
- if (SCM_I_INUMP (n))
- mpz_init_set_si (nn, SCM_I_INUM (n));
- else
- scm_integer_init_set_mpz_z (scm_bignum (n), nn);
- neg = (mpz_sgn (nn) < 0) ^ (mpz_sgn (dd) < 0);
- mpz_abs (nn, nn);
- mpz_abs (dd, dd);
- /* Now we need to find the value of e such that:
-
- For e <= 0:
- b^{p-1} - 1/2b <= b^-e n / d < b^p - 1/2 [1A]
- (2 b^p - 1) <= 2 b b^-e n / d < (2 b^p - 1) b [2A]
- (2 b^p - 1) d <= 2 b b^-e n < (2 b^p - 1) d b [3A]
- For e >= 0:
- b^{p-1} - 1/2b <= n / b^e d < b^p - 1/2 [1B]
- (2 b^p - 1) <= 2 b n / b^e d < (2 b^p - 1) b [2B]
- (2 b^p - 1) d b^e <= 2 b n < (2 b^p - 1) d b b^e [3B]
- where: p = DBL_MANT_DIG
- b = FLT_RADIX (here assumed to be 2)
- After rounding, the mantissa must be an integer between b^{p-1} and
- (b^p - 1), except for subnormal numbers. In the inequations [1A]
- and [1B], the middle expression represents the mantissa *before*
- rounding, and therefore is bounded by the range of values that will
- round to a floating-point number with the exponent e. The upper
- bound is (b^p - 1 + 1/2) = (b^p - 1/2), and is exclusive because
- ties will round up to the next power of b. The lower bound is
- (b^{p-1} - 1/2b), and is inclusive because ties will round toward
- this power of b. Here we subtract 1/2b instead of 1/2 because it
- is in the range of the next smaller exponent, where the
- representable numbers are closer together by a factor of b.
- Inequations [2A] and [2B] are derived from [1A] and [1B] by
- multiplying by 2b, and in [3A] and [3B] we multiply by the
- denominator of the middle value to obtain integer expressions.
- In the code below, we refer to the three expressions in [3A] or
- [3B] as lo, x, and hi. If the number is normalizable, we will
- achieve the goal: lo <= x < hi */
- /* Make an initial guess for e */
- e = mpz_sizeinbase (nn, 2) - mpz_sizeinbase (dd, 2) - (DBL_MANT_DIG-1);
- if (e < DBL_MIN_EXP - DBL_MANT_DIG)
- e = DBL_MIN_EXP - DBL_MANT_DIG;
- /* Compute the initial values of lo, x, and hi
- based on the initial guess of e */
- mpz_inits (lo, hi, x, NULL);
- mpz_mul_2exp (x, nn, 2 + ((e < 0) ? -e : 0));
- mpz_mul (lo, dd, scm_i_divide2double_lo2b);
- if (e > 0)
- mpz_mul_2exp (lo, lo, e);
- mpz_mul_2exp (hi, lo, 1);
- /* Adjust e as needed to satisfy the inequality lo <= x < hi,
- (but without making e less than the minimum exponent) */
- while (mpz_cmp (x, lo) < 0 && e > DBL_MIN_EXP - DBL_MANT_DIG)
- {
- mpz_mul_2exp (x, x, 1);
- e--;
- }
- while (mpz_cmp (x, hi) >= 0)
- {
- /* If we ever used lo's value again,
- we would need to double lo here. */
- mpz_mul_2exp (hi, hi, 1);
- e++;
- }
- /* Now compute the rounded mantissa:
- n / b^e d (if e >= 0)
- n b^-e / d (if e <= 0) */
- {
- int cmp;
- double result;
- if (e < 0)
- mpz_mul_2exp (nn, nn, -e);
- else
- mpz_mul_2exp (dd, dd, e);
- /* mpz does not directly support rounded right
- shifts, so we have to do it the hard way.
- For efficiency, we reuse lo and hi.
- hi == quotient, lo == remainder */
- mpz_fdiv_qr (hi, lo, nn, dd);
- /* The fractional part of the unrounded mantissa would be
- remainder/dividend, i.e. lo/dd. So we have a tie if
- lo/dd = 1/2. Multiplying both sides by 2*dd yields the
- integer expression 2*lo = dd. Here we do that comparison
- to decide whether to round up or down. */
- mpz_mul_2exp (lo, lo, 1);
- cmp = mpz_cmp (lo, dd);
- if (cmp > 0 || (cmp == 0 && mpz_odd_p (hi)))
- mpz_add_ui (hi, hi, 1);
- result = ldexp (mpz_get_d (hi), e);
- if (neg)
- result = -result;
- mpz_clears (nn, dd, lo, hi, x, NULL);
- return result;
- }
- }
- double
- scm_i_fraction2double (SCM z)
- {
- return scm_i_divide2double (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z));
- }
- static SCM
- scm_i_from_double (double val)
- {
- SCM z;
- z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
- SCM_SET_CELL_TYPE (z, scm_tc16_real);
- SCM_REAL_VALUE (z) = val;
- return z;
- }
- SCM_PRIMITIVE_GENERIC (scm_exact_p, "exact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_exact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_F;
- else if (SCM_NUMBERP (x))
- return SCM_BOOL_T;
- else
- return scm_wta_dispatch_1 (g_scm_exact_p, x, 1, s_scm_exact_p);
- }
- #undef FUNC_NAME
- int
- scm_is_exact (SCM val)
- {
- return scm_is_true (scm_exact_p (val));
- }
- SCM_PRIMITIVE_GENERIC (scm_inexact_p, "inexact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
- "else.")
- #define FUNC_NAME s_scm_inexact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_T;
- else if (SCM_NUMBERP (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_inexact_p, x, 1, s_scm_inexact_p);
- }
- #undef FUNC_NAME
- int
- scm_is_inexact (SCM val)
- {
- return scm_is_true (scm_inexact_p (val));
- }
- SCM_PRIMITIVE_GENERIC (scm_odd_p, "odd?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_odd_p
- {
- if (SCM_I_INUMP (n))
- return scm_from_bool (scm_is_integer_odd_i (SCM_I_INUM (n)));
- else if (SCM_BIGP (n))
- return scm_from_bool (scm_is_integer_odd_z (scm_bignum (n)));
- else if (SCM_REALP (n))
- {
- double val = SCM_REAL_VALUE (n);
- if (isfinite (val))
- {
- double rem = fabs (fmod (val, 2.0));
- if (rem == 1.0)
- return SCM_BOOL_T;
- else if (rem == 0.0)
- return SCM_BOOL_F;
- }
- }
- return scm_wta_dispatch_1 (g_scm_odd_p, n, 1, s_scm_odd_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_even_p, "even?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_even_p
- {
- if (SCM_I_INUMP (n))
- return scm_from_bool (!scm_is_integer_odd_i (SCM_I_INUM (n)));
- else if (SCM_BIGP (n))
- return scm_from_bool (!scm_is_integer_odd_z (scm_bignum (n)));
- else if (SCM_REALP (n))
- {
- double val = SCM_REAL_VALUE (n);
- if (isfinite (val))
- {
- double rem = fabs (fmod (val, 2.0));
- if (rem == 1.0)
- return SCM_BOOL_F;
- else if (rem == 0.0)
- return SCM_BOOL_T;
- }
- }
- return scm_wta_dispatch_1 (g_scm_even_p, n, 1, s_scm_even_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_finite_p, "finite?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is neither\n"
- "infinite nor a NaN, @code{#f} otherwise.")
- #define FUNC_NAME s_scm_finite_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_T;
- else
- return scm_wta_dispatch_1 (g_scm_finite_p, x, 1, s_scm_finite_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_inf_p, "inf?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
- "@samp{-inf.0}. Otherwise return @code{#f}.")
- #define FUNC_NAME s_scm_inf_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_inf_p, x, 1, s_scm_inf_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_nan_p, "nan?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if the real number @var{x} is a NaN,\n"
- "or @code{#f} otherwise.")
- #define FUNC_NAME s_scm_nan_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
- else if (scm_is_real (x))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_nan_p, x, 1, s_scm_nan_p);
- }
- #undef FUNC_NAME
- /* Guile's idea of infinity. */
- static double guile_Inf;
- /* Guile's idea of not a number. */
- static double guile_NaN;
- static void
- guile_ieee_init (void)
- {
- /* Some version of gcc on some old version of Linux used to crash when
- trying to make Inf and NaN. */
- #ifdef INFINITY
- /* C99 INFINITY, when available.
- FIXME: The standard allows for INFINITY to be something that overflows
- at compile time. We ought to have a configure test to check for that
- before trying to use it. (But in practice we believe this is not a
- problem on any system guile is likely to target.) */
- guile_Inf = INFINITY;
- #elif defined HAVE_DINFINITY
- /* OSF */
- extern unsigned int DINFINITY[2];
- guile_Inf = (*((double *) (DINFINITY)));
- #else
- double tmp = 1e+10;
- guile_Inf = tmp;
- for (;;)
- {
- guile_Inf *= 1e+10;
- if (guile_Inf == tmp)
- break;
- tmp = guile_Inf;
- }
- #endif
- #ifdef NAN
- /* C99 NAN, when available */
- guile_NaN = NAN;
- #elif defined HAVE_DQNAN
- {
- /* OSF */
- extern unsigned int DQNAN[2];
- guile_NaN = (*((double *)(DQNAN)));
- }
- #else
- guile_NaN = guile_Inf / guile_Inf;
- #endif
- }
- SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
- (void),
- "Return Inf.")
- #define FUNC_NAME s_scm_inf
- {
- static int initialized = 0;
- if (! initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_i_from_double (guile_Inf);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
- (void),
- "Return NaN.")
- #define FUNC_NAME s_scm_nan
- {
- static int initialized = 0;
- if (!initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_i_from_double (guile_NaN);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
- (SCM x),
- "Return the absolute value of @var{x}.")
- #define FUNC_NAME s_scm_abs
- {
- if (SCM_I_INUMP (x))
- return scm_integer_abs_i (SCM_I_INUM (x));
- else if (SCM_LIKELY (SCM_REALP (x)))
- return scm_i_from_double (copysign (SCM_REAL_VALUE (x), 1.0));
- else if (SCM_BIGP (x))
- return scm_integer_abs_z (scm_bignum (x));
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
- return x;
- return scm_i_make_ratio_already_reduced
- (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- }
- else
- return scm_wta_dispatch_1 (g_scm_abs, x, 1, s_scm_abs);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_quotient, "quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the quotient of the numbers @var{x} and @var{y}.")
- #define FUNC_NAME s_scm_quotient
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG2, s_scm_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG1, s_scm_quotient);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_remainder, "remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the remainder of the numbers @var{x} and @var{y}.\n"
- "@lisp\n"
- "(remainder 13 4) @result{} 1\n"
- "(remainder -13 4) @result{} -1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_remainder
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG2, s_scm_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG1, s_scm_remainder);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_modulo, "modulo", 2, 0, 0,
- (SCM x, SCM y),
- "Return the modulo of the numbers @var{x} and @var{y}.\n"
- "@lisp\n"
- "(modulo 13 4) @result{} 1\n"
- "(modulo -13 4) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo
- {
- if (SCM_LIKELY (scm_is_integer (x)))
- {
- if (SCM_LIKELY (scm_is_integer (y)))
- return scm_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG2, s_scm_modulo);
- }
- else
- return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG1, s_scm_modulo);
- }
- #undef FUNC_NAME
- /* Return the exact integer q such that n = q*d, for exact integers n
- and d, where d is known in advance to divide n evenly (with zero
- remainder). For large integers, this can be computed more
- efficiently than when the remainder is unknown. */
- static SCM
- scm_exact_integer_quotient (SCM n, SCM d)
- #define FUNC_NAME "exact-integer-quotient"
- {
- if (SCM_I_INUMP (n))
- {
- if (scm_is_eq (n, d))
- return SCM_INUM1;
- if (SCM_I_INUMP (d))
- return scm_integer_exact_quotient_ii (SCM_I_INUM (n), SCM_I_INUM (d));
- else if (SCM_BIGP (d))
- return scm_integer_exact_quotient_iz (SCM_I_INUM (n), scm_bignum (d));
- else
- abort (); // Unreachable.
- }
- else if (SCM_BIGP (n))
- {
- if (scm_is_eq (n, d))
- return SCM_INUM1;
- if (SCM_I_INUMP (d))
- return scm_integer_exact_quotient_zi (scm_bignum (n), SCM_I_INUM (d));
- else if (SCM_BIGP (d))
- return scm_integer_exact_quotient_zz (scm_bignum (n), scm_bignum (d));
- else
- abort (); // Unreachable.
- }
- else
- abort (); // Unreachable.
- }
- #undef FUNC_NAME
- /* two_valued_wta_dispatch_2 is a version of SCM_WTA_DISPATCH_2 for
- two-valued functions. It is called from primitive generics that take
- two arguments and return two values, when the core procedure is
- unable to handle the given argument types. If there are GOOPS
- methods for this primitive generic, it dispatches to GOOPS and, if
- successful, expects two values to be returned, which are placed in
- *rp1 and *rp2. If there are no GOOPS methods, it throws a
- wrong-type-arg exception.
- FIXME: This obviously belongs somewhere else, but until we decide on
- the right API, it is here as a static function, because it is needed
- by the *_divide functions below.
- */
- static void
- two_valued_wta_dispatch_2 (SCM gf, SCM a1, SCM a2, int pos,
- const char *subr, SCM *rp1, SCM *rp2)
- {
- SCM vals = scm_wta_dispatch_2 (gf, a1, a2, pos, subr);
-
- scm_i_extract_values_2 (vals, rp1, rp2);
- }
- SCM_DEFINE (scm_euclidean_quotient, "euclidean-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{0 <= @var{r} < abs(@var{y})}.\n"
- "@lisp\n"
- "(euclidean-quotient 123 10) @result{} 12\n"
- "(euclidean-quotient 123 -10) @result{} -12\n"
- "(euclidean-quotient -123 10) @result{} -13\n"
- "(euclidean-quotient -123 -10) @result{} 13\n"
- "(euclidean-quotient -123.2 -63.5) @result{} 2.0\n"
- "(euclidean-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_euclidean_quotient
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_quotient (x, y);
- else
- return scm_ceiling_quotient (x, y);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_euclidean_remainder, "euclidean-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{0 <= @var{r} < abs(@var{y})} and\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "for some integer @var{q}.\n"
- "@lisp\n"
- "(euclidean-remainder 123 10) @result{} 3\n"
- "(euclidean-remainder 123 -10) @result{} 3\n"
- "(euclidean-remainder -123 10) @result{} 7\n"
- "(euclidean-remainder -123 -10) @result{} 7\n"
- "(euclidean-remainder -123.2 -63.5) @result{} 3.8\n"
- "(euclidean-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_euclidean_remainder
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_floor_remainder (x, y);
- else
- return scm_ceiling_remainder (x, y);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_euclidean_divide, "euclidean/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{0 <= @var{r} < abs(@var{y})}.\n"
- "@lisp\n"
- "(euclidean/ 123 10) @result{} 12 and 3\n"
- "(euclidean/ 123 -10) @result{} -12 and 3\n"
- "(euclidean/ -123 10) @result{} -13 and 7\n"
- "(euclidean/ -123 -10) @result{} 13 and 7\n"
- "(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(euclidean/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_euclidean_divide
- {
- if (scm_is_false (scm_negative_p (y)))
- return scm_i_floor_divide (x, y);
- else
- return scm_i_ceiling_divide (x, y);
- }
- #undef FUNC_NAME
- void
- scm_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (scm_is_false (scm_negative_p (y)))
- scm_floor_divide (x, y, qp, rp);
- else
- scm_ceiling_divide (x, y, qp, rp);
- }
- static SCM scm_i_inexact_floor_quotient (double x, double y);
- static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the floor of @math{@var{x} / @var{y}}.\n"
- "@lisp\n"
- "(floor-quotient 123 10) @result{} 12\n"
- "(floor-quotient 123 -10) @result{} -13\n"
- "(floor-quotient -123 10) @result{} -13\n"
- "(floor-quotient -123 -10) @result{} 12\n"
- "(floor-quotient -123.2 -63.5) @result{} 1.0\n"
- "(floor-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_floor_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_floor_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_floor_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient (SCM_I_INUM (x), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_floor_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_floor_quotient_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
- s_scm_floor_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG1,
- s_scm_floor_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_floor_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (floor (x / y));
- }
- static SCM
- scm_i_exact_rational_floor_quotient (SCM x, SCM y)
- {
- return scm_floor_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_floor_remainder (double x, double y);
- static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = floor(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(floor-remainder 123 10) @result{} 3\n"
- "(floor-remainder 123 -10) @result{} -7\n"
- "(floor-remainder -123 10) @result{} 7\n"
- "(floor-remainder -123 -10) @result{} -3\n"
- "(floor-remainder -123.2 -63.5) @result{} -59.7\n"
- "(floor-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_floor_remainder
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_floor_remainder_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_floor_remainder_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_floor_remainder_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_floor_remainder_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_floor_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_floor_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_floor_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
- s_scm_floor_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG1,
- s_scm_floor_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_floor_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_floor_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or y, but those two cases must
- correspond to different choices of q. If r = 0.0 then q must be
- x/y, and if r = y then q must be x/y-1. If quotient chooses one
- and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * floor (x / y));
- }
- static SCM
- scm_i_exact_rational_floor_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_floor_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_floor_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = floor(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(floor/ 123 10) @result{} 12 and 3\n"
- "(floor/ 123 -10) @result{} -13 and -7\n"
- "(floor/ -123 10) @result{} -13 and 7\n"
- "(floor/ -123 -10) @result{} 12 and -3\n"
- "(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
- "(floor/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_floor_divide
- {
- SCM q, r;
- scm_floor_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_floor_divide s_scm_i_floor_divide
- #define g_scm_floor_divide g_scm_i_floor_divide
- void
- scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_floor_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_floor_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_floor_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_floor_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_floor_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_floor_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_floor_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_floor_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_floor_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
- s_scm_floor_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1,
- s_scm_floor_divide, qp, rp);
- }
- static void
- scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_floor_divide); /* or return a NaN? */
- else
- {
- double q = floor (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_floor_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_ceiling_quotient (double x, double y);
- static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the ceiling of @math{@var{x} / @var{y}}.\n"
- "@lisp\n"
- "(ceiling-quotient 123 10) @result{} 13\n"
- "(ceiling-quotient 123 -10) @result{} -12\n"
- "(ceiling-quotient -123 10) @result{} -12\n"
- "(ceiling-quotient -123 -10) @result{} 13\n"
- "(ceiling-quotient -123.2 -63.5) @result{} 2.0\n"
- "(ceiling-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ceiling_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_ceiling_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_ceiling_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_ceiling_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_ceiling_quotient_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
- s_scm_ceiling_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1,
- s_scm_ceiling_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_ceiling_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (ceil (x / y));
- }
- static SCM
- scm_i_exact_rational_ceiling_quotient (SCM x, SCM y)
- {
- return scm_ceiling_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_ceiling_remainder (double x, double y);
- static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(ceiling-remainder 123 10) @result{} -7\n"
- "(ceiling-remainder 123 -10) @result{} 3\n"
- "(ceiling-remainder -123 10) @result{} -3\n"
- "(ceiling-remainder -123 -10) @result{} 7\n"
- "(ceiling-remainder -123.2 -63.5) @result{} 3.8\n"
- "(ceiling-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ceiling_remainder
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_ceiling_remainder_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_ceiling_remainder_iz (SCM_I_INUM (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_ceiling_remainder_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_ceiling_remainder_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_ceiling_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_ceiling_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_ceiling_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
- s_scm_ceiling_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1,
- s_scm_ceiling_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_ceiling_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_ceiling_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or -y, but those two cases must
- correspond to different choices of q. If r = 0.0 then q must be
- x/y, and if r = -y then q must be x/y+1. If quotient chooses one
- and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * ceil (x / y));
- }
- static SCM
- scm_i_exact_rational_ceiling_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_ceiling_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(ceiling/ 123 10) @result{} 13 and -7\n"
- "(ceiling/ 123 -10) @result{} -12 and 3\n"
- "(ceiling/ -123 10) @result{} -12 and -3\n"
- "(ceiling/ -123 -10) @result{} 13 and 7\n"
- "(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_ceiling_divide
- {
- SCM q, r;
- scm_ceiling_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_ceiling_divide s_scm_i_ceiling_divide
- #define g_scm_ceiling_divide g_scm_i_ceiling_divide
- void
- scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_ceiling_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_ceiling_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_ceiling_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_ceiling_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_ceiling_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_ceiling_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
- s_scm_ceiling_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1,
- s_scm_ceiling_divide, qp, rp);
- }
- static void
- scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_ceiling_divide); /* or return a NaN? */
- else
- {
- double q = ceil (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_ceiling_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_truncate_quotient (double x, double y);
- static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return @math{@var{x} / @var{y}} rounded toward zero.\n"
- "@lisp\n"
- "(truncate-quotient 123 10) @result{} 12\n"
- "(truncate-quotient 123 -10) @result{} -12\n"
- "(truncate-quotient -123 10) @result{} -12\n"
- "(truncate-quotient -123 -10) @result{} 12\n"
- "(truncate-quotient -123.2 -63.5) @result{} 1.0\n"
- "(truncate-quotient 16/3 -10/7) @result{} -3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_truncate_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_truncate_quotient_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_truncate_quotient_iz (SCM_I_INUM (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_truncate_quotient_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_truncate_quotient_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
- s_scm_truncate_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG1,
- s_scm_truncate_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_truncate_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (trunc (x / y));
- }
- static SCM
- scm_i_exact_rational_truncate_quotient (SCM x, SCM y)
- {
- return scm_truncate_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_truncate_remainder (double x, double y);
- static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "where @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(truncate-remainder 123 10) @result{} 3\n"
- "(truncate-remainder 123 -10) @result{} 3\n"
- "(truncate-remainder -123 10) @result{} -3\n"
- "(truncate-remainder -123 -10) @result{} -3\n"
- "(truncate-remainder -123.2 -63.5) @result{} -59.7\n"
- "(truncate-remainder 16/3 -10/7) @result{} 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_truncate_remainder
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_truncate_remainder_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_truncate_remainder_iz (SCM_I_INUM (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_truncate_remainder_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_truncate_remainder_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_truncate_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_truncate_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_truncate_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
- s_scm_truncate_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG1,
- s_scm_truncate_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_truncate_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_truncate_quotient, such that x != q * y + r (not even
- close). In particular, when x is very close to a multiple of y,
- then r might be either 0.0 or sgn(x)*|y|, but those two cases must
- correspond to different choices of q. If quotient chooses one and
- remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_remainder); /* or return a NaN? */
- else
- return scm_i_from_double (x - y * trunc (x / y));
- }
- static SCM
- scm_i_exact_rational_truncate_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_truncate_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_truncate_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
- "@lisp\n"
- "(truncate/ 123 10) @result{} 12 and 3\n"
- "(truncate/ 123 -10) @result{} -12 and 3\n"
- "(truncate/ -123 10) @result{} -12 and -3\n"
- "(truncate/ -123 -10) @result{} 12 and -3\n"
- "(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
- "(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_truncate_divide
- {
- SCM q, r;
- scm_truncate_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_truncate_divide s_scm_i_truncate_divide
- #define g_scm_truncate_divide g_scm_i_truncate_divide
- void
- scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_truncate_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y),
- qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_truncate_divide_iz (SCM_I_INUM (x), scm_bignum (y),
- qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_truncate_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_truncate_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_truncate_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_truncate_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_truncate_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_truncate_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_truncate_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2,
- s_scm_truncate_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1,
- s_scm_truncate_divide, qp, rp);
- }
- static void
- scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_truncate_divide); /* or return a NaN? */
- else
- {
- double q = trunc (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_truncate_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_centered_quotient (double x, double y);
- static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
- "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
- "@lisp\n"
- "(centered-quotient 123 10) @result{} 12\n"
- "(centered-quotient 123 -10) @result{} -12\n"
- "(centered-quotient -123 10) @result{} -12\n"
- "(centered-quotient -123 -10) @result{} 12\n"
- "(centered-quotient -123.2 -63.5) @result{} 2.0\n"
- "(centered-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_centered_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_centered_quotient_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_centered_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_centered_quotient_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_centered_quotient_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
- s_scm_centered_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
- s_scm_centered_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_centered_quotient (double x, double y)
- {
- if (SCM_LIKELY (y > 0))
- return scm_i_from_double (floor (x/y + 0.5));
- else if (SCM_LIKELY (y < 0))
- return scm_i_from_double (ceil (x/y - 0.5));
- else if (y == 0)
- scm_num_overflow (s_scm_centered_quotient); /* or return a NaN? */
- else
- return scm_nan ();
- }
- static SCM
- scm_i_exact_rational_centered_quotient (SCM x, SCM y)
- {
- return scm_centered_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_centered_remainder (double x, double y);
- static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
- "and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "for some integer @var{q}.\n"
- "@lisp\n"
- "(centered-remainder 123 10) @result{} 3\n"
- "(centered-remainder 123 -10) @result{} 3\n"
- "(centered-remainder -123 10) @result{} -3\n"
- "(centered-remainder -123 -10) @result{} -3\n"
- "(centered-remainder -123.2 -63.5) @result{} 3.8\n"
- "(centered-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_centered_remainder
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_centered_remainder_ii (SCM_I_INUM (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_centered_remainder_iz (SCM_I_INUM (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_centered_remainder_zi (scm_bignum (x),
- SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_centered_remainder_zz (scm_bignum (x),
- scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_centered_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_centered_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_centered_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
- s_scm_centered_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
- s_scm_centered_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_centered_remainder (double x, double y)
- {
- double q;
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_centered_quotient, such that x != r + q * y (not even
- close). In particular, when x-y/2 is very close to a multiple of
- y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
- two cases must correspond to different choices of q. If quotient
- chooses one and remainder chooses the other, it would be bad. */
- if (SCM_LIKELY (y > 0))
- q = floor (x/y + 0.5);
- else if (SCM_LIKELY (y < 0))
- q = ceil (x/y - 0.5);
- else if (y == 0)
- scm_num_overflow (s_scm_centered_remainder); /* or return a NaN? */
- else
- return scm_nan ();
- return scm_i_from_double (x - q * y);
- }
- static SCM
- scm_i_exact_rational_centered_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_centered_divide (double x, double y,
- SCM *qp, SCM *rp);
- static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
- SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
- "@lisp\n"
- "(centered/ 123 10) @result{} 12 and 3\n"
- "(centered/ 123 -10) @result{} -12 and 3\n"
- "(centered/ -123 10) @result{} -12 and -3\n"
- "(centered/ -123 -10) @result{} 12 and -3\n"
- "(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_centered_divide
- {
- SCM q, r;
- scm_centered_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_centered_divide s_scm_i_centered_divide
- #define g_scm_centered_divide g_scm_i_centered_divide
- void
- scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_centered_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_centered_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_centered_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y),
- qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_centered_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_centered_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_centered_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_centered_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_centered_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_centered_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2,
- s_scm_centered_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
- s_scm_centered_divide, qp, rp);
- }
- static void
- scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
- {
- double q, r;
- if (SCM_LIKELY (y > 0))
- q = floor (x/y + 0.5);
- else if (SCM_LIKELY (y < 0))
- q = ceil (x/y - 0.5);
- else if (y == 0)
- scm_num_overflow (s_scm_centered_divide); /* or return a NaN? */
- else
- q = guile_NaN;
- r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- static void
- scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_centered_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- static SCM scm_i_inexact_round_quotient (double x, double y);
- static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0,
- (SCM x, SCM y),
- "Return @math{@var{x} / @var{y}} to the nearest integer,\n"
- "with ties going to the nearest even integer.\n"
- "@lisp\n"
- "(round-quotient 123 10) @result{} 12\n"
- "(round-quotient 123 -10) @result{} -12\n"
- "(round-quotient -123 10) @result{} -12\n"
- "(round-quotient -123 -10) @result{} 12\n"
- "(round-quotient 125 10) @result{} 12\n"
- "(round-quotient 127 10) @result{} 13\n"
- "(round-quotient 135 10) @result{} 14\n"
- "(round-quotient -123.2 -63.5) @result{} 2.0\n"
- "(round-quotient 16/3 -10/7) @result{} -4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_quotient
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_round_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_round_quotient_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_round_quotient (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_round_quotient_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_round_quotient_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_round_quotient
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_quotient
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_quotient
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_quotient (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
- s_scm_round_quotient);
- }
- else
- return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG1,
- s_scm_round_quotient);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_round_quotient (double x, double y)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_quotient); /* or return a NaN? */
- else
- return scm_i_from_double (scm_c_round (x / y));
- }
- static SCM
- scm_i_exact_rational_round_quotient (SCM x, SCM y)
- {
- return scm_round_quotient
- (scm_product (scm_numerator (x), scm_denominator (y)),
- scm_product (scm_numerator (y), scm_denominator (x)));
- }
- static SCM scm_i_inexact_round_remainder (double x, double y);
- static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y);
- SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0,
- (SCM x, SCM y),
- "Return the real number @var{r} such that\n"
- "@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n"
- "@var{q} is @math{@var{x} / @var{y}} rounded to the\n"
- "nearest integer, with ties going to the nearest\n"
- "even integer.\n"
- "@lisp\n"
- "(round-remainder 123 10) @result{} 3\n"
- "(round-remainder 123 -10) @result{} 3\n"
- "(round-remainder -123 10) @result{} -3\n"
- "(round-remainder -123 -10) @result{} -3\n"
- "(round-remainder 125 10) @result{} 5\n"
- "(round-remainder 127 10) @result{} -3\n"
- "(round-remainder 135 10) @result{} -5\n"
- "(round-remainder -123.2 -63.5) @result{} 3.8\n"
- "(round-remainder 16/3 -10/7) @result{} -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_remainder
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_round_remainder_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_round_remainder_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_round_remainder (SCM_I_INUM (x),
- SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_round_remainder_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_round_remainder_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_inexact_round_remainder
- (scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_inexact_round_remainder
- (SCM_REAL_VALUE (x), scm_to_double (y));
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- return scm_i_inexact_round_remainder
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- return scm_i_exact_rational_round_remainder (x, y);
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
- s_scm_round_remainder);
- }
- else
- return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG1,
- s_scm_round_remainder);
- }
- #undef FUNC_NAME
- static SCM
- scm_i_inexact_round_remainder (double x, double y)
- {
- /* Although it would be more efficient to use fmod here, we can't
- because it would in some cases produce results inconsistent with
- scm_i_inexact_round_quotient, such that x != r + q * y (not even
- close). In particular, when x-y/2 is very close to a multiple of
- y, then r might be either -abs(y/2) or abs(y/2), but those two
- cases must correspond to different choices of q. If quotient
- chooses one and remainder chooses the other, it would be bad. */
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_remainder); /* or return a NaN? */
- else
- {
- double q = scm_c_round (x / y);
- return scm_i_from_double (x - q * y);
- }
- }
- static SCM
- scm_i_exact_rational_round_remainder (SCM x, SCM y)
- {
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd));
- return scm_divide (r1, scm_product (xd, yd));
- }
- static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp);
- static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
- SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0,
- (SCM x, SCM y),
- "Return the integer @var{q} and the real number @var{r}\n"
- "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
- "and @var{q} is @math{@var{x} / @var{y}} rounded to the\n"
- "nearest integer, with ties going to the nearest even integer.\n"
- "@lisp\n"
- "(round/ 123 10) @result{} 12 and 3\n"
- "(round/ 123 -10) @result{} -12 and 3\n"
- "(round/ -123 10) @result{} -12 and -3\n"
- "(round/ -123 -10) @result{} 12 and -3\n"
- "(round/ 125 10) @result{} 12 and 5\n"
- "(round/ 127 10) @result{} 13 and -3\n"
- "(round/ 135 10) @result{} 14 and -5\n"
- "(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
- "(round/ 16/3 -10/7) @result{} -4 and -8/21\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_round_divide
- {
- SCM q, r;
- scm_round_divide(x, y, &q, &r);
- return scm_values_2 (q, r);
- }
- #undef FUNC_NAME
- #define s_scm_round_divide s_scm_i_round_divide
- #define g_scm_round_divide g_scm_i_round_divide
- void
- scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_round_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_round_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_round_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- scm_integer_round_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp);
- else if (SCM_BIGP (y))
- scm_integer_round_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
- else if (SCM_REALP (y))
- scm_i_inexact_round_divide (scm_integer_to_double_z (scm_bignum (x)),
- SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y) || SCM_I_INUMP (y) ||
- SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_inexact_round_divide (SCM_REAL_VALUE (x), scm_to_double (y),
- qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_REALP (y))
- scm_i_inexact_round_divide
- (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
- else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
- scm_i_exact_rational_round_divide (x, y, qp, rp);
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
- s_scm_round_divide, qp, rp);
- }
- else
- two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1,
- s_scm_round_divide, qp, rp);
- }
- static void
- scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp)
- {
- if (SCM_UNLIKELY (y == 0))
- scm_num_overflow (s_scm_round_divide); /* or return a NaN? */
- else
- {
- double q = scm_c_round (x / y);
- double r = x - q * y;
- *qp = scm_i_from_double (q);
- *rp = scm_i_from_double (r);
- }
- }
- static void
- scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
- {
- SCM r1;
- SCM xd = scm_denominator (x);
- SCM yd = scm_denominator (y);
- scm_round_divide (scm_product (scm_numerator (x), yd),
- scm_product (scm_numerator (y), xd),
- qp, &r1);
- *rp = scm_divide (r1, scm_product (xd, yd));
- }
- SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the greatest common divisor of all parameter values.\n"
- "If called without arguments, 0 is returned.")
- #define FUNC_NAME s_scm_i_gcd
- {
- while (!scm_is_null (rest))
- { x = scm_gcd (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_gcd (x, y);
- }
- #undef FUNC_NAME
-
- #define s_gcd s_scm_i_gcd
- #define g_gcd g_scm_i_gcd
- SCM
- scm_gcd (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
-
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_gcd_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_gcd_zi (scm_bignum (y), SCM_I_INUM (x));
- else if (SCM_REALP (y) && scm_is_integer (y))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_gcd_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_gcd_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y) && scm_is_integer (y))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_REALP (x) && scm_is_integer (x))
- {
- if (SCM_I_INUMP (y) || SCM_BIGP (y)
- || (SCM_REALP (y) && scm_is_integer (y)))
- {
- handle_inexacts:
- return scm_exact_to_inexact (scm_gcd (scm_inexact_to_exact (x),
- scm_inexact_to_exact (y)));
- }
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else
- return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
- }
- SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the least common multiple of the arguments.\n"
- "If called without arguments, 1 is returned.")
- #define FUNC_NAME s_scm_i_lcm
- {
- while (!scm_is_null (rest))
- { x = scm_lcm (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_lcm (x, y);
- }
- #undef FUNC_NAME
-
- #define s_lcm s_scm_i_lcm
- #define g_lcm g_scm_i_lcm
- SCM
- scm_lcm (SCM n1, SCM n2)
- {
- if (SCM_UNBNDP (n2))
- return SCM_UNBNDP (n1) ? SCM_INUM1 : scm_abs (n1);
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_lcm_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_lcm_zi (scm_bignum (n2), SCM_I_INUM (n1));
- else if (SCM_REALP (n2) && scm_is_integer (n2))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else if (SCM_LIKELY (SCM_BIGP (n1)))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_lcm_zi (scm_bignum (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_lcm_zz (scm_bignum (n1), scm_bignum (n2));
- else if (SCM_REALP (n2) && scm_is_integer (n2))
- goto handle_inexacts;
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else if (SCM_REALP (n1) && scm_is_integer (n1))
- {
- if (SCM_I_INUMP (n2) || SCM_BIGP (n2)
- || (SCM_REALP (n2) && scm_is_integer (n2)))
- {
- handle_inexacts:
- return scm_exact_to_inexact (scm_lcm (scm_inexact_to_exact (n1),
- scm_inexact_to_exact (n2)));
- }
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
- }
- else
- return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG1, s_lcm);
- }
- /* Emulating 2's complement bignums with sign magnitude arithmetic:
- Logand:
- X Y Result Method:
- (len)
- + + + x (map digit:logand X Y)
- + - + x (map digit:logand X (lognot (+ -1 Y)))
- - + + y (map digit:logand (lognot (+ -1 X)) Y)
- - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
- Logior:
- X Y Result Method:
- + + + (map digit:logior X Y)
- + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
- - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
- - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
- Logxor:
- X Y Result Method:
- + + + (map digit:logxor X Y)
- + - - (+ 1 (map digit:logxor X (+ -1 Y)))
- - + - (+ 1 (map digit:logxor (+ -1 X) Y))
- - - + (map digit:logxor (+ -1 X) (+ -1 Y))
- Logtest:
- X Y Result
- + + (any digit:logand X Y)
- + - (any digit:logand X (lognot (+ -1 Y)))
- - + (any digit:logand (lognot (+ -1 X)) Y)
- - - #t
- */
- SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise AND of the integer arguments.\n\n"
- "@lisp\n"
- "(logand) @result{} -1\n"
- "(logand 7) @result{} 7\n"
- "(logand #b111 #b011 #b001) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logand
- {
- while (!scm_is_null (rest))
- { x = scm_logand (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logand (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logand s_scm_i_logand
- SCM scm_logand (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logand
- {
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_I_MAKINUM (-1);
- else if (!SCM_NUMBERP (n1))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logand_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logand_zi (scm_bignum (n2), SCM_I_INUM (n1));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logand_zi (scm_bignum (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logand_zz (scm_bignum (n1), scm_bignum (n2));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise OR of the integer arguments.\n\n"
- "@lisp\n"
- "(logior) @result{} 0\n"
- "(logior 7) @result{} 7\n"
- "(logior #b000 #b001 #b011) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logior
- {
- while (!scm_is_null (rest))
- { x = scm_logior (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logior (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logior s_scm_i_logior
- SCM scm_logior (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logior
- {
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logior_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logior_zi (scm_bignum (n2), SCM_I_INUM (n1));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logior_zi (scm_bignum (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logior_zz (scm_bignum (n1), scm_bignum (n2));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the bitwise XOR of the integer arguments. A bit is\n"
- "set in the result if it is set in an odd number of arguments.\n"
- "@lisp\n"
- "(logxor) @result{} 0\n"
- "(logxor 7) @result{} 7\n"
- "(logxor #b000 #b001 #b011) @result{} 2\n"
- "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_logxor
- {
- while (!scm_is_null (rest))
- { x = scm_logxor (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_logxor (x, y);
- }
- #undef FUNC_NAME
-
- #define s_scm_logxor s_scm_i_logxor
- SCM scm_logxor (SCM n1, SCM n2)
- #define FUNC_NAME s_scm_logxor
- {
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logxor_ii (SCM_I_INUM (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logxor_zi (scm_bignum (n2), SCM_I_INUM (n1));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- return scm_integer_logxor_zi (scm_bignum (n1), SCM_I_INUM (n2));
- else if (SCM_BIGP (n2))
- return scm_integer_logxor_zz (scm_bignum (n1), scm_bignum (n2));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
- (SCM j, SCM k),
- "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
- "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
- "without actually calculating the @code{logand}, just testing\n"
- "for non-zero.\n"
- "\n"
- "@lisp\n"
- "(logtest #b0100 #b1011) @result{} #f\n"
- "(logtest #b0100 #b0111) @result{} #t\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logtest
- {
- if (SCM_I_INUMP (j))
- {
- if (SCM_I_INUMP (k))
- return scm_from_bool (scm_integer_logtest_ii (SCM_I_INUM (j),
- SCM_I_INUM (k)));
- else if (SCM_BIGP (k))
- return scm_from_bool (scm_integer_logtest_zi (scm_bignum (k),
- SCM_I_INUM (j)));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else if (SCM_BIGP (j))
- {
- if (SCM_I_INUMP (k))
- return scm_from_bool (scm_integer_logtest_zi (scm_bignum (j),
- SCM_I_INUM (k)));
- else if (SCM_BIGP (k))
- return scm_from_bool (scm_integer_logtest_zz (scm_bignum (j),
- scm_bignum (k)));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
- (SCM index, SCM j),
- "Test whether bit number @var{index} in @var{j} is set.\n"
- "@var{index} starts from 0 for the least significant bit.\n"
- "\n"
- "@lisp\n"
- "(logbit? 0 #b1101) @result{} #t\n"
- "(logbit? 1 #b1101) @result{} #f\n"
- "(logbit? 2 #b1101) @result{} #t\n"
- "(logbit? 3 #b1101) @result{} #t\n"
- "(logbit? 4 #b1101) @result{} #f\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logbit_p
- {
- unsigned long int iindex;
- iindex = scm_to_ulong (index);
- if (SCM_I_INUMP (j))
- return scm_from_bool (scm_integer_logbit_ui (iindex, SCM_I_INUM (j)));
- else if (SCM_BIGP (j))
- return scm_from_bool (scm_integer_logbit_uz (iindex, scm_bignum (j)));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
- (SCM n),
- "Return the integer which is the ones-complement of the integer\n"
- "argument.\n"
- "\n"
- "@lisp\n"
- "(number->string (lognot #b10000000) 2)\n"
- " @result{} \"-10000001\"\n"
- "(number->string (lognot #b0) 2)\n"
- " @result{} \"-1\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_lognot
- {
- if (SCM_I_INUMP (n))
- return scm_integer_lognot_i (SCM_I_INUM (n));
- else if (SCM_BIGP (n))
- return scm_integer_lognot_z (scm_bignum (n));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
- (SCM n, SCM k, SCM m),
- "Return @var{n} raised to the integer exponent\n"
- "@var{k}, modulo @var{m}.\n"
- "\n"
- "@lisp\n"
- "(modulo-expt 2 3 5)\n"
- " @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo_expt
- {
- if (!scm_is_exact_integer (n))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- if (!scm_is_exact_integer (k))
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- if (!scm_is_exact_integer (m))
- SCM_WRONG_TYPE_ARG (SCM_ARG3, m);
- return scm_integer_modulo_expt_nnn (n, k, m);
- }
- #undef FUNC_NAME
- static void
- mpz_clear_on_unwind (void *mpz)
- {
- mpz_clear (mpz);
- }
- SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
- (SCM n, SCM k),
- "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
- "exact integer, @var{n} can be any number.\n"
- "\n"
- "Negative @var{k} is supported, and results in\n"
- "@math{1/@var{n}^abs(@var{k})} in the usual way.\n"
- "@math{@var{n}^0} is 1, as usual, and that\n"
- "includes @math{0^0} is 1.\n"
- "\n"
- "@lisp\n"
- "(integer-expt 2 5) @result{} 32\n"
- "(integer-expt -3 3) @result{} -27\n"
- "(integer-expt 5 -3) @result{} 1/125\n"
- "(integer-expt 0 0) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_expt
- {
- // Fast cases first.
- if (SCM_I_INUMP (k))
- {
- if (SCM_I_INUM (k) < 0)
- {
- if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
- return scm_nan ();
- k = scm_integer_negate_i (SCM_I_INUM (k));
- n = scm_divide (n, SCM_UNDEFINED);
- }
- if (SCM_I_INUMP (n))
- return scm_integer_expt_ii (SCM_I_INUM (n), SCM_I_INUM (k));
- else if (SCM_BIGP (n))
- return scm_integer_expt_zi (scm_bignum (n), SCM_I_INUM (k));
- }
- else if (SCM_BIGP (k))
- {
- if (scm_is_integer_negative_z (scm_bignum (k)))
- {
- if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
- return scm_nan ();
- k = scm_integer_negate_z (scm_bignum (k));
- n = scm_divide (n, SCM_UNDEFINED);
- }
- if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, SCM_INUM1))
- return n;
- else if (scm_is_eq (n, SCM_I_MAKINUM (-1)))
- return scm_is_integer_odd_z (scm_bignum (k)) ? n : SCM_INUM1;
- else if (scm_is_exact_integer (n))
- scm_num_overflow ("integer-expt");
- }
- else
- SCM_WRONG_TYPE_ARG (2, k);
- // The general case.
- if (scm_is_eq (k, SCM_INUM0))
- return SCM_INUM1; /* n^(exact0) is exact 1, regardless of n */
- if (SCM_FRACTIONP (n))
- {
- /* Optimize the fraction case by (a/b)^k ==> (a^k)/(b^k), to avoid
- needless reduction of intermediate products to lowest terms.
- If a and b have no common factors, then a^k and b^k have no
- common factors. Use 'scm_i_make_ratio_already_reduced' to
- construct the final result, so that no gcd computations are
- needed to exponentiate a fraction. */
- if (scm_is_true (scm_positive_p (k)))
- return scm_i_make_ratio_already_reduced
- (scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k),
- scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k));
- else
- {
- k = scm_difference (k, SCM_UNDEFINED);
- return scm_i_make_ratio_already_reduced
- (scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k),
- scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k));
- }
- }
- mpz_t zk;
- mpz_init (zk);
- scm_to_mpz (k, zk);
- scm_dynwind_begin (0);
- scm_dynwind_unwind_handler (mpz_clear_on_unwind, zk, SCM_F_WIND_EXPLICITLY);
- if (mpz_sgn (zk) == -1)
- {
- mpz_neg (zk, zk);
- n = scm_divide (n, SCM_UNDEFINED);
- }
- SCM acc = SCM_INUM1;
- while (1)
- {
- if (mpz_sgn (zk) == 0)
- break;
- if (mpz_cmp_ui(zk, 1) == 0)
- {
- acc = scm_product (acc, n);
- break;
- }
- if (mpz_tstbit(zk, 0))
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- mpz_fdiv_q_2exp (zk, zk, 1);
- }
- scm_dynwind_end ();
- return acc;
- }
- #undef FUNC_NAME
- static SCM
- lsh (SCM n, SCM count, const char *fn)
- {
- if (scm_is_eq (n, SCM_INUM0))
- return n;
- if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
- scm_num_overflow (fn);
- unsigned long ucount = scm_to_ulong (count);
- if (ucount == 0)
- return n;
- if (ucount / (sizeof (int) * 8) >= (unsigned long) INT_MAX)
- scm_num_overflow (fn);
- if (SCM_I_INUMP (n))
- return scm_integer_lsh_iu (SCM_I_INUM (n), ucount);
- return scm_integer_lsh_zu (scm_bignum (n), ucount);
- }
- static SCM
- floor_rsh (SCM n, SCM count)
- {
- if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
- return scm_is_false (scm_negative_p (n)) ? SCM_INUM0 : SCM_I_MAKINUM (-1);
- unsigned long ucount = scm_to_ulong (count);
- if (ucount == 0)
- return n;
- if (SCM_I_INUMP (n))
- return scm_integer_floor_rsh_iu (SCM_I_INUM (n), ucount);
- return scm_integer_floor_rsh_zu (scm_bignum (n), ucount);
- }
- static SCM
- round_rsh (SCM n, SCM count)
- {
- if (!scm_is_unsigned_integer (count, 0, ULONG_MAX))
- return SCM_INUM0;
- unsigned long ucount = scm_to_ulong (count);
- if (ucount == 0)
- return n;
- if (SCM_I_INUMP (n))
- return scm_integer_round_rsh_iu (SCM_I_INUM (n), ucount);
- return scm_integer_round_rsh_zu (scm_bignum (n), ucount);
- }
- SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
- (SCM n, SCM count),
- "Return @math{floor(@var{n} * 2^@var{count})}.\n"
- "@var{n} and @var{count} must be exact integers.\n"
- "\n"
- "With @var{n} viewed as an infinite-precision twos-complement\n"
- "integer, @code{ash} means a left shift introducing zero bits\n"
- "when @var{count} is positive, or a right shift dropping bits\n"
- "when @var{count} is negative. This is an ``arithmetic'' shift.\n"
- "\n"
- "@lisp\n"
- "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
- "\n"
- ";; -23 is bits ...11101001, -6 is bits ...111010\n"
- "(ash -23 -2) @result{} -6\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ash
- {
- if (!scm_is_exact_integer (n))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- if (!scm_is_exact_integer (count))
- SCM_WRONG_TYPE_ARG (SCM_ARG2, count);
-
- if (scm_is_false (scm_negative_p (count)))
- return lsh (n, count, "ash");
- return floor_rsh (n, scm_difference (count, SCM_UNDEFINED));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_round_ash, "round-ash", 2, 0, 0,
- (SCM n, SCM count),
- "Return @math{round(@var{n} * 2^@var{count})}.\n"
- "@var{n} and @var{count} must be exact integers.\n"
- "\n"
- "With @var{n} viewed as an infinite-precision twos-complement\n"
- "integer, @code{round-ash} means a left shift introducing zero\n"
- "bits when @var{count} is positive, or a right shift rounding\n"
- "to the nearest integer (with ties going to the nearest even\n"
- "integer) when @var{count} is negative. This is a rounded\n"
- "``arithmetic'' shift.\n"
- "\n"
- "@lisp\n"
- "(number->string (round-ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (round-ash #b1010 -1) 2) @result{} \"101\"\n"
- "(number->string (round-ash #b1010 -2) 2) @result{} \"10\"\n"
- "(number->string (round-ash #b1011 -2) 2) @result{} \"11\"\n"
- "(number->string (round-ash #b1101 -2) 2) @result{} \"11\"\n"
- "(number->string (round-ash #b1110 -2) 2) @result{} \"100\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_round_ash
- {
- if (!scm_is_exact_integer (n))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- if (!scm_is_exact_integer (count))
- SCM_WRONG_TYPE_ARG (SCM_ARG2, count);
-
- if (scm_is_false (scm_negative_p (count)))
- return lsh (n, count, "round-ash");
- return round_rsh (n, scm_difference (count, SCM_UNDEFINED));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
- (SCM n, SCM start, SCM end),
- "Return the integer composed of the @var{start} (inclusive)\n"
- "through @var{end} (exclusive) bits of @var{n}. The\n"
- "@var{start}th bit becomes the 0-th bit in the result.\n"
- "\n"
- "@lisp\n"
- "(number->string (bit-extract #b1101101010 0 4) 2)\n"
- " @result{} \"1010\"\n"
- "(number->string (bit-extract #b1101101010 4 9) 2)\n"
- " @result{} \"10110\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_bit_extract
- {
- if (!scm_is_exact_integer (n))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- unsigned long istart = scm_to_ulong (start);
- unsigned long iend = scm_to_ulong (end);
- SCM_ASSERT_RANGE (3, end, (iend >= istart));
- unsigned long bits = iend - istart;
- if (SCM_I_INUMP (n))
- return scm_integer_bit_extract_i (SCM_I_INUM (n), istart, bits);
- else
- return scm_integer_bit_extract_z (scm_bignum (n), istart, bits);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
- (SCM n),
- "Return the number of bits in integer @var{n}. If integer is\n"
- "positive, the 1-bits in its binary representation are counted.\n"
- "If negative, the 0-bits in its two's-complement binary\n"
- "representation are counted. If 0, 0 is returned.\n"
- "\n"
- "@lisp\n"
- "(logcount #b10101010)\n"
- " @result{} 4\n"
- "(logcount 0)\n"
- " @result{} 0\n"
- "(logcount -2)\n"
- " @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logcount
- {
- if (SCM_I_INUMP (n))
- return scm_integer_logcount_i (SCM_I_INUM (n));
- else if (SCM_BIGP (n))
- return scm_integer_logcount_z (scm_bignum (n));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
- (SCM n),
- "Return the number of bits necessary to represent @var{n}.\n"
- "\n"
- "@lisp\n"
- "(integer-length #b10101010)\n"
- " @result{} 8\n"
- "(integer-length 0)\n"
- " @result{} 0\n"
- "(integer-length #b1111)\n"
- " @result{} 4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_length
- {
- if (SCM_I_INUMP (n))
- return scm_integer_length_i (SCM_I_INUM (n));
- else if (SCM_BIGP (n))
- return scm_integer_length_z (scm_bignum (n));
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- /*** NUMBERS -> STRINGS ***/
- #define SCM_MAX_DBL_RADIX 36
- /* use this array as a way to generate a single digit */
- static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
- static mpz_t dbl_minimum_normal_mantissa;
- static size_t
- idbl2str (double dbl, char *a, int radix)
- {
- int ch = 0;
- if (radix < 2 || radix > SCM_MAX_DBL_RADIX)
- /* revert to existing behavior */
- radix = 10;
- if (isinf (dbl))
- {
- strcpy (a, (dbl > 0.0) ? "+inf.0" : "-inf.0");
- return 6;
- }
- else if (dbl > 0.0)
- ;
- else if (dbl < 0.0)
- {
- dbl = -dbl;
- a[ch++] = '-';
- }
- else if (dbl == 0.0)
- {
- if (copysign (1.0, dbl) < 0.0)
- a[ch++] = '-';
- strcpy (a + ch, "0.0");
- return ch + 3;
- }
- else if (isnan (dbl))
- {
- strcpy (a, "+nan.0");
- return 6;
- }
- /* Algorithm taken from "Printing Floating-Point Numbers Quickly and
- Accurately" by Robert G. Burger and R. Kent Dybvig */
- {
- int e, k;
- mpz_t f, r, s, mplus, mminus, hi, digit;
- int f_is_even, f_is_odd;
- int expon;
- int show_exp = 0;
- mpz_inits (f, r, s, mplus, mminus, hi, digit, NULL);
- mpz_set_d (f, ldexp (frexp (dbl, &e), DBL_MANT_DIG));
- if (e < DBL_MIN_EXP)
- {
- mpz_tdiv_q_2exp (f, f, DBL_MIN_EXP - e);
- e = DBL_MIN_EXP;
- }
- e -= DBL_MANT_DIG;
- f_is_even = !mpz_odd_p (f);
- f_is_odd = !f_is_even;
- /* Initialize r, s, mplus, and mminus according
- to Table 1 from the paper. */
- if (e < 0)
- {
- mpz_set_ui (mminus, 1);
- if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0
- || e == DBL_MIN_EXP - DBL_MANT_DIG)
- {
- mpz_set_ui (mplus, 1);
- mpz_mul_2exp (r, f, 1);
- mpz_mul_2exp (s, mminus, 1 - e);
- }
- else
- {
- mpz_set_ui (mplus, 2);
- mpz_mul_2exp (r, f, 2);
- mpz_mul_2exp (s, mminus, 2 - e);
- }
- }
- else
- {
- mpz_set_ui (mminus, 1);
- mpz_mul_2exp (mminus, mminus, e);
- if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0)
- {
- mpz_set (mplus, mminus);
- mpz_mul_2exp (r, f, 1 + e);
- mpz_set_ui (s, 2);
- }
- else
- {
- mpz_mul_2exp (mplus, mminus, 1);
- mpz_mul_2exp (r, f, 2 + e);
- mpz_set_ui (s, 4);
- }
- }
- /* Find the smallest k such that:
- (r + mplus) / s < radix^k (if f is even)
- (r + mplus) / s <= radix^k (if f is odd) */
- {
- /* IMPROVE-ME: Make an initial guess to speed this up */
- mpz_add (hi, r, mplus);
- k = 0;
- while (mpz_cmp (hi, s) >= f_is_odd)
- {
- mpz_mul_ui (s, s, radix);
- k++;
- }
- if (k == 0)
- {
- mpz_mul_ui (hi, hi, radix);
- while (mpz_cmp (hi, s) < f_is_odd)
- {
- mpz_mul_ui (r, r, radix);
- mpz_mul_ui (mplus, mplus, radix);
- mpz_mul_ui (mminus, mminus, radix);
- mpz_mul_ui (hi, hi, radix);
- k--;
- }
- }
- }
- expon = k - 1;
- if (k <= 0)
- {
- if (k <= -3)
- {
- /* Use scientific notation */
- show_exp = 1;
- k = 1;
- }
- else
- {
- int i;
- /* Print leading zeroes */
- a[ch++] = '0';
- a[ch++] = '.';
- for (i = 0; i > k; i--)
- a[ch++] = '0';
- }
- }
- for (;;)
- {
- int end_1_p, end_2_p;
- int d;
- mpz_mul_ui (mplus, mplus, radix);
- mpz_mul_ui (mminus, mminus, radix);
- mpz_mul_ui (r, r, radix);
- mpz_fdiv_qr (digit, r, r, s);
- d = mpz_get_ui (digit);
- mpz_add (hi, r, mplus);
- end_1_p = (mpz_cmp (r, mminus) < f_is_even);
- end_2_p = (mpz_cmp (s, hi) < f_is_even);
- if (end_1_p || end_2_p)
- {
- mpz_mul_2exp (r, r, 1);
- if (!end_2_p)
- ;
- else if (!end_1_p)
- d++;
- else if (mpz_cmp (r, s) >= !(d & 1))
- d++;
- a[ch++] = number_chars[d];
- if (--k == 0)
- a[ch++] = '.';
- break;
- }
- else
- {
- a[ch++] = number_chars[d];
- if (--k == 0)
- a[ch++] = '.';
- }
- }
- if (k > 0)
- {
- if (expon >= 7 && k >= 4 && expon >= k)
- {
- /* Here we would have to print more than three zeroes
- followed by a decimal point and another zero. It
- makes more sense to use scientific notation. */
- /* Adjust k to what it would have been if we had chosen
- scientific notation from the beginning. */
- k -= expon;
- /* k will now be <= 0, with magnitude equal to the number of
- digits that we printed which should now be put after the
- decimal point. */
- /* Insert a decimal point */
- memmove (a + ch + k + 1, a + ch + k, -k);
- a[ch + k] = '.';
- ch++;
- show_exp = 1;
- }
- else
- {
- for (; k > 0; k--)
- a[ch++] = '0';
- a[ch++] = '.';
- }
- }
- if (k == 0)
- a[ch++] = '0';
- if (show_exp)
- {
- a[ch++] = 'e';
- ch += scm_iint2str (expon, radix, a + ch);
- }
- mpz_clears (f, r, s, mplus, mminus, hi, digit, NULL);
- }
- return ch;
- }
- static size_t
- icmplx2str (double real, double imag, char *str, int radix)
- {
- size_t i;
- double sgn;
-
- i = idbl2str (real, str, radix);
- sgn = copysign (1.0, imag);
- /* Don't output a '+' for negative numbers or for Inf and
- NaN. They will provide their own sign. */
- if (sgn >= 0 && isfinite (imag))
- str[i++] = '+';
- i += idbl2str (imag, &str[i], radix);
- str[i++] = 'i';
- return i;
- }
- static size_t
- iflo2str (SCM flt, char *str, int radix)
- {
- size_t i;
- if (SCM_REALP (flt))
- i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
- else
- i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
- str, radix);
- return i;
- }
- /* convert a intmax_t to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iint2str (intmax_t num, int rad, char *p)
- {
- if (num < 0)
- {
- *p++ = '-';
- return scm_iuint2str (-num, rad, p) + 1;
- }
- else
- return scm_iuint2str (num, rad, p);
- }
- /* convert a intmax_t to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iuint2str (uintmax_t num, int rad, char *p)
- {
- size_t j = 1;
- size_t i;
- uintmax_t n = num;
- if (rad < 2 || rad > 36)
- scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
- for (n /= rad; n > 0; n /= rad)
- j++;
- i = j;
- n = num;
- while (i--)
- {
- int d = n % rad;
- n /= rad;
- p[i] = number_chars[d];
- }
- return j;
- }
- SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
- (SCM n, SCM radix),
- "Return a string holding the external representation of the\n"
- "number @var{n} in the given @var{radix}. If @var{n} is\n"
- "inexact, a radix of 10 will be used.")
- #define FUNC_NAME s_scm_number_to_string
- {
- int base;
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_signed_integer (radix, 2, 36);
- if (SCM_I_INUMP (n))
- return scm_integer_to_string_i (SCM_I_INUM (n), base);
- else if (SCM_BIGP (n))
- return scm_integer_to_string_z (scm_bignum (n), base);
- else if (SCM_FRACTIONP (n))
- return scm_string_append
- (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
- scm_from_latin1_string ("/"),
- scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
- else if (SCM_INEXACTP (n))
- {
- char num_buf [FLOBUFLEN];
- return scm_from_latin1_stringn (num_buf, iflo2str (n, num_buf, base));
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- /* These print routines used to be stubbed here so that scm_repl.c
- wouldn't need SCM_BIGDIG conditionals (pre GMP) */
- int
- scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_double (double val, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
- }
- int
- scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_complex (double real, double imag, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
- }
- int
- scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- SCM str;
- str = scm_number_to_string (sexp, SCM_UNDEFINED);
- scm_display (str, port);
- scm_remember_upto_here_1 (str);
- return !0;
- }
- int
- scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- SCM str = scm_integer_to_string_z (scm_bignum (exp), 10);
- scm_c_put_string (port, str, 0, scm_c_string_length (str));
- return !0;
- }
- /*** END nums->strs ***/
- /*** STRINGS -> NUMBERS ***/
- /* The following functions implement the conversion from strings to numbers.
- * The implementation somehow follows the grammar for numbers as it is given
- * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
- * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
- * points should be noted about the implementation:
- *
- * * Each function keeps a local index variable 'idx' that points at the
- * current position within the parsed string. The global index is only
- * updated if the function could parse the corresponding syntactic unit
- * successfully.
- *
- * * Similarly, the functions keep track of indicators of inexactness ('#',
- * '.' or exponents) using local variables ('hash_seen', 'x').
- *
- * * Sequences of digits are parsed into temporary variables holding fixnums.
- * Only if these fixnums would overflow, the result variables are updated
- * using the standard functions scm_add, scm_product, scm_divide etc. Then,
- * the temporary variables holding the fixnums are cleared, and the process
- * starts over again. If for example fixnums were able to store five decimal
- * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
- * and the result was computed as 12345 * 100000 + 67890. In other words,
- * only every five digits two bignum operations were performed.
- *
- * Notes on the handling of exactness specifiers:
- *
- * When parsing non-real complex numbers, we apply exactness specifiers on
- * per-component basis, as is done in PLT Scheme. For complex numbers
- * written in rectangular form, exactness specifiers are applied to the
- * real and imaginary parts before calling scm_make_rectangular. For
- * complex numbers written in polar form, exactness specifiers are applied
- * to the magnitude and angle before calling scm_make_polar.
- *
- * There are two kinds of exactness specifiers: forced and implicit. A
- * forced exactness specifier is a "#e" or "#i" prefix at the beginning of
- * the entire number, and applies to both components of a complex number.
- * "#e" causes each component to be made exact, and "#i" causes each
- * component to be made inexact. If no forced exactness specifier is
- * present, then the exactness of each component is determined
- * independently by the presence or absence of a decimal point or hash mark
- * within that component. If a decimal point or hash mark is present, the
- * component is made inexact, otherwise it is made exact.
- *
- * After the exactness specifiers have been applied to each component, they
- * are passed to either scm_make_rectangular or scm_make_polar to produce
- * the final result. Note that this will result in a real number if the
- * imaginary part, magnitude, or angle is an exact 0.
- *
- * For example, (string->number "#i5.0+0i") does the equivalent of:
- *
- * (make-rectangular (exact->inexact 5) (exact->inexact 0))
- */
- enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
- /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
- /* Caller is responsible for checking that the return value is in range
- for the given radix, which should be <= 36. */
- static unsigned int
- char_decimal_value (uint32_t c)
- {
- if (c >= (uint32_t) '0' && c <= (uint32_t) '9')
- return c - (uint32_t) '0';
- else
- {
- /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
- that's certainly above any valid decimal, so we take advantage of
- that to elide some tests. */
- unsigned int d = (unsigned int) uc_decimal_value (c);
- /* If that failed, try extended hexadecimals, then. Only accept ascii
- hexadecimals. */
- if (d >= 10U)
- {
- c = uc_tolower (c);
- if (c >= (uint32_t) 'a')
- d = c - (uint32_t)'a' + 10U;
- }
- return d;
- }
- }
- /* Parse the substring of MEM starting at *P_IDX for an unsigned integer
- in base RADIX. Upon success, return the unsigned integer and update
- *P_IDX and *P_EXACTNESS accordingly. Return #f on failure. */
- static SCM
- mem2uinteger (SCM mem, unsigned int *p_idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- unsigned int hash_seen = 0;
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM result;
- char c;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return SCM_BOOL_F;
- c = scm_i_string_ref (mem, idx);
- digit_value = char_decimal_value (c);
- if (digit_value >= radix)
- return SCM_BOOL_F;
- idx++;
- result = SCM_I_MAKINUM (digit_value);
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (c == '#')
- {
- hash_seen = 1;
- digit_value = 0;
- }
- else if (hash_seen)
- break;
- else
- {
- digit_value = char_decimal_value (c);
- /* This check catches non-decimals in addition to out-of-range
- decimals. */
- if (digit_value >= radix)
- break;
- }
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
- {
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- shift = radix;
- add = digit_value;
- }
- else
- {
- shift = shift * radix;
- add = add * radix + digit_value;
- }
- };
- if (shift > 1)
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- *p_idx = idx;
- if (hash_seen)
- *p_exactness = INEXACT;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
- * covers the parts of the rules that start at a potential point. The value
- * of the digits up to the point have been parsed by the caller and are given
- * in variable result. The content of *p_exactness indicates, whether a hash
- * has already been seen in the digits before the point.
- */
- #define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
- static SCM
- mem2decimal_from_point (SCM result, SCM mem,
- unsigned int *p_idx, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- enum t_exactness x = *p_exactness;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return result;
- if (scm_i_string_ref (mem, idx) == '.')
- {
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM big_shift = SCM_INUM1;
- idx++;
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (uc_is_property_decimal_digit ((uint32_t) c))
- {
- if (x == INEXACT)
- return SCM_BOOL_F;
- else
- digit_value = DIGIT2UINT (c);
- }
- else if (c == '#')
- {
- x = INEXACT;
- digit_value = 0;
- }
- else
- break;
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
-
- shift = 10;
- add = digit_value;
- }
- else
- {
- shift = shift * 10;
- add = add * 10 + digit_value;
- }
- };
- if (add > 0)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- result = scm_sum (result, SCM_I_MAKINUM (add));
- }
- result = scm_divide (result, big_shift);
- /* We've seen a decimal point, thus the value is implicitly inexact. */
- x = INEXACT;
- }
- if (idx != len)
- {
- int sign = 1;
- unsigned int start;
- scm_t_wchar c;
- int exponent;
- SCM e;
- /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
- switch (scm_i_string_ref (mem, idx))
- {
- case 'd': case 'D':
- case 'e': case 'E':
- case 'f': case 'F':
- case 'l': case 'L':
- case 's': case 'S':
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- start = idx;
- c = scm_i_string_ref (mem, idx);
- if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- c = scm_i_string_ref (mem, idx);
- }
- else if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- c = scm_i_string_ref (mem, idx);
- }
- else
- sign = 1;
- if (!uc_is_property_decimal_digit ((uint32_t) c))
- return SCM_BOOL_F;
- idx++;
- exponent = DIGIT2UINT (c);
- while (idx != len)
- {
- scm_t_wchar c = scm_i_string_ref (mem, idx);
- if (uc_is_property_decimal_digit ((uint32_t) c))
- {
- idx++;
- if (exponent <= SCM_MAXEXP)
- exponent = exponent * 10 + DIGIT2UINT (c);
- }
- else
- break;
- }
- if (exponent > ((sign == 1) ? SCM_MAXEXP : SCM_MAXEXP + DBL_DIG + 1))
- {
- size_t exp_len = idx - start;
- SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
- SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
- scm_out_of_range ("string->number", exp_num);
- }
- e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
- if (sign == 1)
- result = scm_product (result, e);
- else
- result = scm_divide (result, e);
- /* We've seen an exponent, thus the value is implicitly inexact. */
- x = INEXACT;
- break;
- default:
- break;
- }
- }
- *p_idx = idx;
- if (x == INEXACT)
- *p_exactness = x;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
- static SCM
- mem2ureal (SCM mem, unsigned int *p_idx,
- unsigned int radix, enum t_exactness forced_x,
- int allow_inf_or_nan)
- {
- unsigned int idx = *p_idx;
- SCM result;
- size_t len = scm_i_string_length (mem);
- /* Start off believing that the number will be exact. This changes
- to INEXACT if we see a decimal point or a hash. */
- enum t_exactness implicit_x = EXACT;
- if (idx == len)
- return SCM_BOOL_F;
- if (allow_inf_or_nan && forced_x != EXACT && idx+5 <= len)
- switch (scm_i_string_ref (mem, idx))
- {
- case 'i': case 'I':
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'n': case 'N':
- switch (scm_i_string_ref (mem, idx + 2))
- {
- case 'f': case 'F':
- if (scm_i_string_ref (mem, idx + 3) == '.'
- && scm_i_string_ref (mem, idx + 4) == '0')
- {
- *p_idx = idx+5;
- return scm_inf ();
- }
- }
- }
- case 'n': case 'N':
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'a': case 'A':
- switch (scm_i_string_ref (mem, idx + 2))
- {
- case 'n': case 'N':
- if (scm_i_string_ref (mem, idx + 3) == '.')
- {
- /* Cobble up the fractional part. We might want to
- set the NaN's mantissa from it. */
- idx += 4;
- if (!scm_is_eq (mem2uinteger (mem, &idx, 10, &implicit_x),
- SCM_INUM0))
- return SCM_BOOL_F;
-
- *p_idx = idx;
- return scm_nan ();
- }
- }
- }
- }
- if (scm_i_string_ref (mem, idx) == '.')
- {
- if (radix != 10)
- return SCM_BOOL_F;
- else if (idx + 1 == len)
- return SCM_BOOL_F;
- else if (!uc_is_property_decimal_digit ((uint32_t) scm_i_string_ref (mem, idx+1)))
- return SCM_BOOL_F;
- else
- result = mem2decimal_from_point (SCM_INUM0, mem,
- p_idx, &implicit_x);
- }
- else
- {
- SCM uinteger;
- uinteger = mem2uinteger (mem, &idx, radix, &implicit_x);
- if (scm_is_false (uinteger))
- return SCM_BOOL_F;
- if (idx == len)
- result = uinteger;
- else if (scm_i_string_ref (mem, idx) == '/')
- {
- SCM divisor;
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- divisor = mem2uinteger (mem, &idx, radix, &implicit_x);
- if (scm_is_false (divisor) || scm_is_eq (divisor, SCM_INUM0))
- return SCM_BOOL_F;
- /* both are int/big here, I assume */
- result = scm_i_make_ratio (uinteger, divisor);
- }
- else if (radix == 10)
- {
- result = mem2decimal_from_point (uinteger, mem, &idx, &implicit_x);
- if (scm_is_false (result))
- return SCM_BOOL_F;
- }
- else
- result = uinteger;
- *p_idx = idx;
- }
- switch (forced_x)
- {
- case EXACT:
- if (SCM_INEXACTP (result))
- return scm_inexact_to_exact (result);
- else
- return result;
- case INEXACT:
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- case NO_EXACTNESS:
- if (implicit_x == INEXACT)
- {
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- }
- else
- return result;
- }
- /* We should never get here */
- assert (0);
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- static SCM
- mem2complex (SCM mem, unsigned int idx,
- unsigned int radix, enum t_exactness forced_x)
- {
- scm_t_wchar c;
- int sign = 0;
- SCM ureal;
- size_t len = scm_i_string_length (mem);
- if (idx == len)
- return SCM_BOOL_F;
- c = scm_i_string_ref (mem, idx);
- if (c == '+')
- {
- idx++;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- sign = -1;
- }
- if (idx == len)
- return SCM_BOOL_F;
- ureal = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (ureal))
- {
- /* input must be either +i or -i */
- if (sign == 0)
- return SCM_BOOL_F;
- if (scm_i_string_ref (mem, idx) == 'i'
- || scm_i_string_ref (mem, idx) == 'I')
- {
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
-
- return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
- }
- else
- return SCM_BOOL_F;
- }
- else
- {
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- ureal = scm_difference (ureal, SCM_UNDEFINED);
- if (idx == len)
- return ureal;
- c = scm_i_string_ref (mem, idx);
- switch (c)
- {
- case 'i': case 'I':
- /* either +<ureal>i or -<ureal>i */
- idx++;
- if (sign == 0)
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (SCM_INUM0, ureal);
- case '@':
- /* polar input: <real>@<real>. */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign;
- SCM angle;
- SCM result;
- c = scm_i_string_ref (mem, idx);
- if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- }
- else
- sign = 0;
- angle = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (angle))
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- angle = scm_difference (angle, SCM_UNDEFINED);
- result = scm_make_polar (ureal, angle);
- return result;
- }
- case '+':
- case '-':
- /* expecting input matching <real>[+-]<ureal>?i */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign = (c == '+') ? 1 : -1;
- SCM imag = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
- if (scm_is_false (imag))
- imag = SCM_I_MAKINUM (sign);
- else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
- imag = scm_difference (imag, SCM_UNDEFINED);
- if (idx == len)
- return SCM_BOOL_F;
- if (scm_i_string_ref (mem, idx) != 'i'
- && scm_i_string_ref (mem, idx) != 'I')
- return SCM_BOOL_F;
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (ureal, imag);
- }
- default:
- return SCM_BOOL_F;
- }
- }
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
- enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
- SCM
- scm_i_string_to_number (SCM mem, unsigned int default_radix)
- {
- unsigned int idx = 0;
- unsigned int radix = NO_RADIX;
- enum t_exactness forced_x = NO_EXACTNESS;
- size_t len = scm_i_string_length (mem);
- /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
- while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
- {
- switch (scm_i_string_ref (mem, idx + 1))
- {
- case 'b': case 'B':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DUAL;
- break;
- case 'd': case 'D':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DEC;
- break;
- case 'i': case 'I':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = INEXACT;
- break;
- case 'e': case 'E':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = EXACT;
- break;
- case 'o': case 'O':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = OCT;
- break;
- case 'x': case 'X':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = HEX;
- break;
- default:
- return SCM_BOOL_F;
- }
- idx += 2;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- if (radix == NO_RADIX)
- radix = default_radix;
- return mem2complex (mem, idx, radix, forced_x);
- }
- SCM
- scm_c_locale_stringn_to_number (const char* mem, size_t len,
- unsigned int default_radix)
- {
- SCM str = scm_from_locale_stringn (mem, len);
- return scm_i_string_to_number (str, default_radix);
- }
- SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
- (SCM string, SCM radix),
- "Return a number of the maximally precise representation\n"
- "expressed by the given @var{string}. @var{radix} must be an\n"
- "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
- "is a default radix that may be overridden by an explicit radix\n"
- "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
- "supplied, then the default radix is 10. If string is not a\n"
- "syntactically valid notation for a number, then\n"
- "@code{string->number} returns @code{#f}.")
- #define FUNC_NAME s_scm_string_to_number
- {
- SCM answer;
- unsigned int base;
- SCM_VALIDATE_STRING (1, string);
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_unsigned_integer (radix, 2, INT_MAX);
- answer = scm_i_string_to_number (string, base);
- scm_remember_upto_here_1 (string);
- return answer;
- }
- #undef FUNC_NAME
- /*** END strs->nums ***/
- SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_number_p
- {
- return scm_from_bool (SCM_NUMBERP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
- "otherwise. Note that the sets of real, rational and integer\n"
- "values form subsets of the set of complex numbers, i. e. the\n"
- "predicate will also be fulfilled if @var{x} is a real,\n"
- "rational or integer number.")
- #define FUNC_NAME s_scm_complex_p
- {
- /* all numbers are complex. */
- return scm_number_p (x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of real numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_real_p
- {
- return scm_from_bool
- (SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of rational numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_rational_p
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x))
- return SCM_BOOL_T;
- else if (SCM_REALP (x))
- /* due to their limited precision, finite floating point numbers are
- rational as well. (finite means neither infinity nor a NaN) */
- return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an integer number,\n"
- "else return @code{#f}.")
- #define FUNC_NAME s_scm_integer_p
- {
- return scm_from_bool (scm_is_integer (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_exact_integer_p, "exact-integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact integer number,\n"
- "else return @code{#f}.")
- #define FUNC_NAME s_scm_exact_integer_p
- {
- return scm_from_bool (scm_is_exact_integer (x));
- }
- #undef FUNC_NAME
- SCM
- scm_bigequal (SCM x, SCM y)
- {
- return scm_from_bool
- (scm_is_integer_equal_zz (scm_bignum (x), scm_bignum (y)));
- }
- SCM scm_i_num_eq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if all parameters are numerically equal.")
- #define FUNC_NAME s_scm_i_num_eq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_num_eq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_num_eq_p (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_num_eq_p (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_eq_p (x, y);
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- return scm_from_bool
- (scm_is_integer_equal_ir (SCM_I_INUM (x), SCM_REAL_VALUE (y)));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool
- (scm_is_integer_equal_ic (SCM_I_INUM (x), SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- return scm_num_eq_p (y, x);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_BIGP (y))
- return scm_from_bool
- (scm_is_integer_equal_zz (scm_bignum (x), scm_bignum (y)));
- else if (SCM_REALP (y))
- return scm_from_bool
- (scm_is_integer_equal_zr (scm_bignum (x), SCM_REAL_VALUE (y)));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool
- (scm_is_integer_equal_zc (scm_bignum (x), SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- return scm_num_eq_p (y, x);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool (SCM_COMPLEX_IMAG (y) == 0.0
- && SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y));
- else if (SCM_FRACTIONP (y))
- {
- if (isnan (SCM_REAL_VALUE (x)) || isinf (SCM_REAL_VALUE (x)))
- return SCM_BOOL_F;
- return scm_num_eq_p (scm_inexact_to_exact (x), y);
- }
- else
- return scm_num_eq_p (y, x);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_COMPLEXP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
- && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- if (SCM_COMPLEX_IMAG (x) != 0.0
- || isnan (SCM_COMPLEX_REAL (x))
- || isinf (SCM_COMPLEX_REAL (x)))
- return SCM_BOOL_F;
- return scm_num_eq_p (scm_inexact_to_exact (x), y);
- }
- else
- return scm_num_eq_p (y, x);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_FRACTIONP (y))
- return scm_i_fraction_equalp (x, y);
- else
- return scm_num_eq_p (y, x);
- }
- else
- return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1,
- s_scm_i_num_eq_p);
- }
- /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
- done are good for inums, but for bignums an answer can almost always be
- had by just examining a few high bits of the operands, as done by GMP in
- mpq_cmp. flonum/frac compares likewise, but with the slight complication
- of the float exponent to take into account. */
- static int scm_is_less_than (SCM x, SCM y);
- static int scm_is_greater_than (SCM x, SCM y);
- static int scm_is_less_than_or_equal (SCM x, SCM y);
- static int scm_is_greater_than_or_equal (SCM x, SCM y);
- static int
- scm_is_less_than (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_I_INUM (x) < SCM_I_INUM (y);
- else if (SCM_BIGP (y))
- return scm_is_integer_positive_z (scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_is_integer_less_than_ir (SCM_I_INUM (x), SCM_REAL_VALUE (y));
- if (!SCM_FRACTIONP (y))
- abort ();
- /* "x < a/b" becomes "x*b < a" */
- return scm_is_less_than (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_is_integer_negative_z (scm_bignum (x));
- else if (SCM_BIGP (y))
- return scm_is_integer_less_than_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_is_integer_less_than_zr (scm_bignum (x), SCM_REAL_VALUE (y));
- if (!SCM_FRACTIONP (y))
- abort ();
- /* "x < a/b" becomes "x*b < a" */
- return scm_is_less_than (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_is_integer_less_than_ri (SCM_REAL_VALUE (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_is_integer_less_than_rz (SCM_REAL_VALUE (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y);
- if (!SCM_FRACTIONP (y))
- abort ();
- /* REALP x FRACTIONP y, see symmetric case below */
- if (isnan (SCM_REAL_VALUE (x)))
- return 0;
- if (isinf (SCM_REAL_VALUE (x)))
- return SCM_REAL_VALUE (x) < 0.0;
- return scm_is_less_than (scm_inexact_to_exact (x), y);
- }
- if (!SCM_FRACTIONP (x))
- abort ();
- if (SCM_REALP (y))
- {
- /* FRACTIONP x REALP y, see symmetric case above */
- if (isnan (SCM_REAL_VALUE (y)))
- return 0;
- if (isinf (SCM_REAL_VALUE (y)))
- return 0.0 < SCM_REAL_VALUE (y);
- return scm_is_less_than (x, scm_inexact_to_exact (y));
- }
- else
- /* "a/b < y" becomes "a < y*b" */
- return scm_is_less_than (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x)));
- }
- static int
- scm_is_greater_than (SCM x, SCM y)
- {
- return scm_is_less_than (y, x);
- }
- static int
- scm_is_less_than_or_equal (SCM x, SCM y)
- {
- if ((SCM_REALP (x) && isnan (SCM_REAL_VALUE (x)))
- || (SCM_REALP (y) && isnan (SCM_REAL_VALUE (y))))
- return 0;
- return !scm_is_less_than (y, x);
- }
- static int
- scm_is_greater_than_or_equal (SCM x, SCM y)
- {
- return scm_is_less_than_or_equal (y, x);
- }
- SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "increasing.")
- #define FUNC_NAME s_scm_i_num_less_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_less_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_less_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_less_p
- SCM
- scm_less_p (SCM x, SCM y)
- {
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, FUNC_NAME);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG2, FUNC_NAME);
- return scm_from_bool (scm_is_less_than (x, y));
- }
- #undef FUNC_NAME
- SCM scm_i_num_gr_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "decreasing.")
- #define FUNC_NAME s_scm_i_num_gr_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_gr_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_gr_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_gr_p
- SCM
- scm_gr_p (SCM x, SCM y)
- {
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
- return scm_from_bool (scm_is_greater_than (x, y));
- }
- #undef FUNC_NAME
- SCM scm_i_num_leq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "non-decreasing.")
- #define FUNC_NAME s_scm_i_num_leq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_leq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_leq_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_leq_p
- SCM
- scm_leq_p (SCM x, SCM y)
- {
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
- return scm_from_bool (scm_is_less_than_or_equal (x, y));
- }
- #undef FUNC_NAME
- SCM scm_i_num_geq_p (SCM, SCM, SCM);
- SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return @code{#t} if the list of parameters is monotonically\n"
- "non-increasing.")
- #define FUNC_NAME s_scm_i_num_geq_p
- {
- if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
- return SCM_BOOL_T;
- while (!scm_is_null (rest))
- {
- if (scm_is_false (scm_geq_p (x, y)))
- return SCM_BOOL_F;
- x = y;
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_geq_p (x, y);
- }
- #undef FUNC_NAME
- #define FUNC_NAME s_scm_i_num_geq_p
- SCM
- scm_geq_p (SCM x, SCM y)
- {
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
- return scm_from_bool (scm_is_greater_than_or_equal (x, y));
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_zero_p, "zero?", 1, 0, 0,
- (SCM z),
- "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
- "zero.")
- #define FUNC_NAME s_scm_zero_p
- {
- if (SCM_I_INUMP (z))
- return scm_from_bool (scm_is_eq (z, SCM_INUM0));
- else if (SCM_BIGP (z))
- return SCM_BOOL_F;
- else if (SCM_REALP (z))
- return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
- else if (SCM_COMPLEXP (z))
- return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
- && SCM_COMPLEX_IMAG (z) == 0.0);
- else if (SCM_FRACTIONP (z))
- return SCM_BOOL_F;
- else
- return scm_wta_dispatch_1 (g_scm_zero_p, z, SCM_ARG1, s_scm_zero_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_positive_p, "positive?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
- "zero.")
- #define FUNC_NAME s_scm_positive_p
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) > 0);
- else if (SCM_BIGP (x))
- return scm_from_bool (scm_is_integer_positive_z (scm_bignum (x)));
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_positive_p, x, SCM_ARG1, s_scm_positive_p);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_negative_p, "negative?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
- "zero.")
- #define FUNC_NAME s_scm_negative_p
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) < 0);
- else if (SCM_BIGP (x))
- return scm_from_bool (scm_is_integer_negative_z (scm_bignum (x)));
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_negative_p, x, SCM_ARG1, s_scm_negative_p);
- }
- #undef FUNC_NAME
- /* scm_min and scm_max return an inexact when either argument is inexact, as
- required by r5rs. On that basis, for exact/inexact combinations the
- exact is converted to inexact to compare and possibly return. This is
- unlike scm_less_p above which takes some trouble to preserve all bits in
- its test, such trouble is not required for min and max. */
- SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the maximum of all parameter values.")
- #define FUNC_NAME s_scm_i_max
- {
- while (!scm_is_null (rest))
- { x = scm_max (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_max (x, y);
- }
- #undef FUNC_NAME
-
- SCM
- scm_max (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_scm_i_max, s_scm_i_max);
- else if (scm_is_real (x))
- return x;
- else
- return scm_wta_dispatch_1 (g_scm_i_max, x, SCM_ARG1, s_scm_i_max);
- }
-
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_max, x, y, SCM_ARG1, s_scm_i_max);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_max, x, y, SCM_ARG2, s_scm_i_max);
- if (scm_is_exact (x) && scm_is_exact (y))
- return scm_is_less_than (x, y) ? y : x;
- x = SCM_REALP (x) ? x : scm_exact_to_inexact (x);
- y = SCM_REALP (y) ? y : scm_exact_to_inexact (y);
- double xx = SCM_REAL_VALUE (x);
- double yy = SCM_REAL_VALUE (y);
- if (isnan (xx))
- return x;
- if (isnan (yy))
- return y;
- if (xx < yy)
- return y;
- if (xx > yy)
- return x;
- // Distinguish -0.0 from 0.0.
- return (copysign (1.0, xx) < 0) ? y : x;
- }
- SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the minimum of all parameter values.")
- #define FUNC_NAME s_scm_i_min
- {
- while (!scm_is_null (rest))
- { x = scm_min (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_min (x, y);
- }
- #undef FUNC_NAME
-
- SCM
- scm_min (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_scm_i_min, s_scm_i_min);
- else if (scm_is_real (x))
- return x;
- else
- return scm_wta_dispatch_1 (g_scm_i_min, x, SCM_ARG1, s_scm_i_min);
- }
-
- if (!scm_is_real (x))
- return scm_wta_dispatch_2 (g_scm_i_min, x, y, SCM_ARG1, s_scm_i_min);
- if (!scm_is_real (y))
- return scm_wta_dispatch_2 (g_scm_i_min, x, y, SCM_ARG2, s_scm_i_min);
- if (scm_is_exact (x) && scm_is_exact (y))
- return scm_is_less_than (x, y) ? x : y;
- x = SCM_REALP (x) ? x : scm_exact_to_inexact (x);
- y = SCM_REALP (y) ? y : scm_exact_to_inexact (y);
- double xx = SCM_REAL_VALUE (x);
- double yy = SCM_REAL_VALUE (y);
- if (isnan (xx))
- return x;
- if (isnan (yy))
- return y;
- if (xx < yy)
- return x;
- if (xx > yy)
- return y;
- // Distinguish -0.0 from 0.0.
- return (copysign (1.0, xx) < 0) ? x : y;
- }
- SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the sum of all parameter values. Return 0 if called without\n"
- "any parameters." )
- #define FUNC_NAME s_scm_i_sum
- {
- while (!scm_is_null (rest))
- { x = scm_sum (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_sum (x, y);
- }
- #undef FUNC_NAME
- static SCM
- sum (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_add_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_add_zi (scm_bignum (y), SCM_I_INUM (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_I_INUM (x) + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_I_INUM (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio
- (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- abort (); /* Unreachable. */
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_BIGP (y))
- return scm_integer_add_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
- + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (scm_integer_to_double_z (scm_bignum (x))
- + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return sum (y, x);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
- else
- return sum (y, x);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- return sum (y, x);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_FRACTIONP (y))
- {
- SCM nx = SCM_FRACTION_NUMERATOR (x);
- SCM ny = SCM_FRACTION_NUMERATOR (y);
- SCM dx = SCM_FRACTION_DENOMINATOR (x);
- SCM dy = SCM_FRACTION_DENOMINATOR (y);
- return scm_i_make_ratio (scm_sum (scm_product (nx, dy),
- scm_product (ny, dx)),
- scm_product (dx, dy));
- }
- else
- return sum (y, x);
- }
- else
- abort (); /* Unreachable. */
- }
- SCM
- scm_sum (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_NUMBERP (x)) return x;
- if (SCM_UNBNDP (x)) return SCM_INUM0;
- return scm_wta_dispatch_1 (g_scm_i_sum, x, SCM_ARG1, s_scm_i_sum);
- }
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_sum, x, y, SCM_ARG1, s_scm_i_sum);
- if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_sum, x, y, SCM_ARG2, s_scm_i_sum);
- return sum (x, y);
- }
- SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}+1}.")
- #define FUNC_NAME s_scm_oneplus
- {
- return scm_sum (x, SCM_INUM1);
- }
- #undef FUNC_NAME
- static SCM
- negate (SCM x)
- {
- if (SCM_I_INUMP (x))
- return scm_integer_negate_i (SCM_I_INUM (x));
- else if (SCM_BIGP (x))
- return scm_integer_negate_z (scm_bignum (x));
- else if (SCM_REALP (x))
- return scm_i_from_double (-SCM_REAL_VALUE (x));
- else if (SCM_COMPLEXP (x))
- return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
- -SCM_COMPLEX_IMAG (x));
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio_already_reduced
- (negate (SCM_FRACTION_NUMERATOR (x)), SCM_FRACTION_DENOMINATOR (x));
- else
- abort (); /* Unreachable. */
- }
- static SCM
- difference (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUM (x) == 0)
- /* We need to handle x == exact 0 specially because R6RS states
- that:
- (- 0.0) ==> -0.0 and
- (- 0.0 0.0) ==> 0.0
- and the scheme compiler changes
- (- 0.0) into (- 0 0.0)
- So we need to treat (- 0 0.0) like (- 0.0).
- At the C level, (-x) is different than (0.0 - x).
- (0.0 - 0.0) ==> 0.0, but (- 0.0) ==> -0.0. */
- return negate (y);
- if (SCM_I_INUMP (y))
- return scm_integer_sub_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_sub_iz (SCM_I_INUM (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_I_INUM (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_I_INUM (x) - SCM_COMPLEX_REAL (y),
- - SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a - b/c = (ac - b) / c */
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_integer_sub_zi (scm_bignum (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_sub_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
- - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular
- (scm_integer_to_double_z (scm_bignum (x)) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio
- (difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_REALP (x))
- {
- double r = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- return scm_i_from_double (r - SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_i_from_double (r - scm_integer_to_double_z (scm_bignum (y)));
- else if (SCM_REALP (y))
- return scm_i_from_double (r - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (r - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (r - scm_i_fraction2double (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_COMPLEXP (x))
- {
- double r = SCM_COMPLEX_REAL (x);
- double i = SCM_COMPLEX_IMAG (x);
- if (SCM_I_INUMP (y))
- r -= SCM_I_INUM (y);
- else if (SCM_BIGP (y))
- r -= scm_integer_to_double_z (scm_bignum (y));
- else if (SCM_REALP (y))
- r -= SCM_REAL_VALUE (y);
- else if (SCM_COMPLEXP (y))
- r -= SCM_COMPLEX_REAL (y), i -= SCM_COMPLEX_IMAG (y);
- else if (SCM_FRACTIONP (y))
- r -= scm_i_fraction2double (y);
- else
- abort (); /* Unreachable. */
- return scm_c_make_rectangular (r, i);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_exact (y))
- {
- /* a/b - c/d = (ad - bc) / bd */
- SCM n = scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x),
- scm_denominator (y)),
- scm_product (scm_numerator (y),
- SCM_FRACTION_DENOMINATOR (x)));
- SCM d = scm_product (SCM_FRACTION_DENOMINATOR (x),
- scm_denominator (y));
- return scm_i_make_ratio (n, d);
- }
- double xx = scm_i_fraction2double (x);
- if (SCM_REALP (y))
- return scm_i_from_double (xx - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else
- abort (); /* Unreachable. */
- }
- else
- abort (); /* Unreachable. */
- }
- SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
- "the sum of all but the first argument are subtracted from the first\n"
- "argument.")
- #define FUNC_NAME s_scm_i_difference
- {
- while (!scm_is_null (rest))
- { x = scm_difference (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_difference (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_difference (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_NUMBERP (x)) return negate (x);
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_scm_i_difference, s_scm_i_difference);
- return scm_wta_dispatch_1 (g_scm_i_difference, x, SCM_ARG1,
- s_scm_i_difference);
- }
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_difference, x, y, SCM_ARG1,
- s_scm_i_difference);
- if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_difference, x, y, SCM_ARG2,
- s_scm_i_difference);
- return difference (x, y);
- }
- SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}-1}.")
- #define FUNC_NAME s_scm_oneminus
- {
- return scm_difference (x, SCM_INUM1);
- }
- #undef FUNC_NAME
- static SCM
- product (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (scm_is_eq (x, SCM_I_MAKINUM (-1)))
- return negate (y);
- else if (SCM_I_INUMP (y))
- return scm_integer_mul_ii (SCM_I_INUM (x), SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- return scm_integer_mul_zi (scm_bignum (y), SCM_I_INUM (x));
- else if (SCM_REALP (y))
- return scm_i_from_double (SCM_I_INUM (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_I_INUM (x) * SCM_COMPLEX_REAL (y),
- SCM_I_INUM (x) * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- abort (); /* Unreachable. */
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_BIGP (y))
- return scm_integer_mul_zz (scm_bignum (x), scm_bignum (y));
- else if (SCM_REALP (y))
- return scm_from_double (scm_integer_to_double_z (scm_bignum (x))
- * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- {
- double z = scm_integer_to_double_z (scm_bignum (x));
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
- z * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- return product (y, x);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_REALP (y))
- return scm_i_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular
- (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
- SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double
- (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
- else
- return product (y, x);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_COMPLEXP (y))
- {
- double rx = SCM_COMPLEX_REAL (x), ry = SCM_COMPLEX_REAL (y);
- double ix = SCM_COMPLEX_IMAG (x), iy = SCM_COMPLEX_IMAG (y);
- return scm_c_make_rectangular (rx * ry - ix * iy, rx * iy + ix * ry);
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
- yy * SCM_COMPLEX_IMAG (x));
- }
- else
- return product (y, x);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_FRACTIONP (y))
- /* a/b * c/d = ac / bd */
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_NUMERATOR (y)),
- scm_product (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_DENOMINATOR (y)));
- else
- return product (y, x);
- }
- else
- abort (); /* Unreachable. */
- }
- SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Return the product of all arguments. If called without arguments,\n"
- "1 is returned.")
- #define FUNC_NAME s_scm_i_product
- {
- while (!scm_is_null (rest))
- { x = scm_product (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_product (x, y);
- }
- #undef FUNC_NAME
- SCM
- scm_product (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return SCM_I_MAKINUM (1L);
- else if (SCM_NUMBERP (x))
- return x;
- else
- return scm_wta_dispatch_1 (g_scm_i_product, x, SCM_ARG1,
- s_scm_i_product);
- }
- /* This is pretty gross! But (* 1 X) is apparently X in Guile, for
- any type of X, even a pair. */
- if (scm_is_eq (x, SCM_INUM1))
- return y;
- if (scm_is_eq (y, SCM_INUM1))
- return x;
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_product, x, y, SCM_ARG1,
- s_scm_i_product);
- if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_product, x, y, SCM_ARG2,
- s_scm_i_product);
- return product (x, y);
- }
- /* The code below for complex division is adapted from the GNU
- libstdc++, which adapted it from f2c's libF77, and is subject to
- this copyright: */
- /****************************************************************
- Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
- Permission to use, copy, modify, and distribute this software
- and its documentation for any purpose and without fee is hereby
- granted, provided that the above copyright notice appear in all
- copies and that both that the copyright notice and this
- permission notice and warranty disclaimer appear in supporting
- documentation, and that the names of AT&T Bell Laboratories or
- Bellcore or any of their entities not be used in advertising or
- publicity pertaining to distribution of the software without
- specific, written prior permission.
- AT&T and Bellcore disclaim all warranties with regard to this
- software, including all implied warranties of merchantability
- and fitness. In no event shall AT&T or Bellcore be liable for
- any special, indirect or consequential damages or any damages
- whatsoever resulting from loss of use, data or profits, whether
- in an action of contract, negligence or other tortious action,
- arising out of or in connection with the use or performance of
- this software.
- ****************************************************************/
- static SCM
- invert (SCM x)
- {
- if (SCM_I_INUMP (x))
- switch (SCM_I_INUM (x))
- {
- case -1: return x;
- case 0: scm_num_overflow ("divide");
- case 1: return x;
- default: return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
- }
- else if (SCM_BIGP (x))
- return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
- else if (SCM_REALP (x))
- return scm_i_from_double (1.0 / SCM_REAL_VALUE (x));
- else if (SCM_COMPLEXP (x))
- {
- double r = SCM_COMPLEX_REAL (x);
- double i = SCM_COMPLEX_IMAG (x);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular (t / d, -1.0 / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (1.0 / d, -t / d);
- }
- }
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_NUMERATOR (x));
- else
- abort (); /* Unreachable. */
- }
- static SCM
- complex_div (double a, SCM y)
- {
- double r = SCM_COMPLEX_REAL (y);
- double i = SCM_COMPLEX_IMAG (y);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular ((a * t) / d, -a / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (a / d, -(a * t) / d);
- }
- }
- static SCM
- divide (SCM x, SCM y)
- {
- if (scm_is_eq (y, SCM_INUM0))
- scm_num_overflow ("divide");
- if (SCM_I_INUMP (x))
- {
- if (scm_is_eq (x, SCM_INUM1))
- return invert (y);
- if (SCM_I_INUMP (y))
- return scm_is_integer_divisible_ii (SCM_I_INUM (x), SCM_I_INUM (y))
- ? scm_integer_exact_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y))
- : scm_i_make_ratio (x, y);
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (x, y);
- else if (SCM_REALP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The cast from 'scm_t_inum' to 'double'
- (2) Double rounding */
- return scm_i_from_double ((double) SCM_I_INUM (x) / SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return complex_div (SCM_I_INUM (x), y);
- else if (SCM_FRACTIONP (y))
- /* a / b/c = ac / b */
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_is_integer_divisible_zi (scm_bignum (x), SCM_I_INUM (y))
- ? scm_integer_exact_quotient_zi (scm_bignum (x), SCM_I_INUM (y))
- : scm_i_make_ratio (x, y);
- else if (SCM_BIGP (y))
- return scm_is_integer_divisible_zz (scm_bignum (x), scm_bignum (y))
- ? scm_integer_exact_quotient_zz (scm_bignum (x), scm_bignum (y))
- : scm_i_make_ratio (x, y);
- else if (SCM_REALP (y))
- /* FIXME: Precision may be lost here due to:
- (1) scm_integer_to_double_z (2) Double rounding */
- return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x))
- / SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return complex_div (scm_integer_to_double_z (scm_bignum (x)), y);
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_REALP (x))
- {
- double rx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The cast from 'scm_t_inum' to 'double'
- (2) Double rounding */
- return scm_i_from_double (rx / (double) SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from bignum to double
- (2) Double rounding */
- return scm_i_from_double (rx / scm_integer_to_double_z (scm_bignum (y)));
- else if (SCM_REALP (y))
- return scm_i_from_double (rx / SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return complex_div (rx, y);
- else if (SCM_FRACTIONP (y))
- return scm_i_from_double (rx / scm_i_fraction2double (y));
- else
- abort () ; /* Unreachable. */
- }
- else if (SCM_COMPLEXP (x))
- {
- double rx = SCM_COMPLEX_REAL (x);
- double ix = SCM_COMPLEX_IMAG (x);
- if (SCM_I_INUMP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from 'scm_t_inum' to double
- (2) Double rounding */
- double d = SCM_I_INUM (y);
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- else if (SCM_BIGP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from bignum to double
- (2) Double rounding */
- double d = scm_integer_to_double_z (scm_bignum (y));
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- else if (SCM_REALP (y))
- {
- double d = SCM_REAL_VALUE (y);
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- else if (SCM_COMPLEXP (y))
- {
- double ry = SCM_COMPLEX_REAL (y);
- double iy = SCM_COMPLEX_IMAG (y);
- if (fabs(ry) <= fabs(iy))
- {
- double t = ry / iy;
- double d = iy * (1.0 + t * t);
- return scm_c_make_rectangular ((rx * t + ix) / d,
- (ix * t - rx) / d);
- }
- else
- {
- double t = iy / ry;
- double d = ry * (1.0 + t * t);
- return scm_c_make_rectangular ((rx + ix * t) / d,
- (ix - rx * t) / d);
- }
- }
- else if (SCM_FRACTIONP (y))
- {
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- double d = scm_i_fraction2double (y);
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- else
- abort (); /* Unreachable. */
- }
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_exact_integer (y))
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- else if (SCM_REALP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- return scm_i_from_double (scm_i_fraction2double (x) /
- SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- /* FIXME: Precision may be lost here due to:
- (1) The conversion from fraction to double
- (2) Double rounding */
- return complex_div (scm_i_fraction2double (x), y);
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y),
- SCM_FRACTION_DENOMINATOR (x)));
- else
- abort (); /* Unreachable. */
- }
- else
- abort (); /* Unreachable. */
- }
- SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
- (SCM x, SCM y, SCM rest),
- "Divide the first argument by the product of the remaining\n"
- "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
- "returned.")
- #define FUNC_NAME s_scm_i_divide
- {
- while (!scm_is_null (rest))
- { x = scm_divide (x, y);
- y = scm_car (rest);
- rest = scm_cdr (rest);
- }
- return scm_divide (x, y);
- }
- #undef FUNC_NAME
-
- SCM
- scm_divide (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- return scm_wta_dispatch_0 (g_scm_i_divide, s_scm_i_divide);
- if (SCM_NUMBERP (x))
- return invert (x);
- else
- return scm_wta_dispatch_1 (g_scm_i_divide, x, SCM_ARG1,
- s_scm_i_divide);
- }
- if (!SCM_NUMBERP (x))
- return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG1,
- s_scm_i_divide);
- if (!SCM_NUMBERP (y))
- return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG2,
- s_scm_i_divide);
- return divide (x, y);
- }
- double
- scm_c_truncate (double x)
- {
- return trunc (x);
- }
- /* scm_c_round is done using floor(x+0.5) to round to nearest and with
- half-way case (ie. when x is an integer plus 0.5) going upwards.
- Then half-way cases are identified and adjusted down if the
- round-upwards didn't give the desired even integer.
- "plus_half == result" identifies a half-way case. If plus_half, which is
- x + 0.5, is an integer then x must be an integer plus 0.5.
- An odd "result" value is identified with result/2 != floor(result/2).
- This is done with plus_half, since that value is ready for use sooner in
- a pipelined cpu, and we're already requiring plus_half == result.
- Note however that we need to be careful when x is big and already an
- integer. In that case "x+0.5" may round to an adjacent integer, causing
- us to return such a value, incorrectly. For instance if the hardware is
- in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
- (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
- returned. Or if the hardware is in round-upwards mode, then other bigger
- values like say x == 2^128 will see x+0.5 rounding up to the next higher
- representable value, 2^128+2^76 (or whatever), again incorrect.
- These bad roundings of x+0.5 are avoided by testing at the start whether
- x is already an integer. If it is then clearly that's the desired result
- already. And if it's not then the exponent must be small enough to allow
- an 0.5 to be represented, and hence added without a bad rounding. */
- double
- scm_c_round (double x)
- {
- double plus_half, result;
- if (x == floor (x))
- return x;
- plus_half = x + 0.5;
- result = floor (plus_half);
- /* Adjust so that the rounding is towards even. */
- return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
- ? result - 1
- : result);
- }
- SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards zero.")
- #define FUNC_NAME s_scm_truncate_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (trunc (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_truncate_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_truncate_number, x, SCM_ARG1,
- s_scm_truncate_number);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards the nearest integer. "
- "When it is exactly halfway between two integers, "
- "round towards the even one.")
- #define FUNC_NAME s_scm_round_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (scm_c_round (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_round_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_round_number, x, SCM_ARG1,
- s_scm_round_number);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards minus infinity.")
- #define FUNC_NAME s_scm_floor
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (floor (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_floor_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_floor, x, 1, s_scm_floor);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards infinity.")
- #define FUNC_NAME s_scm_ceiling
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_i_from_double (ceil (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- return scm_ceiling_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- else
- return scm_wta_dispatch_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_expt, "expt", 2, 0, 0,
- (SCM x, SCM y),
- "Return @var{x} raised to the power of @var{y}.")
- #define FUNC_NAME s_scm_expt
- {
- if (scm_is_integer (y))
- {
- if (scm_is_true (scm_exact_p (y)))
- return scm_integer_expt (x, y);
- else
- {
- /* Here we handle the case where the exponent is an inexact
- integer. We make the exponent exact in order to use
- scm_integer_expt, and thus avoid the spurious imaginary
- parts that may result from round-off errors in the general
- e^(y log x) method below (for example when squaring a large
- negative number). In this case, we must return an inexact
- result for correctness. We also make the base inexact so
- that scm_integer_expt will use fast inexact arithmetic
- internally. Note that making the base inexact is not
- sufficient to guarantee an inexact result, because
- scm_integer_expt will return an exact 1 when the exponent
- is 0, even if the base is inexact. */
- return scm_exact_to_inexact
- (scm_integer_expt (scm_exact_to_inexact (x),
- scm_inexact_to_exact (y)));
- }
- }
- else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
- {
- return scm_i_from_double (pow (scm_to_double (x), scm_to_double (y)));
- }
- else if (scm_is_complex (x) && scm_is_complex (y))
- return scm_exp (scm_product (scm_log (x), y));
- else if (scm_is_complex (x))
- return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG2, s_scm_expt);
- else
- return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG1, s_scm_expt);
- }
- #undef FUNC_NAME
- /* sin/cos/tan/asin/acos/atan
- sinh/cosh/tanh/asinh/acosh/atanh
- Derived from "Transcen.scm", Complex trancendental functions for SCM.
- Written by Jerry D. Hedden, (C) FSF.
- See the file `COPYING' for terms applying to this program. */
- SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
- (SCM z),
- "Compute the sine of @var{z}.")
- #define FUNC_NAME s_scm_sin
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* sin(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (sin (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (sin (x) * cosh (y),
- cos (x) * sinh (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sin, z, 1, s_scm_sin);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
- (SCM z),
- "Compute the cosine of @var{z}.")
- #define FUNC_NAME s_scm_cos
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return SCM_INUM1; /* cos(exact0) = exact1 */
- else if (scm_is_real (z))
- return scm_i_from_double (cos (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (cos (x) * cosh (y),
- -sin (x) * sinh (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_cos, z, 1, s_scm_cos);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
- (SCM z),
- "Compute the tangent of @var{z}.")
- #define FUNC_NAME s_scm_tan
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* tan(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (tan (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y, w;
- x = 2.0 * SCM_COMPLEX_REAL (z);
- y = 2.0 * SCM_COMPLEX_IMAG (z);
- w = cos (x) + cosh (y);
- return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
- }
- else
- return scm_wta_dispatch_1 (g_scm_tan, z, 1, s_scm_tan);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic sine of @var{z}.")
- #define FUNC_NAME s_scm_sinh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* sinh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (sinh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (sinh (x) * cos (y),
- cosh (x) * sin (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sinh, z, 1, s_scm_sinh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic cosine of @var{z}.")
- #define FUNC_NAME s_scm_cosh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return SCM_INUM1; /* cosh(exact0) = exact1 */
- else if (scm_is_real (z))
- return scm_i_from_double (cosh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (cosh (x) * cos (y),
- sinh (x) * sin (y));
- }
- else
- return scm_wta_dispatch_1 (g_scm_cosh, z, 1, s_scm_cosh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
- (SCM z),
- "Compute the hyperbolic tangent of @var{z}.")
- #define FUNC_NAME s_scm_tanh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* tanh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (tanh (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- { double x, y, w;
- x = 2.0 * SCM_COMPLEX_REAL (z);
- y = 2.0 * SCM_COMPLEX_IMAG (z);
- w = cosh (x) + cos (y);
- return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
- }
- else
- return scm_wta_dispatch_1 (g_scm_tanh, z, 1, s_scm_tanh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
- (SCM z),
- "Compute the arc sine of @var{z}.")
- #define FUNC_NAME s_scm_asin
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* asin(exact0) = exact0 */
- else if (scm_is_real (z))
- {
- double w = scm_to_double (z);
- if (w >= -1.0 && w <= 1.0)
- return scm_i_from_double (asin (w));
- else
- return scm_product (scm_c_make_rectangular (0, -1),
- scm_sys_asinh (scm_c_make_rectangular (0, w)));
- }
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_product (scm_c_make_rectangular (0, -1),
- scm_sys_asinh (scm_c_make_rectangular (-y, x)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_asin, z, 1, s_scm_asin);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
- (SCM z),
- "Compute the arc cosine of @var{z}.")
- #define FUNC_NAME s_scm_acos
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
- return SCM_INUM0; /* acos(exact1) = exact0 */
- else if (scm_is_real (z))
- {
- double w = scm_to_double (z);
- if (w >= -1.0 && w <= 1.0)
- return scm_i_from_double (acos (w));
- else
- return scm_sum (scm_i_from_double (acos (0.0)),
- scm_product (scm_c_make_rectangular (0, 1),
- scm_sys_asinh (scm_c_make_rectangular (0, w))));
- }
- else if (SCM_COMPLEXP (z))
- { double x, y;
- x = SCM_COMPLEX_REAL (z);
- y = SCM_COMPLEX_IMAG (z);
- return scm_sum (scm_i_from_double (acos (0.0)),
- scm_product (scm_c_make_rectangular (0, 1),
- scm_sys_asinh (scm_c_make_rectangular (-y, x))));
- }
- else
- return scm_wta_dispatch_1 (g_scm_acos, z, 1, s_scm_acos);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
- (SCM z, SCM y),
- "With one argument, compute the arc tangent of @var{z}.\n"
- "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
- "using the sign of @var{z} and @var{y} to determine the quadrant.")
- #define FUNC_NAME s_scm_atan
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* atan(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (atan (scm_to_double (z)));
- else if (SCM_COMPLEXP (z))
- {
- double v, w;
- v = SCM_COMPLEX_REAL (z);
- w = SCM_COMPLEX_IMAG (z);
- return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (-v, 1.0 - w),
- scm_c_make_rectangular ( v, 1.0 + w))),
- scm_c_make_rectangular (0, 2));
- }
- else
- return scm_wta_dispatch_1 (g_scm_atan, z, SCM_ARG1, s_scm_atan);
- }
- else if (scm_is_real (z))
- {
- if (scm_is_real (y))
- return scm_i_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
- else
- return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
- }
- else
- return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic sine of @var{z}.")
- #define FUNC_NAME s_scm_sys_asinh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* asinh(exact0) = exact0 */
- else if (scm_is_real (z))
- return scm_i_from_double (asinh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_log (scm_sum (z,
- scm_sqrt (scm_sum (scm_product (z, z),
- SCM_INUM1))));
- else
- return scm_wta_dispatch_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic cosine of @var{z}.")
- #define FUNC_NAME s_scm_sys_acosh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
- return SCM_INUM0; /* acosh(exact1) = exact0 */
- else if (scm_is_real (z) && scm_to_double (z) >= 1.0)
- return scm_i_from_double (acosh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_log (scm_sum (z,
- scm_sqrt (scm_difference (scm_product (z, z),
- SCM_INUM1))));
- else
- return scm_wta_dispatch_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
- (SCM z),
- "Compute the inverse hyperbolic tangent of @var{z}.")
- #define FUNC_NAME s_scm_sys_atanh
- {
- if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
- return z; /* atanh(exact0) = exact0 */
- else if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
- return scm_i_from_double (atanh (scm_to_double (z)));
- else if (scm_is_number (z))
- return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
- scm_difference (SCM_INUM1, z))),
- SCM_I_MAKINUM (2));
- else
- return scm_wta_dispatch_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_rectangular (double re, double im)
- {
- SCM z;
- z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
- "complex"));
- SCM_SET_CELL_TYPE (z, scm_tc16_complex);
- SCM_COMPLEX_REAL (z) = re;
- SCM_COMPLEX_IMAG (z) = im;
- return z;
- }
- SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
- (SCM real_part, SCM imaginary_part),
- "Return a complex number constructed of the given @var{real_part} "
- "and @var{imaginary_part} parts.")
- #define FUNC_NAME s_scm_make_rectangular
- {
- SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
- SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
- SCM_ARG2, FUNC_NAME, "real");
- /* Return a real if and only if the imaginary_part is an _exact_ 0 */
- if (scm_is_eq (imaginary_part, SCM_INUM0))
- return real_part;
- else
- return scm_c_make_rectangular (scm_to_double (real_part),
- scm_to_double (imaginary_part));
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_polar (double mag, double ang)
- {
- double s, c;
- /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
- use it on Glibc-based systems that have it (it's a GNU extension). See
- http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
- details. */
- #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
- sincos (ang, &s, &c);
- #elif (defined HAVE___SINCOS)
- __sincos (ang, &s, &c);
- #else
- s = sin (ang);
- c = cos (ang);
- #endif
- /* If s and c are NaNs, this indicates that the angle is a NaN,
- infinite, or perhaps simply too large to determine its value
- mod 2*pi. However, we know something that the floating-point
- implementation doesn't know: We know that s and c are finite.
- Therefore, if the magnitude is zero, return a complex zero.
- The reason we check for the NaNs instead of using this case
- whenever mag == 0.0 is because when the angle is known, we'd
- like to return the correct kind of non-real complex zero:
- +0.0+0.0i, -0.0+0.0i, -0.0-0.0i, or +0.0-0.0i, depending
- on which quadrant the angle is in.
- */
- if (SCM_UNLIKELY (isnan(s)) && isnan(c) && (mag == 0.0))
- return scm_c_make_rectangular (0.0, 0.0);
- else
- return scm_c_make_rectangular (mag * c, mag * s);
- }
- SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
- (SCM mag, SCM ang),
- "Return the complex number @var{mag} * e^(i * @var{ang}).")
- #define FUNC_NAME s_scm_make_polar
- {
- SCM_ASSERT_TYPE (scm_is_real (mag), mag, SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (ang), ang, SCM_ARG2, FUNC_NAME, "real");
- /* If mag is exact0, return exact0 */
- if (scm_is_eq (mag, SCM_INUM0))
- return SCM_INUM0;
- /* Return a real if ang is exact0 */
- else if (scm_is_eq (ang, SCM_INUM0))
- return mag;
- else
- return scm_c_make_polar (scm_to_double (mag), scm_to_double (ang));
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_real_part, "real-part", 1, 0, 0,
- (SCM z),
- "Return the real part of the number @var{z}.")
- #define FUNC_NAME s_scm_real_part
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (SCM_COMPLEX_REAL (z));
- else if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_REALP (z) || SCM_FRACTIONP (z))
- return z;
- else
- return scm_wta_dispatch_1 (g_scm_real_part, z, SCM_ARG1, s_scm_real_part);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_imag_part, "imag-part", 1, 0, 0,
- (SCM z),
- "Return the imaginary part of the number @var{z}.")
- #define FUNC_NAME s_scm_imag_part
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (SCM_COMPLEX_IMAG (z));
- else if (SCM_I_INUMP (z) || SCM_REALP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
- return SCM_INUM0;
- else
- return scm_wta_dispatch_1 (g_scm_imag_part, z, SCM_ARG1, s_scm_imag_part);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_numerator, "numerator", 1, 0, 0,
- (SCM z),
- "Return the numerator of the number @var{z}.")
- #define FUNC_NAME s_scm_numerator
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z))
- return z;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_NUMERATOR (z);
- else if (SCM_REALP (z))
- {
- double zz = SCM_REAL_VALUE (z);
- if (zz == floor (zz))
- /* Handle -0.0 and infinities in accordance with R6RS
- flnumerator, and optimize handling of integers. */
- return z;
- else
- return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_numerator, z, SCM_ARG1, s_scm_numerator);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_denominator, "denominator", 1, 0, 0,
- (SCM z),
- "Return the denominator of the number @var{z}.")
- #define FUNC_NAME s_scm_denominator
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z))
- return SCM_INUM1;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_DENOMINATOR (z);
- else if (SCM_REALP (z))
- {
- double zz = SCM_REAL_VALUE (z);
- if (zz == floor (zz))
- /* Handle infinities in accordance with R6RS fldenominator, and
- optimize handling of integers. */
- return scm_i_from_double (1.0);
- else
- return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_denominator, z, SCM_ARG1,
- s_scm_denominator);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_magnitude, "magnitude", 1, 0, 0,
- (SCM z),
- "Return the magnitude of the number @var{z}. This is the same as\n"
- "@code{abs} for real arguments, but also allows complex numbers.")
- #define FUNC_NAME s_scm_magnitude
- {
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
- else if (SCM_NUMBERP (z))
- return scm_abs (z);
- else
- return scm_wta_dispatch_1 (g_scm_magnitude, z, SCM_ARG1,
- s_scm_magnitude);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_angle, "angle", 1, 0, 0,
- (SCM z),
- "Return the angle of the complex number @var{z}.")
- #define FUNC_NAME s_scm_angle
- {
- /* atan(0,-1) is pi and it'd be possible to have that as a constant like
- flo0 to save allocating a new flonum with scm_i_from_double each time.
- But if atan2 follows the floating point rounding mode, then the value
- is not a constant. Maybe it'd be close enough though. */
- if (SCM_COMPLEXP (z))
- return scm_i_from_double (atan2 (SCM_COMPLEX_IMAG (z),
- SCM_COMPLEX_REAL (z)));
- else if (SCM_NUMBERP (z))
- return (SCM_REALP (z)
- ? copysign (1.0, SCM_REAL_VALUE (z)) < 0.0
- : scm_is_true (scm_negative_p (z)))
- ? scm_i_from_double (atan2 (0.0, -1.0))
- : flo0;
- else
- return scm_wta_dispatch_1 (g_scm_angle, z, SCM_ARG1, s_scm_angle);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_exact_to_inexact, "exact->inexact", 1, 0, 0,
- (SCM z),
- "Convert the number @var{z} to its inexact representation.\n")
- #define FUNC_NAME s_scm_exact_to_inexact
- {
- if (SCM_I_INUMP (z))
- return scm_i_from_double ((double) SCM_I_INUM (z));
- else if (SCM_BIGP (z))
- return scm_i_from_double (scm_integer_to_double_z (scm_bignum (z)));
- else if (SCM_FRACTIONP (z))
- return scm_i_from_double (scm_i_fraction2double (z));
- else if (SCM_INEXACTP (z))
- return z;
- else
- return scm_wta_dispatch_1 (g_scm_exact_to_inexact, z, 1,
- s_scm_exact_to_inexact);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
- (SCM z),
- "Return an exact number that is numerically closest to @var{z}.")
- #define FUNC_NAME s_scm_inexact_to_exact
- {
- if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
- return z;
- double val;
- if (SCM_REALP (z))
- val = SCM_REAL_VALUE (z);
- else if (SCM_COMPLEXP (z) && SCM_COMPLEX_IMAG (z) == 0.0)
- val = SCM_COMPLEX_REAL (z);
- else
- return scm_wta_dispatch_1 (g_scm_inexact_to_exact, z, 1,
- s_scm_inexact_to_exact);
- if (!SCM_LIKELY (isfinite (val)))
- SCM_OUT_OF_RANGE (1, z);
- if (val == 0)
- return SCM_INUM0;
- int expon;
- mpz_t zn;
- mpz_init_set_d (zn, ldexp (frexp (val, &expon), DBL_MANT_DIG));
- expon -= DBL_MANT_DIG;
- if (expon < 0)
- {
- int shift = mpz_scan1 (zn, 0);
- if (shift > -expon)
- shift = -expon;
- mpz_fdiv_q_2exp (zn, zn, shift);
- expon += shift;
- }
- SCM numerator = scm_integer_from_mpz (zn);
- mpz_clear (zn);
- if (expon < 0)
- return scm_i_make_ratio_already_reduced
- (numerator, scm_integer_lsh_iu (1, -expon));
- else if (expon > 0)
- return lsh (numerator, scm_from_int (expon), FUNC_NAME);
- else
- return numerator;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
- (SCM x, SCM eps),
- "Returns the @emph{simplest} rational number differing\n"
- "from @var{x} by no more than @var{eps}.\n"
- "\n"
- "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
- "exact result when both its arguments are exact. Thus, you might need\n"
- "to use @code{inexact->exact} on the arguments.\n"
- "\n"
- "@lisp\n"
- "(rationalize (inexact->exact 1.2) 1/100)\n"
- "@result{} 6/5\n"
- "@end lisp")
- #define FUNC_NAME s_scm_rationalize
- {
- SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
- SCM_ASSERT_TYPE (scm_is_real (eps), eps, SCM_ARG2, FUNC_NAME, "real");
- if (SCM_UNLIKELY (!scm_is_exact (eps) || !scm_is_exact (x)))
- {
- if (SCM_UNLIKELY (scm_is_false (scm_finite_p (eps))))
- {
- if (scm_is_false (scm_nan_p (eps)) && scm_is_true (scm_finite_p (x)))
- return flo0;
- else
- return scm_nan ();
- }
- else if (SCM_UNLIKELY (scm_is_false (scm_finite_p (x))))
- return x;
- else
- return scm_exact_to_inexact
- (scm_rationalize (scm_inexact_to_exact (x),
- scm_inexact_to_exact (eps)));
- }
- else
- {
- /* X and EPS are exact rationals.
- The code that follows is equivalent to the following Scheme code:
- (define (exact-rationalize x eps)
- (let ((n1 (if (negative? x) -1 1))
- (x (abs x))
- (eps (abs eps)))
- (let ((lo (- x eps))
- (hi (+ x eps)))
- (if (<= lo 0)
- 0
- (let loop ((nlo (numerator lo)) (dlo (denominator lo))
- (nhi (numerator hi)) (dhi (denominator hi))
- (n1 n1) (d1 0) (n2 0) (d2 1))
- (let-values (((qlo rlo) (floor/ nlo dlo))
- ((qhi rhi) (floor/ nhi dhi)))
- (let ((n0 (+ n2 (* n1 qlo)))
- (d0 (+ d2 (* d1 qlo))))
- (cond ((zero? rlo) (/ n0 d0))
- ((< qlo qhi) (/ (+ n0 n1) (+ d0 d1)))
- (else (loop dhi rhi dlo rlo n0 d0 n1 d1))))))))))
- */
- int n1_init = 1;
- SCM lo, hi;
- eps = scm_abs (eps);
- if (scm_is_true (scm_negative_p (x)))
- {
- n1_init = -1;
- x = scm_difference (x, SCM_UNDEFINED);
- }
- /* X and EPS are non-negative exact rationals. */
- lo = scm_difference (x, eps);
- hi = scm_sum (x, eps);
- if (scm_is_false (scm_positive_p (lo)))
- /* If zero is included in the interval, return it.
- It is the simplest rational of all. */
- return SCM_INUM0;
- else
- {
- SCM result;
- mpz_t n0, d0, n1, d1, n2, d2;
- mpz_t nlo, dlo, nhi, dhi;
- mpz_t qlo, rlo, qhi, rhi;
- /* LO and HI are positive exact rationals. */
- /* Our approach here follows the method described by Alan
- Bawden in a message entitled "(rationalize x y)" on the
- rrrs-authors mailing list, dated 16 Feb 1988 14:08:28 EST:
- http://groups.csail.mit.edu/mac/ftpdir/scheme-mail/HTML/rrrs-1988/msg00063.html
- In brief, we compute the continued fractions of the two
- endpoints of the interval (LO and HI). The continued
- fraction of the result consists of the common prefix of the
- continued fractions of LO and HI, plus one final term. The
- final term of the result is the smallest integer contained
- in the interval between the remainders of LO and HI after
- the common prefix has been removed.
- The following code lazily computes the continued fraction
- representations of LO and HI, and simultaneously converts
- the continued fraction of the result into a rational
- number. We use MPZ functions directly to avoid type
- dispatch and GC allocation during the loop. */
- mpz_inits (n0, d0, n1, d1, n2, d2,
- nlo, dlo, nhi, dhi,
- qlo, rlo, qhi, rhi,
- NULL);
- /* The variables N1, D1, N2 and D2 are used to compute the
- resulting rational from its continued fraction. At each
- step, N2/D2 and N1/D1 are the last two convergents. They
- are normally initialized to 0/1 and 1/0, respectively.
- However, if we negated X then we must negate the result as
- well, and we do that by initializing N1/D1 to -1/0. */
- mpz_set_si (n1, n1_init);
- mpz_set_ui (d1, 0);
- mpz_set_ui (n2, 0);
- mpz_set_ui (d2, 1);
- /* The variables NLO, DLO, NHI, and DHI are used to lazily
- compute the continued fraction representations of LO and HI
- using Euclid's algorithm. Initially, NLO/DLO == LO and
- NHI/DHI == HI. */
- scm_to_mpz (scm_numerator (lo), nlo);
- scm_to_mpz (scm_denominator (lo), dlo);
- scm_to_mpz (scm_numerator (hi), nhi);
- scm_to_mpz (scm_denominator (hi), dhi);
- /* As long as we're using exact arithmetic, the following loop
- is guaranteed to terminate. */
- for (;;)
- {
- /* Compute the next terms (QLO and QHI) of the continued
- fractions of LO and HI. */
- mpz_fdiv_qr (qlo, rlo, nlo, dlo); /* QLO <-- floor (NLO/DLO), RLO <-- NLO - QLO * DLO */
- mpz_fdiv_qr (qhi, rhi, nhi, dhi); /* QHI <-- floor (NHI/DHI), RHI <-- NHI - QHI * DHI */
- /* The next term of the result will be either QLO or
- QLO+1. Here we compute the next convergent of the
- result based on the assumption that QLO is the next
- term. If that turns out to be wrong, we'll adjust
- these later by adding N1 to N0 and D1 to D0. */
- mpz_set (n0, n2); mpz_addmul (n0, n1, qlo); /* N0 <-- N2 + (QLO * N1) */
- mpz_set (d0, d2); mpz_addmul (d0, d1, qlo); /* D0 <-- D2 + (QLO * D1) */
- /* We stop iterating when an integer is contained in the
- interval between the remainders NLO/DLO and NHI/DHI.
- There are two cases to consider: either NLO/DLO == QLO
- is an integer (indicated by RLO == 0), or QLO < QHI. */
- if (mpz_sgn (rlo) == 0 || mpz_cmp (qlo, qhi) != 0)
- break;
- /* Efficiently shuffle variables around for the next
- iteration. First we shift the recent convergents. */
- mpz_swap (n2, n1); mpz_swap (n1, n0); /* N2 <-- N1 <-- N0 */
- mpz_swap (d2, d1); mpz_swap (d1, d0); /* D2 <-- D1 <-- D0 */
- /* The following shuffling is a bit confusing, so some
- explanation is in order. Conceptually, we're doing a
- couple of things here. After substracting the floor of
- NLO/DLO, the remainder is RLO/DLO. The rest of the
- continued fraction will represent the remainder's
- reciprocal DLO/RLO. Similarly for the HI endpoint.
- So in the next iteration, the new endpoints will be
- DLO/RLO and DHI/RHI. However, when we take the
- reciprocals of these endpoints, their order is
- switched. So in summary, we want NLO/DLO <-- DHI/RHI
- and NHI/DHI <-- DLO/RLO. */
- mpz_swap (nlo, dhi); mpz_swap (dhi, rlo); /* NLO <-- DHI <-- RLO */
- mpz_swap (nhi, dlo); mpz_swap (dlo, rhi); /* NHI <-- DLO <-- RHI */
- }
- /* There is now an integer in the interval [NLO/DLO NHI/DHI].
- The last term of the result will be the smallest integer in
- that interval, which is ceiling(NLO/DLO). We have already
- computed floor(NLO/DLO) in QLO, so now we adjust QLO to be
- equal to the ceiling. */
- if (mpz_sgn (rlo) != 0)
- {
- /* If RLO is non-zero, then NLO/DLO is not an integer and
- the next term will be QLO+1. QLO was used in the
- computation of N0 and D0 above. Here we adjust N0 and
- D0 to be based on QLO+1 instead of QLO. */
- mpz_add (n0, n0, n1); /* N0 <-- N0 + N1 */
- mpz_add (d0, d0, d1); /* D0 <-- D0 + D1 */
- }
- /* The simplest rational in the interval is N0/D0 */
- result = scm_i_make_ratio_already_reduced (scm_from_mpz (n0),
- scm_from_mpz (d0));
- mpz_clears (n0, d0, n1, d1, n2, d2,
- nlo, dlo, nhi, dhi,
- qlo, rlo, qhi, rhi,
- NULL);
- return result;
- }
- }
- }
- #undef FUNC_NAME
- /* conversion functions */
- int
- scm_is_integer (SCM val)
- {
- if (scm_is_exact_integer (val))
- return 1;
- if (SCM_REALP (val))
- {
- double x = SCM_REAL_VALUE (val);
- return !isinf (x) && (x == floor (x));
- }
- return 0;
- }
- int
- scm_is_exact_integer (SCM val)
- {
- return SCM_I_INUMP (val) || SCM_BIGP (val);
- }
- // Given that there is no way to extend intmax_t to encompass types
- // larger than int64, and that we must have int64, intmax will always be
- // 8 bytes wide, and we can treat intmax arguments as int64's.
- verify(SCM_SIZEOF_INTMAX == 8);
- int
- scm_is_signed_integer (SCM val, intmax_t min, intmax_t max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return min <= n && n <= max;
- }
- else if (SCM_BIGP (val))
- {
- int64_t n;
- return scm_integer_to_int64_z (scm_bignum (val), &n)
- && min <= n && n <= max;
- }
- else
- return 0;
- }
- int
- scm_is_unsigned_integer (SCM val, uintmax_t min, uintmax_t max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= 0 && ((uintmax_t)n) >= min && ((uintmax_t)n) <= max;
- }
- else if (SCM_BIGP (val))
- {
- uint64_t n;
- return scm_integer_to_uint64_z (scm_bignum (val), &n)
- && min <= n && n <= max;
- }
- else
- return 0;
- }
- static void range_error (SCM bad_val, SCM min, SCM max) SCM_NORETURN;
- static void
- range_error (SCM bad_val, SCM min, SCM max)
- {
- scm_error (scm_out_of_range_key,
- NULL,
- "Value out of range ~S to< ~S: ~S",
- scm_list_3 (min, max, bad_val),
- scm_list_1 (bad_val));
- }
- #define scm_i_range_error range_error
- static scm_t_inum
- inum_in_range (SCM x, scm_t_inum min, scm_t_inum max)
- {
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- scm_t_inum val = SCM_I_INUM (x);
- if (min <= val && val <= max)
- return val;
- }
- else if (!SCM_BIGP (x))
- scm_wrong_type_arg_msg (NULL, 0, x, "exact integer");
- range_error (x, scm_from_long (min), scm_from_long (max));
- }
- SCM
- scm_from_signed_integer (intmax_t arg)
- {
- return scm_integer_from_int64 (arg);
- }
- intmax_t
- scm_to_signed_integer (SCM arg, intmax_t min, intmax_t max)
- {
- int64_t ret;
- if (SCM_I_INUMP (arg))
- ret = SCM_I_INUM (arg);
- else if (SCM_BIGP (arg))
- {
- if (!scm_integer_to_int64_z (scm_bignum (arg), &ret))
- goto out_of_range;
- }
- else
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- if (min <= ret && ret <= max)
- return ret;
- out_of_range:
- range_error (arg, scm_from_intmax (min), scm_from_intmax (max));
- }
- SCM
- scm_from_unsigned_integer (uintmax_t arg)
- {
- return scm_integer_from_uint64 (arg);
- }
- uintmax_t
- scm_to_unsigned_integer (SCM arg, uintmax_t min, uintmax_t max)
- {
- uint64_t ret;
- if (SCM_I_INUMP (arg))
- {
- scm_t_inum n = SCM_I_INUM (arg);
- if (n < 0)
- goto out_of_range;
- ret = n;
- }
- else if (SCM_BIGP (arg))
- {
- if (!scm_integer_to_uint64_z (scm_bignum (arg), &ret))
- goto out_of_range;
- }
- else
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- if (min <= ret && ret <= max)
- return ret;
- out_of_range:
- range_error (arg, scm_from_uintmax (min), scm_from_uintmax (max));
- }
- int8_t
- scm_to_int8 (SCM arg)
- {
- return inum_in_range (arg, INT8_MIN, INT8_MAX);
- }
- SCM
- scm_from_int8 (int8_t arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- uint8_t
- scm_to_uint8 (SCM arg)
- {
- return inum_in_range (arg, 0, UINT8_MAX);
- }
- SCM
- scm_from_uint8 (uint8_t arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- int16_t
- scm_to_int16 (SCM arg)
- {
- return inum_in_range (arg, INT16_MIN, INT16_MAX);
- }
- SCM
- scm_from_int16 (int16_t arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- uint16_t
- scm_to_uint16 (SCM arg)
- {
- return inum_in_range (arg, 0, UINT16_MAX);
- }
- SCM
- scm_from_uint16 (uint16_t arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- int32_t
- scm_to_int32 (SCM arg)
- {
- #if SCM_SIZEOF_LONG == 4
- if (SCM_I_INUMP (arg))
- return SCM_I_INUM (arg);
- else if (!SCM_BIGP (arg))
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- int32_t ret;
- if (scm_integer_to_int32_z (scm_bignum (arg), &ret))
- return ret;
- range_error (arg, scm_integer_from_int32 (INT32_MIN),
- scm_integer_from_int32 (INT32_MAX));
- #elif SCM_SIZEOF_LONG == 8
- return inum_in_range (arg, INT32_MIN, INT32_MAX);
- #else
- #error bad inum size
- #endif
- }
- SCM
- scm_from_int32 (int32_t arg)
- {
- #if SCM_SIZEOF_LONG == 4
- return scm_integer_from_int32 (arg);
- #elif SCM_SIZEOF_LONG == 8
- return SCM_I_MAKINUM (arg);
- #else
- #error bad inum size
- #endif
- }
- uint32_t
- scm_to_uint32 (SCM arg)
- {
- #if SCM_SIZEOF_LONG == 4
- if (SCM_I_INUMP (arg))
- {
- if (SCM_I_INUM (arg) >= 0)
- return SCM_I_INUM (arg);
- }
- else if (SCM_BIGP (arg))
- {
- uint32_t ret;
- if (scm_integer_to_uint32_z (scm_bignum (arg), &ret))
- return ret;
- }
- else
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- range_error (arg, scm_integer_from_uint32 (0), scm_integer_from_uint32 (UINT32_MAX));
- #elif SCM_SIZEOF_LONG == 8
- return inum_in_range (arg, 0, UINT32_MAX);
- #else
- #error bad inum size
- #endif
- }
- SCM
- scm_from_uint32 (uint32_t arg)
- {
- #if SCM_SIZEOF_LONG == 4
- return scm_integer_from_uint32 (arg);
- #elif SCM_SIZEOF_LONG == 8
- return SCM_I_MAKINUM (arg);
- #else
- #error bad inum size
- #endif
- }
- int64_t
- scm_to_int64 (SCM arg)
- {
- if (SCM_I_INUMP (arg))
- return SCM_I_INUM (arg);
- else if (!SCM_BIGP (arg))
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- int64_t ret;
- if (scm_integer_to_int64_z (scm_bignum (arg), &ret))
- return ret;
- range_error (arg, scm_integer_from_int64 (INT64_MIN),
- scm_integer_from_int64 (INT64_MAX));
- }
- SCM
- scm_from_int64 (int64_t arg)
- {
- return scm_integer_from_int64 (arg);
- }
- uint64_t
- scm_to_uint64 (SCM arg)
- {
- if (SCM_I_INUMP (arg))
- {
- if (SCM_I_INUM (arg) >= 0)
- return SCM_I_INUM (arg);
- }
- else if (SCM_BIGP (arg))
- {
- uint64_t ret;
- if (scm_integer_to_uint64_z (scm_bignum (arg), &ret))
- return ret;
- }
- else
- scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer");
- range_error (arg, scm_integer_from_uint64(0), scm_integer_from_uint64 (UINT64_MAX));
- }
- SCM
- scm_from_uint64 (uint64_t arg)
- {
- return scm_integer_from_uint64 (arg);
- }
- scm_t_wchar
- scm_to_wchar (SCM arg)
- {
- return inum_in_range (arg, -1, 0x10ffff);
- }
- SCM
- scm_from_wchar (scm_t_wchar arg)
- {
- return SCM_I_MAKINUM (arg);
- }
- void
- scm_to_mpz (SCM val, mpz_t rop)
- {
- if (SCM_I_INUMP (val))
- mpz_set_si (rop, SCM_I_INUM (val));
- else if (SCM_BIGP (val))
- scm_integer_set_mpz_z (scm_bignum (val), rop);
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
- }
- SCM
- scm_from_mpz (mpz_t val)
- {
- return scm_integer_from_mpz (val);
- }
- int
- scm_is_real (SCM val)
- {
- return scm_is_true (scm_real_p (val));
- }
- int
- scm_is_rational (SCM val)
- {
- return scm_is_true (scm_rational_p (val));
- }
- double
- scm_to_double (SCM val)
- {
- if (SCM_I_INUMP (val))
- return SCM_I_INUM (val);
- else if (SCM_BIGP (val))
- return scm_integer_to_double_z (scm_bignum (val));
- else if (SCM_FRACTIONP (val))
- return scm_i_fraction2double (val);
- else if (SCM_REALP (val))
- return SCM_REAL_VALUE (val);
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "real number");
- }
- SCM
- scm_from_double (double val)
- {
- return scm_i_from_double (val);
- }
- int
- scm_is_complex (SCM val)
- {
- return scm_is_true (scm_complex_p (val));
- }
- double
- scm_c_real_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_REAL (z);
- else
- {
- /* Use the scm_real_part to get proper error checking and
- dispatching.
- */
- return scm_to_double (scm_real_part (z));
- }
- }
- double
- scm_c_imag_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_IMAG (z);
- else
- {
- /* Use the scm_imag_part to get proper error checking and
- dispatching. The result will almost always be 0.0, but not
- always.
- */
- return scm_to_double (scm_imag_part (z));
- }
- }
- double
- scm_c_magnitude (SCM z)
- {
- return scm_to_double (scm_magnitude (z));
- }
- double
- scm_c_angle (SCM z)
- {
- return scm_to_double (scm_angle (z));
- }
- int
- scm_is_number (SCM z)
- {
- return scm_is_true (scm_number_p (z));
- }
- /* Returns log(x * 2^shift) */
- static SCM
- log_of_shifted_double (double x, long shift)
- {
- /* cf scm_log10 */
- double ans = log (fabs (x)) + shift * M_LN2;
- if (signbit (x) && SCM_LIKELY (!isnan (x)))
- return scm_c_make_rectangular (ans, M_PI);
- else
- return scm_i_from_double (ans);
- }
- /* Returns log(n), for exact integer n */
- static SCM
- log_of_exact_integer (SCM n)
- {
- if (SCM_I_INUMP (n))
- return log_of_shifted_double (SCM_I_INUM (n), 0);
- else if (SCM_BIGP (n))
- {
- long expon;
- double signif = scm_integer_frexp_z (scm_bignum (n), &expon);
- return log_of_shifted_double (signif, expon);
- }
- else
- abort ();
- }
- /* Returns log(n/d), for exact non-zero integers n and d */
- static SCM
- log_of_fraction (SCM n, SCM d)
- {
- long n_size = scm_to_long (scm_integer_length (n));
- long d_size = scm_to_long (scm_integer_length (d));
- if (labs (n_size - d_size) > 1)
- return (scm_difference (log_of_exact_integer (n),
- log_of_exact_integer (d)));
- else if (scm_is_false (scm_negative_p (n)))
- return scm_i_from_double
- (log1p (scm_i_divide2double (scm_difference (n, d), d)));
- else
- return scm_c_make_rectangular
- (log1p (scm_i_divide2double (scm_difference (scm_abs (n), d),
- d)),
- M_PI);
- }
- /* In the following functions we dispatch to the real-arg funcs like log()
- when we know the arg is real, instead of just handing everything to
- clog() for instance. This is in case clog() doesn't optimize for a
- real-only case, and because we have to test SCM_COMPLEXP anyway so may as
- well use it to go straight to the applicable C func. */
- SCM_PRIMITIVE_GENERIC (scm_log, "log", 1, 0, 0,
- (SCM z),
- "Return the natural logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG \
- && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log (hypot (re, im)),
- atan2 (im, re));
- #endif
- }
- else if (SCM_REALP (z))
- return log_of_shifted_double (SCM_REAL_VALUE (z), 0);
- else if (SCM_I_INUMP (z))
- {
- if (scm_is_eq (z, SCM_INUM0))
- scm_num_overflow (s_scm_log);
- return log_of_shifted_double (SCM_I_INUM (z), 0);
- }
- else if (SCM_BIGP (z))
- return log_of_exact_integer (z);
- else if (SCM_FRACTIONP (z))
- return log_of_fraction (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z));
- else
- return scm_wta_dispatch_1 (g_scm_log, z, 1, s_scm_log);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_log10, "log10", 1, 0, 0,
- (SCM z),
- "Return the base 10 logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log10
- {
- if (SCM_COMPLEXP (z))
- {
- /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
- clog() and a multiply by M_LOG10E, rather than the fallback
- log10+hypot+atan2.) */
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
- && defined SCM_COMPLEX_VALUE
- return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log10 (hypot (re, im)),
- M_LOG10E * atan2 (im, re));
- #endif
- }
- else if (SCM_REALP (z) || SCM_I_INUMP (z))
- {
- if (scm_is_eq (z, SCM_INUM0))
- scm_num_overflow (s_scm_log10);
- {
- double re = scm_to_double (z);
- double l = log10 (fabs (re));
- /* cf log_of_shifted_double */
- if (signbit (re) && SCM_LIKELY (!isnan (re)))
- return scm_c_make_rectangular (l, M_LOG10E * M_PI);
- else
- return scm_i_from_double (l);
- }
- }
- else if (SCM_BIGP (z))
- return scm_product (flo_log10e, log_of_exact_integer (z));
- else if (SCM_FRACTIONP (z))
- return scm_product (flo_log10e,
- log_of_fraction (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z)));
- else
- return scm_wta_dispatch_1 (g_scm_log10, z, 1, s_scm_log10);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_exp, "exp", 1, 0, 0,
- (SCM z),
- "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
- "base of natural logarithms (2.71828@dots{}).")
- #define FUNC_NAME s_scm_exp
- {
- if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CEXP \
- && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
- #else
- return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
- SCM_COMPLEX_IMAG (z));
- #endif
- }
- else if (SCM_NUMBERP (z))
- {
- /* When z is a negative bignum the conversion to double overflows,
- giving -infinity, but that's ok, the exp is still 0.0. */
- return scm_i_from_double (exp (scm_to_double (z)));
- }
- else
- return scm_wta_dispatch_1 (g_scm_exp, z, 1, s_scm_exp);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_i_exact_integer_sqrt, "exact-integer-sqrt", 1, 0, 0,
- (SCM k),
- "Return two exact non-negative integers @var{s} and @var{r}\n"
- "such that @math{@var{k} = @var{s}^2 + @var{r}} and\n"
- "@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.\n"
- "An error is raised if @var{k} is not an exact non-negative integer.\n"
- "\n"
- "@lisp\n"
- "(exact-integer-sqrt 10) @result{} 3 and 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_i_exact_integer_sqrt
- {
- SCM s, r;
- scm_exact_integer_sqrt (k, &s, &r);
- return scm_values_2 (s, r);
- }
- #undef FUNC_NAME
- void
- scm_exact_integer_sqrt (SCM k, SCM *sp, SCM *rp)
- {
- if (SCM_I_INUMP (k))
- {
- scm_t_inum kk = SCM_I_INUM (k);
- if (kk >= 0)
- return scm_integer_exact_sqrt_i (kk, sp, rp);
- }
- else if (SCM_BIGP (k))
- {
- struct scm_bignum *zk = scm_bignum (k);
- if (!scm_is_integer_negative_z (zk))
- return scm_integer_exact_sqrt_z (zk, sp, rp);
- }
- scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
- "exact non-negative integer");
- }
- SCM_PRIMITIVE_GENERIC (scm_sqrt, "sqrt", 1, 0, 0,
- (SCM z),
- "Return the square root of @var{z}. Of the two possible roots\n"
- "(positive and negative), the one with positive real part\n"
- "is returned, or if that's zero then a positive imaginary part.\n"
- "Thus,\n"
- "\n"
- "@example\n"
- "(sqrt 9.0) @result{} 3.0\n"
- "(sqrt -9.0) @result{} 0.0+3.0i\n"
- "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
- "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
- "@end example")
- #define FUNC_NAME s_scm_sqrt
- {
- if (SCM_I_INUMP (z))
- {
- scm_t_inum i = SCM_I_INUM (z);
- if (scm_is_integer_perfect_square_i (i))
- return scm_integer_floor_sqrt_i (i);
- double root = scm_integer_inexact_sqrt_i (i);
- return (root < 0)
- ? scm_c_make_rectangular (0.0, -root)
- : scm_i_from_double (root);
- }
- else if (SCM_BIGP (z))
- {
- struct scm_bignum *k = scm_bignum (z);
- if (scm_is_integer_perfect_square_z (k))
- return scm_integer_floor_sqrt_z (k);
- double root = scm_integer_inexact_sqrt_z (k);
- return (root < 0)
- ? scm_c_make_rectangular (0.0, -root)
- : scm_i_from_double (root);
- }
- else if (SCM_REALP (z))
- {
- double xx = SCM_REAL_VALUE (z);
- if (xx < 0)
- return scm_c_make_rectangular (0.0, sqrt (-xx));
- else
- return scm_i_from_double (sqrt (xx));
- }
- else if (SCM_COMPLEXP (z))
- {
- #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
- && defined SCM_COMPLEX_VALUE
- return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_polar (sqrt (hypot (re, im)),
- 0.5 * atan2 (im, re));
- #endif
- }
- else if (SCM_FRACTIONP (z))
- {
- SCM n = SCM_FRACTION_NUMERATOR (z);
- SCM d = SCM_FRACTION_DENOMINATOR (z);
- SCM nr = scm_sqrt (n);
- SCM dr = scm_sqrt (d);
- if (scm_is_exact_integer (nr) && scm_is_exact_integer (dr))
- return scm_i_make_ratio_already_reduced (nr, dr);
- double xx = scm_i_divide2double (n, d);
- double abs_xx = fabs (xx);
- long shift = 0;
- if (abs_xx > DBL_MAX || abs_xx < DBL_MIN)
- {
- shift = (scm_to_long (scm_integer_length (n))
- - scm_to_long (scm_integer_length (d))) / 2;
- if (shift > 0)
- d = lsh (d, scm_from_long (2 * shift), FUNC_NAME);
- else
- n = lsh (n, scm_from_long (-2 * shift), FUNC_NAME);
- xx = scm_i_divide2double (n, d);
- }
- if (xx < 0)
- return scm_c_make_rectangular (0.0, ldexp (sqrt (-xx), shift));
- else
- return scm_i_from_double (ldexp (sqrt (xx), shift));
- }
- else
- return scm_wta_dispatch_1 (g_scm_sqrt, z, 1, s_scm_sqrt);
- }
- #undef FUNC_NAME
- void
- scm_init_numbers ()
- {
- /* It may be possible to tune the performance of some algorithms by using
- * the following constants to avoid the creation of bignums. Please, before
- * using these values, remember the two rules of program optimization:
- * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
- scm_c_define ("most-positive-fixnum",
- SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
- scm_c_define ("most-negative-fixnum",
- SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
- scm_add_feature ("complex");
- scm_add_feature ("inexact");
- flo0 = scm_i_from_double (0.0);
- flo_log10e = scm_i_from_double (M_LOG10E);
- exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
- {
- /* Set scm_i_divide2double_lo2b to (2 b^p - 1) */
- mpz_init_set_ui (scm_i_divide2double_lo2b, 1);
- mpz_mul_2exp (scm_i_divide2double_lo2b,
- scm_i_divide2double_lo2b,
- DBL_MANT_DIG + 1); /* 2 b^p */
- mpz_sub_ui (scm_i_divide2double_lo2b, scm_i_divide2double_lo2b, 1);
- }
- {
- /* Set dbl_minimum_normal_mantissa to b^{p-1} */
- mpz_init_set_ui (dbl_minimum_normal_mantissa, 1);
- mpz_mul_2exp (dbl_minimum_normal_mantissa,
- dbl_minimum_normal_mantissa,
- DBL_MANT_DIG - 1);
- }
- #include "numbers.x"
- }
|