1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054 |
- ;;; srfi-43.scm -- SRFI 43 Vector library
- ;; Copyright (C) 2014, 2018 Free Software Foundation, Inc.
- ;;
- ;; This library is free software; you can redistribute it and/or
- ;; modify it under the terms of the GNU Lesser General Public
- ;; License as published by the Free Software Foundation; either
- ;; version 3 of the License, or (at your option) any later version.
- ;;
- ;; This library is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ;; Lesser General Public License for more details.
- ;;
- ;; You should have received a copy of the GNU Lesser General Public
- ;; License along with this library; if not, write to the Free Software
- ;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- ;;; Author: Mark H Weaver <mhw@netris.org>
- (define-module (srfi srfi-43)
- #:use-module (srfi srfi-1)
- #:use-module (srfi srfi-8)
- #:re-export (make-vector vector vector? vector-ref vector-set!
- vector-length vector-fill!)
- #:replace (vector-copy list->vector vector->list)
- #:export (vector-empty? vector= vector-unfold vector-unfold-right
- vector-reverse-copy
- vector-append vector-concatenate
- vector-fold vector-fold-right
- vector-map vector-map!
- vector-for-each vector-count
- vector-index vector-index-right
- vector-skip vector-skip-right
- vector-binary-search
- vector-any vector-every
- vector-swap! vector-reverse!
- vector-copy! vector-reverse-copy!
- reverse-vector->list
- reverse-list->vector))
- (cond-expand-provide (current-module) '(srfi-43))
- (define-syntax error-from
- (lambda (stx)
- (syntax-case stx (quote)
- ((_ 'who msg arg ...)
- #`(error #,(string-append (symbol->string (syntax->datum #'who))
- ": "
- (syntax->datum #'msg))
- arg ...)))))
- (define-syntax-rule (assert-nonneg-exact-integer k who)
- (unless (and (exact-integer? k)
- (not (negative? k)))
- (error-from who "expected non-negative exact integer, got" k)))
- (define-syntax-rule (assert-procedure f who)
- (unless (procedure? f)
- (error-from who "expected procedure, got" f)))
- (define-syntax-rule (assert-vector v who)
- (unless (vector? v)
- (error-from who "expected vector, got" v)))
- (define-syntax-rule (assert-valid-index i len who)
- (unless (and (exact-integer? i)
- (<= 0 i len))
- (error-from who "invalid index" i)))
- (define-syntax-rule (assert-valid-start start len who)
- (unless (and (exact-integer? start)
- (<= 0 start len))
- (error-from who "invalid start index" start)))
- (define-syntax-rule (assert-valid-range start end len who)
- (unless (and (exact-integer? start)
- (exact-integer? end)
- (<= 0 start end len))
- (error-from who "invalid index range" start end)))
- (define-syntax-rule (assert-vectors vs who)
- (let loop ((vs vs))
- (unless (null? vs)
- (assert-vector (car vs) who)
- (loop (cdr vs)))))
- ;; Return the length of the shortest vector in VS.
- ;; VS must have at least one element.
- (define (min-length vs)
- (let loop ((vs (cdr vs))
- (result (vector-length (car vs))))
- (if (null? vs)
- result
- (loop (cdr vs) (min result (vector-length (car vs)))))))
- ;; Return a list of the Ith elements of the vectors in VS.
- (define (vectors-ref vs i)
- (let loop ((vs vs) (xs '()))
- (if (null? vs)
- (reverse! xs)
- (loop (cdr vs) (cons (vector-ref (car vs) i)
- xs)))))
- (define vector-unfold
- (case-lambda
- "(vector-unfold f length initial-seed ...) -> vector
- The fundamental vector constructor. Create a vector whose length is
- LENGTH and iterates across each index k from 0 up to LENGTH - 1,
- applying F at each iteration to the current index and current seeds, in
- that order, to receive n + 1 values: the element to put in the kth slot
- of the new vector, and n new seeds for the next iteration. It is an
- error for the number of seeds to vary between iterations."
- ((f len)
- (assert-procedure f 'vector-unfold)
- (assert-nonneg-exact-integer len 'vector-unfold)
- (let ((v (make-vector len)))
- (let loop ((i 0))
- (unless (= i len)
- (vector-set! v i (f i))
- (loop (+ i 1))))
- v))
- ((f len seed)
- (assert-procedure f 'vector-unfold)
- (assert-nonneg-exact-integer len 'vector-unfold)
- (let ((v (make-vector len)))
- (let loop ((i 0) (seed seed))
- (unless (= i len)
- (receive (x seed) (f i seed)
- (vector-set! v i x)
- (loop (+ i 1) seed))))
- v))
- ((f len seed1 seed2)
- (assert-procedure f 'vector-unfold)
- (assert-nonneg-exact-integer len 'vector-unfold)
- (let ((v (make-vector len)))
- (let loop ((i 0) (seed1 seed1) (seed2 seed2))
- (unless (= i len)
- (receive (x seed1 seed2) (f i seed1 seed2)
- (vector-set! v i x)
- (loop (+ i 1) seed1 seed2))))
- v))
- ((f len . seeds)
- (assert-procedure f 'vector-unfold)
- (assert-nonneg-exact-integer len 'vector-unfold)
- (let ((v (make-vector len)))
- (let loop ((i 0) (seeds seeds))
- (unless (= i len)
- (receive (x . seeds) (apply f i seeds)
- (vector-set! v i x)
- (loop (+ i 1) seeds))))
- v))))
- (define vector-unfold-right
- (case-lambda
- "(vector-unfold-right f length initial-seed ...) -> vector
- The fundamental vector constructor. Create a vector whose length is
- LENGTH and iterates across each index k from LENGTH - 1 down to 0,
- applying F at each iteration to the current index and current seeds, in
- that order, to receive n + 1 values: the element to put in the kth slot
- of the new vector, and n new seeds for the next iteration. It is an
- error for the number of seeds to vary between iterations."
- ((f len)
- (assert-procedure f 'vector-unfold-right)
- (assert-nonneg-exact-integer len 'vector-unfold-right)
- (let ((v (make-vector len)))
- (let loop ((i (- len 1)))
- (unless (negative? i)
- (vector-set! v i (f i))
- (loop (- i 1))))
- v))
- ((f len seed)
- (assert-procedure f 'vector-unfold-right)
- (assert-nonneg-exact-integer len 'vector-unfold-right)
- (let ((v (make-vector len)))
- (let loop ((i (- len 1)) (seed seed))
- (unless (negative? i)
- (receive (x seed) (f i seed)
- (vector-set! v i x)
- (loop (- i 1) seed))))
- v))
- ((f len seed1 seed2)
- (assert-procedure f 'vector-unfold-right)
- (assert-nonneg-exact-integer len 'vector-unfold-right)
- (let ((v (make-vector len)))
- (let loop ((i (- len 1)) (seed1 seed1) (seed2 seed2))
- (unless (negative? i)
- (receive (x seed1 seed2) (f i seed1 seed2)
- (vector-set! v i x)
- (loop (- i 1) seed1 seed2))))
- v))
- ((f len . seeds)
- (assert-procedure f 'vector-unfold-right)
- (assert-nonneg-exact-integer len 'vector-unfold-right)
- (let ((v (make-vector len)))
- (let loop ((i (- len 1)) (seeds seeds))
- (unless (negative? i)
- (receive (x . seeds) (apply f i seeds)
- (vector-set! v i x)
- (loop (- i 1) seeds))))
- v))))
- (define guile-vector-copy (@ (guile) vector-copy))
- ;; TODO: Enhance Guile core 'vector-copy' to do this.
- (define vector-copy
- (case-lambda*
- "(vector-copy vec [start [end [fill]]]) -> vector
- Allocate a new vector whose length is END - START and fills it with
- elements from vec, taking elements from vec starting at index START
- and stopping at index END. START defaults to 0 and END defaults to
- the value of (vector-length VEC). If END extends beyond the length of
- VEC, the slots in the new vector that obviously cannot be filled by
- elements from VEC are filled with FILL, whose default value is
- unspecified."
- ((v) (guile-vector-copy v))
- ((v start)
- (assert-vector v 'vector-copy)
- (let ((len (vector-length v)))
- (assert-valid-start start len 'vector-copy)
- (let ((result (make-vector (- len start))))
- (vector-move-left! v start len result 0)
- result)))
- ((v start end #:optional (fill *unspecified*))
- (assert-vector v 'vector-copy)
- (let ((len (vector-length v)))
- (unless (and (exact-integer? start)
- (exact-integer? end)
- (<= 0 start end))
- (error-from 'vector-copy "invalid index range" start end))
- (let ((result (make-vector (- end start) fill)))
- (vector-move-left! v start (min end len) result 0)
- result)))))
- (define vector-reverse-copy
- (let ()
- (define (%vector-reverse-copy vec start end)
- (let* ((len (- end start))
- (result (make-vector len)))
- (let loop ((i 0) (j (- end 1)))
- (unless (= i len)
- (vector-set! result i (vector-ref vec j))
- (loop (+ i 1) (- j 1))))
- result))
- (case-lambda
- "(vector-reverse-copy vec [start [end]]) -> vector
- Allocate a new vector whose length is END - START and fills it with
- elements from vec, taking elements from vec in reverse order starting
- at index START and stopping at index END. START defaults to 0 and END
- defaults to the value of (vector-length VEC)."
- ((vec)
- (assert-vector vec 'vector-reverse-copy)
- (%vector-reverse-copy vec 0 (vector-length vec)))
- ((vec start)
- (assert-vector vec 'vector-reverse-copy)
- (let ((len (vector-length vec)))
- (assert-valid-start start len 'vector-reverse-copy)
- (%vector-reverse-copy vec start len)))
- ((vec start end)
- (assert-vector vec 'vector-reverse-copy)
- (let ((len (vector-length vec)))
- (assert-valid-range start end len 'vector-reverse-copy)
- (%vector-reverse-copy vec start end))))))
- (define (%vector-concatenate vs)
- (let* ((result-len (let loop ((vs vs) (len 0))
- (if (null? vs)
- len
- (loop (cdr vs) (+ len (vector-length (car vs)))))))
- (result (make-vector result-len)))
- (let loop ((vs vs) (pos 0))
- (unless (null? vs)
- (let* ((v (car vs))
- (len (vector-length v)))
- (vector-move-left! v 0 len result pos)
- (loop (cdr vs) (+ pos len)))))
- result))
- (define vector-append
- (case-lambda
- "(vector-append vec ...) -> vector
- Return a newly allocated vector that contains all elements in order
- from the subsequent locations in VEC ..."
- (() (vector))
- ((v)
- (assert-vector v 'vector-append)
- (guile-vector-copy v))
- ((v1 v2)
- (assert-vector v1 'vector-append)
- (assert-vector v2 'vector-append)
- (let ((len1 (vector-length v1))
- (len2 (vector-length v2)))
- (let ((result (make-vector (+ len1 len2))))
- (vector-move-left! v1 0 len1 result 0)
- (vector-move-left! v2 0 len2 result len1)
- result)))
- (vs
- (assert-vectors vs 'vector-append)
- (%vector-concatenate vs))))
- (define (vector-concatenate vs)
- "(vector-concatenate list-of-vectors) -> vector
- Append each vector in LIST-OF-VECTORS. Equivalent to:
- (apply vector-append LIST-OF-VECTORS)"
- (assert-vectors vs 'vector-concatenate)
- (%vector-concatenate vs))
- (define (vector-empty? vec)
- "(vector-empty? vec) -> boolean
- Return true if VEC is empty, i.e. its length is 0, and false if not."
- (assert-vector vec 'vector-empty?)
- (zero? (vector-length vec)))
- (define vector=
- (let ()
- (define (all-of-length? len vs)
- (or (null? vs)
- (and (= len (vector-length (car vs)))
- (all-of-length? len (cdr vs)))))
- (define (=up-to? i elt=? v1 v2)
- (or (negative? i)
- (let ((x1 (vector-ref v1 i))
- (x2 (vector-ref v2 i)))
- (and (or (eq? x1 x2) (elt=? x1 x2))
- (=up-to? (- i 1) elt=? v1 v2)))))
- (case-lambda
- "(vector= elt=? vec ...) -> boolean
- Return true if the vectors VEC ... have equal lengths and equal
- elements according to ELT=?. ELT=? is always applied to two
- arguments. Element comparison must be consistent with eq?, in the
- following sense: if (eq? a b) returns true, then (elt=? a b) must also
- return true. The order in which comparisons are performed is
- unspecified."
- ((elt=?)
- (assert-procedure elt=? 'vector=)
- #t)
- ((elt=? v)
- (assert-procedure elt=? 'vector=)
- (assert-vector v 'vector=)
- #t)
- ((elt=? v1 v2)
- (assert-procedure elt=? 'vector=)
- (assert-vector v1 'vector=)
- (assert-vector v2 'vector=)
- (let ((len (vector-length v1)))
- (and (= len (vector-length v2))
- (=up-to? (- len 1) elt=? v1 v2))))
- ((elt=? v1 . vs)
- (assert-procedure elt=? 'vector=)
- (assert-vector v1 'vector=)
- (assert-vectors vs 'vector=)
- (let ((len (vector-length v1)))
- (and (all-of-length? len vs)
- (let loop ((vs vs))
- (or (null? vs)
- (and (=up-to? (- len 1) elt=? v1 (car vs))
- (loop (cdr vs)))))))))))
- (define vector-fold
- (case-lambda
- "(vector-fold kons knil vec1 vec2 ...) -> value
- The fundamental vector iterator. KONS is iterated over each index in
- all of the vectors, stopping at the end of the shortest; KONS is
- applied as (KONS i state (vector-ref VEC1 i) (vector-ref VEC2 i) ...)
- where STATE is the current state value, and I is the current index.
- The current state value begins with KNIL, and becomes whatever KONS
- returned at the respective iteration. The iteration is strictly
- left-to-right."
- ((kcons knil v)
- (assert-procedure kcons 'vector-fold)
- (assert-vector v 'vector-fold)
- (let ((len (vector-length v)))
- (let loop ((i 0) (state knil))
- (if (= i len)
- state
- (loop (+ i 1) (kcons i state (vector-ref v i)))))))
- ((kcons knil v1 v2)
- (assert-procedure kcons 'vector-fold)
- (assert-vector v1 'vector-fold)
- (assert-vector v2 'vector-fold)
- (let ((len (min (vector-length v1) (vector-length v2))))
- (let loop ((i 0) (state knil))
- (if (= i len)
- state
- (loop (+ i 1)
- (kcons i state (vector-ref v1 i) (vector-ref v2 i)))))))
- ((kcons knil . vs)
- (assert-procedure kcons 'vector-fold)
- (assert-vectors vs 'vector-fold)
- (let ((len (min-length vs)))
- (let loop ((i 0) (state knil))
- (if (= i len)
- state
- (loop (+ i 1) (apply kcons i state (vectors-ref vs i)))))))))
- (define vector-fold-right
- (case-lambda
- "(vector-fold-right kons knil vec1 vec2 ...) -> value
- The fundamental vector iterator. KONS is iterated over each index in
- all of the vectors, starting at the end of the shortest; KONS is
- applied as (KONS i state (vector-ref VEC1 i) (vector-ref VEC2 i) ...)
- where STATE is the current state value, and I is the current index.
- The current state value begins with KNIL, and becomes whatever KONS
- returned at the respective iteration. The iteration is strictly
- right-to-left."
- ((kcons knil v)
- (assert-procedure kcons 'vector-fold-right)
- (assert-vector v 'vector-fold-right)
- (let ((len (vector-length v)))
- (let loop ((i (- len 1)) (state knil))
- (if (negative? i)
- state
- (loop (- i 1) (kcons i state (vector-ref v i)))))))
- ((kcons knil v1 v2)
- (assert-procedure kcons 'vector-fold-right)
- (assert-vector v1 'vector-fold-right)
- (assert-vector v2 'vector-fold-right)
- (let ((len (min (vector-length v1) (vector-length v2))))
- (let loop ((i (- len 1)) (state knil))
- (if (negative? i)
- state
- (loop (- i 1)
- (kcons i state (vector-ref v1 i) (vector-ref v2 i)))))))
- ((kcons knil . vs)
- (assert-procedure kcons 'vector-fold-right)
- (assert-vectors vs 'vector-fold-right)
- (let ((len (min-length vs)))
- (let loop ((i (- len 1)) (state knil))
- (if (negative? i)
- state
- (loop (- i 1) (apply kcons i state (vectors-ref vs i)))))))))
- (define vector-map
- (case-lambda
- "(vector-map f vec2 vec2 ...) -> vector
- Return a new vector of the shortest size of the vector arguments.
- Each element at index i of the new vector is mapped from the old
- vectors by (F i (vector-ref VEC1 i) (vector-ref VEC2 i) ...). The
- dynamic order of application of F is unspecified."
- ((f v)
- (assert-procedure f 'vector-map)
- (assert-vector v 'vector-map)
- (let* ((len (vector-length v))
- (result (make-vector len)))
- (let loop ((i 0))
- (unless (= i len)
- (vector-set! result i (f i (vector-ref v i)))
- (loop (+ i 1))))
- result))
- ((f v1 v2)
- (assert-procedure f 'vector-map)
- (assert-vector v1 'vector-map)
- (assert-vector v2 'vector-map)
- (let* ((len (min (vector-length v1) (vector-length v2)))
- (result (make-vector len)))
- (let loop ((i 0))
- (unless (= i len)
- (vector-set! result i (f i (vector-ref v1 i) (vector-ref v2 i)))
- (loop (+ i 1))))
- result))
- ((f . vs)
- (assert-procedure f 'vector-map)
- (assert-vectors vs 'vector-map)
- (let* ((len (min-length vs))
- (result (make-vector len)))
- (let loop ((i 0))
- (unless (= i len)
- (vector-set! result i (apply f i (vectors-ref vs i)))
- (loop (+ i 1))))
- result))))
- (define vector-map!
- (case-lambda
- "(vector-map! f vec2 vec2 ...) -> unspecified
- Similar to vector-map, but rather than mapping the new elements into a
- new vector, the new mapped elements are destructively inserted into
- VEC1. The dynamic order of application of F is unspecified."
- ((f v)
- (assert-procedure f 'vector-map!)
- (assert-vector v 'vector-map!)
- (let ((len (vector-length v)))
- (let loop ((i 0))
- (unless (= i len)
- (vector-set! v i (f i (vector-ref v i)))
- (loop (+ i 1))))))
- ((f v1 v2)
- (assert-procedure f 'vector-map!)
- (assert-vector v1 'vector-map!)
- (assert-vector v2 'vector-map!)
- (let ((len (min (vector-length v1) (vector-length v2))))
- (let loop ((i 0))
- (unless (= i len)
- (vector-set! v1 i (f i (vector-ref v1 i) (vector-ref v2 i)))
- (loop (+ i 1))))))
- ((f . vs)
- (assert-procedure f 'vector-map!)
- (assert-vectors vs 'vector-map!)
- (let ((len (min-length vs))
- (v1 (car vs)))
- (let loop ((i 0))
- (unless (= i len)
- (vector-set! v1 i (apply f i (vectors-ref vs i)))
- (loop (+ i 1))))))))
- (define vector-for-each
- (case-lambda
- "(vector-for-each f vec1 vec2 ...) -> unspecified
- Call (F i VEC1[i] VEC2[i] ...) for each index i less than the length
- of the shortest vector passed. The iteration is strictly
- left-to-right."
- ((f v)
- (assert-procedure f 'vector-for-each)
- (assert-vector v 'vector-for-each)
- (let ((len (vector-length v)))
- (let loop ((i 0))
- (unless (= i len)
- (f i (vector-ref v i))
- (loop (+ i 1))))))
- ((f v1 v2)
- (assert-procedure f 'vector-for-each)
- (assert-vector v1 'vector-for-each)
- (assert-vector v2 'vector-for-each)
- (let ((len (min (vector-length v1)
- (vector-length v2))))
- (let loop ((i 0))
- (unless (= i len)
- (f i (vector-ref v1 i) (vector-ref v2 i))
- (loop (+ i 1))))))
- ((f . vs)
- (assert-procedure f 'vector-for-each)
- (assert-vectors vs 'vector-for-each)
- (let ((len (min-length vs)))
- (let loop ((i 0))
- (unless (= i len)
- (apply f i (vectors-ref vs i))
- (loop (+ i 1))))))))
- (define vector-count
- (case-lambda
- "(vector-count pred? vec1 vec2 ...) -> exact nonnegative integer
- Count the number of indices i for which (PRED? VEC1[i] VEC2[i] ...)
- returns true, where i is less than the length of the shortest vector
- passed."
- ((pred? v)
- (assert-procedure pred? 'vector-count)
- (assert-vector v 'vector-count)
- (let ((len (vector-length v)))
- (let loop ((i 0) (count 0))
- (cond ((= i len) count)
- ((pred? i (vector-ref v i))
- (loop (+ i 1) (+ count 1)))
- (else
- (loop (+ i 1) count))))))
- ((pred? v1 v2)
- (assert-procedure pred? 'vector-count)
- (assert-vector v1 'vector-count)
- (assert-vector v2 'vector-count)
- (let ((len (min (vector-length v1)
- (vector-length v2))))
- (let loop ((i 0) (count 0))
- (cond ((= i len) count)
- ((pred? i (vector-ref v1 i) (vector-ref v2 i))
- (loop (+ i 1) (+ count 1)))
- (else
- (loop (+ i 1) count))))))
- ((pred? . vs)
- (assert-procedure pred? 'vector-count)
- (assert-vectors vs 'vector-count)
- (let ((len (min-length vs)))
- (let loop ((i 0) (count 0))
- (cond ((= i len) count)
- ((apply pred? i (vectors-ref vs i))
- (loop (+ i 1) (+ count 1)))
- (else
- (loop (+ i 1) count))))))))
- (define vector-index
- (case-lambda
- "(vector-index pred? vec1 vec2 ...) -> exact nonnegative integer or #f
- Find and return the index of the first elements in VEC1 VEC2 ... that
- satisfy PRED?. If no matching element is found by the end of the
- shortest vector, return #f."
- ((pred? v)
- (assert-procedure pred? 'vector-index)
- (assert-vector v 'vector-index)
- (let ((len (vector-length v)))
- (let loop ((i 0))
- (and (< i len)
- (if (pred? (vector-ref v i))
- i
- (loop (+ i 1)))))))
- ((pred? v1 v2)
- (assert-procedure pred? 'vector-index)
- (assert-vector v1 'vector-index)
- (assert-vector v2 'vector-index)
- (let ((len (min (vector-length v1)
- (vector-length v2))))
- (let loop ((i 0))
- (and (< i len)
- (if (pred? (vector-ref v1 i)
- (vector-ref v2 i))
- i
- (loop (+ i 1)))))))
- ((pred? . vs)
- (assert-procedure pred? 'vector-index)
- (assert-vectors vs 'vector-index)
- (let ((len (min-length vs)))
- (let loop ((i 0))
- (and (< i len)
- (if (apply pred? (vectors-ref vs i))
- i
- (loop (+ i 1)))))))))
- (define vector-index-right
- (case-lambda
- "(vector-index-right pred? vec1 vec2 ...) -> exact nonnegative integer or #f
- Find and return the index of the last elements in VEC1 VEC2 ... that
- satisfy PRED?, searching from right-to-left. If no matching element
- is found before the end of the shortest vector, return #f."
- ((pred? v)
- (assert-procedure pred? 'vector-index-right)
- (assert-vector v 'vector-index-right)
- (let ((len (vector-length v)))
- (let loop ((i (- len 1)))
- (and (>= i 0)
- (if (pred? (vector-ref v i))
- i
- (loop (- i 1)))))))
- ((pred? v1 v2)
- (assert-procedure pred? 'vector-index-right)
- (assert-vector v1 'vector-index-right)
- (assert-vector v2 'vector-index-right)
- (let ((len (min (vector-length v1)
- (vector-length v2))))
- (let loop ((i (- len 1)))
- (and (>= i 0)
- (if (pred? (vector-ref v1 i)
- (vector-ref v2 i))
- i
- (loop (- i 1)))))))
- ((pred? . vs)
- (assert-procedure pred? 'vector-index-right)
- (assert-vectors vs 'vector-index-right)
- (let ((len (min-length vs)))
- (let loop ((i (- len 1)))
- (and (>= i 0)
- (if (apply pred? (vectors-ref vs i))
- i
- (loop (- i 1)))))))))
- (define vector-skip
- (case-lambda
- "(vector-skip pred? vec1 vec2 ...) -> exact nonnegative integer or #f
- Find and return the index of the first elements in VEC1 VEC2 ... that
- do not satisfy PRED?. If no matching element is found by the end of
- the shortest vector, return #f."
- ((pred? v)
- (assert-procedure pred? 'vector-skip)
- (assert-vector v 'vector-skip)
- (let ((len (vector-length v)))
- (let loop ((i 0))
- (and (< i len)
- (if (pred? (vector-ref v i))
- (loop (+ i 1))
- i)))))
- ((pred? v1 v2)
- (assert-procedure pred? 'vector-skip)
- (assert-vector v1 'vector-skip)
- (assert-vector v2 'vector-skip)
- (let ((len (min (vector-length v1)
- (vector-length v2))))
- (let loop ((i 0))
- (and (< i len)
- (if (pred? (vector-ref v1 i)
- (vector-ref v2 i))
- (loop (+ i 1))
- i)))))
- ((pred? . vs)
- (assert-procedure pred? 'vector-skip)
- (assert-vectors vs 'vector-skip)
- (let ((len (min-length vs)))
- (let loop ((i 0))
- (and (< i len)
- (if (apply pred? (vectors-ref vs i))
- (loop (+ i 1))
- i)))))))
- (define vector-skip-right
- (case-lambda
- "(vector-skip-right pred? vec1 vec2 ...) -> exact nonnegative integer or #f
- Find and return the index of the last elements in VEC1 VEC2 ... that
- do not satisfy PRED?, searching from right-to-left. If no matching
- element is found before the end of the shortest vector, return #f."
- ((pred? v)
- (assert-procedure pred? 'vector-skip-right)
- (assert-vector v 'vector-skip-right)
- (let ((len (vector-length v)))
- (let loop ((i (- len 1)))
- (and (not (negative? i))
- (if (pred? (vector-ref v i))
- (loop (- i 1))
- i)))))
- ((pred? v1 v2)
- (assert-procedure pred? 'vector-skip-right)
- (assert-vector v1 'vector-skip-right)
- (assert-vector v2 'vector-skip-right)
- (let ((len (min (vector-length v1)
- (vector-length v2))))
- (let loop ((i (- len 1)))
- (and (not (negative? i))
- (if (pred? (vector-ref v1 i)
- (vector-ref v2 i))
- (loop (- i 1))
- i)))))
- ((pred? . vs)
- (assert-procedure pred? 'vector-skip-right)
- (assert-vectors vs 'vector-skip-right)
- (let ((len (min-length vs)))
- (let loop ((i (- len 1)))
- (and (not (negative? i))
- (if (apply pred? (vectors-ref vs i))
- (loop (- i 1))
- i)))))))
- (define vector-binary-search
- (let ()
- (define (%vector-binary-search vec value cmp start end)
- (let loop ((lo start) (hi end))
- (and (< lo hi)
- (let* ((i (quotient (+ lo hi) 2))
- (x (vector-ref vec i))
- (c (cmp x value)))
- (cond ((zero? c) i)
- ((positive? c) (loop lo i))
- ((negative? c) (loop (+ i 1) hi)))))))
- (case-lambda
- "(vector-binary-search vec value cmp [start [end]]) -> exact nonnegative integer or #f
- Find and return an index of VEC between START and END whose value is
- VALUE using a binary search. If no matching element is found, return
- #f. The default START is 0 and the default END is the length of VEC.
- CMP must be a procedure of two arguments such that (CMP A B) returns
- a negative integer if A < B, a positive integer if A > B, or zero if
- A = B. The elements of VEC must be sorted in non-decreasing order
- according to CMP."
- ((vec value cmp)
- (assert-vector vec 'vector-binary-search)
- (assert-procedure cmp 'vector-binary-search)
- (%vector-binary-search vec value cmp 0 (vector-length vec)))
- ((vec value cmp start)
- (assert-vector vec 'vector-binary-search)
- (let ((len (vector-length vec)))
- (assert-valid-start start len 'vector-binary-search)
- (%vector-binary-search vec value cmp start len)))
- ((vec value cmp start end)
- (assert-vector vec 'vector-binary-search)
- (let ((len (vector-length vec)))
- (assert-valid-range start end len 'vector-binary-search)
- (%vector-binary-search vec value cmp start end))))))
- (define vector-any
- (case-lambda
- "(vector-any pred? vec1 vec2 ...) -> value or #f
- Find the first parallel set of elements from VEC1 VEC2 ... for which
- PRED? returns a true value. If such a parallel set of elements
- exists, vector-any returns the value that PRED? returned for that set
- of elements. The iteration is strictly left-to-right."
- ((pred? v)
- (assert-procedure pred? 'vector-any)
- (assert-vector v 'vector-any)
- (let ((len (vector-length v)))
- (let loop ((i 0))
- (and (< i len)
- (or (pred? (vector-ref v i))
- (loop (+ i 1)))))))
- ((pred? v1 v2)
- (assert-procedure pred? 'vector-any)
- (assert-vector v1 'vector-any)
- (assert-vector v2 'vector-any)
- (let ((len (min (vector-length v1)
- (vector-length v2))))
- (let loop ((i 0))
- (and (< i len)
- (or (pred? (vector-ref v1 i)
- (vector-ref v2 i))
- (loop (+ i 1)))))))
- ((pred? . vs)
- (assert-procedure pred? 'vector-any)
- (assert-vectors vs 'vector-any)
- (let ((len (min-length vs)))
- (let loop ((i 0))
- (and (< i len)
- (or (apply pred? (vectors-ref vs i))
- (loop (+ i 1)))))))))
- (define vector-every
- (case-lambda
- "(vector-every pred? vec1 vec2 ...) -> value or #f
- If, for every index i less than the length of the shortest vector
- argument, the set of elements VEC1[i] VEC2[i] ... satisfies PRED?,
- vector-every returns the value that PRED? returned for the last set of
- elements, at the last index of the shortest vector. The iteration is
- strictly left-to-right."
- ((pred? v)
- (assert-procedure pred? 'vector-every)
- (assert-vector v 'vector-every)
- (let ((len (vector-length v)))
- (or (zero? len)
- (let loop ((i 0))
- (let ((val (pred? (vector-ref v i)))
- (next-i (+ i 1)))
- (if (or (not val) (= next-i len))
- val
- (loop next-i)))))))
- ((pred? v1 v2)
- (assert-procedure pred? 'vector-every)
- (assert-vector v1 'vector-every)
- (assert-vector v2 'vector-every)
- (let ((len (min (vector-length v1)
- (vector-length v2))))
- (or (zero? len)
- (let loop ((i 0))
- (let ((val (pred? (vector-ref v1 i)
- (vector-ref v2 i)))
- (next-i (+ i 1)))
- (if (or (not val) (= next-i len))
- val
- (loop next-i)))))))
- ((pred? . vs)
- (assert-procedure pred? 'vector-every)
- (assert-vectors vs 'vector-every)
- (let ((len (min-length vs)))
- (or (zero? len)
- (let loop ((i 0))
- (let ((val (apply pred? (vectors-ref vs i)))
- (next-i (+ i 1)))
- (if (or (not val) (= next-i len))
- val
- (loop next-i)))))))))
- (define (vector-swap! vec i j)
- "(vector-swap! vec i j) -> unspecified
- Swap the values of the locations in VEC at I and J."
- (assert-vector vec 'vector-swap!)
- (let ((len (vector-length vec)))
- (assert-valid-index i len 'vector-swap!)
- (assert-valid-index j len 'vector-swap!)
- (let ((tmp (vector-ref vec i)))
- (vector-set! vec i (vector-ref vec j))
- (vector-set! vec j tmp))))
- (define (%vector-reverse! vec start end)
- (let loop ((i start) (j (- end 1)))
- (when (< i j)
- (let ((tmp (vector-ref vec i)))
- (vector-set! vec i (vector-ref vec j))
- (vector-set! vec j tmp)
- (loop (+ i 1) (- j 1))))))
- (define vector-reverse!
- (case-lambda
- "(vector-reverse! vec [start [end]]) -> unspecified
- Destructively reverse the contents of VEC between START and END.
- START defaults to 0 and END defaults to the length of VEC."
- ((vec)
- (assert-vector vec 'vector-reverse!)
- (%vector-reverse! vec 0 (vector-length vec)))
- ((vec start)
- (assert-vector vec 'vector-reverse!)
- (let ((len (vector-length vec)))
- (assert-valid-start start len 'vector-reverse!)
- (%vector-reverse! vec start len)))
- ((vec start end)
- (assert-vector vec 'vector-reverse!)
- (let ((len (vector-length vec)))
- (assert-valid-range start end len 'vector-reverse!)
- (%vector-reverse! vec start end)))))
- (define-syntax-rule (define-vector-copier! copy! docstring inner-proc)
- (define copy!
- (let ((%copy! inner-proc))
- (case-lambda
- docstring
- ((target tstart source)
- (assert-vector target 'copy!)
- (assert-vector source 'copy!)
- (let ((tlen (vector-length target))
- (slen (vector-length source)))
- (assert-valid-start tstart tlen 'copy!)
- (unless (>= tlen (+ tstart slen))
- (error-from 'copy! "would write past end of target"))
- (%copy! target tstart source 0 slen)))
- ((target tstart source sstart)
- (assert-vector target 'copy!)
- (assert-vector source 'copy!)
- (let ((tlen (vector-length target))
- (slen (vector-length source)))
- (assert-valid-start tstart tlen 'copy!)
- (assert-valid-start sstart slen 'copy!)
- (unless (>= tlen (+ tstart (- slen sstart)))
- (error-from 'copy! "would write past end of target"))
- (%copy! target tstart source sstart slen)))
- ((target tstart source sstart send)
- (assert-vector target 'copy!)
- (assert-vector source 'copy!)
- (let ((tlen (vector-length target))
- (slen (vector-length source)))
- (assert-valid-start tstart tlen 'copy!)
- (assert-valid-range sstart send slen 'copy!)
- (unless (>= tlen (+ tstart (- send sstart)))
- (error-from 'copy! "would write past end of target"))
- (%copy! target tstart source sstart send)))))))
- (define-vector-copier! vector-copy!
- "(vector-copy! target tstart source [sstart [send]]) -> unspecified
- Copy a block of elements from SOURCE to TARGET, both of which must be
- vectors, starting in TARGET at TSTART and starting in SOURCE at
- SSTART, ending when SEND - SSTART elements have been copied. It is an
- error for TARGET to have a length less than TSTART + (SEND - SSTART).
- SSTART defaults to 0 and SEND defaults to the length of SOURCE."
- (lambda (target tstart source sstart send)
- (if (< tstart sstart)
- (vector-move-left! source sstart send target tstart)
- (vector-move-right! source sstart send target tstart))))
- (define-vector-copier! vector-reverse-copy!
- "(vector-reverse-copy! target tstart source [sstart [send]]) -> unspecified
- Like vector-copy!, but copy the elements in the reverse order. It is
- an error if TARGET and SOURCE are identical vectors and the TARGET and
- SOURCE ranges overlap; however, if TSTART = SSTART,
- vector-reverse-copy! behaves as (vector-reverse! TARGET TSTART SEND)
- would."
- (lambda (target tstart source sstart send)
- (if (and (eq? target source) (= tstart sstart))
- (%vector-reverse! target sstart send)
- (let loop ((i tstart) (j (- send 1)))
- (when (>= j sstart)
- (vector-set! target i (vector-ref source j))
- (loop (+ i 1) (- j 1)))))))
- (define vector->list
- (let ()
- (define (%vector->list vec start end)
- (let loop ((i (- end 1))
- (result '()))
- (if (< i start)
- result
- (loop (- i 1) (cons (vector-ref vec i) result)))))
- (case-lambda
- "(vector->list vec [start [end]]) -> proper-list
- Return a newly allocated list containing the elements in VEC between
- START and END. START defaults to 0 and END defaults to the length of
- VEC."
- ((vec)
- (assert-vector vec 'vector->list)
- (%vector->list vec 0 (vector-length vec)))
- ((vec start)
- (assert-vector vec 'vector->list)
- (let ((len (vector-length vec)))
- (assert-valid-start start len 'vector->list)
- (%vector->list vec start len)))
- ((vec start end)
- (assert-vector vec 'vector->list)
- (let ((len (vector-length vec)))
- (assert-valid-range start end len 'vector->list)
- (%vector->list vec start end))))))
- (define reverse-vector->list
- (let ()
- (define (%reverse-vector->list vec start end)
- (let loop ((i start)
- (result '()))
- (if (>= i end)
- result
- (loop (+ i 1) (cons (vector-ref vec i) result)))))
- (case-lambda
- "(reverse-vector->list vec [start [end]]) -> proper-list
- Return a newly allocated list containing the elements in VEC between
- START and END in reverse order. START defaults to 0 and END defaults
- to the length of VEC."
- ((vec)
- (assert-vector vec 'reverse-vector->list)
- (%reverse-vector->list vec 0 (vector-length vec)))
- ((vec start)
- (assert-vector vec 'reverse-vector->list)
- (let ((len (vector-length vec)))
- (assert-valid-start start len 'reverse-vector->list)
- (%reverse-vector->list vec start len)))
- ((vec start end)
- (assert-vector vec 'reverse-vector->list)
- (let ((len (vector-length vec)))
- (assert-valid-range start end len 'reverse-vector->list)
- (%reverse-vector->list vec start end))))))
- ;; TODO: change to use 'case-lambda' and improve error checking.
- (define* (list->vector lst #:optional (start 0) (end (length lst)))
- "(list->vector proper-list [start [end]]) -> vector
- Return a newly allocated vector of the elements from PROPER-LIST with
- indices between START and END. START defaults to 0 and END defaults
- to the length of PROPER-LIST."
- (let* ((len (- end start))
- (result (make-vector len)))
- (let loop ((i 0) (lst (drop lst start)))
- (if (= i len)
- result
- (begin (vector-set! result i (car lst))
- (loop (+ i 1) (cdr lst)))))))
- ;; TODO: change to use 'case-lambda' and improve error checking.
- (define* (reverse-list->vector lst #:optional (start 0) (end (length lst)))
- "(reverse-list->vector proper-list [start [end]]) -> vector
- Return a newly allocated vector of the elements from PROPER-LIST with
- indices between START and END, in reverse order. START defaults to 0
- and END defaults to the length of PROPER-LIST."
- (let* ((len (- end start))
- (result (make-vector len)))
- (let loop ((i (- len 1)) (lst (drop lst start)))
- (if (negative? i)
- result
- (begin (vector-set! result i (car lst))
- (loop (- i 1) (cdr lst)))))))
|