123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677 |
- ;;; Tree-IL partial evaluator
- ;; Copyright (C) 2011-2014, 2017, 2019, 2020 Free Software Foundation, Inc.
- ;;;; This library is free software; you can redistribute it and/or
- ;;;; modify it under the terms of the GNU Lesser General Public
- ;;;; License as published by the Free Software Foundation; either
- ;;;; version 3 of the License, or (at your option) any later version.
- ;;;;
- ;;;; This library is distributed in the hope that it will be useful,
- ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ;;;; Lesser General Public License for more details.
- ;;;;
- ;;;; You should have received a copy of the GNU Lesser General Public
- ;;;; License along with this library; if not, write to the Free Software
- ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- (define-module (language tree-il peval)
- #:use-module (language tree-il)
- #:use-module (language tree-il primitives)
- #:use-module (language tree-il effects)
- #:use-module (ice-9 vlist)
- #:use-module (ice-9 match)
- #:use-module (srfi srfi-1)
- #:use-module (srfi srfi-9)
- #:use-module (srfi srfi-11)
- #:use-module (srfi srfi-26)
- #:use-module (system base target)
- #:use-module (ice-9 control)
- #:export (peval))
- ;;;
- ;;; Partial evaluation is Guile's most important source-to-source
- ;;; optimization pass. It performs copy propagation, dead code
- ;;; elimination, inlining, and constant folding, all while preserving
- ;;; the order of effects in the residual program.
- ;;;
- ;;; For more on partial evaluation, see William Cook’s excellent
- ;;; tutorial on partial evaluation at DSL 2011, called “Build your own
- ;;; partial evaluator in 90 minutes”[0].
- ;;;
- ;;; Our implementation of this algorithm was heavily influenced by
- ;;; Waddell and Dybvig's paper, "Fast and Effective Procedure Inlining",
- ;;; IU CS Dept. TR 484.
- ;;;
- ;;; [0] http://www.cs.utexas.edu/~wcook/tutorial/.
- ;;;
- ;; First, some helpers.
- ;;
- (define-syntax *logging* (identifier-syntax #f))
- ;; For efficiency we define *logging* to inline to #f, so that the call
- ;; to log* gets optimized out. If you want to log, uncomment these
- ;; lines:
- ;;
- ;; (define %logging #f)
- ;; (define-syntax *logging* (identifier-syntax %logging))
- ;;
- ;; Then you can change %logging at runtime.
- (define-syntax log
- (syntax-rules (quote)
- ((log 'event arg ...)
- (if (and *logging*
- (or (eq? *logging* #t)
- (memq 'event *logging*)))
- (log* 'event arg ...)))))
- (define (log* event . args)
- (let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
- 'pretty-print)))
- (pp `(log ,event . ,args))
- (newline)
- (values)))
- (define (tree-il-any proc exp)
- (let/ec k
- (tree-il-fold (lambda (exp res)
- (let ((res (proc exp)))
- (if res (k res) #f)))
- (lambda (exp res) #f)
- #f exp)))
- (define (vlist-any proc vlist)
- (let ((len (vlist-length vlist)))
- (let lp ((i 0))
- (and (< i len)
- (or (proc (vlist-ref vlist i))
- (lp (1+ i)))))))
- (define (singly-valued-expression? exp)
- (match exp
- (($ <const>) #t)
- (($ <void>) #t)
- (($ <lexical-ref>) #t)
- (($ <primitive-ref>) #t)
- (($ <module-ref>) #t)
- (($ <toplevel-ref>) #t)
- (($ <primcall> _ (? singly-valued-primitive?)) #t)
- (($ <primcall> _ 'values (val)) #t)
- (($ <lambda>) #t)
- (($ <conditional> _ test consequent alternate)
- (and (singly-valued-expression? consequent)
- (singly-valued-expression? alternate)))
- (else #f)))
- (define (truncate-values x)
- "Discard all but the first value of X."
- (if (singly-valued-expression? x)
- x
- (make-primcall (tree-il-src x) 'values (list x))))
- ;; Peval will do a one-pass analysis on the source program to determine
- ;; the set of assigned lexicals, and to identify unreferenced and
- ;; singly-referenced lexicals.
- ;;
- (define-record-type <var>
- (make-var name gensym refcount set?)
- var?
- (name var-name)
- (gensym var-gensym)
- (refcount var-refcount set-var-refcount!)
- (set? var-set? set-var-set?!))
- (define* (build-var-table exp #:optional (table vlist-null))
- (tree-il-fold
- (lambda (exp res)
- (match exp
- (($ <lexical-ref> src name gensym)
- (let ((var (cdr (vhash-assq gensym res))))
- (set-var-refcount! var (1+ (var-refcount var)))
- res))
- (($ <lambda-case> src req opt rest kw init gensyms body alt)
- (fold (lambda (name sym res)
- (vhash-consq sym (make-var name sym 0 #f) res))
- res
- (append req (or opt '()) (if rest (list rest) '())
- (match kw
- ((aok? (kw name sym) ...) name)
- (_ '())))
- gensyms))
- (($ <let> src names gensyms vals body)
- (fold (lambda (name sym res)
- (vhash-consq sym (make-var name sym 0 #f) res))
- res names gensyms))
- (($ <letrec>)
- (error "unexpected letrec"))
- (($ <fix> src names gensyms vals body)
- (fold (lambda (name sym res)
- (vhash-consq sym (make-var name sym 0 #f) res))
- res names gensyms))
- (($ <lexical-set> src name gensym exp)
- (set-var-set?! (cdr (vhash-assq gensym res)) #t)
- res)
- (_ res)))
- (lambda (exp res) res)
- table exp))
- ;; Counters are data structures used to limit the effort that peval
- ;; spends on particular inlining attempts. Each call site in the source
- ;; program is allocated some amount of effort. If peval exceeds the
- ;; effort counter while attempting to inline a call site, it aborts the
- ;; inlining attempt and residualizes a call instead.
- ;;
- ;; As there is a fixed number of call sites, that makes `peval' O(N) in
- ;; the number of call sites in the source program.
- ;;
- ;; Counters should limit the size of the residual program as well, but
- ;; currently this is not implemented.
- ;;
- ;; At the top level, before seeing any peval call, there is no counter,
- ;; because inlining will terminate as there is no recursion. When peval
- ;; sees a call at the top level, it will make a new counter, allocating
- ;; it some amount of effort and size.
- ;;
- ;; This top-level effort counter effectively "prints money". Within a
- ;; toplevel counter, no more effort is printed ex nihilo; for a nested
- ;; inlining attempt to proceed, effort must be transferred from the
- ;; toplevel counter to the nested counter.
- ;;
- ;; Via `data' and `prev', counters form a linked list, terminating in a
- ;; toplevel counter. In practice `data' will be the a pointer to the
- ;; source expression of the procedure being inlined.
- ;;
- ;; In this way peval can detect a recursive inlining attempt, by walking
- ;; back on the `prev' links looking for matching `data'. Recursive
- ;; counters receive a more limited effort allocation, as we don't want
- ;; to spend all of the effort for a toplevel inlining site on loops.
- ;; Also, recursive counters don't need a prompt at each inlining site:
- ;; either the call chain folds entirely, or it will be residualized at
- ;; its original call.
- ;;
- (define-record-type <counter>
- (%make-counter effort size continuation recursive? data prev)
- counter?
- (effort effort-counter)
- (size size-counter)
- (continuation counter-continuation)
- (recursive? counter-recursive? set-counter-recursive?!)
- (data counter-data)
- (prev counter-prev))
- (define (abort-counter c)
- ((counter-continuation c)))
- (define (record-effort! c)
- (let ((e (effort-counter c)))
- (if (zero? (variable-ref e))
- (abort-counter c)
- (variable-set! e (1- (variable-ref e))))))
- (define (record-size! c)
- (let ((s (size-counter c)))
- (if (zero? (variable-ref s))
- (abort-counter c)
- (variable-set! s (1- (variable-ref s))))))
- (define (find-counter data counter)
- (and counter
- (if (eq? data (counter-data counter))
- counter
- (find-counter data (counter-prev counter)))))
- (define* (transfer! from to #:optional
- (effort (variable-ref (effort-counter from)))
- (size (variable-ref (size-counter from))))
- (define (transfer-counter! from-v to-v amount)
- (let* ((from-balance (variable-ref from-v))
- (to-balance (variable-ref to-v))
- (amount (min amount from-balance)))
- (variable-set! from-v (- from-balance amount))
- (variable-set! to-v (+ to-balance amount))))
- (transfer-counter! (effort-counter from) (effort-counter to) effort)
- (transfer-counter! (size-counter from) (size-counter to) size))
- (define (make-top-counter effort-limit size-limit continuation data)
- (%make-counter (make-variable effort-limit)
- (make-variable size-limit)
- continuation
- #t
- data
- #f))
- (define (make-nested-counter continuation data current)
- (let ((c (%make-counter (make-variable 0)
- (make-variable 0)
- continuation
- #f
- data
- current)))
- (transfer! current c)
- c))
- (define (make-recursive-counter effort-limit size-limit orig current)
- (let ((c (%make-counter (make-variable 0)
- (make-variable 0)
- (counter-continuation orig)
- #t
- (counter-data orig)
- current)))
- (transfer! current c effort-limit size-limit)
- c))
- ;; Operand structures allow bindings to be processed lazily instead of
- ;; eagerly. By doing so, hopefully we can get process them in a way
- ;; appropriate to their use contexts. Operands also prevent values from
- ;; being visited multiple times, wasting effort.
- ;;
- ;; TODO: Record value size in operand structure?
- ;;
- (define-record-type <operand>
- (%make-operand var sym visit source visit-count use-count
- copyable? residual-value constant-value alias)
- operand?
- (var operand-var)
- (sym operand-sym)
- (visit %operand-visit)
- (source operand-source)
- (visit-count operand-visit-count set-operand-visit-count!)
- (use-count operand-use-count set-operand-use-count!)
- (copyable? operand-copyable? set-operand-copyable?!)
- (residual-value operand-residual-value %set-operand-residual-value!)
- (constant-value operand-constant-value set-operand-constant-value!)
- (alias operand-alias set-operand-alias!))
- (define* (make-operand var sym #:optional source visit alias)
- ;; Bind SYM to VAR, with value SOURCE. Unassigned bound operands are
- ;; considered copyable until we prove otherwise. If we have a source
- ;; expression, truncate it to one value. Copy propagation does not
- ;; work on multiply-valued expressions.
- (let ((source (and=> source truncate-values)))
- (%make-operand var sym visit source 0 0
- (and source (not (var-set? var))) #f #f
- (and (not (var-set? var)) alias))))
- (define* (make-bound-operands vars syms sources visit #:optional aliases)
- (if aliases
- (map (lambda (name sym source alias)
- (make-operand name sym source visit alias))
- vars syms sources aliases)
- (map (lambda (name sym source)
- (make-operand name sym source visit #f))
- vars syms sources)))
- (define (make-unbound-operands vars syms)
- (map make-operand vars syms))
- (define (set-operand-residual-value! op val)
- (%set-operand-residual-value!
- op
- (match val
- (($ <primcall> src 'values (first))
- ;; The continuation of a residualized binding does not need the
- ;; introduced `values' node, so undo the effects of truncation.
- first)
- (else
- val))))
- (define* (visit-operand op counter ctx #:optional effort-limit size-limit)
- ;; Peval is O(N) in call sites of the source program. However,
- ;; visiting an operand can introduce new call sites. If we visit an
- ;; operand outside a counter -- i.e., outside an inlining attempt --
- ;; this can lead to divergence. So, if we are visiting an operand to
- ;; try to copy it, and there is no counter, make a new one.
- ;;
- ;; This will only happen at most as many times as there are lexical
- ;; references in the source program.
- (and (zero? (operand-visit-count op))
- (dynamic-wind
- (lambda ()
- (set-operand-visit-count! op (1+ (operand-visit-count op))))
- (lambda ()
- (and (operand-source op)
- (if (or counter (and (not effort-limit) (not size-limit)))
- ((%operand-visit op) (operand-source op) counter ctx)
- (let/ec k
- (define (abort)
- ;; If we abort when visiting the value in a
- ;; fresh context, we won't succeed in any future
- ;; attempt, so don't try to copy it again.
- (set-operand-copyable?! op #f)
- (k #f))
- ((%operand-visit op)
- (operand-source op)
- (make-top-counter effort-limit size-limit abort op)
- ctx)))))
- (lambda ()
- (set-operand-visit-count! op (1- (operand-visit-count op)))))))
- ;; A helper for constant folding.
- ;;
- (define (types-check? primitive-name args)
- (case primitive-name
- ((values) #t)
- ((not pair? null? list? symbol? vector? struct?)
- (= (length args) 1))
- ((eq? eqv? equal?)
- (= (length args) 2))
- ;; FIXME: add more cases?
- (else #f)))
- (define* (peval exp #:optional (cenv (current-module)) (env vlist-null)
- #:key
- (operator-size-limit 40)
- (operand-size-limit 20)
- (value-size-limit 10)
- (effort-limit 500)
- (recursive-effort-limit 100))
- "Partially evaluate EXP in compilation environment CENV, with
- top-level bindings from ENV and return the resulting expression."
- ;; This is a simple partial evaluator. It effectively performs
- ;; constant folding, copy propagation, dead code elimination, and
- ;; inlining.
- ;; TODO:
- ;;
- ;; Propagate copies across toplevel bindings, if we can prove the
- ;; bindings to be immutable.
- ;;
- ;; Specialize lambda expressions with invariant arguments.
- (define local-toplevel-env
- ;; The top-level environment of the module being compiled.
- (let ()
- (define (env-folder x env)
- (match x
- (($ <toplevel-define> _ _ name)
- (vhash-consq name #t env))
- (($ <seq> _ head tail)
- (env-folder tail (env-folder head env)))
- (_ env)))
- (env-folder exp vlist-null)))
- (define (local-toplevel? name)
- (vhash-assq name local-toplevel-env))
- ;; gensym -> <var>
- ;; renamed-term -> original-term
- ;;
- (define store (build-var-table exp))
- (define (record-new-temporary! name sym refcount)
- (set! store (vhash-consq sym (make-var name sym refcount #f) store)))
- (define (lookup-var sym)
- (let ((v (vhash-assq sym store)))
- (if v (cdr v) (error "unbound var" sym (vlist->list store)))))
- (define (fresh-gensyms vars)
- (map (lambda (var)
- (let ((new (gensym (string-append (symbol->string (var-name var))
- " "))))
- (set! store (vhash-consq new var store))
- new))
- vars))
- (define (fresh-temporaries ls)
- (map (lambda (elt)
- (let ((new (gensym "tmp ")))
- (record-new-temporary! 'tmp new 1)
- new))
- ls))
- (define (assigned-lexical? sym)
- (var-set? (lookup-var sym)))
- (define (lexical-refcount sym)
- (var-refcount (lookup-var sym)))
- (define (with-temporaries src exps refcount can-copy? k)
- (let* ((pairs (map (match-lambda
- ((and exp (? can-copy?))
- (cons #f exp))
- (exp
- (let ((sym (gensym "tmp ")))
- (record-new-temporary! 'tmp sym refcount)
- (cons sym exp))))
- exps))
- (tmps (filter car pairs)))
- (match tmps
- (() (k exps))
- (tmps
- (make-let src
- (make-list (length tmps) 'tmp)
- (map car tmps)
- (map cdr tmps)
- (k (map (match-lambda
- ((#f . val) val)
- ((sym . _)
- (make-lexical-ref #f 'tmp sym)))
- pairs)))))))
- (define (make-begin0 src first second)
- (make-let-values
- src
- first
- (let ((vals (gensym "vals ")))
- (record-new-temporary! 'vals vals 1)
- (make-lambda-case
- #f
- '() #f 'vals #f '() (list vals)
- (make-seq
- src
- second
- (make-primcall #f 'apply
- (list
- (make-primitive-ref #f 'values)
- (make-lexical-ref #f 'vals vals))))
- #f))))
- ;; ORIG has been alpha-renamed to NEW. Analyze NEW and record a link
- ;; from it to ORIG.
- ;;
- (define (record-source-expression! orig new)
- (set! store (vhash-consq new (source-expression orig) store))
- new)
- ;; Find the source expression corresponding to NEW. Used to detect
- ;; recursive inlining attempts.
- ;;
- (define (source-expression new)
- (let ((x (vhash-assq new store)))
- (if x (cdr x) new)))
- (define (record-operand-use op)
- (set-operand-use-count! op (1+ (operand-use-count op))))
- (define (unrecord-operand-uses op n)
- (let ((count (- (operand-use-count op) n)))
- (when (zero? count)
- (set-operand-residual-value! op #f))
- (set-operand-use-count! op count)))
- (define* (residualize-lexical op #:optional ctx val)
- (log 'residualize op)
- (record-operand-use op)
- (if (memq ctx '(value values))
- (set-operand-residual-value! op val))
- (make-lexical-ref #f (var-name (operand-var op)) (operand-sym op)))
- (define (fold-constants src name args ctx)
- (define (apply-primitive name args)
- ;; todo: further optimize commutative primitives
- (catch #t
- (lambda ()
- (call-with-values
- (lambda ()
- (apply (module-ref the-scm-module name) args))
- (lambda results
- (values #t results))))
- (lambda _
- (values #f '()))))
- (define (make-values src values)
- (match values
- ((single) single) ; 1 value
- ((_ ...) ; 0, or 2 or more values
- (make-primcall src 'values values))))
- (define (residualize-call)
- (make-primcall src name args))
- (cond
- ((every const? args)
- (let-values (((success? values)
- (apply-primitive name (map const-exp args))))
- (log 'fold success? values name args)
- (if success?
- (case ctx
- ((effect) (make-void src))
- ((test)
- ;; Values truncation: only take the first
- ;; value.
- (if (pair? values)
- (make-const src (car values))
- (make-values src '())))
- (else
- (make-values src (map (cut make-const src <>) values))))
- (residualize-call))))
- ((and (eq? ctx 'effect) (types-check? name args))
- (make-void #f))
- (else
- (residualize-call))))
- (define (inline-values src exp nmin nmax consumer)
- (let loop ((exp exp))
- (match exp
- ;; Some expression types are always singly-valued.
- ((or ($ <const>)
- ($ <void>)
- ($ <lambda>)
- ($ <lexical-ref>)
- ($ <toplevel-ref>)
- ($ <module-ref>)
- ($ <primitive-ref>)
- ($ <lexical-set>) ; FIXME: these set! expressions
- ($ <toplevel-set>) ; could return zero values in
- ($ <toplevel-define>) ; the future
- ($ <module-set>) ;
- ($ <primcall> src (? singly-valued-primitive?)))
- (and (<= nmin 1) (or (not nmax) (>= nmax 1))
- (make-call src (make-lambda #f '() consumer) (list exp))))
- ;; Statically-known number of values.
- (($ <primcall> src 'values vals)
- (and (<= nmin (length vals)) (or (not nmax) (>= nmax (length vals)))
- (make-call src (make-lambda #f '() consumer) vals)))
- ;; Not going to copy code into both branches.
- (($ <conditional>) #f)
- ;; Bail on other applications.
- (($ <call>) #f)
- (($ <primcall>) #f)
- ;; Bail on prompt and abort.
- (($ <prompt>) #f)
- (($ <abort>) #f)
-
- ;; Propagate to tail positions.
- (($ <let> src names gensyms vals body)
- (let ((body (loop body)))
- (and body
- (make-let src names gensyms vals body))))
- (($ <fix> src names gensyms vals body)
- (let ((body (loop body)))
- (and body
- (make-fix src names gensyms vals body))))
- (($ <let-values> src exp
- ($ <lambda-case> src2 req opt rest kw inits gensyms body #f))
- (let ((body (loop body)))
- (and body
- (make-let-values src exp
- (make-lambda-case src2 req opt rest kw
- inits gensyms body #f)))))
- (($ <seq> src head tail)
- (let ((tail (loop tail)))
- (and tail (make-seq src head tail)))))))
- (define compute-effects
- (make-effects-analyzer assigned-lexical?))
- (define (constant-expression? x)
- ;; Return true if X is constant, for the purposes of copying or
- ;; elision---i.e., if it is known to have no effects, does not
- ;; allocate storage for a mutable object, and does not access
- ;; mutable data (like `car' or toplevel references).
- (constant? (compute-effects x)))
- (define (prune-bindings ops in-order? body counter ctx build-result)
- ;; This helper handles both `let' and `letrec'/`fix'. In the latter
- ;; cases we need to make sure that if referenced binding A needs
- ;; as-yet-unreferenced binding B, that B is processed for value.
- ;; Likewise if C, when processed for effect, needs otherwise
- ;; unreferenced D, then D needs to be processed for value too.
- ;;
- (define (referenced? op)
- ;; When we visit lambdas in operator context, we just copy them,
- ;; as we will process their body later. However this does have
- ;; the problem that any free var referenced by the lambda is not
- ;; marked as needing residualization. Here we hack around this
- ;; and treat all bindings as referenced if we are in operator
- ;; context.
- (or (eq? ctx 'operator)
- (not (zero? (operand-use-count op)))))
-
- ;; values := (op ...)
- ;; effects := (op ...)
- (define (residualize values effects)
- ;; Note, values and effects are reversed.
- (cond
- (in-order?
- (let ((values (filter operand-residual-value ops)))
- (if (null? values)
- body
- (build-result (map (compose var-name operand-var) values)
- (map operand-sym values)
- (map operand-residual-value values)
- body))))
- (else
- (let ((body
- (if (null? effects)
- body
- (let ((effect-vals (map operand-residual-value effects)))
- (list->seq #f (reverse (cons body effect-vals)))))))
- (if (null? values)
- body
- (let ((values (reverse values)))
- (build-result (map (compose var-name operand-var) values)
- (map operand-sym values)
- (map operand-residual-value values)
- body)))))))
- ;; old := (bool ...)
- ;; values := (op ...)
- ;; effects := ((op . value) ...)
- (let prune ((old (map referenced? ops)) (values '()) (effects '()))
- (let lp ((ops* ops) (values values) (effects effects))
- (cond
- ((null? ops*)
- (let ((new (map referenced? ops)))
- (if (not (equal? new old))
- (prune new values '())
- (residualize values
- (map (lambda (op val)
- (set-operand-residual-value! op val)
- op)
- (map car effects) (map cdr effects))))))
- (else
- (let ((op (car ops*)))
- (cond
- ((memq op values)
- (lp (cdr ops*) values effects))
- ((operand-residual-value op)
- (lp (cdr ops*) (cons op values) effects))
- ((referenced? op)
- (set-operand-residual-value! op (visit-operand op counter 'value))
- (lp (cdr ops*) (cons op values) effects))
- (else
- (lp (cdr ops*)
- values
- (let ((effect (visit-operand op counter 'effect)))
- (if (void? effect)
- effects
- (acons op effect effects))))))))))))
-
- (define (small-expression? x limit)
- (let/ec k
- (tree-il-fold
- (lambda (x res) ; down
- (1+ res))
- (lambda (x res) ; up
- (if (< res limit)
- res
- (k #f)))
- 0 x)
- #t))
-
- (define (extend-env sym op env)
- (vhash-consq (operand-sym op) op (vhash-consq sym op env)))
-
- (let loop ((exp exp)
- (env vlist-null) ; vhash of gensym -> <operand>
- (counter #f) ; inlined call stack
- (ctx 'values)) ; effect, value, values, test, operator, or call
- (define (lookup var)
- (cond
- ((vhash-assq var env) => cdr)
- (else (error "unbound var" var))))
- ;; Find a value referenced a specific number of times. This is a hack
- ;; that's used for propagating fresh data structures like rest lists and
- ;; prompt tags. Usually we wouldn't copy consed data, but we can do so in
- ;; some special cases like `apply' or prompts if we can account
- ;; for all of its uses.
- ;;
- ;; You don't want to use this in general because it introduces a slight
- ;; nonlinearity by running peval again (though with a small effort and size
- ;; counter).
- ;;
- (define (find-definition x n-aliases)
- (cond
- ((lexical-ref? x)
- (cond
- ((lookup (lexical-ref-gensym x))
- => (lambda (op)
- (if (var-set? (operand-var op))
- (values #f #f)
- (let ((y (or (operand-residual-value op)
- (visit-operand op counter 'value 10 10)
- (operand-source op))))
- (cond
- ((and (lexical-ref? y)
- (= (lexical-refcount (lexical-ref-gensym x)) 1))
- ;; X is a simple alias for Y. Recurse, regardless of
- ;; the number of aliases we were expecting.
- (find-definition y n-aliases))
- ((= (lexical-refcount (lexical-ref-gensym x)) n-aliases)
- ;; We found a definition that is aliased the right
- ;; number of times. We still recurse in case it is a
- ;; lexical.
- (values (find-definition y 1)
- op))
- (else
- ;; We can't account for our aliases.
- (values #f #f)))))))
- (else
- ;; A formal parameter. Can't say anything about that.
- (values #f #f))))
- ((= n-aliases 1)
- ;; Not a lexical: success, but only if we are looking for an
- ;; unaliased value.
- (values x #f))
- (else (values #f #f))))
- (define (visit exp ctx)
- (loop exp env counter ctx))
- (define (for-value exp) (visit exp 'value))
- (define (for-values exp) (visit exp 'values))
- (define (for-test exp) (visit exp 'test))
- (define (for-effect exp) (visit exp 'effect))
- (define (for-call exp) (visit exp 'call))
- (define (for-tail exp) (visit exp ctx))
- (if counter
- (record-effort! counter))
- (log 'visit ctx (and=> counter effort-counter)
- (unparse-tree-il exp))
- (match exp
- (($ <const>)
- (case ctx
- ((effect) (make-void #f))
- (else exp)))
- (($ <void>)
- (case ctx
- ((test) (make-const #f #t))
- (else exp)))
- (($ <lexical-ref> _ _ gensym)
- (log 'begin-copy gensym)
- (let lp ((op (lookup gensym)))
- (cond
- ((eq? ctx 'effect)
- (log 'lexical-for-effect gensym)
- (make-void #f))
- ((operand-alias op)
- ;; This is an unassigned operand that simply aliases some
- ;; other operand. Recurse to avoid residualizing the leaf
- ;; binding.
- => lp)
- ((eq? ctx 'call)
- ;; Don't propagate copies if we are residualizing a call.
- (log 'residualize-lexical-call gensym op)
- (residualize-lexical op))
- ((var-set? (operand-var op))
- ;; Assigned lexicals don't copy-propagate.
- (log 'assigned-var gensym op)
- (residualize-lexical op))
- ((not (operand-copyable? op))
- ;; We already know that this operand is not copyable.
- (log 'not-copyable gensym op)
- (residualize-lexical op))
- ((and=> (operand-constant-value op)
- (lambda (x) (or (const? x) (void? x) (primitive-ref? x))))
- ;; A cache hit.
- (let ((val (operand-constant-value op)))
- (log 'memoized-constant gensym val)
- (for-tail val)))
- ((visit-operand op counter (if (eq? ctx 'values) 'value ctx)
- recursive-effort-limit operand-size-limit)
- =>
- ;; If we end up deciding to residualize this value instead of
- ;; copying it, save that residualized value.
- (lambda (val)
- (cond
- ((not (constant-expression? val))
- (log 'not-constant gensym op)
- ;; At this point, ctx is operator, test, or value. A
- ;; value that is non-constant in one context will be
- ;; non-constant in the others, so it's safe to record
- ;; that here, and avoid future visits.
- (set-operand-copyable?! op #f)
- (residualize-lexical op ctx val))
- ((or (const? val)
- (void? val)
- (primitive-ref? val))
- ;; Always propagate simple values that cannot lead to
- ;; code bloat.
- (log 'copy-simple gensym val)
- ;; It could be this constant is the result of folding.
- ;; If that is the case, cache it. This helps loop
- ;; unrolling get farther.
- (if (or (eq? ctx 'value) (eq? ctx 'values))
- (begin
- (log 'memoize-constant gensym val)
- (set-operand-constant-value! op val)))
- val)
- ((= 1 (var-refcount (operand-var op)))
- ;; Always propagate values referenced only once.
- (log 'copy-single gensym val)
- val)
- ;; FIXME: do demand-driven size accounting rather than
- ;; these heuristics.
- ((eq? ctx 'operator)
- ;; A pure expression in the operator position. Inline
- ;; if it's a lambda that's small enough.
- (if (and (lambda? val)
- (small-expression? val operator-size-limit))
- (begin
- (log 'copy-operator gensym val)
- val)
- (begin
- (log 'too-big-for-operator gensym val)
- (residualize-lexical op ctx val))))
- (else
- ;; A pure expression, processed for call or for value.
- ;; Don't inline lambdas, because they will probably won't
- ;; fold because we don't know the operator.
- (if (and (small-expression? val value-size-limit)
- (not (tree-il-any lambda? val)))
- (begin
- (log 'copy-value gensym val)
- val)
- (begin
- (log 'too-big-or-has-lambda gensym val)
- (residualize-lexical op ctx val)))))))
- (else
- ;; Visit failed. Either the operand isn't bound, as in
- ;; lambda formal parameters, or the copy was aborted.
- (log 'unbound-or-aborted gensym op)
- (residualize-lexical op)))))
- (($ <lexical-set> src name gensym exp)
- (let ((op (lookup gensym)))
- (if (zero? (var-refcount (operand-var op)))
- (let ((exp (for-effect exp)))
- (if (void? exp)
- exp
- (make-seq src exp (make-void #f))))
- (begin
- (record-operand-use op)
- (make-lexical-set src name (operand-sym op) (for-value exp))))))
- (($ <let> src
- (names ... rest)
- (gensyms ... rest-sym)
- (vals ... ($ <primcall> _ 'list rest-args))
- ($ <primcall> asrc 'apply
- (proc args ...
- ($ <lexical-ref> _
- (? (cut eq? <> rest))
- (? (lambda (sym)
- (and (eq? sym rest-sym)
- (= (lexical-refcount sym) 1))))))))
- (let* ((tmps (make-list (length rest-args) 'tmp))
- (tmp-syms (fresh-temporaries tmps)))
- (for-tail
- (make-let src
- (append names tmps)
- (append gensyms tmp-syms)
- (append vals rest-args)
- (make-call
- asrc
- proc
- (append args
- (map (cut make-lexical-ref #f <> <>)
- tmps tmp-syms)))))))
- (($ <let> src names gensyms vals body)
- (define (lookup-alias exp)
- ;; It's very common for macros to introduce something like:
- ;;
- ;; ((lambda (x y) ...) x-exp y-exp)
- ;;
- ;; In that case you might end up trying to inline something like:
- ;;
- ;; (let ((x x-exp) (y y-exp)) ...)
- ;;
- ;; But if x-exp is itself a lexical-ref that aliases some much
- ;; larger expression, perhaps it will fail to inline due to
- ;; size. However we don't want to introduce a useless alias
- ;; (in this case, x). So if the RHS of a let expression is a
- ;; lexical-ref, we record that expression. If we end up having
- ;; to residualize X, then instead we residualize X-EXP, as long
- ;; as it isn't assigned.
- ;;
- (match exp
- (($ <lexical-ref> _ _ sym)
- (let ((op (lookup sym)))
- (and (not (var-set? (operand-var op))) op)))
- (_ #f)))
- (let* ((vars (map lookup-var gensyms))
- (new (fresh-gensyms vars))
- (ops (make-bound-operands vars new vals
- (lambda (exp counter ctx)
- (loop exp env counter ctx))
- (map lookup-alias vals)))
- (env (fold extend-env env gensyms ops))
- (body (loop body env counter ctx)))
- (match body
- (($ <const>)
- (for-tail (list->seq src (append vals (list body)))))
- (($ <lexical-ref> _ _ (? (lambda (sym) (memq sym new)) sym))
- (let ((pairs (map cons new vals)))
- ;; (let ((x foo) (y bar) ...) x) => (begin bar ... foo)
- (for-tail
- (list->seq
- src
- (append (map cdr (alist-delete sym pairs eq?))
- (list (assq-ref pairs sym)))))))
- ((and ($ <conditional> src*
- ($ <lexical-ref> _ _ sym) ($ <lexical-ref> _ _ sym) alt)
- (? (lambda (_)
- (case ctx
- ((test effect)
- (and (equal? (list sym) new)
- (= (lexical-refcount sym) 2)))
- (else #f)))))
- ;; (let ((x EXP)) (if x x ALT)) -> (if EXP #t ALT) in test context
- (make-conditional src* (visit-operand (car ops) counter 'test)
- (make-const src* #t) alt))
- (_
- ;; Only include bindings for which lexical references
- ;; have been residualized.
- (prune-bindings ops #f body counter ctx
- (lambda (names gensyms vals body)
- (if (null? names) (error "what!" names))
- (make-let src names gensyms vals body)))))))
- (($ <fix> src names gensyms vals body)
- ;; Note the difference from the `let' case: here we use letrec*
- ;; so that the `visit' procedure for the new operands closes over
- ;; an environment that includes the operands. Also we don't try
- ;; to elide aliases, because we can't sensibly reduce something
- ;; like (letrec ((a b) (b a)) a).
- (letrec* ((visit (lambda (exp counter ctx)
- (loop exp env* counter ctx)))
- (vars (map lookup-var gensyms))
- (new (fresh-gensyms vars))
- (ops (make-bound-operands vars new vals visit))
- (env* (fold extend-env env gensyms ops))
- (body* (visit body counter ctx)))
- (if (const? body*)
- body*
- (prune-bindings ops #f body* counter ctx
- (lambda (names gensyms vals body)
- (make-fix src names gensyms vals body))))))
- (($ <let-values> lv-src producer consumer)
- ;; Peval the producer, then try to inline the consumer into
- ;; the producer. If that succeeds, peval again. Otherwise
- ;; reconstruct the let-values, pevaling the consumer.
- (let ((producer (for-values producer)))
- (or (match consumer
- ((and ($ <lambda-case> src () #f rest #f () (rest-sym) body #f)
- (? (lambda _ (singly-valued-expression? producer))))
- (let ((tmp (gensym "tmp ")))
- (record-new-temporary! 'tmp tmp 1)
- (for-tail
- (make-let
- src (list 'tmp) (list tmp) (list producer)
- (make-let
- src (list rest) (list rest-sym)
- (list
- (make-primcall #f 'list
- (list (make-lexical-ref #f 'tmp tmp))))
- body)))))
- (($ <lambda-case> src req opt rest #f inits gensyms body #f)
- (let* ((nmin (length req))
- (nmax (and (not rest) (+ nmin (if opt (length opt) 0)))))
- (cond
- ((inline-values lv-src producer nmin nmax consumer)
- => for-tail)
- (else #f))))
- (_ #f))
- (make-let-values lv-src producer (for-tail consumer)))))
- (($ <toplevel-ref> src mod (? effect-free-primitive? name))
- exp)
- (($ <toplevel-ref>)
- ;; todo: open private local bindings.
- exp)
- (($ <module-ref> src module (? effect-free-primitive? name) #f)
- (let ((module (false-if-exception
- (resolve-module module #:ensure #f))))
- (if (module? module)
- (let ((var (module-variable module name)))
- (if (eq? var (module-variable the-scm-module name))
- (make-primitive-ref src name)
- exp))
- exp)))
- (($ <module-ref>)
- exp)
- (($ <module-set> src mod name public? exp)
- (make-module-set src mod name public? (for-value exp)))
- (($ <toplevel-define> src mod name exp)
- (make-toplevel-define src mod name (for-value exp)))
- (($ <toplevel-set> src mod name exp)
- (make-toplevel-set src mod name (for-value exp)))
- (($ <primitive-ref>)
- (case ctx
- ((effect) (make-void #f))
- ((test) (make-const #f #t))
- (else exp)))
- (($ <conditional> src condition subsequent alternate)
- (define (call-with-failure-thunk exp proc)
- (match exp
- (($ <call> _ _ ()) (proc exp))
- (($ <primcall> _ _ ()) (proc exp))
- (($ <const>) (proc exp))
- (($ <void>) (proc exp))
- (($ <lexical-ref>) (proc exp))
- (_
- (let ((t (gensym "failure-")))
- (record-new-temporary! 'failure t 2)
- (make-let
- src (list 'failure) (list t)
- (list
- (make-lambda
- #f '()
- (make-lambda-case #f '() #f #f #f '() '() exp #f)))
- (proc (make-call #f (make-lexical-ref #f 'failure t)
- '())))))))
- (define (simplify-conditional c)
- (match c
- ;; Swap the arms of (if (not FOO) A B), to simplify.
- (($ <conditional> src ($ <primcall> _ 'not (pred))
- subsequent alternate)
- (simplify-conditional
- (make-conditional src pred alternate subsequent)))
- ;; In the following four cases, we try to expose the test to
- ;; the conditional. This will let the CPS conversion avoid
- ;; reifying boolean literals in some cases.
- (($ <conditional> src ($ <let> src* names vars vals body)
- subsequent alternate)
- (make-let src* names vars vals
- (simplify-conditional
- (make-conditional src body subsequent alternate))))
- (($ <conditional> src ($ <fix> src* names vars vals body)
- subsequent alternate)
- (make-fix src* names vars vals
- (simplify-conditional
- (make-conditional src body subsequent alternate))))
- (($ <conditional> src ($ <seq> src* head tail)
- subsequent alternate)
- (make-seq src* head
- (simplify-conditional
- (make-conditional src tail subsequent alternate))))
- ;; Special cases for common tests in the predicates of chains
- ;; of if expressions.
- (($ <conditional> src
- ($ <conditional> src* outer-test inner-test ($ <const> _ #f))
- inner-subsequent
- alternate)
- (let lp ((alternate alternate))
- (match alternate
- ;; Lift a common repeated test out of a chain of if
- ;; expressions.
- (($ <conditional> _ (? (cut tree-il=? outer-test <>))
- other-subsequent alternate)
- (make-conditional
- src outer-test
- (simplify-conditional
- (make-conditional src* inner-test inner-subsequent
- other-subsequent))
- alternate))
- ;; Likewise, but punching through any surrounding
- ;; failure continuations.
- (($ <let> let-src (name) (sym) ((and thunk ($ <lambda>))) body)
- (make-let
- let-src (list name) (list sym) (list thunk)
- (lp body)))
- ;; Otherwise, rotate AND tests to expose a simple
- ;; condition in the front. Although this may result in
- ;; lexically binding failure thunks, the thunks will be
- ;; compiled to labels allocation, so there's no actual
- ;; code growth.
- (_
- (call-with-failure-thunk
- alternate
- (lambda (failure)
- (make-conditional
- src outer-test
- (simplify-conditional
- (make-conditional src* inner-test inner-subsequent failure))
- failure)))))))
- (_ c)))
- (match (for-test condition)
- (($ <const> _ val)
- (if val
- (for-tail subsequent)
- (for-tail alternate)))
- (c
- (simplify-conditional
- (make-conditional src c (for-tail subsequent)
- (for-tail alternate))))))
- (($ <primcall> src 'call-with-values
- (producer
- ($ <lambda> _ _
- (and consumer
- ;; No optional or kwargs.
- ($ <lambda-case>
- _ req #f rest #f () gensyms body #f)))))
- (for-tail (make-let-values src (make-call src producer '())
- consumer)))
- (($ <primcall> src 'dynamic-wind (w thunk u))
- (for-tail
- (with-temporaries
- src (list w u) 2 constant-expression?
- (match-lambda
- ((w u)
- (make-seq
- src
- (make-seq
- src
- (make-conditional
- src
- ;; fixme: introduce logic to fold thunk?
- (make-primcall src 'thunk? (list u))
- (make-call src w '())
- (make-primcall
- src 'throw
- (list
- (make-const #f 'wrong-type-arg)
- (make-const #f "dynamic-wind")
- (make-const #f "Wrong type (expecting thunk): ~S")
- (make-primcall #f 'list (list u))
- (make-primcall #f 'list (list u)))))
- (make-primcall src 'wind (list w u)))
- (make-begin0 src
- (make-call src thunk '())
- (make-seq src
- (make-primcall src 'unwind '())
- (make-call src u '())))))))))
- (($ <primcall> src 'with-fluid* (f v thunk))
- (for-tail
- (with-temporaries
- src (list f v thunk) 1 constant-expression?
- (match-lambda
- ((f v thunk)
- (make-seq src
- (make-primcall src 'push-fluid (list f v))
- (make-begin0 src
- (make-call src thunk '())
- (make-primcall src 'pop-fluid '()))))))))
- (($ <primcall> src 'with-dynamic-state (state thunk))
- (for-tail
- (with-temporaries
- src (list state thunk) 1 constant-expression?
- (match-lambda
- ((state thunk)
- (make-seq src
- (make-primcall src 'push-dynamic-state (list state))
- (make-begin0 src
- (make-call src thunk '())
- (make-primcall src 'pop-dynamic-state
- '()))))))))
- (($ <primcall> src 'values exps)
- (cond
- ((null? exps)
- (if (eq? ctx 'effect)
- (make-void #f)
- exp))
- (else
- (let ((vals (map for-value exps)))
- (if (and (case ctx
- ((value test effect) #t)
- (else (null? (cdr vals))))
- (every singly-valued-expression? vals))
- (for-tail (list->seq src (append (cdr vals) (list (car vals)))))
- (make-primcall src 'values vals))))))
- (($ <primcall> src 'apply (proc args ... tail))
- (let lp ((tail* (find-definition tail 1)) (speculative? #t))
- (define (copyable? x)
- ;; Inlining a result from find-definition effectively copies it,
- ;; relying on the let-pruning to remove its original binding. We
- ;; shouldn't copy non-constant expressions.
- (or (not speculative?) (constant-expression? x)))
- (match tail*
- (($ <const> _ (args* ...))
- (let ((args* (map (cut make-const #f <>) args*)))
- (for-tail (make-call src proc (append args args*)))))
- (($ <primcall> _ 'cons
- ((and head (? copyable?)) (and tail (? copyable?))))
- (for-tail (make-primcall src 'apply
- (cons proc
- (append args (list head tail))))))
- (($ <primcall> _ 'list
- (and args* ((? copyable?) ...)))
- (for-tail (make-call src proc (append args args*))))
- (tail*
- (if speculative?
- (lp (for-value tail) #f)
- (let ((args (append (map for-value args) (list tail*))))
- (make-primcall src 'apply
- (cons (for-value proc) args))))))))
- (($ <primcall> src (? constructor-primitive? name) args)
- (cond
- ((and (memq ctx '(effect test))
- (match (cons name args)
- ((or ('cons _ _)
- ('list . _)
- ('vector . _)
- ('make-prompt-tag)
- ('make-prompt-tag ($ <const> _ (? string?))))
- #t)
- (_ #f)))
- ;; Some expressions can be folded without visiting the
- ;; arguments for value.
- (let ((res (if (eq? ctx 'effect)
- (make-void #f)
- (make-const #f #t))))
- (for-tail (list->seq src (append args (list res))))))
- (else
- (match (cons name (map for-value args))
- (('cons x ($ <const> _ (? (cut eq? <> '()))))
- (make-primcall src 'list (list x)))
- (('cons x ($ <primcall> _ 'list elts))
- (make-primcall src 'list (cons x elts)))
- (('list)
- (make-const src '()))
- (('vector)
- (make-const src '#()))
- ((name . args)
- (make-primcall src name args))))))
- (($ <primcall> src 'thunk? (proc))
- (case ctx
- ((effect)
- (for-tail (make-seq src proc (make-void src))))
- (else
- (match (for-value proc)
- (($ <lambda> _ _ ($ <lambda-case> _ req))
- (for-tail (make-const src (null? req))))
- (proc
- (match (find-definition proc 2)
- (($ <lambda> _ _ ($ <lambda-case> _ req))
- (for-tail (make-const src (null? req))))
- (_
- (make-primcall src 'thunk? (list proc)))))))))
- (($ <primcall> src name args)
- (match (cons name (map for-value args))
- ;; FIXME: these for-tail recursions could take place outside
- ;; an effort counter.
- (('car ($ <primcall> src 'cons (head tail)))
- (for-tail (make-seq src tail head)))
- (('cdr ($ <primcall> src 'cons (head tail)))
- (for-tail (make-seq src head tail)))
- (('car ($ <primcall> src 'list (head . tail)))
- (for-tail (list->seq src (append tail (list head)))))
- (('cdr ($ <primcall> src 'list (head . tail)))
- (for-tail (make-seq src head (make-primcall #f 'list tail))))
-
- (('car ($ <const> src (head . tail)))
- (for-tail (make-const src head)))
- (('cdr ($ <const> src (head . tail)))
- (for-tail (make-const src tail)))
- (((or 'memq 'memv) k ($ <const> _ (elts ...)))
- ;; FIXME: factor
- (case ctx
- ((effect)
- (for-tail
- (make-seq src k (make-void #f))))
- ((test)
- (cond
- ((const? k)
- ;; A shortcut. The `else' case would handle it, but
- ;; this way is faster.
- (let ((member (case name ((memq) memq) ((memv) memv))))
- (make-const #f (and (member (const-exp k) elts) #t))))
- ((null? elts)
- (for-tail
- (make-seq src k (make-const #f #f))))
- (else
- (let ((t (gensym "t "))
- (eq (if (eq? name 'memq) 'eq? 'eqv?)))
- (record-new-temporary! 't t (length elts))
- (for-tail
- (make-let
- src (list 't) (list t) (list k)
- (let lp ((elts elts))
- (define test
- (make-primcall #f eq
- (list (make-lexical-ref #f 't t)
- (make-const #f (car elts)))))
- (if (null? (cdr elts))
- test
- (make-conditional src test
- (make-const #f #t)
- (lp (cdr elts)))))))))))
- (else
- (cond
- ((const? k)
- (let ((member (case name ((memq) memq) ((memv) memv))))
- (make-const #f (member (const-exp k) elts))))
- ((null? elts)
- (for-tail (make-seq src k (make-const #f #f))))
- (else
- (make-primcall src name (list k (make-const #f elts))))))))
- (((? equality-primitive?) a (and b ($ <const> _ v)))
- (cond
- ((const? a)
- ;; Constants will be deduplicated later, but eq? folding can
- ;; happen now. Anticipate the deduplication by using equal?
- ;; instead of eq? or eqv?.
- (for-tail (make-const src (equal? (const-exp a) v))))
- ((eq? name 'eq?)
- ;; Already in a reduced state.
- (make-primcall src 'eq? (list a b)))
- ((or (memq v '(#f #t () #nil)) (symbol? v) (char? v)
- ;; Only fold to eq? value is a fixnum on target and
- ;; host, as constant folding may have us compare on host
- ;; as well.
- (and (exact-integer? v)
- (<= (max (target-most-negative-fixnum)
- most-negative-fixnum)
- v
- (min (target-most-positive-fixnum)
- most-positive-fixnum))))
- ;; Reduce to eq?. Note that in Guile, characters are
- ;; comparable with eq?.
- (make-primcall src 'eq? (list a b)))
- ((number? v)
- ;; equal? and eqv? on non-fixnum numbers is the same as
- ;; eqv?, and can't be reduced beyond that.
- (make-primcall src 'eqv? (list a b)))
- ((eq? name 'eqv?)
- ;; eqv? on anything else is the same as eq?.
- (make-primcall src 'eq? (list a b)))
- (else
- ;; FIXME: inline a specialized implementation of equal? for
- ;; V here.
- (make-primcall src name (list a b)))))
- (((? equality-primitive?) (and a ($ <const>)) b)
- (for-tail (make-primcall src name (list b a))))
- (((? equality-primitive?) ($ <lexical-ref> _ _ sym)
- ($ <lexical-ref> _ _ sym))
- (for-tail (make-const src #t)))
- (('logbit? ($ <const> src2
- (? (lambda (bit)
- (and (exact-integer? bit)
- (<= 0 bit (logcount most-positive-fixnum))))
- bit))
- val)
- (for-tail
- (make-primcall src 'logtest
- (list (make-const src2 (ash 1 bit)) val))))
- (('logtest a b)
- (for-tail
- (make-primcall
- src
- 'not
- (list
- (make-primcall src 'eq?
- (list (make-primcall src 'logand (list a b))
- (make-const src 0)))))))
- (((? effect-free-primitive?) . args)
- (fold-constants src name args ctx))
- ((name . args)
- (make-primcall src name args))))
- (($ <call> src orig-proc orig-args)
- ;; todo: augment the global env with specialized functions
- (let revisit-proc ((proc (visit orig-proc 'operator)))
- (match proc
- (($ <primitive-ref> _ name)
- (for-tail
- (expand-primcall (make-primcall src name orig-args))))
- (($ <lambda> _ _
- ($ <lambda-case> _ req opt rest #f inits gensyms body #f))
- ;; Simple case: no keyword arguments.
- ;; todo: handle the more complex cases
- (let* ((nargs (length orig-args))
- (nreq (length req))
- (opt (or opt '()))
- (rest (if rest (list rest) '()))
- (nopt (length opt))
- (key (source-expression proc)))
- (define (singly-referenced-lambda? orig-proc)
- (match orig-proc
- (($ <lambda>) #t)
- (($ <lexical-ref> _ _ sym)
- (and (not (assigned-lexical? sym))
- (= (lexical-refcount sym) 1)
- (singly-referenced-lambda?
- (operand-source (lookup sym)))))
- (_ #f)))
- (define (inlined-call)
- (let ((req-vals (list-head orig-args nreq))
- (opt-vals (let lp ((args (drop orig-args nreq))
- (inits inits)
- (out '()))
- (match inits
- (() (reverse out))
- ((init . inits)
- (match args
- (()
- (lp '() inits (cons init out)))
- ((arg . args)
- (lp args inits (cons arg out))))))))
- (rest-vals (cond
- ((> nargs (+ nreq nopt))
- (list (make-primcall
- #f 'list
- (drop orig-args (+ nreq nopt)))))
- ((null? rest) '())
- (else (list (make-const #f '()))))))
- (if (>= nargs (+ nreq nopt))
- (make-let src
- (append req opt rest)
- gensyms
- (append req-vals opt-vals rest-vals)
- body)
- ;; The default initializers of optional arguments
- ;; may refer to earlier arguments, so in the general
- ;; case we must expand into a series of nested let
- ;; expressions.
- ;;
- ;; In the generated code, the outermost let
- ;; expression will bind all required arguments, as
- ;; well as the empty rest argument, if any. Each
- ;; optional argument will be bound within an inner
- ;; let.
- (make-let src
- (append req rest)
- (append (list-head gensyms nreq)
- (last-pair gensyms))
- (append req-vals rest-vals)
- (fold-right (lambda (var gensym val body)
- (make-let src
- (list var)
- (list gensym)
- (list val)
- body))
- body
- opt
- (list-head (drop gensyms nreq) nopt)
- opt-vals)))))
- (cond
- ((or (< nargs nreq) (and (null? rest) (> nargs (+ nreq nopt))))
- ;; An error, or effecting arguments.
- (make-call src (for-call orig-proc) (map for-value orig-args)))
- ((or (and=> (find-counter key counter) counter-recursive?)
- (singly-referenced-lambda? orig-proc))
- ;; A recursive call, or a lambda in the operator
- ;; position of the source expression. Process again in
- ;; tail context.
- ;;
- ;; In the recursive case, mark intervening counters as
- ;; recursive, so we can handle a toplevel counter that
- ;; recurses mutually with some other procedure.
- ;; Otherwise, the next time we see the other procedure,
- ;; the effort limit would be clamped to 100.
- ;;
- (let ((found (find-counter key counter)))
- (if (and found (counter-recursive? found))
- (let lp ((counter counter))
- (if (not (eq? counter found))
- (begin
- (set-counter-recursive?! counter #t)
- (lp (counter-prev counter)))))))
- (log 'inline-recurse key)
- (loop (inlined-call) env counter ctx))
- (else
- ;; An integration at the top-level, the first
- ;; recursion of a recursive procedure, or a nested
- ;; integration of a procedure that hasn't been seen
- ;; yet.
- (log 'inline-begin exp)
- (let/ec k
- (define (abort)
- (log 'inline-abort exp)
- (k (make-call src (for-call orig-proc)
- (map for-value orig-args))))
- (define new-counter
- (cond
- ;; These first two cases will transfer effort
- ;; from the current counter into the new
- ;; counter.
- ((find-counter key counter)
- => (lambda (prev)
- (make-recursive-counter recursive-effort-limit
- operand-size-limit
- prev counter)))
- (counter
- (make-nested-counter abort key counter))
- ;; This case opens a new account, effectively
- ;; printing money. It should only do so once
- ;; for each call site in the source program.
- (else
- (make-top-counter effort-limit operand-size-limit
- abort key))))
- (define result
- (loop (inlined-call) env new-counter ctx))
-
- (if counter
- ;; The nested inlining attempt succeeded.
- ;; Deposit the unspent effort and size back
- ;; into the current counter.
- (transfer! new-counter counter))
- (log 'inline-end result exp)
- result)))))
- (($ <let> _ _ _ vals _)
- ;; Attempt to inline `let' in the operator position.
- ;;
- ;; We have to re-visit the proc in value mode, since the
- ;; `let' bindings might have been introduced or renamed,
- ;; whereas the lambda (if any) in operator position has not
- ;; been renamed.
- (if (or (and-map constant-expression? vals)
- (and-map constant-expression? orig-args))
- ;; The arguments and the let-bound values commute.
- (match (for-value orig-proc)
- (($ <let> lsrc names syms vals body)
- (log 'inline-let orig-proc)
- (for-tail
- (make-let lsrc names syms vals
- (make-call src body orig-args))))
- ;; It's possible for a `let' to go away after the
- ;; visit due to the fact that visiting a procedure in
- ;; value context will prune unused bindings, whereas
- ;; visiting in operator mode can't because it doesn't
- ;; traverse through lambdas. In that case re-visit
- ;; the procedure.
- (proc (revisit-proc proc)))
- (make-call src (for-call orig-proc)
- (map for-value orig-args))))
- (_
- (make-call src (for-call orig-proc) (map for-value orig-args))))))
- (($ <lambda> src meta body)
- (case ctx
- ((effect) (make-void #f))
- ((test) (make-const #f #t))
- ((operator) exp)
- (else (record-source-expression!
- exp
- (make-lambda src meta (and body (for-values body)))))))
- (($ <lambda-case> src req opt rest kw inits gensyms body alt)
- (define (lift-applied-lambda body gensyms)
- (and (not opt) rest (not kw)
- (match body
- (($ <primcall> _ 'apply
- (($ <lambda> _ _ (and lcase ($ <lambda-case> _ req1)))
- ($ <lexical-ref> _ _ sym)
- ...))
- (and (equal? sym gensyms)
- (not (lambda-case-alternate lcase))
- (<= (length req) (length req1))
- (every (lambda (s)
- (= (lexical-refcount s) 1))
- sym)
- lcase))
- (_ #f))))
- (let* ((vars (map lookup-var gensyms))
- (new (fresh-gensyms vars))
- (env (fold extend-env env gensyms
- (make-unbound-operands vars new)))
- (new-sym (lambda (old)
- (operand-sym (cdr (vhash-assq old env)))))
- (body (loop body env counter ctx)))
- (or
- ;; (lambda args (apply (lambda ...) args)) => (lambda ...)
- (lift-applied-lambda body new)
- (make-lambda-case src req opt rest
- (match kw
- ((aok? (kw name old) ...)
- (cons aok? (map list kw name (map new-sym old))))
- (_ #f))
- (map (cut loop <> env counter 'value) inits)
- new
- body
- (and alt (for-tail alt))))))
- (($ <seq> src head tail)
- (let ((head (for-effect head))
- (tail (for-tail tail)))
- (if (void? head)
- tail
- (make-seq src
- (if (and (seq? head)
- (void? (seq-tail head)))
- (seq-head head)
- head)
- tail))))
- (($ <prompt> src escape-only? tag body handler)
- (define (make-prompt-tag? x)
- (match x
- (($ <primcall> _ 'make-prompt-tag (or () ((? constant-expression?))))
- #t)
- (_ #f)))
- (let ((tag (for-value tag))
- (body (if escape-only? (for-tail body) (for-value body))))
- (cond
- ((find-definition tag 1)
- (lambda (val op)
- (make-prompt-tag? val))
- => (lambda (val op)
- ;; There is no way that an <abort> could know the tag
- ;; for this <prompt>, so we can elide the <prompt>
- ;; entirely.
- (unrecord-operand-uses op 1)
- (for-tail (if escape-only? body (make-call src body '())))))
- (else
- (let ((handler (for-value handler)))
- (define (escape-only-handler? handler)
- (match handler
- (($ <lambda> _ _
- ($ <lambda-case> _ (_ . _) _ _ _ _ (k . _) body #f))
- (not (tree-il-any
- (match-lambda
- (($ <lexical-ref> _ _ (? (cut eq? <> k))) #t)
- (_ #f))
- body)))
- (else #f)))
- (if (and (not escape-only?) (escape-only-handler? handler))
- ;; Prompt transitioning to escape-only; transition body
- ;; to be an expression.
- (for-tail
- (make-prompt src #t tag (make-call #f body '()) handler))
- (make-prompt src escape-only? tag body handler)))))))
- (($ <abort> src tag args tail)
- (make-abort src (for-value tag) (map for-value args)
- (for-value tail))))))
|