1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222 |
- ;;; -*- mode: scheme; coding: utf-8; -*-
- ;;; Copyright (C) 2010 Free Software Foundation, Inc.
- ;;; Copyright (c) 2005 Sebastian Egner and Jens Axel S{\o}gaard.
- ;;;
- ;;; This code is based on the file examples.scm in the reference
- ;;; implementation of SRFI-67, provided under the following license:
- ;;;
- ;;; Permission is hereby granted, free of charge, to any person obtaining
- ;;; a copy of this software and associated documentation files (the
- ;;; ``Software''), to deal in the Software without restriction, including
- ;;; without limitation the rights to use, copy, modify, merge, publish,
- ;;; distribute, sublicense, and/or sell copies of the Software, and to
- ;;; permit persons to whom the Software is furnished to do so, subject to
- ;;; the following conditions:
- ;;;
- ;;; The above copyright notice and this permission notice shall be
- ;;; included in all copies or substantial portions of the Software.
- ;;;
- ;;; THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
- ;;; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- ;;; MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- ;;; NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
- ;;; LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- ;;; OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
- ;;; WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- ;;;
- (define-module (test-srfi-67)
- #:use-module (test-suite lib)
- #:use-module (srfi srfi-42)
- #:use-module (srfi srfi-67))
- ; =============================================================================
- ; Test engine
- ; ===========
- ;
- ; We use an extended version of the checker of SRFI-42 (with
- ; Felix' reduction on codesize) for running a batch of tests for
- ; the various procedures of 'compare.scm'. Moreover, we use the
- ; comprehensions of SRFI-42 to generate examples systematically.
- ; (my-check expr => desired-result)
- ; evaluates expr and compares the value with desired-result.
- (define-syntax my-check
- (syntax-rules (=>)
- ((my-check expr => desired-result)
- (my-check-proc 'expr (lambda () expr) desired-result))))
- (define (my-check-proc expr thunk desired-result)
- (pass-if expr (equal? (thunk) desired-result)))
- ; (my-check-ec <qualifier>* <ok?> <expr>)
- ; runs (every?-ec <qualifier>* <ok?>), counting the times <ok?>
- ; is evaluated as a correct example, and stopping at the first
- ; counter example for which <expr> provides the argument.
- (define-syntax my-check-ec
- (syntax-rules (nested)
- ((my-check-ec (nested q1 ...) q etc1 etc2 etc ...)
- (my-check-ec (nested q1 ... q) etc1 etc2 etc ...))
- ((my-check-ec q1 q2 etc1 etc2 etc ...)
- (my-check-ec (nested q1 q2) etc1 etc2 etc ...))
- ((my-check-ec ok? expr)
- (my-check-ec (nested) ok? expr))
- ((my-check-ec (nested q ...) ok? expr)
- (my-check-ec-proc
- '(every?-ec q ... ok?)
- (lambda ()
- (first-ec
- 'ok
- (nested q ...)
- (:let ok ok?)
- (if (not ok))
- (list expr)))
- 'expr))
- ((my-check-ec q ok? expr)
- (my-check-ec (nested q) ok? expr))))
- (define (my-check-ec-proc expr thunk arg-counter-example)
- (pass-if expr (eqv? (thunk) 'ok)))
- ; =============================================================================
- ; Abstractions etc.
- ; =================
- (define ci integer-compare) ; very frequently used
- ; (result-ok? actual desired)
- ; tests if actual and desired specify the same ordering.
- (define (result-ok? actual desired)
- (eqv? actual desired))
- ; (my-check-compare compare increasing-elements)
- ; evaluates (compare x y) for x, y in increasing-elements
- ; and checks the result against -1, 0, or 1 depending on
- ; the position of x and y in the list increasing-elements.
- (define-syntax my-check-compare
- (syntax-rules ()
- ((my-check-compare compare increasing-elements)
- (my-check-ec
- (:list x (index ix) increasing-elements)
- (:list y (index iy) increasing-elements)
- (result-ok? (compare x y) (ci ix iy))
- (list x y)))))
- ; sorted lists
- (define my-booleans '(#f #t))
- (define my-chars '(#\a #\b #\c))
- (define my-chars-ci '(#\a #\B #\c #\D))
- (define my-strings '("" "a" "aa" "ab" "b" "ba" "bb"))
- (define my-strings-ci '("" "a" "aA" "Ab" "B" "bA" "BB"))
- (define my-symbols '(a aa ab b ba bb))
- (define my-reals
- (append-ec (:range xn -6 7)
- (:let x (/ xn 3))
- (list x (+ x (exact->inexact (/ 1 100))))))
- (define my-rationals
- (list-ec (:list x my-reals)
- (and (exact? x) (rational? x))
- x))
- (define my-integers
- (list-ec (:list x my-reals)
- (if (and (exact? x) (integer? x)))
- x))
- (define my-complexes
- (list-ec (:list re-x my-reals)
- (if (inexact? re-x))
- (:list im-x my-reals)
- (if (inexact? im-x))
- (make-rectangular re-x im-x)))
- (define my-lists
- '(() (1) (1 1) (1 2) (2) (2 1) (2 2)))
- (define my-vector-as-lists
- (map list->vector my-lists))
- (define my-list-as-vectors
- '(() (1) (2) (1 1) (1 2) (2 1) (2 2)))
- (define my-vectors
- (map list->vector my-list-as-vectors))
- (define my-null-or-pairs
- '(()
- (1) (1 1) (1 2) (1 . 1) (1 . 2)
- (2) (2 1) (2 2) (2 . 1) (2 . 2)))
- (define my-objects
- (append my-null-or-pairs
- my-booleans
- my-chars
- my-strings
- my-symbols
- my-integers
- my-vectors))
- ; =============================================================================
- ; The checks
- ; ==========
- (define (check:if3)
-
- ; basic functionality
-
- (my-check (if3 -1 'n 'z 'p) => 'n)
- (my-check (if3 0 'n 'z 'p) => 'z)
- (my-check (if3 1 'n 'z 'p) => 'p)
-
- ; check arguments are evaluated only once
-
- (my-check
- (let ((x -1))
- (if3 (let ((x0 x)) (set! x (+ x 1)) x0) 'n 'z 'p))
- => 'n)
-
- (my-check
- (let ((x -1) (y 0))
- (if3 (let ((x0 x)) (set! x (+ x 1)) x0)
- (begin (set! y (+ y 1)) y)
- (begin (set! y (+ y 10)) y)
- (begin (set! y (+ y 100)) y)))
- => 1)
-
- (my-check
- (let ((x 0) (y 0))
- (if3 (let ((x0 x)) (set! x (+ x 1)) x0)
- (begin (set! y (+ y 1)) y)
- (begin (set! y (+ y 10)) y)
- (begin (set! y (+ y 100)) y)))
- => 10)
-
- (my-check
- (let ((x 1) (y 0))
- (if3 (let ((x0 x)) (set! x (+ x 1)) x0)
- (begin (set! y (+ y 1)) y)
- (begin (set! y (+ y 10)) y)
- (begin (set! y (+ y 100)) y)))
- => 100)
-
- ) ; check:if3
- (define-syntax my-check-if2
- (syntax-rules ()
- ((my-check-if2 if-rel? rel)
- (begin
- ; check result
- (my-check (if-rel? -1 'yes 'no) => (if (rel -1 0) 'yes 'no))
- (my-check (if-rel? 0 'yes 'no) => (if (rel 0 0) 'yes 'no))
- (my-check (if-rel? 1 'yes 'no) => (if (rel 1 0) 'yes 'no))
-
- ; check result of 'laterally challenged if'
- (my-check (let ((x #f)) (if-rel? -1 (set! x #t)) x) => (rel -1 0))
- (my-check (let ((x #f)) (if-rel? 0 (set! x #t)) x) => (rel 0 0))
- (my-check (let ((x #f)) (if-rel? 1 (set! x #t)) x) => (rel 1 0))
-
- ; check that <c> is evaluated exactly once
- (my-check (let ((n 0)) (if-rel? (begin (set! n (+ n 1)) -1) #t #f) n) => 1)
- (my-check (let ((n 0)) (if-rel? (begin (set! n (+ n 1)) 0) #t #f) n) => 1)
- (my-check (let ((n 0)) (if-rel? (begin (set! n (+ n 1)) 1) #t #f) n) => 1)
- (my-check (let ((n 0)) (if-rel? (begin (set! n (+ n 1)) -1) #t) n) => 1)
- (my-check (let ((n 0)) (if-rel? (begin (set! n (+ n 1)) 0) #t) n) => 1)
- (my-check (let ((n 0)) (if-rel? (begin (set! n (+ n 1)) 1) #t) n) => 1)
- ))))
- (define (check:ifs)
-
- (my-check-if2 if=? =)
- (my-check-if2 if<? <)
- (my-check-if2 if>? >)
- (my-check-if2 if<=? <=)
- (my-check-if2 if>=? >=)
- (my-check-if2 if-not=? (lambda (x y) (not (= x y))))
-
- ) ; check:if2
- ; <? etc. macros
- (define-syntax my-check-chain2
- (syntax-rules ()
- ((my-check-chain2 rel? rel)
- (begin
- ; all chains of length 2
- (my-check (rel? ci 0 0) => (rel 0 0))
- (my-check (rel? ci 0 1) => (rel 0 1))
- (my-check (rel? ci 1 0) => (rel 1 0))
-
- ; using default-compare
- (my-check (rel? 0 0) => (rel 0 0))
- (my-check (rel? 0 1) => (rel 0 1))
- (my-check (rel? 1 0) => (rel 1 0))
- ; as a combinator
- (my-check ((rel? ci) 0 0) => (rel 0 0))
- (my-check ((rel? ci) 0 1) => (rel 0 1))
- (my-check ((rel? ci) 1 0) => (rel 1 0))
- ; using default-compare as a combinator
- (my-check ((rel?) 0 0) => (rel 0 0))
- (my-check ((rel?) 0 1) => (rel 0 1))
- (my-check ((rel?) 1 0) => (rel 1 0))
- ))))
- (define (list->set xs) ; xs a list of integers
- (if (null? xs)
- '()
- (let ((max-xs
- (let max-without-apply ((m 1) (xs xs))
- (if (null? xs)
- m
- (max-without-apply (max m (car xs)) (cdr xs))))))
- (let ((in-xs? (make-vector (+ max-xs 1) #f)))
- (do-ec (:list x xs) (vector-set! in-xs? x #t))
- (list-ec (:vector in? (index x) in-xs?)
- (if in?)
- x)))))
- (define-syntax arguments-used ; set of arguments (integer, >=0) used in compare
- (syntax-rules ()
- ((arguments-used (rel1/rel2 compare arg ...))
- (let ((used '()))
- (rel1/rel2 (lambda (x y)
- (set! used (cons x (cons y used)))
- (compare x y))
- arg ...)
- (list->set used)))))
- (define-syntax my-check-chain3
- (syntax-rules ()
- ((my-check-chain3 rel1/rel2? rel1 rel2)
- (begin
- ; all chains of length 3
- (my-check (rel1/rel2? ci 0 0 0) => (and (rel1 0 0) (rel2 0 0)))
- (my-check (rel1/rel2? ci 0 0 1) => (and (rel1 0 0) (rel2 0 1)))
- (my-check (rel1/rel2? ci 0 1 0) => (and (rel1 0 1) (rel2 1 0)))
- (my-check (rel1/rel2? ci 1 0 0) => (and (rel1 1 0) (rel2 0 0)))
- (my-check (rel1/rel2? ci 1 1 0) => (and (rel1 1 1) (rel2 1 0)))
- (my-check (rel1/rel2? ci 1 0 1) => (and (rel1 1 0) (rel2 0 1)))
- (my-check (rel1/rel2? ci 0 1 1) => (and (rel1 0 1) (rel2 1 1)))
- (my-check (rel1/rel2? ci 0 1 2) => (and (rel1 0 1) (rel2 1 2)))
- (my-check (rel1/rel2? ci 0 2 1) => (and (rel1 0 2) (rel2 2 1)))
- (my-check (rel1/rel2? ci 1 2 0) => (and (rel1 1 2) (rel2 2 0)))
- (my-check (rel1/rel2? ci 1 0 2) => (and (rel1 1 0) (rel2 0 2)))
- (my-check (rel1/rel2? ci 2 0 1) => (and (rel1 2 0) (rel2 0 1)))
- (my-check (rel1/rel2? ci 2 1 0) => (and (rel1 2 1) (rel2 1 0)))
-
- ; using default-compare
- (my-check (rel1/rel2? 0 0 0) => (and (rel1 0 0) (rel2 0 0)))
- (my-check (rel1/rel2? 0 0 1) => (and (rel1 0 0) (rel2 0 1)))
- (my-check (rel1/rel2? 0 1 0) => (and (rel1 0 1) (rel2 1 0)))
- (my-check (rel1/rel2? 1 0 0) => (and (rel1 1 0) (rel2 0 0)))
- (my-check (rel1/rel2? 1 1 0) => (and (rel1 1 1) (rel2 1 0)))
- (my-check (rel1/rel2? 1 0 1) => (and (rel1 1 0) (rel2 0 1)))
- (my-check (rel1/rel2? 0 1 1) => (and (rel1 0 1) (rel2 1 1)))
- (my-check (rel1/rel2? 0 1 2) => (and (rel1 0 1) (rel2 1 2)))
- (my-check (rel1/rel2? 0 2 1) => (and (rel1 0 2) (rel2 2 1)))
- (my-check (rel1/rel2? 1 2 0) => (and (rel1 1 2) (rel2 2 0)))
- (my-check (rel1/rel2? 1 0 2) => (and (rel1 1 0) (rel2 0 2)))
- (my-check (rel1/rel2? 2 0 1) => (and (rel1 2 0) (rel2 0 1)))
- (my-check (rel1/rel2? 2 1 0) => (and (rel1 2 1) (rel2 1 0)))
-
- ; as a combinator
- (my-check ((rel1/rel2? ci) 0 0 0) => (and (rel1 0 0) (rel2 0 0)))
- (my-check ((rel1/rel2? ci) 0 0 1) => (and (rel1 0 0) (rel2 0 1)))
- (my-check ((rel1/rel2? ci) 0 1 0) => (and (rel1 0 1) (rel2 1 0)))
- (my-check ((rel1/rel2? ci) 1 0 0) => (and (rel1 1 0) (rel2 0 0)))
- (my-check ((rel1/rel2? ci) 1 1 0) => (and (rel1 1 1) (rel2 1 0)))
- (my-check ((rel1/rel2? ci) 1 0 1) => (and (rel1 1 0) (rel2 0 1)))
- (my-check ((rel1/rel2? ci) 0 1 1) => (and (rel1 0 1) (rel2 1 1)))
- (my-check ((rel1/rel2? ci) 0 1 2) => (and (rel1 0 1) (rel2 1 2)))
- (my-check ((rel1/rel2? ci) 0 2 1) => (and (rel1 0 2) (rel2 2 1)))
- (my-check ((rel1/rel2? ci) 1 2 0) => (and (rel1 1 2) (rel2 2 0)))
- (my-check ((rel1/rel2? ci) 1 0 2) => (and (rel1 1 0) (rel2 0 2)))
- (my-check ((rel1/rel2? ci) 2 0 1) => (and (rel1 2 0) (rel2 0 1)))
- (my-check ((rel1/rel2? ci) 2 1 0) => (and (rel1 2 1) (rel2 1 0)))
- ; as a combinator using default-compare
- (my-check ((rel1/rel2?) 0 0 0) => (and (rel1 0 0) (rel2 0 0)))
- (my-check ((rel1/rel2?) 0 0 1) => (and (rel1 0 0) (rel2 0 1)))
- (my-check ((rel1/rel2?) 0 1 0) => (and (rel1 0 1) (rel2 1 0)))
- (my-check ((rel1/rel2?) 1 0 0) => (and (rel1 1 0) (rel2 0 0)))
- (my-check ((rel1/rel2?) 1 1 0) => (and (rel1 1 1) (rel2 1 0)))
- (my-check ((rel1/rel2?) 1 0 1) => (and (rel1 1 0) (rel2 0 1)))
- (my-check ((rel1/rel2?) 0 1 1) => (and (rel1 0 1) (rel2 1 1)))
- (my-check ((rel1/rel2?) 0 1 2) => (and (rel1 0 1) (rel2 1 2)))
- (my-check ((rel1/rel2?) 0 2 1) => (and (rel1 0 2) (rel2 2 1)))
- (my-check ((rel1/rel2?) 1 2 0) => (and (rel1 1 2) (rel2 2 0)))
- (my-check ((rel1/rel2?) 1 0 2) => (and (rel1 1 0) (rel2 0 2)))
- (my-check ((rel1/rel2?) 2 0 1) => (and (rel1 2 0) (rel2 0 1)))
- (my-check ((rel1/rel2?) 2 1 0) => (and (rel1 2 1) (rel2 1 0)))
-
- ; test if all arguments are type checked
- (my-check (arguments-used (rel1/rel2? ci 0 1 2)) => '(0 1 2))
- (my-check (arguments-used (rel1/rel2? ci 0 2 1)) => '(0 1 2))
- (my-check (arguments-used (rel1/rel2? ci 1 2 0)) => '(0 1 2))
- (my-check (arguments-used (rel1/rel2? ci 1 0 2)) => '(0 1 2))
- (my-check (arguments-used (rel1/rel2? ci 2 0 1)) => '(0 1 2))
- (my-check (arguments-used (rel1/rel2? ci 2 1 0)) => '(0 1 2))
- ))))
- (define-syntax my-check-chain
- (syntax-rules ()
- ((my-check-chain chain-rel? rel)
- (begin
- ; the chain of length 0
- (my-check (chain-rel? ci) => #t)
-
- ; a chain of length 1
- (my-check (chain-rel? ci 0) => #t)
-
- ; all chains of length 2
- (my-check (chain-rel? ci 0 0) => (rel 0 0))
- (my-check (chain-rel? ci 0 1) => (rel 0 1))
- (my-check (chain-rel? ci 1 0) => (rel 1 0))
-
- ; all chains of length 3
- (my-check (chain-rel? ci 0 0 0) => (rel 0 0 0))
- (my-check (chain-rel? ci 0 0 1) => (rel 0 0 1))
- (my-check (chain-rel? ci 0 1 0) => (rel 0 1 0))
- (my-check (chain-rel? ci 1 0 0) => (rel 1 0 0))
- (my-check (chain-rel? ci 1 1 0) => (rel 1 1 0))
- (my-check (chain-rel? ci 1 0 1) => (rel 1 0 1))
- (my-check (chain-rel? ci 0 1 1) => (rel 0 1 1))
- (my-check (chain-rel? ci 0 1 2) => (rel 0 1 2))
- (my-check (chain-rel? ci 0 2 1) => (rel 0 2 1))
- (my-check (chain-rel? ci 1 2 0) => (rel 1 2 0))
- (my-check (chain-rel? ci 1 0 2) => (rel 1 0 2))
- (my-check (chain-rel? ci 2 0 1) => (rel 2 0 1))
- (my-check (chain-rel? ci 2 1 0) => (rel 2 1 0))
-
- ; check if all arguments are used
- (my-check (arguments-used (chain-rel? ci 0)) => '(0))
- (my-check (arguments-used (chain-rel? ci 0 1)) => '(0 1))
- (my-check (arguments-used (chain-rel? ci 1 0)) => '(0 1))
- (my-check (arguments-used (chain-rel? ci 0 1 2)) => '(0 1 2))
- (my-check (arguments-used (chain-rel? ci 0 2 1)) => '(0 1 2))
- (my-check (arguments-used (chain-rel? ci 1 2 0)) => '(0 1 2))
- (my-check (arguments-used (chain-rel? ci 1 0 2)) => '(0 1 2))
- (my-check (arguments-used (chain-rel? ci 2 0 1)) => '(0 1 2))
- (my-check (arguments-used (chain-rel? ci 2 1 0)) => '(0 1 2))
- ))))
- (define (check:predicates-from-compare)
-
- (my-check-chain2 =? =)
- (my-check-chain2 <? <)
- (my-check-chain2 >? >)
- (my-check-chain2 <=? <=)
- (my-check-chain2 >=? >=)
- (my-check-chain2 not=? (lambda (x y) (not (= x y))))
-
- (my-check-chain3 </<? < <)
- (my-check-chain3 </<=? < <=)
- (my-check-chain3 <=/<? <= <)
- (my-check-chain3 <=/<=? <= <=)
-
- (my-check-chain3 >/>? > >)
- (my-check-chain3 >/>=? > >=)
- (my-check-chain3 >=/>? >= >)
- (my-check-chain3 >=/>=? >= >=)
-
- (my-check-chain chain=? =)
- (my-check-chain chain<? <)
- (my-check-chain chain>? >)
- (my-check-chain chain<=? <=)
- (my-check-chain chain>=? >=)
-
- ) ; check:predicates-from-compare
- ; pairwise-not=?
- (define pairwise-not=?:long-sequences
- (let ()
-
- (define (extremal-pivot-sequence r)
- ; The extremal pivot sequence of order r is a
- ; permutation of {0..2^(r+1)-2} such that the
- ; middle element is minimal, and this property
- ; holds recursively for each binary subdivision.
- ; This sequence exposes a naive implementation of
- ; pairwise-not=? chosing the middle element as pivot.
- (if (zero? r)
- '(0)
- (let* ((s (extremal-pivot-sequence (- r 1)))
- (ns (length s)))
- (append (list-ec (:list x s) (+ x 1))
- '(0)
- (list-ec (:list x s) (+ x ns 1))))))
-
- (list (list-ec (: i 4096) i)
- (list-ec (: i 4097 0 -1) i)
- (list-ec (: i 4099) (modulo (* 1003 i) 4099))
- (extremal-pivot-sequence 11))))
- (define pairwise-not=?:short-sequences
- (let ()
-
- (define (combinations/repeats n l)
- ; return list of all sublists of l of size n,
- ; the order of the elements occur in the sublists
- ; of the output is the same as in the input
- (let ((len (length l)))
- (cond
- ((= n 0) '())
- ((= n 1) (map list l))
- ((= len 1) (do ((r '() (cons (car l) r))
- (i n (- i 1)))
- ((= i 0) (list r))))
- (else (append (combinations/repeats n (cdr l))
- (map (lambda (c) (cons (car l) c))
- (combinations/repeats (- n 1) l)))))))
-
- (define (permutations l)
- ; return a list of all permutations of l
- (let ((len (length l)))
- (cond
- ((= len 0) '(()))
- ((= len 1) (list l))
- (else (apply append
- (map (lambda (p) (insert-every-where (car l) p))
- (permutations (cdr l))))))))
-
- (define (insert-every-where x xs)
- (let loop ((result '()) (before '()) (after xs))
- (let ((new (append before (cons x after))))
- (cond
- ((null? after) (cons new result))
- (else (loop (cons new result)
- (append before (list (car after)))
- (cdr after)))))))
-
- (define (sequences n max)
- (apply append
- (map permutations
- (combinations/repeats n (list-ec (: i max) i)))))
-
- (append-ec (: n 5) (sequences n 5))))
- (define (colliding-compare x y)
- (ci (modulo x 3) (modulo y 3)))
- (define (naive-pairwise-not=? compare . xs)
- (let ((xs (list->vector xs)))
- (every?-ec (:range i (- (vector-length xs) 1))
- (:let xs-i (vector-ref xs i))
- (:range j (+ i 1) (vector-length xs))
- (:let xs-j (vector-ref xs j))
- (not=? compare xs-i xs-j))))
- (define (check:pairwise-not=?)
-
- ; 0-ary, 1-ary
- (my-check (pairwise-not=? ci) => #t)
- (my-check (pairwise-not=? ci 0) => #t)
-
- ; 2-ary
- (my-check (pairwise-not=? ci 0 0) => #f)
- (my-check (pairwise-not=? ci 0 1) => #t)
- (my-check (pairwise-not=? ci 1 0) => #t)
-
- ; 3-ary
- (my-check (pairwise-not=? ci 0 0 0) => #f)
- (my-check (pairwise-not=? ci 0 0 1) => #f)
- (my-check (pairwise-not=? ci 0 1 0) => #f)
- (my-check (pairwise-not=? ci 1 0 0) => #f)
- (my-check (pairwise-not=? ci 1 1 0) => #f)
- (my-check (pairwise-not=? ci 1 0 1) => #f)
- (my-check (pairwise-not=? ci 0 1 1) => #f)
- (my-check (pairwise-not=? ci 0 1 2) => #t)
- (my-check (pairwise-not=? ci 0 2 1) => #t)
- (my-check (pairwise-not=? ci 1 2 0) => #t)
- (my-check (pairwise-not=? ci 1 0 2) => #t)
- (my-check (pairwise-not=? ci 2 0 1) => #t)
- (my-check (pairwise-not=? ci 2 1 0) => #t)
-
- ; n-ary, n large: [0..n-1], [n,n-1..1], 5^[0..96] mod 97
- (my-check (apply pairwise-not=? ci (list-ec (: i 10) i)) => #t)
- (my-check (apply pairwise-not=? ci (list-ec (: i 100) i)) => #t)
- (my-check (apply pairwise-not=? ci (list-ec (: i 1000) i)) => #t)
-
- (my-check (apply pairwise-not=? ci (list-ec (: i 10 0 -1) i)) => #t)
- (my-check (apply pairwise-not=? ci (list-ec (: i 100 0 -1) i)) => #t)
- (my-check (apply pairwise-not=? ci (list-ec (: i 1000 0 -1) i)) => #t)
-
- (my-check (apply pairwise-not=? ci
- (list-ec (: i 97) (modulo (* 5 i) 97)))
- => #t)
-
- ; bury another copy of 72 = 5^50 mod 97 in 5^[0..96] mod 97
- (my-check (apply pairwise-not=? ci
- (append (list-ec (: i 0 23) (modulo (* 5 i) 97))
- '(72)
- (list-ec (: i 23 97) (modulo (* 5 i) 97))))
- => #f)
- (my-check (apply pairwise-not=? ci
- (append (list-ec (: i 0 75) (modulo (* 5 i) 97))
- '(72)
- (list-ec (: i 75 97) (modulo (* 5 i) 97))))
- => #f)
-
- ; check if all arguments are used
- (my-check (arguments-used (pairwise-not=? ci 0)) => '(0))
- (my-check (arguments-used (pairwise-not=? ci 0 1)) => '(0 1))
- (my-check (arguments-used (pairwise-not=? ci 1 0)) => '(0 1))
- (my-check (arguments-used (pairwise-not=? ci 0 2 1)) => '(0 1 2))
- (my-check (arguments-used (pairwise-not=? ci 1 2 0)) => '(0 1 2))
- (my-check (arguments-used (pairwise-not=? ci 1 0 2)) => '(0 1 2))
- (my-check (arguments-used (pairwise-not=? ci 2 0 1)) => '(0 1 2))
- (my-check (arguments-used (pairwise-not=? ci 2 1 0)) => '(0 1 2))
- (my-check (arguments-used (pairwise-not=? ci 0 0 0 1 0 0 0 2 0 0 0 3))
- => '(0 1 2 3))
-
- ; Guess if the implementation is O(n log n):
- ; The test is run for 2^e pairwise unequal inputs, e >= 1,
- ; and the number of calls to the compare procedure is counted.
- ; all pairs: A = Binomial[2^e, 2] = 2^(2 e - 1) * (1 - 2^-e).
- ; divide and conquer: D = e 2^e.
- ; Since an implementation can be randomized, the actual count may
- ; be a random number. We put a threshold at 100 e 2^e and choose
- ; e such that A/D >= 150, i.e. e >= 12.
- ; The test is applied to several inputs that are known to cause
- ; trouble in simplistic sorting algorithms: (0..2^e-1), (2^e+1,2^e..1),
- ; a pseudo-random permutation, and a sequence with an extremal pivot
- ; at the center of each subsequence.
-
- (my-check-ec
- (:list input pairwise-not=?:long-sequences)
- (let ((compares 0))
- (apply pairwise-not=?
- (lambda (x y)
- (set! compares (+ compares 1))
- (ci x y))
- input)
- ; (display compares) (newline)
- (< compares (* 100 12 4096)))
- (length input))
-
- ; check many short sequences
-
- (my-check-ec
- (:list input pairwise-not=?:short-sequences)
- (eq?
- (apply pairwise-not=? colliding-compare input)
- (apply naive-pairwise-not=? colliding-compare input))
- input)
-
- ; check if the arguments are used for short sequences
-
- (my-check-ec
- (:list input pairwise-not=?:short-sequences)
- (let ((args '()))
- (apply pairwise-not=?
- (lambda (x y)
- (set! args (cons x (cons y args)))
- (colliding-compare x y))
- input)
- (equal? (list->set args) (list->set input)))
- input)
-
- ) ; check:pairwise-not=?
- ; min/max
- (define min/max:sequences
- (append pairwise-not=?:short-sequences
- pairwise-not=?:long-sequences))
- (define (check:min/max)
-
- ; all lists of length 1,2,3
- (my-check (min-compare ci 0) => 0)
- (my-check (min-compare ci 0 0) => 0)
- (my-check (min-compare ci 0 1) => 0)
- (my-check (min-compare ci 1 0) => 0)
- (my-check (min-compare ci 0 0 0) => 0)
- (my-check (min-compare ci 0 0 1) => 0)
- (my-check (min-compare ci 0 1 0) => 0)
- (my-check (min-compare ci 1 0 0) => 0)
- (my-check (min-compare ci 1 1 0) => 0)
- (my-check (min-compare ci 1 0 1) => 0)
- (my-check (min-compare ci 0 1 1) => 0)
- (my-check (min-compare ci 0 1 2) => 0)
- (my-check (min-compare ci 0 2 1) => 0)
- (my-check (min-compare ci 1 2 0) => 0)
- (my-check (min-compare ci 1 0 2) => 0)
- (my-check (min-compare ci 2 0 1) => 0)
- (my-check (min-compare ci 2 1 0) => 0)
-
- (my-check (max-compare ci 0) => 0)
- (my-check (max-compare ci 0 0) => 0)
- (my-check (max-compare ci 0 1) => 1)
- (my-check (max-compare ci 1 0) => 1)
- (my-check (max-compare ci 0 0 0) => 0)
- (my-check (max-compare ci 0 0 1) => 1)
- (my-check (max-compare ci 0 1 0) => 1)
- (my-check (max-compare ci 1 0 0) => 1)
- (my-check (max-compare ci 1 1 0) => 1)
- (my-check (max-compare ci 1 0 1) => 1)
- (my-check (max-compare ci 0 1 1) => 1)
- (my-check (max-compare ci 0 1 2) => 2)
- (my-check (max-compare ci 0 2 1) => 2)
- (my-check (max-compare ci 1 2 0) => 2)
- (my-check (max-compare ci 1 0 2) => 2)
- (my-check (max-compare ci 2 0 1) => 2)
- (my-check (max-compare ci 2 1 0) => 2)
-
- ; check that the first minimal value is returned
- (my-check (min-compare (pair-compare-car ci)
- '(0 1) '(0 2) '(0 3))
- => '(0 1))
- (my-check (max-compare (pair-compare-car ci)
- '(0 1) '(0 2) '(0 3))
- => '(0 1))
-
- ; check for many inputs
- (my-check-ec
- (:list input min/max:sequences)
- (= (apply min-compare ci input)
- (apply min (apply max input) input))
- input)
- (my-check-ec
- (:list input min/max:sequences)
- (= (apply max-compare ci input)
- (apply max (apply min input) input))
- input)
- ; Note the stupid extra argument in the apply for
- ; the standard min/max makes sure the elements are
- ; identical when apply truncates the arglist.
-
- ) ; check:min/max
- ; kth-largest
- (define kth-largest:sequences
- pairwise-not=?:short-sequences)
- (define (naive-kth-largest compare k . xs)
- (let ((vec (list->vector xs)))
- ; bubble sort: simple, stable, O(|xs|^2)
- (do-ec (:range n (- (vector-length vec) 1))
- (:range i 0 (- (- (vector-length vec) 1) n))
- (if>? (compare (vector-ref vec i)
- (vector-ref vec (+ i 1)))
- (let ((vec-i (vector-ref vec i)))
- (vector-set! vec i (vector-ref vec (+ i 1)))
- (vector-set! vec (+ i 1) vec-i))))
- (vector-ref vec (modulo k (vector-length vec)))))
- (define (check:kth-largest)
-
- ; check extensively against naive-kth-largest
- (my-check-ec
- (:list input kth-largest:sequences)
- (: k (- -2 (length input)) (+ (length input) 2))
- (= (apply naive-kth-largest colliding-compare k input)
- (apply kth-largest colliding-compare k input))
- (list input k))
-
- ) ;check:kth-largest
- ; compare-by< etc. procedures
- (define (check:compare-from-predicates)
-
- (my-check-compare
- (compare-by< <)
- my-integers)
-
- (my-check-compare
- (compare-by> >)
- my-integers)
-
- (my-check-compare
- (compare-by<= <=)
- my-integers)
-
- (my-check-compare
- (compare-by>= >=)
- my-integers)
-
- (my-check-compare
- (compare-by=/< = <)
- my-integers)
-
- (my-check-compare
- (compare-by=/> = >)
- my-integers)
-
- ; with explicit arguments
- (my-check-compare
- (lambda (x y) (compare-by< < x y))
- my-integers)
-
- (my-check-compare
- (lambda (x y) (compare-by> > x y))
- my-integers)
-
- (my-check-compare
- (lambda (x y) (compare-by<= <= x y))
- my-integers)
-
- (my-check-compare
- (lambda (x y) (compare-by>= >= x y))
- my-integers)
-
- (my-check-compare
- (lambda (x y) (compare-by=/< = < x y))
- my-integers)
-
- (my-check-compare
- (lambda (x y) (compare-by=/> = > x y))
- my-integers)
-
- ) ; check:compare-from-predicates
- (define (check:atomic)
-
- (my-check-compare boolean-compare my-booleans)
-
- (my-check-compare char-compare my-chars)
-
- (my-check-compare char-compare-ci my-chars-ci)
-
- (my-check-compare string-compare my-strings)
-
- (my-check-compare string-compare-ci my-strings-ci)
-
- (my-check-compare symbol-compare my-symbols)
-
- (my-check-compare integer-compare my-integers)
-
- (my-check-compare rational-compare my-rationals)
-
- (my-check-compare real-compare my-reals)
-
- (my-check-compare complex-compare my-complexes)
-
- (my-check-compare number-compare my-complexes)
-
- ) ; check:atomic
- (define (check:refine-select-cond)
-
- ; refine-compare
-
- (my-check-compare
- (lambda (x y) (refine-compare))
- '(#f))
-
- (my-check-compare
- (lambda (x y) (refine-compare (integer-compare x y)))
- my-integers)
-
- (my-check-compare
- (lambda (x y)
- (refine-compare (integer-compare (car x) (car y))
- (symbol-compare (cdr x) (cdr y))))
- '((1 . a) (1 . b) (2 . b) (2 . c) (3 . a) (3 . c)))
-
- (my-check-compare
- (lambda (x y)
- (refine-compare (integer-compare (car x) (car y))
- (symbol-compare (cadr x) (cadr y))
- (string-compare (caddr x) (caddr y))))
- '((1 a "a") (1 b "a") (1 b "b") (2 b "c") (2 c "a") (3 a "b") (3 c "b")))
-
- ; select-compare
-
- (my-check-compare
- (lambda (x y) (select-compare x y))
- '(#f))
-
- (my-check-compare
- (lambda (x y)
- (select-compare x y
- (integer? (ci x y))))
- my-integers)
-
- (my-check-compare
- (lambda (x y)
- (select-compare x y
- (pair? (integer-compare (car x) (car y))
- (symbol-compare (cdr x) (cdr y)))))
- '((1 . a) (1 . b) (2 . b) (2 . c) (3 . a) (3 . c)))
-
- (my-check-compare
- (lambda (x y)
- (select-compare x y
- (else (integer-compare x y))))
- my-integers)
-
- (my-check-compare
- (lambda (x y)
- (select-compare x y
- (else (integer-compare (car x) (car y))
- (symbol-compare (cdr x) (cdr y)))))
- '((1 . a) (1 . b) (2 . b) (2 . c) (3 . a) (3 . c)))
-
- (my-check-compare
- (lambda (x y)
- (select-compare x y
- (symbol? (symbol-compare x y))
- (string? (string-compare x y))))
- '(a b c "a" "b" "c" 1)) ; implicit (else 0)
-
- (my-check-compare
- (lambda (x y)
- (select-compare x y
- (symbol? (symbol-compare x y))
- (else (string-compare x y))))
- '(a b c "a" "b" "c"))
-
- ; test if arguments are only evaluated once
-
- (my-check
- (let ((nx 0) (ny 0) (nt 0))
- (select-compare (begin (set! nx (+ nx 1)) 1)
- (begin (set! ny (+ ny 1)) 2)
- ((lambda (z) (set! nt (+ nt 1)) #f) 0)
- ((lambda (z) (set! nt (+ nt 10)) #f) 0)
- ((lambda (z) (set! nt (+ nt 100)) #f) 0)
- (else 0))
- (list nx ny nt))
- => '(1 1 222))
-
- ; cond-compare
-
- (my-check-compare
- (lambda (x y) (cond-compare))
- '(#f))
-
- (my-check-compare
- (lambda (x y)
- (cond-compare
- (((integer? x) (integer? y)) (integer-compare x y))))
- my-integers)
-
- (my-check-compare
- (lambda (x y)
- (cond-compare
- (((pair? x) (pair? y)) (integer-compare (car x) (car y))
- (symbol-compare (cdr x) (cdr y)))))
- '((1 . a) (1 . b) (2 . b) (2 . c) (3 . a) (3 . c)))
-
- (my-check-compare
- (lambda (x y)
- (cond-compare
- (else (integer-compare x y))))
- my-integers)
-
- (my-check-compare
- (lambda (x y)
- (cond-compare
- (else (integer-compare (car x) (car y))
- (symbol-compare (cdr x) (cdr y)))))
- '((1 . a) (1 . b) (2 . b) (2 . c) (3 . a) (3 . c)))
-
- (my-check-compare
- (lambda (x y)
- (cond-compare
- (((symbol? x) (symbol? y)) (symbol-compare x y))
- (((string? x) (string? y)) (string-compare x y))))
- '(a b c "a" "b" "c" 1)) ; implicit (else 0)
-
- (my-check-compare
- (lambda (x y)
- (cond-compare
- (((symbol? x) (symbol? y)) (symbol-compare x y))
- (else (string-compare x y))))
- '(a b c "a" "b" "c"))
-
- ) ; check:refine-select-cond
- ; We define our own list/vector data structure
- ; as '(my-list x[1] .. x[n]), n >= 0, in order
- ; to make sure the default ops don't work on it.
- (define (my-list-checked obj)
- (if (and (list? obj) (eqv? (car obj) 'my-list))
- obj
- (error "expected my-list but received" obj)))
- (define (list->my-list list) (cons 'my-list list))
- (define (my-empty? x) (null? (cdr (my-list-checked x))))
- (define (my-head x) (cadr (my-list-checked x)))
- (define (my-tail x) (cons 'my-list (cddr (my-list-checked x))))
- (define (my-size x) (- (length (my-list-checked x)) 1))
- (define (my-ref x i) (list-ref (my-list-checked x) (+ i 1)))
- (define (check:data-structures)
-
- (my-check-compare
- (pair-compare-car ci)
- '((1 . b) (2 . a) (3 . c)))
-
- (my-check-compare
- (pair-compare-cdr ci)
- '((b . 1) (a . 2) (c . 3)))
-
- ; pair-compare
-
- (my-check-compare pair-compare my-null-or-pairs)
-
- (my-check-compare
- (lambda (x y) (pair-compare ci x y))
- my-null-or-pairs)
-
- (my-check-compare
- (lambda (x y) (pair-compare ci symbol-compare x y))
- '((1 . a) (1 . b) (2 . b) (2 . c) (3 . a)))
-
- ; list-compare
-
- (my-check-compare list-compare my-lists)
-
- (my-check-compare
- (lambda (x y) (list-compare ci x y))
- my-lists)
-
- (my-check-compare
- (lambda (x y) (list-compare x y my-empty? my-head my-tail))
- (map list->my-list my-lists))
-
- (my-check-compare
- (lambda (x y) (list-compare ci x y my-empty? my-head my-tail))
- (map list->my-list my-lists))
-
- ; list-compare-as-vector
-
- (my-check-compare list-compare-as-vector my-list-as-vectors)
-
- (my-check-compare
- (lambda (x y) (list-compare-as-vector ci x y))
- my-list-as-vectors)
-
- (my-check-compare
- (lambda (x y) (list-compare-as-vector x y my-empty? my-head my-tail))
- (map list->my-list my-list-as-vectors))
-
- (my-check-compare
- (lambda (x y) (list-compare-as-vector ci x y my-empty? my-head my-tail))
- (map list->my-list my-list-as-vectors))
-
- ; vector-compare
-
- (my-check-compare vector-compare my-vectors)
-
- (my-check-compare
- (lambda (x y) (vector-compare ci x y))
- my-vectors)
-
- (my-check-compare
- (lambda (x y) (vector-compare x y my-size my-ref))
- (map list->my-list my-list-as-vectors))
-
- (my-check-compare
- (lambda (x y) (vector-compare ci x y my-size my-ref))
- (map list->my-list my-list-as-vectors))
-
- ; vector-compare-as-list
-
- (my-check-compare vector-compare-as-list my-vector-as-lists)
-
- (my-check-compare
- (lambda (x y) (vector-compare-as-list ci x y))
- my-vector-as-lists)
-
- (my-check-compare
- (lambda (x y) (vector-compare-as-list x y my-size my-ref))
- (map list->my-list my-lists))
-
- (my-check-compare
- (lambda (x y) (vector-compare-as-list ci x y my-size my-ref))
- (map list->my-list my-lists))
-
- ) ; check:data-structures
- (define (check:default-compare)
-
- (my-check-compare default-compare my-objects)
-
- ; check if default-compare refines pair-compare
-
- (my-check-ec
- (:list x (index ix) my-objects)
- (:list y (index iy) my-objects)
- (:let c-coarse (pair-compare x y))
- (:let c-fine (default-compare x y))
- (or (eqv? c-coarse 0) (eqv? c-fine c-coarse))
- (list x y))
-
- ; check if default-compare passes on debug-compare
-
- (my-check-compare (debug-compare default-compare) my-objects)
-
- ) ; check:default-compare
- (define (sort-by-less xs pred) ; trivial quicksort
- (if (or (null? xs) (null? (cdr xs)))
- xs
- (append
- (sort-by-less (list-ec (:list x (cdr xs))
- (if (pred x (car xs)))
- x)
- pred)
- (list (car xs))
- (sort-by-less (list-ec (:list x (cdr xs))
- (if (not (pred x (car xs))))
- x)
- pred))))
- (define (check:more-examples)
-
- ; define recursive order on tree type (nodes are dotted pairs)
-
- (my-check-compare
- (letrec ((c (lambda (x y)
- (cond-compare (((null? x) (null? y)) 0)
- (else (pair-compare c c x y))))))
- c)
- (list '() (list '()) (list '() '()) (list (list '())))
- ;'(() (() . ()) (() . (() . ())) ((() . ()) . ())) ; Chicken can't parse this ?
- )
-
- ; redefine default-compare using select-compare
-
- (my-check-compare
- (letrec ((c (lambda (x y)
- (select-compare x y
- (null? 0)
- (pair? (pair-compare c c x y))
- (boolean? (boolean-compare x y))
- (char? (char-compare x y))
- (string? (string-compare x y))
- (symbol? (symbol-compare x y))
- (number? (number-compare x y))
- (vector? (vector-compare c x y))
- (else (error "unrecognized type in c" x y))))))
- c)
- my-objects)
-
- ; redefine default-compare using cond-compare
-
- (my-check-compare
- (letrec ((c (lambda (x y)
- (cond-compare
- (((null? x) (null? y)) 0)
- (((pair? x) (pair? y)) (pair-compare c c x y))
- (((boolean? x) (boolean? y)) (boolean-compare x y))
- (((char? x) (char? y)) (char-compare x y))
- (((string? x) (string? y)) (string-compare x y))
- (((symbol? x) (symbol? y)) (symbol-compare x y))
- (((number? x) (number? y)) (number-compare x y))
- (((vector? x) (vector? y)) (vector-compare c x y))
- (else (error "unrecognized type in c" x y))))))
- c)
- my-objects)
-
- ; compare strings with character order reversed
-
- (my-check-compare
- (lambda (x y)
- (vector-compare-as-list
- (lambda (x y) (char-compare y x))
- x y string-length string-ref))
- '("" "b" "bb" "ba" "a" "ab" "aa"))
- ; examples from SRFI text for <? etc.
- (my-check (>? "laugh" "LOUD") => #t)
- (my-check (<? string-compare-ci "laugh" "LOUD") => #t)
- (my-check (sort-by-less '(1 a "b") (<?)) => '("b" a 1))
- (my-check (sort-by-less '(1 a "b") (>?)) => '(1 a "b"))
-
- ) ; check:more-examples
- ; Real life examples
- ; ==================
- ; (update/insert compare x s)
- ; inserts x into list s, or updates an equivalent element by x.
- ; It is assumed that s is sorted with respect to compare,
- ; i.e. (apply chain<=? compare s). The result is a list with x
- ; replacing the first element s[i] for which (=? compare s[i] x),
- ; or with x inserted in the proper place.
- ; The algorithm uses linear insertion from the front.
- (define (insert/update compare x s) ; insert x into list s, or update
- (if (null? s)
- (list x)
- (if3 (compare x (car s))
- (cons x s)
- (cons x (cdr s))
- (cons (car s) (insert/update compare x (cdr s))))))
- ; (index-in-vector compare vec x)
- ; an index i such that (=? compare vec[i] x), or #f if there is none.
- ; It is assumed that s is sorted with respect to compare,
- ; i.e. (apply chain<=? compare (vector->list s)). If there are
- ; several elements equivalent to x then it is unspecified which
- ; these is chosen.
- ; The algorithm uses binary search.
- (define (index-in-vector compare vec x)
- (let binary-search ((lo -1) (hi (vector-length vec)))
- ; invariant: vec[lo] < x < vec[hi]
- (if (=? (- hi lo) 1)
- #f
- (let ((mi (quotient (+ lo hi) 2)))
- (if3 (compare x (vector-ref vec mi))
- (binary-search lo mi)
- mi
- (binary-search mi hi))))))
- ; Run the checks
- ; ==============
- ; comment in/out as needed
- (with-test-prefix "atomic" (check:atomic))
- (with-test-prefix "if3" (check:if3))
- (with-test-prefix "ifs" (check:ifs))
- (with-test-prefix "predicates-form-compare"
- (check:predicates-from-compare))
- (with-test-prefix "pairwise-not=?"
- (check:pairwise-not=?))
- (with-test-prefix "min/max"
- (check:min/max))
- (with-test-prefix "kth-largest"
- (check:kth-largest))
- (with-test-prefix "compare-from-predicates"
- (check:compare-from-predicates))
- (with-test-prefix "refine-select-cond"
- (check:refine-select-cond))
- (with-test-prefix "data-structures"
- (check:data-structures))
- (with-test-prefix "default-compare"
- (check:default-compare))
- (with-test-prefix "more-examples"
- (check:more-examples))
|