12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233 |
- /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
- *
- * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
- * and Bellcore. See scm_divide.
- *
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /* General assumptions:
- * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
- * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
- * If an object satisfies integer?, it's either an inum, a bignum, or a real.
- * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
- * All objects satisfying SCM_FRACTIONP are never an integer.
- */
- /* TODO:
-
- - see if special casing bignums and reals in integer-exponent when
- possible (to use mpz_pow and mpf_pow_ui) is faster.
- - look in to better short-circuiting of common cases in
- integer-expt and elsewhere.
- - see if direct mpz operations can help in ash and elsewhere.
- */
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
- #include <math.h>
- #include <ctype.h>
- #include <string.h>
- #if HAVE_COMPLEX_H
- #include <complex.h>
- #endif
- #include "libguile/_scm.h"
- #include "libguile/feature.h"
- #include "libguile/ports.h"
- #include "libguile/root.h"
- #include "libguile/smob.h"
- #include "libguile/strings.h"
- #include "libguile/validate.h"
- #include "libguile/numbers.h"
- #include "libguile/deprecation.h"
- #include "libguile/eq.h"
- #include "libguile/discouraged.h"
- /* values per glibc, if not already defined */
- #ifndef M_LOG10E
- #define M_LOG10E 0.43429448190325182765
- #endif
- #ifndef M_PI
- #define M_PI 3.14159265358979323846
- #endif
- /*
- Wonder if this might be faster for some of our code? A switch on
- the numtag would jump directly to the right case, and the
- SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
- #define SCM_I_NUMTAG_NOTNUM 0
- #define SCM_I_NUMTAG_INUM 1
- #define SCM_I_NUMTAG_BIG scm_tc16_big
- #define SCM_I_NUMTAG_REAL scm_tc16_real
- #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
- #define SCM_I_NUMTAG(x) \
- (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
- : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
- : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
- : SCM_I_NUMTAG_NOTNUM)))
- */
- /* the macro above will not work as is with fractions */
- #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
- /* FLOBUFLEN is the maximum number of characters neccessary for the
- * printed or scm_string representation of an inexact number.
- */
- #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
- #if defined (SCO)
- #if ! defined (HAVE_ISNAN)
- #define HAVE_ISNAN
- static int
- isnan (double x)
- {
- return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
- }
- #endif
- #if ! defined (HAVE_ISINF)
- #define HAVE_ISINF
- static int
- isinf (double x)
- {
- return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
- }
- #endif
- #endif
- /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
- an explicit check. In some future gmp (don't know what version number),
- mpz_cmp_d is supposed to do this itself. */
- #if 1
- #define xmpz_cmp_d(z, d) \
- (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
- #else
- #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
- #endif
- /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
- isinf. It does have finite and isnan though, hence the use of those.
- fpclass would be a possibility on that system too. */
- static int
- xisinf (double x)
- {
- #if defined (HAVE_ISINF)
- return isinf (x);
- #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
- return (! (finite (x) || isnan (x)));
- #else
- return 0;
- #endif
- }
- static int
- xisnan (double x)
- {
- #if defined (HAVE_ISNAN)
- return isnan (x);
- #else
- return 0;
- #endif
- }
- #if defined (GUILE_I)
- #if HAVE_COMPLEX_DOUBLE
- /* For an SCM object Z which is a complex number (ie. satisfies
- SCM_COMPLEXP), return its value as a C level "complex double". */
- #define SCM_COMPLEX_VALUE(z) \
- (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
- static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
- /* Convert a C "complex double" to an SCM value. */
- static inline SCM
- scm_from_complex_double (complex double z)
- {
- return scm_c_make_rectangular (creal (z), cimag (z));
- }
- #endif /* HAVE_COMPLEX_DOUBLE */
- #endif /* GUILE_I */
- static mpz_t z_negative_one;
- SCM
- scm_i_mkbig ()
- {
- /* Return a newly created bignum. */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init (SCM_I_BIG_MPZ (z));
- return z;
- }
- SCM
- scm_i_long2big (long x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_ulong2big (unsigned long x)
- {
- /* Return a newly created bignum initialized to X. */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
- return z;
- }
- SCM
- scm_i_clonebig (SCM src_big, int same_sign_p)
- {
- /* Copy src_big's value, negate it if same_sign_p is false, and return. */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
- if (!same_sign_p)
- mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
- return z;
- }
- int
- scm_i_bigcmp (SCM x, SCM y)
- {
- /* Return neg if x < y, pos if x > y, and 0 if x == y */
- /* presume we already know x and y are bignums */
- int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return result;
- }
- SCM
- scm_i_dbl2big (double d)
- {
- /* results are only defined if d is an integer */
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
- return z;
- }
- /* Convert a integer in double representation to a SCM number. */
- SCM
- scm_i_dbl2num (double u)
- {
- /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
- powers of 2, so there's no rounding when making "double" values
- from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
- get rounded on a 64-bit machine, hence the "+1".
- The use of floor() to force to an integer value ensures we get a
- "numerically closest" value without depending on how a
- double->long cast or how mpz_set_d will round. For reference,
- double->long probably follows the hardware rounding mode,
- mpz_set_d truncates towards zero. */
- /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
- representable as a double? */
- if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
- && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
- return SCM_I_MAKINUM ((long) u);
- else
- return scm_i_dbl2big (u);
- }
- /* scm_i_big2dbl() rounds to the closest representable double, in accordance
- with R5RS exact->inexact.
- The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
- (ie. truncate towards zero), then adjust to get the closest double by
- examining the next lower bit and adding 1 (to the absolute value) if
- necessary.
- Bignums exactly half way between representable doubles are rounded to the
- next higher absolute value (ie. away from zero). This seems like an
- adequate interpretation of R5RS "numerically closest", and it's easier
- and faster than a full "nearest-even" style.
- The bit test must be done on the absolute value of the mpz_t, which means
- we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
- negatives as twos complement.
- In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
- following the hardware rounding mode, but applied to the absolute value
- of the mpz_t operand. This is not what we want so we put the high
- DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
- mpz_get_d is supposed to always truncate towards zero.
- ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
- is a slowdown. It'd be faster to pick out the relevant high bits with
- mpz_getlimbn if we could be bothered coding that, and if the new
- truncating gmp doesn't come out. */
- double
- scm_i_big2dbl (SCM b)
- {
- double result;
- size_t bits;
- bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
- #if 1
- {
- /* Current GMP, eg. 4.1.3, force truncation towards zero */
- mpz_t tmp;
- if (bits > DBL_MANT_DIG)
- {
- size_t shift = bits - DBL_MANT_DIG;
- mpz_init2 (tmp, DBL_MANT_DIG);
- mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
- result = ldexp (mpz_get_d (tmp), shift);
- mpz_clear (tmp);
- }
- else
- {
- result = mpz_get_d (SCM_I_BIG_MPZ (b));
- }
- }
- #else
- /* Future GMP */
- result = mpz_get_d (SCM_I_BIG_MPZ (b));
- #endif
- if (bits > DBL_MANT_DIG)
- {
- unsigned long pos = bits - DBL_MANT_DIG - 1;
- /* test bit number "pos" in absolute value */
- if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
- & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
- {
- result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
- }
- }
- scm_remember_upto_here_1 (b);
- return result;
- }
- SCM
- scm_i_normbig (SCM b)
- {
- /* convert a big back to a fixnum if it'll fit */
- /* presume b is a bignum */
- if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
- {
- long val = mpz_get_si (SCM_I_BIG_MPZ (b));
- if (SCM_FIXABLE (val))
- b = SCM_I_MAKINUM (val);
- }
- return b;
- }
- static SCM_C_INLINE_KEYWORD SCM
- scm_i_mpz2num (mpz_t b)
- {
- /* convert a mpz number to a SCM number. */
- if (mpz_fits_slong_p (b))
- {
- long val = mpz_get_si (b);
- if (SCM_FIXABLE (val))
- return SCM_I_MAKINUM (val);
- }
- {
- SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
- mpz_init_set (SCM_I_BIG_MPZ (z), b);
- return z;
- }
- }
- /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
- static SCM scm_divide2real (SCM x, SCM y);
- static SCM
- scm_i_make_ratio (SCM numerator, SCM denominator)
- #define FUNC_NAME "make-ratio"
- {
- /* First make sure the arguments are proper.
- */
- if (SCM_I_INUMP (denominator))
- {
- if (scm_is_eq (denominator, SCM_INUM0))
- scm_num_overflow ("make-ratio");
- if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
- return numerator;
- }
- else
- {
- if (!(SCM_BIGP(denominator)))
- SCM_WRONG_TYPE_ARG (2, denominator);
- }
- if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
- SCM_WRONG_TYPE_ARG (1, numerator);
- /* Then flip signs so that the denominator is positive.
- */
- if (scm_is_true (scm_negative_p (denominator)))
- {
- numerator = scm_difference (numerator, SCM_UNDEFINED);
- denominator = scm_difference (denominator, SCM_UNDEFINED);
- }
- /* Now consider for each of the four fixnum/bignum combinations
- whether the rational number is really an integer.
- */
- if (SCM_I_INUMP (numerator))
- {
- long x = SCM_I_INUM (numerator);
- if (scm_is_eq (numerator, SCM_INUM0))
- return SCM_INUM0;
- if (SCM_I_INUMP (denominator))
- {
- long y;
- y = SCM_I_INUM (denominator);
- if (x == y)
- return SCM_I_MAKINUM(1);
- if ((x % y) == 0)
- return SCM_I_MAKINUM (x / y);
- }
- else
- {
- /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
- of that value for the denominator, as a bignum. Apart from
- that case, abs(bignum) > abs(inum) so inum/bignum is not an
- integer. */
- if (x == SCM_MOST_NEGATIVE_FIXNUM
- && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0)
- return SCM_I_MAKINUM(-1);
- }
- }
- else if (SCM_BIGP (numerator))
- {
- if (SCM_I_INUMP (denominator))
- {
- long yy = SCM_I_INUM (denominator);
- if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
- return scm_divide (numerator, denominator);
- }
- else
- {
- if (scm_is_eq (numerator, denominator))
- return SCM_I_MAKINUM(1);
- if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
- SCM_I_BIG_MPZ (denominator)))
- return scm_divide(numerator, denominator);
- }
- }
- /* No, it's a proper fraction.
- */
- {
- SCM divisor = scm_gcd (numerator, denominator);
- if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
- {
- numerator = scm_divide (numerator, divisor);
- denominator = scm_divide (denominator, divisor);
- }
-
- return scm_double_cell (scm_tc16_fraction,
- SCM_UNPACK (numerator),
- SCM_UNPACK (denominator), 0);
- }
- }
- #undef FUNC_NAME
- double
- scm_i_fraction2double (SCM z)
- {
- return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
- SCM_FRACTION_DENOMINATOR (z)));
- }
- SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_exact_p
- {
- if (SCM_I_INUMP (x))
- return SCM_BOOL_T;
- if (SCM_BIGP (x))
- return SCM_BOOL_T;
- if (SCM_FRACTIONP (x))
- return SCM_BOOL_T;
- if (SCM_NUMBERP (x))
- return SCM_BOOL_F;
- SCM_WRONG_TYPE_ARG (1, x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_odd_p
- {
- if (SCM_I_INUMP (n))
- {
- long val = SCM_I_INUM (n);
- return scm_from_bool ((val & 1L) != 0);
- }
- else if (SCM_BIGP (n))
- {
- int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_from_bool (odd_p);
- }
- else if (scm_is_true (scm_inf_p (n)))
- return SCM_BOOL_T;
- else if (SCM_REALP (n))
- {
- double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
- if (rem == 1.0)
- return SCM_BOOL_T;
- else if (rem == 0.0)
- return SCM_BOOL_F;
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_even_p
- {
- if (SCM_I_INUMP (n))
- {
- long val = SCM_I_INUM (n);
- return scm_from_bool ((val & 1L) == 0);
- }
- else if (SCM_BIGP (n))
- {
- int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_from_bool (even_p);
- }
- else if (scm_is_true (scm_inf_p (n)))
- return SCM_BOOL_T;
- else if (SCM_REALP (n))
- {
- double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
- if (rem == 1.0)
- return SCM_BOOL_F;
- else if (rem == 0.0)
- return SCM_BOOL_T;
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
- "or @samp{-inf.0}, @code{#f} otherwise.")
- #define FUNC_NAME s_scm_inf_p
- {
- if (SCM_REALP (x))
- return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
- else if (SCM_COMPLEXP (x))
- return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
- || xisinf (SCM_COMPLEX_IMAG (x)));
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
- (SCM n),
- "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_nan_p
- {
- if (SCM_REALP (n))
- return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
- else if (SCM_COMPLEXP (n))
- return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
- || xisnan (SCM_COMPLEX_IMAG (n)));
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- /* Guile's idea of infinity. */
- static double guile_Inf;
- /* Guile's idea of not a number. */
- static double guile_NaN;
- static void
- guile_ieee_init (void)
- {
- #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
- /* Some version of gcc on some old version of Linux used to crash when
- trying to make Inf and NaN. */
- #ifdef INFINITY
- /* C99 INFINITY, when available.
- FIXME: The standard allows for INFINITY to be something that overflows
- at compile time. We ought to have a configure test to check for that
- before trying to use it. (But in practice we believe this is not a
- problem on any system guile is likely to target.) */
- guile_Inf = INFINITY;
- #elif HAVE_DINFINITY
- /* OSF */
- extern unsigned int DINFINITY[2];
- union
- {
- double d;
- int i[2];
- } alias;
- alias.i[0] = DINFINITY[0];
- alias.i[1] = DINFINITY[1];
- guile_Inf = alias.d;
- #else
- double tmp = 1e+10;
- guile_Inf = tmp;
- for (;;)
- {
- guile_Inf *= 1e+10;
- if (guile_Inf == tmp)
- break;
- tmp = guile_Inf;
- }
- #endif
- #endif
- #if defined (HAVE_ISNAN)
- #if defined __GNUC__ && defined __alpha__ && !defined _IEEE_FP
- /* On Alpha GCC must be passed `-mieee' to provide proper NaN handling.
- See http://lists.gnu.org/archive/html/bug-gnulib/2009-05/msg00010.html
- for more details. */
- # error NaN handling will not work when compiling without -mieee
- #endif
- #ifdef NAN
- /* C99 NAN, when available */
- guile_NaN = NAN;
- #elif HAVE_DQNAN
- {
- /* OSF */
- extern unsigned int DQNAN[2];
- union
- {
- double d;
- int i[2];
- } alias;
- alias.i[0] = DQNAN[0];
- alias.i[1] = DQNAN[1];
- guile_NaN = alias.d;
- }
- #else
- guile_NaN = guile_Inf / guile_Inf;
- #endif
- #endif
- }
- SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
- (void),
- "Return Inf.")
- #define FUNC_NAME s_scm_inf
- {
- static int initialized = 0;
- if (! initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_from_double (guile_Inf);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
- (void),
- "Return NaN.")
- #define FUNC_NAME s_scm_nan
- {
- static int initialized = 0;
- if (!initialized)
- {
- guile_ieee_init ();
- initialized = 1;
- }
- return scm_from_double (guile_NaN);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
- (SCM x),
- "Return the absolute value of @var{x}.")
- #define FUNC_NAME
- {
- if (SCM_I_INUMP (x))
- {
- long int xx = SCM_I_INUM (x);
- if (xx >= 0)
- return x;
- else if (SCM_POSFIXABLE (-xx))
- return SCM_I_MAKINUM (-xx);
- else
- return scm_i_long2big (-xx);
- }
- else if (SCM_BIGP (x))
- {
- const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- if (sgn < 0)
- return scm_i_clonebig (x, 0);
- else
- return x;
- }
- else if (SCM_REALP (x))
- {
- /* note that if x is a NaN then xx<0 is false so we return x unchanged */
- double xx = SCM_REAL_VALUE (x);
- if (xx < 0.0)
- return scm_from_double (-xx);
- else
- return x;
- }
- else if (SCM_FRACTIONP (x))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
- return x;
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- }
- else
- SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
- }
- #undef FUNC_NAME
- SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
- /* "Return the quotient of the numbers @var{x} and @var{y}."
- */
- SCM
- scm_quotient (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_quotient);
- else
- {
- long z = xx / yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_long2big (z);
- }
- }
- else if (SCM_BIGP (y))
- {
- if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
- && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_I_MAKINUM (-1);
- }
- else
- return SCM_I_MAKINUM (0);
- }
- else
- SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_quotient);
- else if (yy == 1)
- return x;
- else
- {
- SCM result = scm_i_mkbig ();
- if (yy < 0)
- {
- mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- - yy);
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- }
- else
- mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_tdiv_q (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
- }
- else
- SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
- }
- SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
- /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
- * "@lisp\n"
- * "(remainder 13 4) @result{} 1\n"
- * "(remainder -13 4) @result{} -1\n"
- * "@end lisp"
- */
- SCM
- scm_remainder (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_remainder);
- else
- {
- long z = SCM_I_INUM (x) % yy;
- return SCM_I_MAKINUM (z);
- }
- }
- else if (SCM_BIGP (y))
- {
- if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
- && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
- - SCM_MOST_NEGATIVE_FIXNUM) == 0))
- {
- /* Special case: x == fixnum-min && y == abs (fixnum-min) */
- scm_remember_upto_here_1 (y);
- return SCM_I_MAKINUM (0);
- }
- else
- return x;
- }
- else
- SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_remainder);
- else
- {
- SCM result = scm_i_mkbig ();
- if (yy < 0)
- yy = - yy;
- mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
- scm_remember_upto_here_1 (x);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_tdiv_r (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
- }
- else
- SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
- }
- SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
- /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
- * "@lisp\n"
- * "(modulo 13 4) @result{} 1\n"
- * "(modulo -13 4) @result{} 3\n"
- * "@end lisp"
- */
- SCM
- scm_modulo (SCM x, SCM y)
- {
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_modulo);
- else
- {
- /* C99 specifies that "%" is the remainder corresponding to a
- quotient rounded towards zero, and that's also traditional
- for machine division, so z here should be well defined. */
- long z = xx % yy;
- long result;
- if (yy < 0)
- {
- if (z > 0)
- result = z + yy;
- else
- result = z;
- }
- else
- {
- if (z < 0)
- result = z + yy;
- else
- result = z;
- }
- return SCM_I_MAKINUM (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- {
- mpz_t z_x;
- SCM result;
- if (sgn_y < 0)
- {
- SCM pos_y = scm_i_clonebig (y, 0);
- /* do this after the last scm_op */
- mpz_init_set_si (z_x, xx);
- result = pos_y; /* re-use this bignum */
- mpz_mod (SCM_I_BIG_MPZ (result),
- z_x,
- SCM_I_BIG_MPZ (pos_y));
- scm_remember_upto_here_1 (pos_y);
- }
- else
- {
- result = scm_i_mkbig ();
- /* do this after the last scm_op */
- mpz_init_set_si (z_x, xx);
- mpz_mod (SCM_I_BIG_MPZ (result),
- z_x,
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- }
-
- if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
- mpz_add (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (y),
- SCM_I_BIG_MPZ (result));
- scm_remember_upto_here_1 (y);
- /* and do this before the next one */
- mpz_clear (z_x);
- return scm_i_normbig (result);
- }
- }
- else
- SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- scm_num_overflow (s_modulo);
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_mod_ui (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- (yy < 0) ? - yy : yy);
- scm_remember_upto_here_1 (x);
- if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
- mpz_sub_ui (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (result),
- - yy);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- {
- SCM result = scm_i_mkbig ();
- int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
- mpz_mod (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (pos_y));
-
- scm_remember_upto_here_1 (x);
- if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
- mpz_add (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (y),
- SCM_I_BIG_MPZ (result));
- scm_remember_upto_here_2 (y, pos_y);
- return scm_i_normbig (result);
- }
- }
- else
- SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
- }
- else
- SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
- }
- SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
- /* "Return the greatest common divisor of all arguments.\n"
- * "If called without arguments, 0 is returned."
- */
- SCM
- scm_gcd (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
-
- if (SCM_I_INUMP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long xx = SCM_I_INUM (x);
- long yy = SCM_I_INUM (y);
- long u = xx < 0 ? -xx : xx;
- long v = yy < 0 ? -yy : yy;
- long result;
- if (xx == 0)
- result = v;
- else if (yy == 0)
- result = u;
- else
- {
- long k = 1;
- long t;
- /* Determine a common factor 2^k */
- while (!(1 & (u | v)))
- {
- k <<= 1;
- u >>= 1;
- v >>= 1;
- }
- /* Now, any factor 2^n can be eliminated */
- if (u & 1)
- t = -v;
- else
- {
- t = u;
- b3:
- t = SCM_SRS (t, 1);
- }
- if (!(1 & t))
- goto b3;
- if (t > 0)
- u = t;
- else
- v = -t;
- t = u - v;
- if (t != 0)
- goto b3;
- result = u * k;
- }
- return (SCM_POSFIXABLE (result)
- ? SCM_I_MAKINUM (result)
- : scm_i_long2big (result));
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_inum;
- }
- else
- SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- unsigned long result;
- long yy;
- big_inum:
- yy = SCM_I_INUM (y);
- if (yy == 0)
- return scm_abs (x);
- if (yy < 0)
- yy = -yy;
- result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
- scm_remember_upto_here_1 (x);
- return (SCM_POSFIXABLE (result)
- ? SCM_I_MAKINUM (result)
- : scm_from_ulong (result));
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_gcd (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
- }
- else
- SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
- }
- SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
- /* "Return the least common multiple of the arguments.\n"
- * "If called without arguments, 1 is returned."
- */
- SCM
- scm_lcm (SCM n1, SCM n2)
- {
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_I_MAKINUM (1L);
- n2 = SCM_I_MAKINUM (1L);
- }
- SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
- g_lcm, n1, n2, SCM_ARG1, s_lcm);
- SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
- g_lcm, n1, n2, SCM_ARGn, s_lcm);
- if (SCM_I_INUMP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM d = scm_gcd (n1, n2);
- if (scm_is_eq (d, SCM_INUM0))
- return d;
- else
- return scm_abs (scm_product (n1, scm_quotient (n2, d)));
- }
- else
- {
- /* inum n1, big n2 */
- inumbig:
- {
- SCM result = scm_i_mkbig ();
- long nn1 = SCM_I_INUM (n1);
- if (nn1 == 0) return SCM_INUM0;
- if (nn1 < 0) nn1 = - nn1;
- mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
- scm_remember_upto_here_1 (n2);
- return result;
- }
- }
- }
- else
- {
- /* big n1 */
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- goto inumbig;
- }
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_lcm(SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2(n1, n2);
- /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
- return result;
- }
- }
- }
- /* Emulating 2's complement bignums with sign magnitude arithmetic:
- Logand:
- X Y Result Method:
- (len)
- + + + x (map digit:logand X Y)
- + - + x (map digit:logand X (lognot (+ -1 Y)))
- - + + y (map digit:logand (lognot (+ -1 X)) Y)
- - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
- Logior:
- X Y Result Method:
- + + + (map digit:logior X Y)
- + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
- - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
- - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
- Logxor:
- X Y Result Method:
- + + + (map digit:logxor X Y)
- + - - (+ 1 (map digit:logxor X (+ -1 Y)))
- - + - (+ 1 (map digit:logxor (+ -1 X) Y))
- - - + (map digit:logxor (+ -1 X) (+ -1 Y))
- Logtest:
- X Y Result
- + + (any digit:logand X Y)
- + - (any digit:logand X (lognot (+ -1 Y)))
- - + (any digit:logand (lognot (+ -1 X)) Y)
- - - #t
- */
- SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
- (SCM n1, SCM n2),
- "Return the bitwise AND of the integer arguments.\n\n"
- "@lisp\n"
- "(logand) @result{} -1\n"
- "(logand 7) @result{} 7\n"
- "(logand #b111 #b011 #b001) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logand
- {
- long int nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_I_MAKINUM (-1);
- else if (!SCM_NUMBERP (n1))
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- long nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 & nn2);
- }
- else if SCM_BIGP (n2)
- {
- intbig:
- if (n1 == 0)
- return SCM_INUM0;
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_and (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
- (SCM n1, SCM n2),
- "Return the bitwise OR of the integer arguments.\n\n"
- "@lisp\n"
- "(logior) @result{} 0\n"
- "(logior 7) @result{} 7\n"
- "(logior #b000 #b001 #b011) @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logior
- {
- long int nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- long nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 | nn2);
- }
- else if (SCM_BIGP (n2))
- {
- intbig:
- if (nn1 == 0)
- return n2;
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_ior (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
- (SCM n1, SCM n2),
- "Return the bitwise XOR of the integer arguments. A bit is\n"
- "set in the result if it is set in an odd number of arguments.\n"
- "@lisp\n"
- "(logxor) @result{} 0\n"
- "(logxor 7) @result{} 7\n"
- "(logxor #b000 #b001 #b011) @result{} 2\n"
- "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logxor
- {
- long int nn1;
- if (SCM_UNBNDP (n2))
- {
- if (SCM_UNBNDP (n1))
- return SCM_INUM0;
- else if (SCM_NUMBERP (n1))
- return n1;
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- if (SCM_I_INUMP (n1))
- {
- nn1 = SCM_I_INUM (n1);
- if (SCM_I_INUMP (n2))
- {
- long nn2 = SCM_I_INUM (n2);
- return SCM_I_MAKINUM (nn1 ^ nn2);
- }
- else if (SCM_BIGP (n2))
- {
- intbig:
- {
- SCM result_z = scm_i_mkbig ();
- mpz_t nn1_z;
- mpz_init_set_si (nn1_z, nn1);
- mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_1 (n2);
- mpz_clear (nn1_z);
- return scm_i_normbig (result_z);
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else if (SCM_BIGP (n1))
- {
- if (SCM_I_INUMP (n2))
- {
- SCM_SWAP (n1, n2);
- nn1 = SCM_I_INUM (n1);
- goto intbig;
- }
- else if (SCM_BIGP (n2))
- {
- SCM result_z = scm_i_mkbig ();
- mpz_xor (SCM_I_BIG_MPZ (result_z),
- SCM_I_BIG_MPZ (n1),
- SCM_I_BIG_MPZ (n2));
- scm_remember_upto_here_2 (n1, n2);
- return scm_i_normbig (result_z);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
- (SCM j, SCM k),
- "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
- "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
- "without actually calculating the @code{logand}, just testing\n"
- "for non-zero.\n"
- "\n"
- "@lisp\n"
- "(logtest #b0100 #b1011) @result{} #f\n"
- "(logtest #b0100 #b0111) @result{} #t\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logtest
- {
- long int nj;
- if (SCM_I_INUMP (j))
- {
- nj = SCM_I_INUM (j);
- if (SCM_I_INUMP (k))
- {
- long nk = SCM_I_INUM (k);
- return scm_from_bool (nj & nk);
- }
- else if (SCM_BIGP (k))
- {
- intbig:
- if (nj == 0)
- return SCM_BOOL_F;
- {
- SCM result;
- mpz_t nj_z;
- mpz_init_set_si (nj_z, nj);
- mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_1 (k);
- result = scm_from_bool (mpz_sgn (nj_z) != 0);
- mpz_clear (nj_z);
- return result;
- }
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else if (SCM_BIGP (j))
- {
- if (SCM_I_INUMP (k))
- {
- SCM_SWAP (j, k);
- nj = SCM_I_INUM (j);
- goto intbig;
- }
- else if (SCM_BIGP (k))
- {
- SCM result;
- mpz_t result_z;
- mpz_init (result_z);
- mpz_and (result_z,
- SCM_I_BIG_MPZ (j),
- SCM_I_BIG_MPZ (k));
- scm_remember_upto_here_2 (j, k);
- result = scm_from_bool (mpz_sgn (result_z) != 0);
- mpz_clear (result_z);
- return result;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
- (SCM index, SCM j),
- "Test whether bit number @var{index} in @var{j} is set.\n"
- "@var{index} starts from 0 for the least significant bit.\n"
- "\n"
- "@lisp\n"
- "(logbit? 0 #b1101) @result{} #t\n"
- "(logbit? 1 #b1101) @result{} #f\n"
- "(logbit? 2 #b1101) @result{} #t\n"
- "(logbit? 3 #b1101) @result{} #t\n"
- "(logbit? 4 #b1101) @result{} #f\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logbit_p
- {
- unsigned long int iindex;
- iindex = scm_to_ulong (index);
- if (SCM_I_INUMP (j))
- {
- /* bits above what's in an inum follow the sign bit */
- iindex = min (iindex, SCM_LONG_BIT - 1);
- return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
- }
- else if (SCM_BIGP (j))
- {
- int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
- scm_remember_upto_here_1 (j);
- return scm_from_bool (val);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
- (SCM n),
- "Return the integer which is the ones-complement of the integer\n"
- "argument.\n"
- "\n"
- "@lisp\n"
- "(number->string (lognot #b10000000) 2)\n"
- " @result{} \"-10000001\"\n"
- "(number->string (lognot #b0) 2)\n"
- " @result{} \"-1\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_lognot
- {
- if (SCM_I_INUMP (n)) {
- /* No overflow here, just need to toggle all the bits making up the inum.
- Enhancement: No need to strip the tag and add it back, could just xor
- a block of 1 bits, if that worked with the various debug versions of
- the SCM typedef. */
- return SCM_I_MAKINUM (~ SCM_I_INUM (n));
- } else if (SCM_BIGP (n)) {
- SCM result = scm_i_mkbig ();
- mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return result;
- } else {
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- }
- #undef FUNC_NAME
- /* returns 0 if IN is not an integer. OUT must already be
- initialized. */
- static int
- coerce_to_big (SCM in, mpz_t out)
- {
- if (SCM_BIGP (in))
- mpz_set (out, SCM_I_BIG_MPZ (in));
- else if (SCM_I_INUMP (in))
- mpz_set_si (out, SCM_I_INUM (in));
- else
- return 0;
- return 1;
- }
- SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
- (SCM n, SCM k, SCM m),
- "Return @var{n} raised to the integer exponent\n"
- "@var{k}, modulo @var{m}.\n"
- "\n"
- "@lisp\n"
- "(modulo-expt 2 3 5)\n"
- " @result{} 3\n"
- "@end lisp")
- #define FUNC_NAME s_scm_modulo_expt
- {
- mpz_t n_tmp;
- mpz_t k_tmp;
- mpz_t m_tmp;
-
- /* There are two classes of error we might encounter --
- 1) Math errors, which we'll report by calling scm_num_overflow,
- and
- 2) wrong-type errors, which of course we'll report by calling
- SCM_WRONG_TYPE_ARG.
- We don't report those errors immediately, however; instead we do
- some cleanup first. These variables tell us which error (if
- any) we should report after cleaning up.
- */
- int report_overflow = 0;
- int position_of_wrong_type = 0;
- SCM value_of_wrong_type = SCM_INUM0;
- SCM result = SCM_UNDEFINED;
- mpz_init (n_tmp);
- mpz_init (k_tmp);
- mpz_init (m_tmp);
-
- if (scm_is_eq (m, SCM_INUM0))
- {
- report_overflow = 1;
- goto cleanup;
- }
-
- if (!coerce_to_big (n, n_tmp))
- {
- value_of_wrong_type = n;
- position_of_wrong_type = 1;
- goto cleanup;
- }
- if (!coerce_to_big (k, k_tmp))
- {
- value_of_wrong_type = k;
- position_of_wrong_type = 2;
- goto cleanup;
- }
- if (!coerce_to_big (m, m_tmp))
- {
- value_of_wrong_type = m;
- position_of_wrong_type = 3;
- goto cleanup;
- }
- /* if the exponent K is negative, and we simply call mpz_powm, we
- will get a divide-by-zero exception when an inverse 1/n mod m
- doesn't exist (or is not unique). Since exceptions are hard to
- handle, we'll attempt the inversion "by hand" -- that way, we get
- a simple failure code, which is easy to handle. */
-
- if (-1 == mpz_sgn (k_tmp))
- {
- if (!mpz_invert (n_tmp, n_tmp, m_tmp))
- {
- report_overflow = 1;
- goto cleanup;
- }
- mpz_neg (k_tmp, k_tmp);
- }
- result = scm_i_mkbig ();
- mpz_powm (SCM_I_BIG_MPZ (result),
- n_tmp,
- k_tmp,
- m_tmp);
- if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
- mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
- cleanup:
- mpz_clear (m_tmp);
- mpz_clear (k_tmp);
- mpz_clear (n_tmp);
- if (report_overflow)
- scm_num_overflow (FUNC_NAME);
- if (position_of_wrong_type)
- SCM_WRONG_TYPE_ARG (position_of_wrong_type,
- value_of_wrong_type);
-
- return scm_i_normbig (result);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
- (SCM n, SCM k),
- "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
- "exact integer, @var{n} can be any number.\n"
- "\n"
- "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
- "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
- "includes @math{0^0} is 1.\n"
- "\n"
- "@lisp\n"
- "(integer-expt 2 5) @result{} 32\n"
- "(integer-expt -3 3) @result{} -27\n"
- "(integer-expt 5 -3) @result{} 1/125\n"
- "(integer-expt 0 0) @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_expt
- {
- long i2 = 0;
- SCM z_i2 = SCM_BOOL_F;
- int i2_is_big = 0;
- SCM acc = SCM_I_MAKINUM (1L);
- /* 0^0 == 1 according to R5RS */
- if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
- return scm_is_false (scm_zero_p(k)) ? n : acc;
- else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
- return scm_is_false (scm_even_p (k)) ? n : acc;
- if (SCM_I_INUMP (k))
- i2 = SCM_I_INUM (k);
- else if (SCM_BIGP (k))
- {
- z_i2 = scm_i_clonebig (k, 1);
- scm_remember_upto_here_1 (k);
- i2_is_big = 1;
- }
- else
- SCM_WRONG_TYPE_ARG (2, k);
-
- if (i2_is_big)
- {
- if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
- {
- mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
- n = scm_divide (n, SCM_UNDEFINED);
- }
- while (1)
- {
- if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
- {
- return acc;
- }
- if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
- {
- return scm_product (acc, n);
- }
- if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
- }
- }
- else
- {
- if (i2 < 0)
- {
- i2 = -i2;
- n = scm_divide (n, SCM_UNDEFINED);
- }
- while (1)
- {
- if (0 == i2)
- return acc;
- if (1 == i2)
- return scm_product (acc, n);
- if (i2 & 1)
- acc = scm_product (acc, n);
- n = scm_product (n, n);
- i2 >>= 1;
- }
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
- (SCM n, SCM cnt),
- "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
- "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
- "\n"
- "This is effectively a multiplication by 2^@var{cnt}, and when\n"
- "@var{cnt} is negative it's a division, rounded towards negative\n"
- "infinity. (Note that this is not the same rounding as\n"
- "@code{quotient} does.)\n"
- "\n"
- "With @var{n} viewed as an infinite precision twos complement,\n"
- "@code{ash} means a left shift introducing zero bits, or a right\n"
- "shift dropping bits.\n"
- "\n"
- "@lisp\n"
- "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
- "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
- "\n"
- ";; -23 is bits ...11101001, -6 is bits ...111010\n"
- "(ash -23 -2) @result{} -6\n"
- "@end lisp")
- #define FUNC_NAME s_scm_ash
- {
- long bits_to_shift;
- bits_to_shift = scm_to_long (cnt);
- if (SCM_I_INUMP (n))
- {
- long nn = SCM_I_INUM (n);
- if (bits_to_shift > 0)
- {
- /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
- overflow a non-zero fixnum. For smaller shifts we check the
- bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
- all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
- Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
- bits_to_shift)". */
- if (nn == 0)
- return n;
- if (bits_to_shift < SCM_I_FIXNUM_BIT-1
- && ((unsigned long)
- (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
- <= 1))
- {
- return SCM_I_MAKINUM (nn << bits_to_shift);
- }
- else
- {
- SCM result = scm_i_long2big (nn);
- mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
- bits_to_shift);
- return result;
- }
- }
- else
- {
- bits_to_shift = -bits_to_shift;
- if (bits_to_shift >= SCM_LONG_BIT)
- return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
- else
- return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
- }
- }
- else if (SCM_BIGP (n))
- {
- SCM result;
- if (bits_to_shift == 0)
- return n;
- result = scm_i_mkbig ();
- if (bits_to_shift >= 0)
- {
- mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
- bits_to_shift);
- return result;
- }
- else
- {
- /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
- we have to allocate a bignum even if the result is going to be a
- fixnum. */
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
- -bits_to_shift);
- return scm_i_normbig (result);
- }
- }
- else
- {
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
- (SCM n, SCM start, SCM end),
- "Return the integer composed of the @var{start} (inclusive)\n"
- "through @var{end} (exclusive) bits of @var{n}. The\n"
- "@var{start}th bit becomes the 0-th bit in the result.\n"
- "\n"
- "@lisp\n"
- "(number->string (bit-extract #b1101101010 0 4) 2)\n"
- " @result{} \"1010\"\n"
- "(number->string (bit-extract #b1101101010 4 9) 2)\n"
- " @result{} \"10110\"\n"
- "@end lisp")
- #define FUNC_NAME s_scm_bit_extract
- {
- unsigned long int istart, iend, bits;
- istart = scm_to_ulong (start);
- iend = scm_to_ulong (end);
- SCM_ASSERT_RANGE (3, end, (iend >= istart));
- /* how many bits to keep */
- bits = iend - istart;
- if (SCM_I_INUMP (n))
- {
- long int in = SCM_I_INUM (n);
- /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
- SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
- in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
- if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
- {
- /* Since we emulate two's complement encoded numbers, this
- * special case requires us to produce a result that has
- * more bits than can be stored in a fixnum.
- */
- SCM result = scm_i_long2big (in);
- mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
- bits);
- return result;
- }
- /* mask down to requisite bits */
- bits = min (bits, SCM_I_FIXNUM_BIT);
- return SCM_I_MAKINUM (in & ((1L << bits) - 1));
- }
- else if (SCM_BIGP (n))
- {
- SCM result;
- if (bits == 1)
- {
- result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
- }
- else
- {
- /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
- bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
- such bits into a ulong. */
- result = scm_i_mkbig ();
- mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
- mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
- result = scm_i_normbig (result);
- }
- scm_remember_upto_here_1 (n);
- return result;
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- static const char scm_logtab[] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
- };
- SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
- (SCM n),
- "Return the number of bits in integer @var{n}. If integer is\n"
- "positive, the 1-bits in its binary representation are counted.\n"
- "If negative, the 0-bits in its two's-complement binary\n"
- "representation are counted. If 0, 0 is returned.\n"
- "\n"
- "@lisp\n"
- "(logcount #b10101010)\n"
- " @result{} 4\n"
- "(logcount 0)\n"
- " @result{} 0\n"
- "(logcount -2)\n"
- " @result{} 1\n"
- "@end lisp")
- #define FUNC_NAME s_scm_logcount
- {
- if (SCM_I_INUMP (n))
- {
- unsigned long int c = 0;
- long int nn = SCM_I_INUM (n);
- if (nn < 0)
- nn = -1 - nn;
- while (nn)
- {
- c += scm_logtab[15 & nn];
- nn >>= 4;
- }
- return SCM_I_MAKINUM (c);
- }
- else if (SCM_BIGP (n))
- {
- unsigned long count;
- if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
- count = mpz_popcount (SCM_I_BIG_MPZ (n));
- else
- count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
- scm_remember_upto_here_1 (n);
- return SCM_I_MAKINUM (count);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- static const char scm_ilentab[] = {
- 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
- };
- SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
- (SCM n),
- "Return the number of bits necessary to represent @var{n}.\n"
- "\n"
- "@lisp\n"
- "(integer-length #b10101010)\n"
- " @result{} 8\n"
- "(integer-length 0)\n"
- " @result{} 0\n"
- "(integer-length #b1111)\n"
- " @result{} 4\n"
- "@end lisp")
- #define FUNC_NAME s_scm_integer_length
- {
- if (SCM_I_INUMP (n))
- {
- unsigned long int c = 0;
- unsigned int l = 4;
- long int nn = SCM_I_INUM (n);
- if (nn < 0)
- nn = -1 - nn;
- while (nn)
- {
- c += 4;
- l = scm_ilentab [15 & nn];
- nn >>= 4;
- }
- return SCM_I_MAKINUM (c - 4 + l);
- }
- else if (SCM_BIGP (n))
- {
- /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
- want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
- 1 too big, so check for that and adjust. */
- size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
- if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
- && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
- mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
- size--;
- scm_remember_upto_here_1 (n);
- return SCM_I_MAKINUM (size);
- }
- else
- SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
- }
- #undef FUNC_NAME
- /*** NUMBERS -> STRINGS ***/
- #define SCM_MAX_DBL_PREC 60
- #define SCM_MAX_DBL_RADIX 36
- /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
- static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
- static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
- static
- void init_dblprec(int *prec, int radix) {
- /* determine floating point precision by adding successively
- smaller increments to 1.0 until it is considered == 1.0 */
- double f = ((double)1.0)/radix;
- double fsum = 1.0 + f;
- *prec = 0;
- while (fsum != 1.0)
- {
- if (++(*prec) > SCM_MAX_DBL_PREC)
- fsum = 1.0;
- else
- {
- f /= radix;
- fsum = f + 1.0;
- }
- }
- (*prec) -= 1;
- }
- static
- void init_fx_radix(double *fx_list, int radix)
- {
- /* initialize a per-radix list of tolerances. When added
- to a number < 1.0, we can determine if we should raund
- up and quit converting a number to a string. */
- int i;
- fx_list[0] = 0.0;
- fx_list[1] = 0.5;
- for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
- fx_list[i] = (fx_list[i-1] / radix);
- }
- /* use this array as a way to generate a single digit */
- static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
- static size_t
- idbl2str (double f, char *a, int radix)
- {
- int efmt, dpt, d, i, wp;
- double *fx;
- #ifdef DBL_MIN_10_EXP
- double f_cpy;
- int exp_cpy;
- #endif /* DBL_MIN_10_EXP */
- size_t ch = 0;
- int exp = 0;
- if(radix < 2 ||
- radix > SCM_MAX_DBL_RADIX)
- {
- /* revert to existing behavior */
- radix = 10;
- }
- wp = scm_dblprec[radix-2];
- fx = fx_per_radix[radix-2];
- if (f == 0.0)
- {
- #ifdef HAVE_COPYSIGN
- double sgn = copysign (1.0, f);
- if (sgn < 0.0)
- a[ch++] = '-';
- #endif
- goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
- }
- if (xisinf (f))
- {
- if (f < 0)
- strcpy (a, "-inf.0");
- else
- strcpy (a, "+inf.0");
- return ch+6;
- }
- else if (xisnan (f))
- {
- strcpy (a, "+nan.0");
- return ch+6;
- }
- if (f < 0.0)
- {
- f = -f;
- a[ch++] = '-';
- }
- #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
- make-uniform-vector, from causing infinite loops. */
- /* just do the checking...if it passes, we do the conversion for our
- radix again below */
- f_cpy = f;
- exp_cpy = exp;
- while (f_cpy < 1.0)
- {
- f_cpy *= 10.0;
- if (exp_cpy-- < DBL_MIN_10_EXP)
- {
- a[ch++] = '#';
- a[ch++] = '.';
- a[ch++] = '#';
- return ch;
- }
- }
- while (f_cpy > 10.0)
- {
- f_cpy *= 0.10;
- if (exp_cpy++ > DBL_MAX_10_EXP)
- {
- a[ch++] = '#';
- a[ch++] = '.';
- a[ch++] = '#';
- return ch;
- }
- }
- #endif
- while (f < 1.0)
- {
- f *= radix;
- exp--;
- }
- while (f > radix)
- {
- f /= radix;
- exp++;
- }
- if (f + fx[wp] >= radix)
- {
- f = 1.0;
- exp++;
- }
- zero:
- #ifdef ENGNOT
- /* adding 9999 makes this equivalent to abs(x) % 3 */
- dpt = (exp + 9999) % 3;
- exp -= dpt++;
- efmt = 1;
- #else
- efmt = (exp < -3) || (exp > wp + 2);
- if (!efmt)
- {
- if (exp < 0)
- {
- a[ch++] = '0';
- a[ch++] = '.';
- dpt = exp;
- while (++dpt)
- a[ch++] = '0';
- }
- else
- dpt = exp + 1;
- }
- else
- dpt = 1;
- #endif
- do
- {
- d = f;
- f -= d;
- a[ch++] = number_chars[d];
- if (f < fx[wp])
- break;
- if (f + fx[wp] >= 1.0)
- {
- a[ch - 1] = number_chars[d+1];
- break;
- }
- f *= radix;
- if (!(--dpt))
- a[ch++] = '.';
- }
- while (wp--);
- if (dpt > 0)
- {
- #ifndef ENGNOT
- if ((dpt > 4) && (exp > 6))
- {
- d = (a[0] == '-' ? 2 : 1);
- for (i = ch++; i > d; i--)
- a[i] = a[i - 1];
- a[d] = '.';
- efmt = 1;
- }
- else
- #endif
- {
- while (--dpt)
- a[ch++] = '0';
- a[ch++] = '.';
- }
- }
- if (a[ch - 1] == '.')
- a[ch++] = '0'; /* trailing zero */
- if (efmt && exp)
- {
- a[ch++] = 'e';
- if (exp < 0)
- {
- exp = -exp;
- a[ch++] = '-';
- }
- for (i = radix; i <= exp; i *= radix);
- for (i /= radix; i; i /= radix)
- {
- a[ch++] = number_chars[exp / i];
- exp %= i;
- }
- }
- return ch;
- }
- static size_t
- icmplx2str (double real, double imag, char *str, int radix)
- {
- size_t i;
-
- i = idbl2str (real, str, radix);
- if (imag != 0.0)
- {
- /* Don't output a '+' for negative numbers or for Inf and
- NaN. They will provide their own sign. */
- if (0 <= imag && !xisinf (imag) && !xisnan (imag))
- str[i++] = '+';
- i += idbl2str (imag, &str[i], radix);
- str[i++] = 'i';
- }
- return i;
- }
- static size_t
- iflo2str (SCM flt, char *str, int radix)
- {
- size_t i;
- if (SCM_REALP (flt))
- i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
- else
- i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
- str, radix);
- return i;
- }
- /* convert a scm_t_intmax to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iint2str (scm_t_intmax num, int rad, char *p)
- {
- if (num < 0)
- {
- *p++ = '-';
- return scm_iuint2str (-num, rad, p) + 1;
- }
- else
- return scm_iuint2str (num, rad, p);
- }
- /* convert a scm_t_intmax to a string (unterminated). returns the number of
- characters in the result.
- rad is output base
- p is destination: worst case (base 2) is SCM_INTBUFLEN */
- size_t
- scm_iuint2str (scm_t_uintmax num, int rad, char *p)
- {
- size_t j = 1;
- size_t i;
- scm_t_uintmax n = num;
- for (n /= rad; n > 0; n /= rad)
- j++;
- i = j;
- n = num;
- while (i--)
- {
- int d = n % rad;
- n /= rad;
- p[i] = d + ((d < 10) ? '0' : 'a' - 10);
- }
- return j;
- }
- SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
- (SCM n, SCM radix),
- "Return a string holding the external representation of the\n"
- "number @var{n} in the given @var{radix}. If @var{n} is\n"
- "inexact, a radix of 10 will be used.")
- #define FUNC_NAME s_scm_number_to_string
- {
- int base;
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_signed_integer (radix, 2, 36);
- if (SCM_I_INUMP (n))
- {
- char num_buf [SCM_INTBUFLEN];
- size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
- return scm_from_locale_stringn (num_buf, length);
- }
- else if (SCM_BIGP (n))
- {
- char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
- scm_remember_upto_here_1 (n);
- return scm_take_locale_string (str);
- }
- else if (SCM_FRACTIONP (n))
- {
- return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
- scm_from_locale_string ("/"),
- scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
- }
- else if (SCM_INEXACTP (n))
- {
- char num_buf [FLOBUFLEN];
- return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
- }
- else
- SCM_WRONG_TYPE_ARG (1, n);
- }
- #undef FUNC_NAME
- /* These print routines used to be stubbed here so that scm_repl.c
- wouldn't need SCM_BIGDIG conditionals (pre GMP) */
- int
- scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_double (double val, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
- }
- int
- scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
- return !0;
- }
- void
- scm_i_print_complex (double real, double imag, SCM port)
- {
- char num_buf[FLOBUFLEN];
- scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
- }
- int
- scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- SCM str;
- str = scm_number_to_string (sexp, SCM_UNDEFINED);
- scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
- scm_remember_upto_here_1 (str);
- return !0;
- }
- int
- scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
- {
- char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
- scm_remember_upto_here_1 (exp);
- scm_lfwrite (str, (size_t) strlen (str), port);
- free (str);
- return !0;
- }
- /*** END nums->strs ***/
- /*** STRINGS -> NUMBERS ***/
- /* The following functions implement the conversion from strings to numbers.
- * The implementation somehow follows the grammar for numbers as it is given
- * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
- * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
- * points should be noted about the implementation:
- * * Each function keeps a local index variable 'idx' that points at the
- * current position within the parsed string. The global index is only
- * updated if the function could parse the corresponding syntactic unit
- * successfully.
- * * Similarly, the functions keep track of indicators of inexactness ('#',
- * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
- * global exactness information is only updated after each part has been
- * successfully parsed.
- * * Sequences of digits are parsed into temporary variables holding fixnums.
- * Only if these fixnums would overflow, the result variables are updated
- * using the standard functions scm_add, scm_product, scm_divide etc. Then,
- * the temporary variables holding the fixnums are cleared, and the process
- * starts over again. If for example fixnums were able to store five decimal
- * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
- * and the result was computed as 12345 * 100000 + 67890. In other words,
- * only every five digits two bignum operations were performed.
- */
- enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
- /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
- /* In non ASCII-style encodings the following macro might not work. */
- #define XDIGIT2UINT(d) \
- (isdigit ((int) (unsigned char) d) \
- ? (d) - '0' \
- : tolower ((int) (unsigned char) d) - 'a' + 10)
- static SCM
- mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- unsigned int hash_seen = 0;
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM result;
- char c;
- if (idx == len)
- return SCM_BOOL_F;
- c = mem[idx];
- if (!isxdigit ((int) (unsigned char) c))
- return SCM_BOOL_F;
- digit_value = XDIGIT2UINT (c);
- if (digit_value >= radix)
- return SCM_BOOL_F;
- idx++;
- result = SCM_I_MAKINUM (digit_value);
- while (idx != len)
- {
- char c = mem[idx];
- if (isxdigit ((int) (unsigned char) c))
- {
- if (hash_seen)
- break;
- digit_value = XDIGIT2UINT (c);
- if (digit_value >= radix)
- break;
- }
- else if (c == '#')
- {
- hash_seen = 1;
- digit_value = 0;
- }
- else
- break;
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
- {
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- shift = radix;
- add = digit_value;
- }
- else
- {
- shift = shift * radix;
- add = add * radix + digit_value;
- }
- };
- if (shift > 1)
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
- *p_idx = idx;
- if (hash_seen)
- *p_exactness = INEXACT;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
- * covers the parts of the rules that start at a potential point. The value
- * of the digits up to the point have been parsed by the caller and are given
- * in variable result. The content of *p_exactness indicates, whether a hash
- * has already been seen in the digits before the point.
- */
- /* In non ASCII-style encodings the following macro might not work. */
- #define DIGIT2UINT(d) ((d) - '0')
- static SCM
- mem2decimal_from_point (SCM result, const char* mem, size_t len,
- unsigned int *p_idx, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- enum t_exactness x = *p_exactness;
- if (idx == len)
- return result;
- if (mem[idx] == '.')
- {
- scm_t_bits shift = 1;
- scm_t_bits add = 0;
- unsigned int digit_value;
- SCM big_shift = SCM_I_MAKINUM (1);
- idx++;
- while (idx != len)
- {
- char c = mem[idx];
- if (isdigit ((int) (unsigned char) c))
- {
- if (x == INEXACT)
- return SCM_BOOL_F;
- else
- digit_value = DIGIT2UINT (c);
- }
- else if (c == '#')
- {
- x = INEXACT;
- digit_value = 0;
- }
- else
- break;
- idx++;
- if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- if (add > 0)
- result = scm_sum (result, SCM_I_MAKINUM (add));
-
- shift = 10;
- add = digit_value;
- }
- else
- {
- shift = shift * 10;
- add = add * 10 + digit_value;
- }
- };
- if (add > 0)
- {
- big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
- result = scm_product (result, SCM_I_MAKINUM (shift));
- result = scm_sum (result, SCM_I_MAKINUM (add));
- }
- result = scm_divide (result, big_shift);
- /* We've seen a decimal point, thus the value is implicitly inexact. */
- x = INEXACT;
- }
- if (idx != len)
- {
- int sign = 1;
- unsigned int start;
- char c;
- int exponent;
- SCM e;
- /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
- switch (mem[idx])
- {
- case 'd': case 'D':
- case 'e': case 'E':
- case 'f': case 'F':
- case 'l': case 'L':
- case 's': case 'S':
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- start = idx;
- c = mem[idx];
- if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- c = mem[idx];
- }
- else if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- c = mem[idx];
- }
- else
- sign = 1;
- if (!isdigit ((int) (unsigned char) c))
- return SCM_BOOL_F;
- idx++;
- exponent = DIGIT2UINT (c);
- while (idx != len)
- {
- char c = mem[idx];
- if (isdigit ((int) (unsigned char) c))
- {
- idx++;
- if (exponent <= SCM_MAXEXP)
- exponent = exponent * 10 + DIGIT2UINT (c);
- }
- else
- break;
- }
- if (exponent > SCM_MAXEXP)
- {
- size_t exp_len = idx - start;
- SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
- SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
- scm_out_of_range ("string->number", exp_num);
- }
- e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
- if (sign == 1)
- result = scm_product (result, e);
- else
- result = scm_divide2real (result, e);
- /* We've seen an exponent, thus the value is implicitly inexact. */
- x = INEXACT;
- break;
- default:
- break;
- }
- }
- *p_idx = idx;
- if (x == INEXACT)
- *p_exactness = x;
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
- static SCM
- mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- unsigned int idx = *p_idx;
- SCM result;
- /* Start off believing that the number will be exact. This changes
- to INEXACT if we see a decimal point or a hash. */
- enum t_exactness x = EXACT;
- if (idx == len)
- return SCM_BOOL_F;
- if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
- {
- *p_idx = idx+5;
- return scm_inf ();
- }
- if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
- {
- /* Cobble up the fractional part. We might want to set the
- NaN's mantissa from it. */
- idx += 4;
- mem2uinteger (mem, len, &idx, 10, &x);
- *p_idx = idx;
- return scm_nan ();
- }
- if (mem[idx] == '.')
- {
- if (radix != 10)
- return SCM_BOOL_F;
- else if (idx + 1 == len)
- return SCM_BOOL_F;
- else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
- return SCM_BOOL_F;
- else
- result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
- p_idx, &x);
- }
- else
- {
- SCM uinteger;
- uinteger = mem2uinteger (mem, len, &idx, radix, &x);
- if (scm_is_false (uinteger))
- return SCM_BOOL_F;
- if (idx == len)
- result = uinteger;
- else if (mem[idx] == '/')
- {
- SCM divisor;
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- divisor = mem2uinteger (mem, len, &idx, radix, &x);
- if (scm_is_false (divisor))
- return SCM_BOOL_F;
- /* both are int/big here, I assume */
- result = scm_i_make_ratio (uinteger, divisor);
- }
- else if (radix == 10)
- {
- result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
- if (scm_is_false (result))
- return SCM_BOOL_F;
- }
- else
- result = uinteger;
- *p_idx = idx;
- }
- /* Update *p_exactness if the number just read was inexact. This is
- important for complex numbers, so that a complex number is
- treated as inexact overall if either its real or imaginary part
- is inexact.
- */
- if (x == INEXACT)
- *p_exactness = x;
- /* When returning an inexact zero, make sure it is represented as a
- floating point value so that we can change its sign.
- */
- if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
- result = scm_from_double (0.0);
- return result;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- static SCM
- mem2complex (const char* mem, size_t len, unsigned int idx,
- unsigned int radix, enum t_exactness *p_exactness)
- {
- char c;
- int sign = 0;
- SCM ureal;
- if (idx == len)
- return SCM_BOOL_F;
- c = mem[idx];
- if (c == '+')
- {
- idx++;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- sign = -1;
- }
- if (idx == len)
- return SCM_BOOL_F;
- ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
- if (scm_is_false (ureal))
- {
- /* input must be either +i or -i */
- if (sign == 0)
- return SCM_BOOL_F;
- if (mem[idx] == 'i' || mem[idx] == 'I')
- {
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
-
- return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
- }
- else
- return SCM_BOOL_F;
- }
- else
- {
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- ureal = scm_difference (ureal, SCM_UNDEFINED);
- if (idx == len)
- return ureal;
- c = mem[idx];
- switch (c)
- {
- case 'i': case 'I':
- /* either +<ureal>i or -<ureal>i */
- idx++;
- if (sign == 0)
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
- case '@':
- /* polar input: <real>@<real>. */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign;
- SCM angle;
- SCM result;
- c = mem[idx];
- if (c == '+')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = 1;
- }
- else if (c == '-')
- {
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- sign = -1;
- }
- else
- sign = 1;
- angle = mem2ureal (mem, len, &idx, radix, p_exactness);
- if (scm_is_false (angle))
- return SCM_BOOL_F;
- if (idx != len)
- return SCM_BOOL_F;
- if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- angle = scm_difference (angle, SCM_UNDEFINED);
- result = scm_make_polar (ureal, angle);
- return result;
- }
- case '+':
- case '-':
- /* expecting input matching <real>[+-]<ureal>?i */
- idx++;
- if (idx == len)
- return SCM_BOOL_F;
- else
- {
- int sign = (c == '+') ? 1 : -1;
- SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
- if (scm_is_false (imag))
- imag = SCM_I_MAKINUM (sign);
- else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
- imag = scm_difference (imag, SCM_UNDEFINED);
- if (idx == len)
- return SCM_BOOL_F;
- if (mem[idx] != 'i' && mem[idx] != 'I')
- return SCM_BOOL_F;
- idx++;
- if (idx != len)
- return SCM_BOOL_F;
- return scm_make_rectangular (ureal, imag);
- }
- default:
- return SCM_BOOL_F;
- }
- }
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
- enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
- SCM
- scm_c_locale_stringn_to_number (const char* mem, size_t len,
- unsigned int default_radix)
- {
- unsigned int idx = 0;
- unsigned int radix = NO_RADIX;
- enum t_exactness forced_x = NO_EXACTNESS;
- enum t_exactness implicit_x = EXACT;
- SCM result;
- /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
- while (idx + 2 < len && mem[idx] == '#')
- {
- switch (mem[idx + 1])
- {
- case 'b': case 'B':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DUAL;
- break;
- case 'd': case 'D':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = DEC;
- break;
- case 'i': case 'I':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = INEXACT;
- break;
- case 'e': case 'E':
- if (forced_x != NO_EXACTNESS)
- return SCM_BOOL_F;
- forced_x = EXACT;
- break;
- case 'o': case 'O':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = OCT;
- break;
- case 'x': case 'X':
- if (radix != NO_RADIX)
- return SCM_BOOL_F;
- radix = HEX;
- break;
- default:
- return SCM_BOOL_F;
- }
- idx += 2;
- }
- /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
- if (radix == NO_RADIX)
- result = mem2complex (mem, len, idx, default_radix, &implicit_x);
- else
- result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
- if (scm_is_false (result))
- return SCM_BOOL_F;
- switch (forced_x)
- {
- case EXACT:
- if (SCM_INEXACTP (result))
- return scm_inexact_to_exact (result);
- else
- return result;
- case INEXACT:
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- case NO_EXACTNESS:
- default:
- if (implicit_x == INEXACT)
- {
- if (SCM_INEXACTP (result))
- return result;
- else
- return scm_exact_to_inexact (result);
- }
- else
- return result;
- }
- }
- SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
- (SCM string, SCM radix),
- "Return a number of the maximally precise representation\n"
- "expressed by the given @var{string}. @var{radix} must be an\n"
- "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
- "is a default radix that may be overridden by an explicit radix\n"
- "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
- "supplied, then the default radix is 10. If string is not a\n"
- "syntactically valid notation for a number, then\n"
- "@code{string->number} returns @code{#f}.")
- #define FUNC_NAME s_scm_string_to_number
- {
- SCM answer;
- unsigned int base;
- SCM_VALIDATE_STRING (1, string);
- if (SCM_UNBNDP (radix))
- base = 10;
- else
- base = scm_to_unsigned_integer (radix, 2, INT_MAX);
- answer = scm_c_locale_stringn_to_number (scm_i_string_chars (string),
- scm_i_string_length (string),
- base);
- scm_remember_upto_here_1 (string);
- return answer;
- }
- #undef FUNC_NAME
- /*** END strs->nums ***/
- SCM
- scm_bigequal (SCM x, SCM y)
- {
- int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (0 == result);
- }
- SCM
- scm_real_equalp (SCM x, SCM y)
- {
- return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
- }
- SCM
- scm_complex_equalp (SCM x, SCM y)
- {
- return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
- && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
- }
- SCM
- scm_i_fraction_equalp (SCM x, SCM y)
- {
- if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_NUMERATOR (y)))
- || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_DENOMINATOR (y))))
- return SCM_BOOL_F;
- else
- return SCM_BOOL_T;
- }
- SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a number, @code{#f}\n"
- "otherwise.")
- #define FUNC_NAME s_scm_number_p
- {
- return scm_from_bool (SCM_NUMBERP (x));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
- "otherwise. Note that the sets of real, rational and integer\n"
- "values form subsets of the set of complex numbers, i. e. the\n"
- "predicate will also be fulfilled if @var{x} is a real,\n"
- "rational or integer number.")
- #define FUNC_NAME s_scm_complex_p
- {
- /* all numbers are complex. */
- return scm_number_p (x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of real numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_real_p
- {
- /* we can't represent irrational numbers. */
- return scm_rational_p (x);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
- "otherwise. Note that the set of integer values forms a subset of\n"
- "the set of rational numbers, i. e. the predicate will also be\n"
- "fulfilled if @var{x} is an integer number.")
- #define FUNC_NAME s_scm_rational_p
- {
- if (SCM_I_INUMP (x))
- return SCM_BOOL_T;
- else if (SCM_IMP (x))
- return SCM_BOOL_F;
- else if (SCM_BIGP (x))
- return SCM_BOOL_T;
- else if (SCM_FRACTIONP (x))
- return SCM_BOOL_T;
- else if (SCM_REALP (x))
- /* due to their limited precision, all floating point numbers are
- rational as well. */
- return SCM_BOOL_T;
- else
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
- "else.")
- #define FUNC_NAME s_scm_integer_p
- {
- double r;
- if (SCM_I_INUMP (x))
- return SCM_BOOL_T;
- if (SCM_IMP (x))
- return SCM_BOOL_F;
- if (SCM_BIGP (x))
- return SCM_BOOL_T;
- if (!SCM_INEXACTP (x))
- return SCM_BOOL_F;
- if (SCM_COMPLEXP (x))
- return SCM_BOOL_F;
- r = SCM_REAL_VALUE (x);
- /* +/-inf passes r==floor(r), making those #t */
- if (r == floor (r))
- return SCM_BOOL_T;
- return SCM_BOOL_F;
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
- (SCM x),
- "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
- "else.")
- #define FUNC_NAME s_scm_inexact_p
- {
- if (SCM_INEXACTP (x))
- return SCM_BOOL_T;
- if (SCM_NUMBERP (x))
- return SCM_BOOL_F;
- SCM_WRONG_TYPE_ARG (1, x);
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
- /* "Return @code{#t} if all parameters are numerically equal." */
- SCM
- scm_num_eq_p (SCM x, SCM y)
- {
- again:
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- return scm_from_bool (xx == yy);
- }
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- {
- /* On a 32-bit system an inum fits a double, we can cast the inum
- to a double and compare.
- But on a 64-bit system an inum is bigger than a double and
- casting it to a double (call that dxx) will round. dxx is at
- worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
- an integer and fits a long. So we cast yy to a long and
- compare with plain xx.
- An alternative (for any size system actually) would be to check
- yy is an integer (with floor) and is in range of an inum
- (compare against appropriate powers of 2) then test
- xx==(long)yy. It's just a matter of which casts/comparisons
- might be fastest or easiest for the cpu. */
- double yy = SCM_REAL_VALUE (y);
- return scm_from_bool ((double) xx == yy
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || xx == (long) yy));
- }
- else if (SCM_COMPLEXP (y))
- return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
- && (0.0 == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_BOOL_F;
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- {
- int cmp;
- if (xisnan (SCM_REAL_VALUE (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_COMPLEXP (y))
- {
- int cmp;
- if (0.0 != SCM_COMPLEX_IMAG (y))
- return SCM_BOOL_F;
- if (xisnan (SCM_COMPLEX_REAL (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_FRACTIONP (y))
- return SCM_BOOL_F;
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else if (SCM_REALP (x))
- {
- double xx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- {
- /* see comments with inum/real above */
- long yy = SCM_I_INUM (y);
- return scm_from_bool (xx == (double) yy
- && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
- || (long) xx == yy));
- }
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (xisnan (SCM_REAL_VALUE (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
- && (0.0 == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- if (xisnan (xx))
- return SCM_BOOL_F;
- if (xisinf (xx))
- return scm_from_bool (xx < 0.0);
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
- && (SCM_COMPLEX_IMAG (x) == 0.0));
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (0.0 != SCM_COMPLEX_IMAG (x))
- return SCM_BOOL_F;
- if (xisnan (SCM_COMPLEX_REAL (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (0 == cmp);
- }
- else if (SCM_REALP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
- && (SCM_COMPLEX_IMAG (x) == 0.0));
- else if (SCM_COMPLEXP (y))
- return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
- && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
- else if (SCM_FRACTIONP (y))
- {
- double xx;
- if (SCM_COMPLEX_IMAG (x) != 0.0)
- return SCM_BOOL_F;
- xx = SCM_COMPLEX_REAL (x);
- if (xisnan (xx))
- return SCM_BOOL_F;
- if (xisinf (xx))
- return scm_from_bool (xx < 0.0);
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return SCM_BOOL_F;
- else if (SCM_BIGP (y))
- return SCM_BOOL_F;
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- if (xisnan (yy))
- return SCM_BOOL_F;
- if (xisinf (yy))
- return scm_from_bool (0.0 < yy);
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_COMPLEXP (y))
- {
- double yy;
- if (SCM_COMPLEX_IMAG (y) != 0.0)
- return SCM_BOOL_F;
- yy = SCM_COMPLEX_REAL (y);
- if (xisnan (yy))
- return SCM_BOOL_F;
- if (xisinf (yy))
- return scm_from_bool (0.0 < yy);
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_fraction_equalp (x, y);
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
- }
- else
- SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
- }
- /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
- done are good for inums, but for bignums an answer can almost always be
- had by just examining a few high bits of the operands, as done by GMP in
- mpq_cmp. flonum/frac compares likewise, but with the slight complication
- of the float exponent to take into account. */
- SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
- /* "Return @code{#t} if the list of parameters is monotonically\n"
- * "increasing."
- */
- SCM
- scm_less_p (SCM x, SCM y)
- {
- again:
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- return scm_from_bool (xx < yy);
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (sgn > 0);
- }
- else if (SCM_REALP (y))
- return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- {
- /* "x < a/b" becomes "x*b < a" */
- int_frac:
- x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
- y = SCM_FRACTION_NUMERATOR (y);
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn < 0);
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_from_bool (cmp < 0);
- }
- else if (SCM_REALP (y))
- {
- int cmp;
- if (xisnan (SCM_REAL_VALUE (y)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (cmp < 0);
- }
- else if (SCM_FRACTIONP (y))
- goto int_frac;
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- int cmp;
- if (xisnan (SCM_REAL_VALUE (x)))
- return SCM_BOOL_F;
- cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
- scm_remember_upto_here_1 (y);
- return scm_from_bool (cmp > 0);
- }
- else if (SCM_REALP (y))
- return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
- else if (SCM_FRACTIONP (y))
- {
- double xx = SCM_REAL_VALUE (x);
- if (xisnan (xx))
- return SCM_BOOL_F;
- if (xisinf (xx))
- return scm_from_bool (xx < 0.0);
- x = scm_inexact_to_exact (x); /* with x as frac or int */
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y) || SCM_BIGP (y))
- {
- /* "a/b < y" becomes "a < y*b" */
- y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
- x = SCM_FRACTION_NUMERATOR (x);
- goto again;
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- if (xisnan (yy))
- return SCM_BOOL_F;
- if (xisinf (yy))
- return scm_from_bool (0.0 < yy);
- y = scm_inexact_to_exact (y); /* with y as frac or int */
- goto again;
- }
- else if (SCM_FRACTIONP (y))
- {
- /* "a/b < c/d" becomes "a*d < c*b" */
- SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (y));
- SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
- SCM_FRACTION_DENOMINATOR (x));
- x = new_x;
- y = new_y;
- goto again;
- }
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
- }
- else
- SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
- }
- SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
- /* "Return @code{#t} if the list of parameters is monotonically\n"
- * "decreasing."
- */
- #define FUNC_NAME s_scm_gr_p
- SCM
- scm_gr_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
- else
- return scm_less_p (y, x);
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
- /* "Return @code{#t} if the list of parameters is monotonically\n"
- * "non-decreasing."
- */
- #define FUNC_NAME s_scm_leq_p
- SCM
- scm_leq_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
- else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
- return SCM_BOOL_F;
- else
- return scm_not (scm_less_p (y, x));
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
- /* "Return @code{#t} if the list of parameters is monotonically\n"
- * "non-increasing."
- */
- #define FUNC_NAME s_scm_geq_p
- SCM
- scm_geq_p (SCM x, SCM y)
- {
- if (!SCM_NUMBERP (x))
- SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
- else if (!SCM_NUMBERP (y))
- SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
- else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
- return SCM_BOOL_F;
- else
- return scm_not (scm_less_p (x, y));
- }
- #undef FUNC_NAME
- SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
- /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
- * "zero."
- */
- SCM
- scm_zero_p (SCM z)
- {
- if (SCM_I_INUMP (z))
- return scm_from_bool (scm_is_eq (z, SCM_INUM0));
- else if (SCM_BIGP (z))
- return SCM_BOOL_F;
- else if (SCM_REALP (z))
- return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
- else if (SCM_COMPLEXP (z))
- return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
- && SCM_COMPLEX_IMAG (z) == 0.0);
- else if (SCM_FRACTIONP (z))
- return SCM_BOOL_F;
- else
- SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
- }
- SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
- /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
- * "zero."
- */
- SCM
- scm_positive_p (SCM x)
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) > 0);
- else if (SCM_BIGP (x))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn > 0);
- }
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
- else
- SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
- }
- SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
- /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
- * "zero."
- */
- SCM
- scm_negative_p (SCM x)
- {
- if (SCM_I_INUMP (x))
- return scm_from_bool (SCM_I_INUM (x) < 0);
- else if (SCM_BIGP (x))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_from_bool (sgn < 0);
- }
- else if (SCM_REALP (x))
- return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
- else if (SCM_FRACTIONP (x))
- return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
- else
- SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
- }
- /* scm_min and scm_max return an inexact when either argument is inexact, as
- required by r5rs. On that basis, for exact/inexact combinations the
- exact is converted to inexact to compare and possibly return. This is
- unlike scm_less_p above which takes some trouble to preserve all bits in
- its test, such trouble is not required for min and max. */
- SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
- /* "Return the maximum of all parameter values."
- */
- SCM
- scm_max (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- SCM_WTA_DISPATCH_0 (g_max, s_max);
- else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
- return x;
- else
- SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
- }
-
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- return (xx < yy) ? y : x;
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return (sgn < 0) ? x : y;
- }
- else if (SCM_REALP (y))
- {
- double z = xx;
- /* if y==NaN then ">" is false and we return NaN */
- return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- use_less:
- return (scm_is_false (scm_less_p (x, y)) ? x : y);
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn < 0) ? y : x;
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return (cmp > 0) ? x : y;
- }
- else if (SCM_REALP (y))
- {
- /* if y==NaN then xx>yy is false, so we return the NaN y */
- double xx, yy;
- big_real:
- xx = scm_i_big2dbl (x);
- yy = SCM_REAL_VALUE (y);
- return (xx > yy ? scm_from_double (xx) : y);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- double z = SCM_I_INUM (y);
- /* if x==NaN then "<" is false and we return NaN */
- return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_real;
- }
- else if (SCM_REALP (y))
- {
- /* if x==NaN then our explicit check means we return NaN
- if y==NaN then ">" is false and we return NaN
- calling isnan is unavoidable, since it's the only way to know
- which of x or y causes any compares to be false */
- double xx = SCM_REAL_VALUE (x);
- return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- double xx = SCM_REAL_VALUE (x);
- return (xx < yy) ? scm_from_double (yy) : x;
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- goto use_less;
- }
- else if (SCM_BIGP (y))
- {
- goto use_less;
- }
- else if (SCM_REALP (y))
- {
- double xx = scm_i_fraction2double (x);
- return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
- }
- SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
- /* "Return the minium of all parameter values."
- */
- SCM
- scm_min (SCM x, SCM y)
- {
- if (SCM_UNBNDP (y))
- {
- if (SCM_UNBNDP (x))
- SCM_WTA_DISPATCH_0 (g_min, s_min);
- else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
- return x;
- else
- SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
- }
-
- if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_I_INUMP (y))
- {
- long yy = SCM_I_INUM (y);
- return (xx < yy) ? x : y;
- }
- else if (SCM_BIGP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return (sgn < 0) ? y : x;
- }
- else if (SCM_REALP (y))
- {
- double z = xx;
- /* if y==NaN then "<" is false and we return NaN */
- return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- use_less:
- return (scm_is_false (scm_less_p (x, y)) ? y : x);
- }
- else
- SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn < 0) ? x : y;
- }
- else if (SCM_BIGP (y))
- {
- int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return (cmp > 0) ? y : x;
- }
- else if (SCM_REALP (y))
- {
- /* if y==NaN then xx<yy is false, so we return the NaN y */
- double xx, yy;
- big_real:
- xx = scm_i_big2dbl (x);
- yy = SCM_REAL_VALUE (y);
- return (xx < yy ? scm_from_double (xx) : y);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- double z = SCM_I_INUM (y);
- /* if x==NaN then "<" is false and we return NaN */
- return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto big_real;
- }
- else if (SCM_REALP (y))
- {
- /* if x==NaN then our explicit check means we return NaN
- if y==NaN then "<" is false and we return NaN
- calling isnan is unavoidable, since it's the only way to know
- which of x or y causes any compares to be false */
- double xx = SCM_REAL_VALUE (x);
- return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- double xx = SCM_REAL_VALUE (x);
- return (yy < xx) ? scm_from_double (yy) : x;
- }
- else
- SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- goto use_less;
- }
- else if (SCM_BIGP (y))
- {
- goto use_less;
- }
- else if (SCM_REALP (y))
- {
- double xx = scm_i_fraction2double (x);
- return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
- }
- else if (SCM_FRACTIONP (y))
- {
- goto use_less;
- }
- else
- SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
- }
- else
- SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
- }
- SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
- /* "Return the sum of all parameter values. Return 0 if called without\n"
- * "any parameters."
- */
- SCM
- scm_sum (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_NUMBERP (x)) return x;
- if (SCM_UNBNDP (x)) return SCM_INUM0;
- SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
- }
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- long xx = SCM_I_INUM (x);
- long yy = SCM_I_INUM (y);
- long int z = xx + yy;
- return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
- }
- else if (SCM_BIGP (y))
- {
- SCM_SWAP (x, y);
- goto add_big_inum;
- }
- else if (SCM_REALP (y))
- {
- long int xx = SCM_I_INUM (x);
- return scm_from_double (xx + SCM_REAL_VALUE (y));
- }
- else if (SCM_COMPLEXP (y))
- {
- long int xx = SCM_I_INUM (x);
- return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- } else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long int inum;
- int bigsgn;
- add_big_inum:
- inum = SCM_I_INUM (y);
- if (inum == 0)
- return x;
- bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- if (inum < 0)
- {
- SCM result = scm_i_mkbig ();
- mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
- scm_remember_upto_here_1 (x);
- /* we know the result will have to be a bignum */
- if (bigsgn == -1)
- return result;
- return scm_i_normbig (result);
- }
- else
- {
- SCM result = scm_i_mkbig ();
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
- scm_remember_upto_here_1 (x);
- /* we know the result will have to be a bignum */
- if (bigsgn == 1)
- return result;
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- mpz_add (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- /* we know the result will have to be a bignum */
- if (sgn_x == sgn_y)
- return result;
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
- + SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
- scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
- scm_remember_upto_here_1 (y);
- return scm_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_BIGP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
- + SCM_COMPLEX_REAL (x));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
- scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
- SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a/b + c/d = (ad + bc) / bd */
- return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
- scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
- }
- else
- SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
- }
- SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}+1}.")
- #define FUNC_NAME s_scm_oneplus
- {
- return scm_sum (x, SCM_I_MAKINUM (1));
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
- /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
- * the sum of all but the first argument are subtracted from the first
- * argument. */
- #define FUNC_NAME s_difference
- SCM
- scm_difference (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- SCM_WTA_DISPATCH_0 (g_difference, s_difference);
- else
- if (SCM_I_INUMP (x))
- {
- long xx = -SCM_I_INUM (x);
- if (SCM_FIXABLE (xx))
- return SCM_I_MAKINUM (xx);
- else
- return scm_i_long2big (xx);
- }
- else if (SCM_BIGP (x))
- /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
- bignum, but negating that gives a fixnum. */
- return scm_i_normbig (scm_i_clonebig (x, 0));
- else if (SCM_REALP (x))
- return scm_from_double (-SCM_REAL_VALUE (x));
- else if (SCM_COMPLEXP (x))
- return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
- -SCM_COMPLEX_IMAG (x));
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (x));
- else
- SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
- }
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- long int xx = SCM_I_INUM (x);
- long int yy = SCM_I_INUM (y);
- long int z = xx - yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_long2big (z);
- }
- else if (SCM_BIGP (y))
- {
- /* inum-x - big-y */
- long xx = SCM_I_INUM (x);
- if (xx == 0)
- return scm_i_clonebig (y, 0);
- else
- {
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM result = scm_i_mkbig ();
- if (xx >= 0)
- mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
- else
- {
- /* x - y == -(y + -x) */
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- }
- scm_remember_upto_here_1 (y);
- if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
- /* we know the result will have to be a bignum */
- return result;
- else
- return scm_i_normbig (result);
- }
- }
- else if (SCM_REALP (y))
- {
- long int xx = SCM_I_INUM (x);
- return scm_from_double (xx - SCM_REAL_VALUE (y));
- }
- else if (SCM_COMPLEXP (y))
- {
- long int xx = SCM_I_INUM (x);
- return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
- - SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- /* a - b/c = (ac - b) / c */
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* big-x - inum-y */
- long yy = SCM_I_INUM (y);
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- if (sgn_x == 0)
- return (SCM_FIXABLE (-yy) ?
- SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
- else
- {
- SCM result = scm_i_mkbig ();
- if (yy >= 0)
- mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
- else
- mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
- scm_remember_upto_here_1 (x);
- if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
- /* we know the result will have to be a bignum */
- return result;
- else
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
- int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
- SCM result = scm_i_mkbig ();
- mpz_sub (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- /* we know the result will have to be a bignum */
- if ((sgn_x == 1) && (sgn_y == -1))
- return result;
- if ((sgn_x == -1) && (sgn_y == 1))
- return result;
- return scm_i_normbig (result);
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
- - SCM_COMPLEX_REAL (y));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
- else if (SCM_BIGP (y))
- {
- double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (x);
- return scm_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_BIGP (y))
- {
- double real_part = (SCM_COMPLEX_REAL (x)
- - mpz_get_d (SCM_I_BIG_MPZ (y)));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
- SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
- SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
- SCM_COMPLEX_IMAG (x));
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- /* a/b - c = (a - cb) / b */
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
- scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
- scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
- -SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- /* a/b - c/d = (ad - bc) / bd */
- return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
- scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
- }
- else
- SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
- (SCM x),
- "Return @math{@var{x}-1}.")
- #define FUNC_NAME s_scm_oneminus
- {
- return scm_difference (x, SCM_I_MAKINUM (1));
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
- /* "Return the product of all arguments. If called without arguments,\n"
- * "1 is returned."
- */
- SCM
- scm_product (SCM x, SCM y)
- {
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- return SCM_I_MAKINUM (1L);
- else if (SCM_NUMBERP (x))
- return x;
- else
- SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
- }
-
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- long xx;
- intbig:
- xx = SCM_I_INUM (x);
- switch (xx)
- {
- case 0: return x; break;
- case 1: return y; break;
- }
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- long yy = SCM_I_INUM (y);
- long kk = xx * yy;
- SCM k = SCM_I_MAKINUM (kk);
- if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
- return k;
- else
- {
- SCM result = scm_i_long2big (xx);
- mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
- return scm_i_normbig (result);
- }
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
- scm_remember_upto_here_1 (y);
- return result;
- }
- else if (SCM_REALP (y))
- return scm_from_double (xx * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
- xx * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- SCM_SWAP (x, y);
- goto intbig;
- }
- else if (SCM_BIGP (y))
- {
- SCM result = scm_i_mkbig ();
- mpz_mul (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return result;
- }
- else if (SCM_REALP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
- scm_remember_upto_here_1 (x);
- return scm_from_double (result);
- }
- else if (SCM_COMPLEXP (y))
- {
- double z = mpz_get_d (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
- z * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
- SCM_FRACTION_DENOMINATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_REALP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
- if (scm_is_eq (y, SCM_INUM0))
- return y;
- return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
- }
- else if (SCM_BIGP (y))
- {
- double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
- scm_remember_upto_here_1 (y);
- return scm_from_double (result);
- }
- else if (SCM_REALP (y))
- return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
- SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
- else if (SCM_FRACTIONP (y))
- return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_COMPLEXP (x))
- {
- if (SCM_I_INUMP (y))
- {
- /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
- if (scm_is_eq (y, SCM_INUM0))
- return y;
- return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
- SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_BIGP (y))
- {
- double z = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
- z * SCM_COMPLEX_IMAG (x));
- }
- else if (SCM_REALP (y))
- return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
- SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
- else if (SCM_COMPLEXP (y))
- {
- return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
- - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
- SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
- + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
- yy * SCM_COMPLEX_IMAG (x));
- }
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_BIGP (y))
- return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
- SCM_FRACTION_DENOMINATOR (x));
- else if (SCM_REALP (y))
- return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
- else if (SCM_COMPLEXP (y))
- {
- double xx = scm_i_fraction2double (x);
- return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
- xx * SCM_COMPLEX_IMAG (y));
- }
- else if (SCM_FRACTIONP (y))
- /* a/b * c/d = ac / bd */
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_NUMERATOR (y)),
- scm_product (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_DENOMINATOR (y)));
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
- }
- else
- SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
- }
- #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
- || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
- #define ALLOW_DIVIDE_BY_ZERO
- /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
- #endif
- /* The code below for complex division is adapted from the GNU
- libstdc++, which adapted it from f2c's libF77, and is subject to
- this copyright: */
- /****************************************************************
- Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
- Permission to use, copy, modify, and distribute this software
- and its documentation for any purpose and without fee is hereby
- granted, provided that the above copyright notice appear in all
- copies and that both that the copyright notice and this
- permission notice and warranty disclaimer appear in supporting
- documentation, and that the names of AT&T Bell Laboratories or
- Bellcore or any of their entities not be used in advertising or
- publicity pertaining to distribution of the software without
- specific, written prior permission.
- AT&T and Bellcore disclaim all warranties with regard to this
- software, including all implied warranties of merchantability
- and fitness. In no event shall AT&T or Bellcore be liable for
- any special, indirect or consequential damages or any damages
- whatsoever resulting from loss of use, data or profits, whether
- in an action of contract, negligence or other tortious action,
- arising out of or in connection with the use or performance of
- this software.
- ****************************************************************/
- SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
- /* Divide the first argument by the product of the remaining
- arguments. If called with one argument @var{z1}, 1/@var{z1} is
- returned. */
- #define FUNC_NAME s_divide
- static SCM
- scm_i_divide (SCM x, SCM y, int inexact)
- {
- double a;
- if (SCM_UNLIKELY (SCM_UNBNDP (y)))
- {
- if (SCM_UNBNDP (x))
- SCM_WTA_DISPATCH_0 (g_divide, s_divide);
- else if (SCM_I_INUMP (x))
- {
- long xx = SCM_I_INUM (x);
- if (xx == 1 || xx == -1)
- return x;
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- else if (xx == 0)
- scm_num_overflow (s_divide);
- #endif
- else
- {
- if (inexact)
- return scm_from_double (1.0 / (double) xx);
- else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
- }
- }
- else if (SCM_BIGP (x))
- {
- if (inexact)
- return scm_from_double (1.0 / scm_i_big2dbl (x));
- else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
- }
- else if (SCM_REALP (x))
- {
- double xx = SCM_REAL_VALUE (x);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (xx == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (1.0 / xx);
- }
- else if (SCM_COMPLEXP (x))
- {
- double r = SCM_COMPLEX_REAL (x);
- double i = SCM_COMPLEX_IMAG (x);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular (t / d, -1.0 / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (1.0 / d, -t / d);
- }
- }
- else if (SCM_FRACTIONP (x))
- return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
- SCM_FRACTION_NUMERATOR (x));
- else
- SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
- }
- if (SCM_LIKELY (SCM_I_INUMP (x)))
- {
- long xx = SCM_I_INUM (x);
- if (SCM_LIKELY (SCM_I_INUMP (y)))
- {
- long yy = SCM_I_INUM (y);
- if (yy == 0)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- return scm_from_double ((double) xx / (double) yy);
- #endif
- }
- else if (xx % yy != 0)
- {
- if (inexact)
- return scm_from_double ((double) xx / (double) yy);
- else return scm_i_make_ratio (x, y);
- }
- else
- {
- long z = xx / yy;
- if (SCM_FIXABLE (z))
- return SCM_I_MAKINUM (z);
- else
- return scm_i_long2big (z);
- }
- }
- else if (SCM_BIGP (y))
- {
- if (inexact)
- return scm_from_double ((double) xx / scm_i_big2dbl (y));
- else return scm_i_make_ratio (x, y);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double ((double) xx / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = xx;
- complex_div: /* y _must_ be a complex number */
- {
- double r = SCM_COMPLEX_REAL (y);
- double i = SCM_COMPLEX_IMAG (y);
- if (fabs(r) <= fabs(i))
- {
- double t = r / i;
- double d = i * (1.0 + t * t);
- return scm_c_make_rectangular ((a * t) / d, -a / d);
- }
- else
- {
- double t = i / r;
- double d = r * (1.0 + t * t);
- return scm_c_make_rectangular (a / d, -(a * t) / d);
- }
- }
- }
- else if (SCM_FRACTIONP (y))
- /* a / b/c = ac / b */
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_BIGP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long int yy = SCM_I_INUM (y);
- if (yy == 0)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn == 0) ? scm_nan () : scm_inf ();
- #endif
- }
- else if (yy == 1)
- return x;
- else
- {
- /* FIXME: HMM, what are the relative performance issues here?
- We need to test. Is it faster on average to test
- divisible_p, then perform whichever operation, or is it
- faster to perform the integer div opportunistically and
- switch to real if there's a remainder? For now we take the
- middle ground: test, then if divisible, use the faster div
- func. */
- long abs_yy = yy < 0 ? -yy : yy;
- int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
- if (divisible_p)
- {
- SCM result = scm_i_mkbig ();
- mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
- scm_remember_upto_here_1 (x);
- if (yy < 0)
- mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
- return scm_i_normbig (result);
- }
- else
- {
- if (inexact)
- return scm_from_double (scm_i_big2dbl (x) / (double) yy);
- else return scm_i_make_ratio (x, y);
- }
- }
- }
- else if (SCM_BIGP (y))
- {
- int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
- if (y_is_zero)
- {
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- scm_num_overflow (s_divide);
- #else
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
- scm_remember_upto_here_1 (x);
- return (sgn == 0) ? scm_nan () : scm_inf ();
- #endif
- }
- else
- {
- /* big_x / big_y */
- if (inexact)
- {
- /* It's easily possible for the ratio x/y to fit a double
- but one or both x and y be too big to fit a double,
- hence the use of mpq_get_d rather than converting and
- dividing. */
- mpq_t q;
- *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
- *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
- return scm_from_double (mpq_get_d (q));
- }
- else
- {
- int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- if (divisible_p)
- {
- SCM result = scm_i_mkbig ();
- mpz_divexact (SCM_I_BIG_MPZ (result),
- SCM_I_BIG_MPZ (x),
- SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_2 (x, y);
- return scm_i_normbig (result);
- }
- else
- return scm_i_make_ratio (x, y);
- }
- }
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (scm_i_big2dbl (x) / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = scm_i_big2dbl (x);
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
- SCM_FRACTION_NUMERATOR (y));
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_REALP (x))
- {
- double rx = SCM_REAL_VALUE (x);
- if (SCM_I_INUMP (y))
- {
- long int yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (rx / (double) yy);
- }
- else if (SCM_BIGP (y))
- {
- double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_from_double (rx / dby);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (rx / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = rx;
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_from_double (rx / scm_i_fraction2double (y));
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_COMPLEXP (x))
- {
- double rx = SCM_COMPLEX_REAL (x);
- double ix = SCM_COMPLEX_IMAG (x);
- if (SCM_I_INUMP (y))
- {
- long int yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- {
- double d = yy;
- return scm_c_make_rectangular (rx / d, ix / d);
- }
- }
- else if (SCM_BIGP (y))
- {
- double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
- scm_remember_upto_here_1 (y);
- return scm_c_make_rectangular (rx / dby, ix / dby);
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_c_make_rectangular (rx / yy, ix / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- double ry = SCM_COMPLEX_REAL (y);
- double iy = SCM_COMPLEX_IMAG (y);
- if (fabs(ry) <= fabs(iy))
- {
- double t = ry / iy;
- double d = iy * (1.0 + t * t);
- return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
- }
- else
- {
- double t = iy / ry;
- double d = ry * (1.0 + t * t);
- return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
- }
- }
- else if (SCM_FRACTIONP (y))
- {
- double yy = scm_i_fraction2double (y);
- return scm_c_make_rectangular (rx / yy, ix / yy);
- }
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else if (SCM_FRACTIONP (x))
- {
- if (SCM_I_INUMP (y))
- {
- long int yy = SCM_I_INUM (y);
- #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
- if (yy == 0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- }
- else if (SCM_BIGP (y))
- {
- return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
- scm_product (SCM_FRACTION_DENOMINATOR (x), y));
- }
- else if (SCM_REALP (y))
- {
- double yy = SCM_REAL_VALUE (y);
- #ifndef ALLOW_DIVIDE_BY_ZERO
- if (yy == 0.0)
- scm_num_overflow (s_divide);
- else
- #endif
- return scm_from_double (scm_i_fraction2double (x) / yy);
- }
- else if (SCM_COMPLEXP (y))
- {
- a = scm_i_fraction2double (x);
- goto complex_div;
- }
- else if (SCM_FRACTIONP (y))
- return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
- scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
- }
- else
- SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
- }
- SCM
- scm_divide (SCM x, SCM y)
- {
- return scm_i_divide (x, y, 0);
- }
- static SCM scm_divide2real (SCM x, SCM y)
- {
- return scm_i_divide (x, y, 1);
- }
- #undef FUNC_NAME
- double
- scm_asinh (double x)
- {
- #if HAVE_ASINH
- return asinh (x);
- #else
- #define asinh scm_asinh
- return log (x + sqrt (x * x + 1));
- #endif
- }
- SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
- /* "Return the inverse hyperbolic sine of @var{x}."
- */
- double
- scm_acosh (double x)
- {
- #if HAVE_ACOSH
- return acosh (x);
- #else
- #define acosh scm_acosh
- return log (x + sqrt (x * x - 1));
- #endif
- }
- SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
- /* "Return the inverse hyperbolic cosine of @var{x}."
- */
- double
- scm_atanh (double x)
- {
- #if HAVE_ATANH
- return atanh (x);
- #else
- #define atanh scm_atanh
- return 0.5 * log ((1 + x) / (1 - x));
- #endif
- }
- SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
- /* "Return the inverse hyperbolic tangent of @var{x}."
- */
- double
- scm_c_truncate (double x)
- {
- #if HAVE_TRUNC
- return trunc (x);
- #else
- if (x < 0.0)
- return -floor (-x);
- return floor (x);
- #endif
- }
- /* scm_c_round is done using floor(x+0.5) to round to nearest and with
- half-way case (ie. when x is an integer plus 0.5) going upwards.
- Then half-way cases are identified and adjusted down if the
- round-upwards didn't give the desired even integer.
- "plus_half == result" identifies a half-way case. If plus_half, which is
- x + 0.5, is an integer then x must be an integer plus 0.5.
- An odd "result" value is identified with result/2 != floor(result/2).
- This is done with plus_half, since that value is ready for use sooner in
- a pipelined cpu, and we're already requiring plus_half == result.
- Note however that we need to be careful when x is big and already an
- integer. In that case "x+0.5" may round to an adjacent integer, causing
- us to return such a value, incorrectly. For instance if the hardware is
- in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
- (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
- returned. Or if the hardware is in round-upwards mode, then other bigger
- values like say x == 2^128 will see x+0.5 rounding up to the next higher
- representable value, 2^128+2^76 (or whatever), again incorrect.
- These bad roundings of x+0.5 are avoided by testing at the start whether
- x is already an integer. If it is then clearly that's the desired result
- already. And if it's not then the exponent must be small enough to allow
- an 0.5 to be represented, and hence added without a bad rounding. */
- double
- scm_c_round (double x)
- {
- double plus_half, result;
- if (x == floor (x))
- return x;
- plus_half = x + 0.5;
- result = floor (plus_half);
- /* Adjust so that the rounding is towards even. */
- return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
- ? result - 1
- : result);
- }
- SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards zero.")
- #define FUNC_NAME s_scm_truncate_number
- {
- if (scm_is_false (scm_negative_p (x)))
- return scm_floor (x);
- else
- return scm_ceiling (x);
- }
- #undef FUNC_NAME
- static SCM exactly_one_half;
- SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards the nearest integer. "
- "When it is exactly halfway between two integers, "
- "round towards the even one.")
- #define FUNC_NAME s_scm_round_number
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
- else
- {
- /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
- single quotient+remainder division then examining to see which way
- the rounding should go. */
- SCM plus_half = scm_sum (x, exactly_one_half);
- SCM result = scm_floor (plus_half);
- /* Adjust so that the rounding is towards even. */
- if (scm_is_true (scm_num_eq_p (plus_half, result))
- && scm_is_true (scm_odd_p (result)))
- return scm_difference (result, SCM_I_MAKINUM (1));
- else
- return result;
- }
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards minus infinity.")
- #define FUNC_NAME s_scm_floor
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_from_double (floor (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- {
- SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- if (scm_is_false (scm_negative_p (x)))
- {
- /* For positive x, rounding towards zero is correct. */
- return q;
- }
- else
- {
- /* For negative x, we need to return q-1 unless x is an
- integer. But fractions are never integer, per our
- assumptions. */
- return scm_difference (q, SCM_I_MAKINUM (1));
- }
- }
- else
- SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
- }
- #undef FUNC_NAME
- SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
- (SCM x),
- "Round the number @var{x} towards infinity.")
- #define FUNC_NAME s_scm_ceiling
- {
- if (SCM_I_INUMP (x) || SCM_BIGP (x))
- return x;
- else if (SCM_REALP (x))
- return scm_from_double (ceil (SCM_REAL_VALUE (x)));
- else if (SCM_FRACTIONP (x))
- {
- SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
- SCM_FRACTION_DENOMINATOR (x));
- if (scm_is_false (scm_positive_p (x)))
- {
- /* For negative x, rounding towards zero is correct. */
- return q;
- }
- else
- {
- /* For positive x, we need to return q+1 unless x is an
- integer. But fractions are never integer, per our
- assumptions. */
- return scm_sum (q, SCM_I_MAKINUM (1));
- }
- }
- else
- SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
- }
- #undef FUNC_NAME
- SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
- /* "Return the square root of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
- /* "Return the absolute value of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
- /* "Return the @var{x}th power of e."
- */
- SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
- /* "Return the natural logarithm of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
- /* "Return the sine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
- /* "Return the cosine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
- /* "Return the tangent of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
- /* "Return the arc sine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
- /* "Return the arc cosine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
- /* "Return the arc tangent of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
- /* "Return the hyperbolic sine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
- /* "Return the hyperbolic cosine of the real number @var{x}."
- */
- SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
- /* "Return the hyperbolic tangent of the real number @var{x}."
- */
- struct dpair
- {
- double x, y;
- };
- static void scm_two_doubles (SCM x,
- SCM y,
- const char *sstring,
- struct dpair * xy);
- static void
- scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
- {
- if (SCM_I_INUMP (x))
- xy->x = SCM_I_INUM (x);
- else if (SCM_BIGP (x))
- xy->x = scm_i_big2dbl (x);
- else if (SCM_REALP (x))
- xy->x = SCM_REAL_VALUE (x);
- else if (SCM_FRACTIONP (x))
- xy->x = scm_i_fraction2double (x);
- else
- scm_wrong_type_arg (sstring, SCM_ARG1, x);
- if (SCM_I_INUMP (y))
- xy->y = SCM_I_INUM (y);
- else if (SCM_BIGP (y))
- xy->y = scm_i_big2dbl (y);
- else if (SCM_REALP (y))
- xy->y = SCM_REAL_VALUE (y);
- else if (SCM_FRACTIONP (y))
- xy->y = scm_i_fraction2double (y);
- else
- scm_wrong_type_arg (sstring, SCM_ARG2, y);
- }
- SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
- (SCM x, SCM y),
- "Return @var{x} raised to the power of @var{y}. This\n"
- "procedure does not accept complex arguments.")
- #define FUNC_NAME s_scm_sys_expt
- {
- struct dpair xy;
- scm_two_doubles (x, y, FUNC_NAME, &xy);
- return scm_from_double (pow (xy.x, xy.y));
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
- (SCM x, SCM y),
- "Return the arc tangent of the two arguments @var{x} and\n"
- "@var{y}. This is similar to calculating the arc tangent of\n"
- "@var{x} / @var{y}, except that the signs of both arguments\n"
- "are used to determine the quadrant of the result. This\n"
- "procedure does not accept complex arguments.")
- #define FUNC_NAME s_scm_sys_atan2
- {
- struct dpair xy;
- scm_two_doubles (x, y, FUNC_NAME, &xy);
- return scm_from_double (atan2 (xy.x, xy.y));
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_rectangular (double re, double im)
- {
- if (im == 0.0)
- return scm_from_double (re);
- else
- {
- SCM z;
- SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
- "complex"));
- SCM_COMPLEX_REAL (z) = re;
- SCM_COMPLEX_IMAG (z) = im;
- return z;
- }
- }
- SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
- (SCM real_part, SCM imaginary_part),
- "Return a complex number constructed of the given @var{real-part} "
- "and @var{imaginary-part} parts.")
- #define FUNC_NAME s_scm_make_rectangular
- {
- struct dpair xy;
- scm_two_doubles (real_part, imaginary_part, FUNC_NAME, &xy);
- return scm_c_make_rectangular (xy.x, xy.y);
- }
- #undef FUNC_NAME
- SCM
- scm_c_make_polar (double mag, double ang)
- {
- double s, c;
- /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
- use it on Glibc-based systems that have it (it's a GNU extension). See
- http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
- details. */
- #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
- sincos (ang, &s, &c);
- #else
- s = sin (ang);
- c = cos (ang);
- #endif
- return scm_c_make_rectangular (mag * c, mag * s);
- }
- SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
- (SCM x, SCM y),
- "Return the complex number @var{x} * e^(i * @var{y}).")
- #define FUNC_NAME s_scm_make_polar
- {
- struct dpair xy;
- scm_two_doubles (x, y, FUNC_NAME, &xy);
- return scm_c_make_polar (xy.x, xy.y);
- }
- #undef FUNC_NAME
- SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
- /* "Return the real part of the number @var{z}."
- */
- SCM
- scm_real_part (SCM z)
- {
- if (SCM_I_INUMP (z))
- return z;
- else if (SCM_BIGP (z))
- return z;
- else if (SCM_REALP (z))
- return z;
- else if (SCM_COMPLEXP (z))
- return scm_from_double (SCM_COMPLEX_REAL (z));
- else if (SCM_FRACTIONP (z))
- return z;
- else
- SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
- }
- SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
- /* "Return the imaginary part of the number @var{z}."
- */
- SCM
- scm_imag_part (SCM z)
- {
- if (SCM_I_INUMP (z))
- return SCM_INUM0;
- else if (SCM_BIGP (z))
- return SCM_INUM0;
- else if (SCM_REALP (z))
- return scm_flo0;
- else if (SCM_COMPLEXP (z))
- return scm_from_double (SCM_COMPLEX_IMAG (z));
- else if (SCM_FRACTIONP (z))
- return SCM_INUM0;
- else
- SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
- }
- SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
- /* "Return the numerator of the number @var{z}."
- */
- SCM
- scm_numerator (SCM z)
- {
- if (SCM_I_INUMP (z))
- return z;
- else if (SCM_BIGP (z))
- return z;
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_NUMERATOR (z);
- else if (SCM_REALP (z))
- return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
- else
- SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
- }
- SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
- /* "Return the denominator of the number @var{z}."
- */
- SCM
- scm_denominator (SCM z)
- {
- if (SCM_I_INUMP (z))
- return SCM_I_MAKINUM (1);
- else if (SCM_BIGP (z))
- return SCM_I_MAKINUM (1);
- else if (SCM_FRACTIONP (z))
- return SCM_FRACTION_DENOMINATOR (z);
- else if (SCM_REALP (z))
- return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
- else
- SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
- }
- SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
- /* "Return the magnitude of the number @var{z}. This is the same as\n"
- * "@code{abs} for real arguments, but also allows complex numbers."
- */
- SCM
- scm_magnitude (SCM z)
- {
- if (SCM_I_INUMP (z))
- {
- long int zz = SCM_I_INUM (z);
- if (zz >= 0)
- return z;
- else if (SCM_POSFIXABLE (-zz))
- return SCM_I_MAKINUM (-zz);
- else
- return scm_i_long2big (-zz);
- }
- else if (SCM_BIGP (z))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- if (sgn < 0)
- return scm_i_clonebig (z, 0);
- else
- return z;
- }
- else if (SCM_REALP (z))
- return scm_from_double (fabs (SCM_REAL_VALUE (z)));
- else if (SCM_COMPLEXP (z))
- return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
- else if (SCM_FRACTIONP (z))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
- return z;
- return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
- SCM_FRACTION_DENOMINATOR (z));
- }
- else
- SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
- }
- SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
- /* "Return the angle of the complex number @var{z}."
- */
- SCM
- scm_angle (SCM z)
- {
- /* atan(0,-1) is pi and it'd be possible to have that as a constant like
- scm_flo0 to save allocating a new flonum with scm_from_double each time.
- But if atan2 follows the floating point rounding mode, then the value
- is not a constant. Maybe it'd be close enough though. */
- if (SCM_I_INUMP (z))
- {
- if (SCM_I_INUM (z) >= 0)
- return scm_flo0;
- else
- return scm_from_double (atan2 (0.0, -1.0));
- }
- else if (SCM_BIGP (z))
- {
- int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
- scm_remember_upto_here_1 (z);
- if (sgn < 0)
- return scm_from_double (atan2 (0.0, -1.0));
- else
- return scm_flo0;
- }
- else if (SCM_REALP (z))
- {
- if (SCM_REAL_VALUE (z) >= 0)
- return scm_flo0;
- else
- return scm_from_double (atan2 (0.0, -1.0));
- }
- else if (SCM_COMPLEXP (z))
- return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
- else if (SCM_FRACTIONP (z))
- {
- if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
- return scm_flo0;
- else return scm_from_double (atan2 (0.0, -1.0));
- }
- else
- SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
- }
- SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
- /* Convert the number @var{x} to its inexact representation.\n"
- */
- SCM
- scm_exact_to_inexact (SCM z)
- {
- if (SCM_I_INUMP (z))
- return scm_from_double ((double) SCM_I_INUM (z));
- else if (SCM_BIGP (z))
- return scm_from_double (scm_i_big2dbl (z));
- else if (SCM_FRACTIONP (z))
- return scm_from_double (scm_i_fraction2double (z));
- else if (SCM_INEXACTP (z))
- return z;
- else
- SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
- }
- SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
- (SCM z),
- "Return an exact number that is numerically closest to @var{z}.")
- #define FUNC_NAME s_scm_inexact_to_exact
- {
- if (SCM_I_INUMP (z))
- return z;
- else if (SCM_BIGP (z))
- return z;
- else if (SCM_REALP (z))
- {
- if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
- SCM_OUT_OF_RANGE (1, z);
- else
- {
- mpq_t frac;
- SCM q;
-
- mpq_init (frac);
- mpq_set_d (frac, SCM_REAL_VALUE (z));
- q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
- scm_i_mpz2num (mpq_denref (frac)));
- /* When scm_i_make_ratio throws, we leak the memory allocated
- for frac...
- */
- mpq_clear (frac);
- return q;
- }
- }
- else if (SCM_FRACTIONP (z))
- return z;
- else
- SCM_WRONG_TYPE_ARG (1, z);
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
- (SCM x, SCM eps),
- "Returns the @emph{simplest} rational number differing\n"
- "from @var{x} by no more than @var{eps}.\n"
- "\n"
- "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
- "exact result when both its arguments are exact. Thus, you might need\n"
- "to use @code{inexact->exact} on the arguments.\n"
- "\n"
- "@lisp\n"
- "(rationalize (inexact->exact 1.2) 1/100)\n"
- "@result{} 6/5\n"
- "@end lisp")
- #define FUNC_NAME s_scm_rationalize
- {
- if (SCM_I_INUMP (x))
- return x;
- else if (SCM_BIGP (x))
- return x;
- else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
- {
- /* Use continued fractions to find closest ratio. All
- arithmetic is done with exact numbers.
- */
- SCM ex = scm_inexact_to_exact (x);
- SCM int_part = scm_floor (ex);
- SCM tt = SCM_I_MAKINUM (1);
- SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
- SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
- SCM rx;
- int i = 0;
- if (scm_is_true (scm_num_eq_p (ex, int_part)))
- return ex;
-
- ex = scm_difference (ex, int_part); /* x = x-int_part */
- rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
- /* We stop after a million iterations just to be absolutely sure
- that we don't go into an infinite loop. The process normally
- converges after less than a dozen iterations.
- */
- eps = scm_abs (eps);
- while (++i < 1000000)
- {
- a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
- b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
- if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
- scm_is_false
- (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
- eps))) /* abs(x-a/b) <= eps */
- {
- SCM res = scm_sum (int_part, scm_divide (a, b));
- if (scm_is_false (scm_exact_p (x))
- || scm_is_false (scm_exact_p (eps)))
- return scm_exact_to_inexact (res);
- else
- return res;
- }
- rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
- SCM_UNDEFINED);
- tt = scm_floor (rx); /* tt = floor (rx) */
- a2 = a1;
- b2 = b1;
- a1 = a;
- b1 = b;
- }
- scm_num_overflow (s_scm_rationalize);
- }
- else
- SCM_WRONG_TYPE_ARG (1, x);
- }
- #undef FUNC_NAME
- /* conversion functions */
- int
- scm_is_integer (SCM val)
- {
- return scm_is_true (scm_integer_p (val));
- }
- int
- scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= min && n <= max;
- }
- else if (SCM_BIGP (val))
- {
- if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
- return 0;
- else if (min >= LONG_MIN && max <= LONG_MAX)
- {
- if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
- {
- long n = mpz_get_si (SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- else
- return 0;
- }
- else
- {
- scm_t_intmax n;
- size_t count;
- if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
- > CHAR_BIT*sizeof (scm_t_uintmax))
- return 0;
-
- mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
- SCM_I_BIG_MPZ (val));
- if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
- {
- if (n < 0)
- return 0;
- }
- else
- {
- n = -n;
- if (n >= 0)
- return 0;
- }
- return n >= min && n <= max;
- }
- }
- else
- return 0;
- }
- int
- scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
- {
- if (SCM_I_INUMP (val))
- {
- scm_t_signed_bits n = SCM_I_INUM (val);
- return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
- }
- else if (SCM_BIGP (val))
- {
- if (max <= SCM_MOST_POSITIVE_FIXNUM)
- return 0;
- else if (max <= ULONG_MAX)
- {
- if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
- {
- unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- else
- return 0;
- }
- else
- {
- scm_t_uintmax n;
- size_t count;
- if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
- return 0;
- if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
- > CHAR_BIT*sizeof (scm_t_uintmax))
- return 0;
-
- mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
- SCM_I_BIG_MPZ (val));
- return n >= min && n <= max;
- }
- }
- else
- return 0;
- }
- static void
- scm_i_range_error (SCM bad_val, SCM min, SCM max)
- {
- scm_error (scm_out_of_range_key,
- NULL,
- "Value out of range ~S to ~S: ~S",
- scm_list_3 (min, max, bad_val),
- scm_list_1 (bad_val));
- }
- #define TYPE scm_t_intmax
- #define TYPE_MIN min
- #define TYPE_MAX max
- #define SIZEOF_TYPE 0
- #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uintmax
- #define TYPE_MIN min
- #define TYPE_MAX max
- #define SIZEOF_TYPE 0
- #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int8
- #define TYPE_MIN SCM_T_INT8_MIN
- #define TYPE_MAX SCM_T_INT8_MAX
- #define SIZEOF_TYPE 1
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint8
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT8_MAX
- #define SIZEOF_TYPE 1
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int16
- #define TYPE_MIN SCM_T_INT16_MIN
- #define TYPE_MAX SCM_T_INT16_MAX
- #define SIZEOF_TYPE 2
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint16
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT16_MAX
- #define SIZEOF_TYPE 2
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int32
- #define TYPE_MIN SCM_T_INT32_MIN
- #define TYPE_MAX SCM_T_INT32_MAX
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint32
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT32_MAX
- #define SIZEOF_TYPE 4
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
- #include "libguile/conv-uinteger.i.c"
- #define TYPE scm_t_int64
- #define TYPE_MIN SCM_T_INT64_MIN
- #define TYPE_MAX SCM_T_INT64_MAX
- #define SIZEOF_TYPE 8
- #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
- #include "libguile/conv-integer.i.c"
- #define TYPE scm_t_uint64
- #define TYPE_MIN 0
- #define TYPE_MAX SCM_T_UINT64_MAX
- #define SIZEOF_TYPE 8
- #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
- #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
- #include "libguile/conv-uinteger.i.c"
- void
- scm_to_mpz (SCM val, mpz_t rop)
- {
- if (SCM_I_INUMP (val))
- mpz_set_si (rop, SCM_I_INUM (val));
- else if (SCM_BIGP (val))
- mpz_set (rop, SCM_I_BIG_MPZ (val));
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
- }
- SCM
- scm_from_mpz (mpz_t val)
- {
- return scm_i_mpz2num (val);
- }
- int
- scm_is_real (SCM val)
- {
- return scm_is_true (scm_real_p (val));
- }
- int
- scm_is_rational (SCM val)
- {
- return scm_is_true (scm_rational_p (val));
- }
- double
- scm_to_double (SCM val)
- {
- if (SCM_I_INUMP (val))
- return SCM_I_INUM (val);
- else if (SCM_BIGP (val))
- return scm_i_big2dbl (val);
- else if (SCM_FRACTIONP (val))
- return scm_i_fraction2double (val);
- else if (SCM_REALP (val))
- return SCM_REAL_VALUE (val);
- else
- scm_wrong_type_arg_msg (NULL, 0, val, "real number");
- }
- SCM
- scm_from_double (double val)
- {
- SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
- SCM_REAL_VALUE (z) = val;
- return z;
- }
- #if SCM_ENABLE_DISCOURAGED == 1
- float
- scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
- {
- if (SCM_BIGP (num))
- {
- float res = mpz_get_d (SCM_I_BIG_MPZ (num));
- if (!xisinf (res))
- return res;
- else
- scm_out_of_range (NULL, num);
- }
- else
- return scm_to_double (num);
- }
- double
- scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
- {
- if (SCM_BIGP (num))
- {
- double res = mpz_get_d (SCM_I_BIG_MPZ (num));
- if (!xisinf (res))
- return res;
- else
- scm_out_of_range (NULL, num);
- }
- else
- return scm_to_double (num);
- }
- #endif
- int
- scm_is_complex (SCM val)
- {
- return scm_is_true (scm_complex_p (val));
- }
- double
- scm_c_real_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_REAL (z);
- else
- {
- /* Use the scm_real_part to get proper error checking and
- dispatching.
- */
- return scm_to_double (scm_real_part (z));
- }
- }
- double
- scm_c_imag_part (SCM z)
- {
- if (SCM_COMPLEXP (z))
- return SCM_COMPLEX_IMAG (z);
- else
- {
- /* Use the scm_imag_part to get proper error checking and
- dispatching. The result will almost always be 0.0, but not
- always.
- */
- return scm_to_double (scm_imag_part (z));
- }
- }
- double
- scm_c_magnitude (SCM z)
- {
- return scm_to_double (scm_magnitude (z));
- }
- double
- scm_c_angle (SCM z)
- {
- return scm_to_double (scm_angle (z));
- }
- int
- scm_is_number (SCM z)
- {
- return scm_is_true (scm_number_p (z));
- }
- /* In the following functions we dispatch to the real-arg funcs like log()
- when we know the arg is real, instead of just handing everything to
- clog() for instance. This is in case clog() doesn't optimize for a
- real-only case, and because we have to test SCM_COMPLEXP anyway so may as
- well use it to go straight to the applicable C func. */
- SCM_DEFINE (scm_log, "log", 1, 0, 0,
- (SCM z),
- "Return the natural logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log
- {
- if (SCM_COMPLEXP (z))
- {
- #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log (hypot (re, im)),
- atan2 (im, re));
- #endif
- }
- else
- {
- /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
- although the value itself overflows. */
- double re = scm_to_double (z);
- double l = log (fabs (re));
- if (re >= 0.0)
- return scm_from_double (l);
- else
- return scm_c_make_rectangular (l, M_PI);
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
- (SCM z),
- "Return the base 10 logarithm of @var{z}.")
- #define FUNC_NAME s_scm_log10
- {
- if (SCM_COMPLEXP (z))
- {
- /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
- clog() and a multiply by M_LOG10E, rather than the fallback
- log10+hypot+atan2.) */
- #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
- #else
- double re = SCM_COMPLEX_REAL (z);
- double im = SCM_COMPLEX_IMAG (z);
- return scm_c_make_rectangular (log10 (hypot (re, im)),
- M_LOG10E * atan2 (im, re));
- #endif
- }
- else
- {
- /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
- although the value itself overflows. */
- double re = scm_to_double (z);
- double l = log10 (fabs (re));
- if (re >= 0.0)
- return scm_from_double (l);
- else
- return scm_c_make_rectangular (l, M_LOG10E * M_PI);
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
- (SCM z),
- "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
- "base of natural logarithms (2.71828@dots{}).")
- #define FUNC_NAME s_scm_exp
- {
- if (SCM_COMPLEXP (z))
- {
- #if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
- #else
- return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
- SCM_COMPLEX_IMAG (z));
- #endif
- }
- else
- {
- /* When z is a negative bignum the conversion to double overflows,
- giving -infinity, but that's ok, the exp is still 0.0. */
- return scm_from_double (exp (scm_to_double (z)));
- }
- }
- #undef FUNC_NAME
- SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
- (SCM x),
- "Return the square root of @var{z}. Of the two possible roots\n"
- "(positive and negative), the one with the a positive real part\n"
- "is returned, or if that's zero then a positive imaginary part.\n"
- "Thus,\n"
- "\n"
- "@example\n"
- "(sqrt 9.0) @result{} 3.0\n"
- "(sqrt -9.0) @result{} 0.0+3.0i\n"
- "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
- "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
- "@end example")
- #define FUNC_NAME s_scm_sqrt
- {
- if (SCM_COMPLEXP (x))
- {
- #if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
- return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
- #else
- double re = SCM_COMPLEX_REAL (x);
- double im = SCM_COMPLEX_IMAG (x);
- return scm_c_make_polar (sqrt (hypot (re, im)),
- 0.5 * atan2 (im, re));
- #endif
- }
- else
- {
- double xx = scm_to_double (x);
- if (xx < 0)
- return scm_c_make_rectangular (0.0, sqrt (-xx));
- else
- return scm_from_double (sqrt (xx));
- }
- }
- #undef FUNC_NAME
- void
- scm_init_numbers ()
- {
- int i;
- mpz_init_set_si (z_negative_one, -1);
- /* It may be possible to tune the performance of some algorithms by using
- * the following constants to avoid the creation of bignums. Please, before
- * using these values, remember the two rules of program optimization:
- * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
- scm_c_define ("most-positive-fixnum",
- SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
- scm_c_define ("most-negative-fixnum",
- SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
- scm_add_feature ("complex");
- scm_add_feature ("inexact");
- scm_flo0 = scm_from_double (0.0);
- /* determine floating point precision */
- for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
- {
- init_dblprec(&scm_dblprec[i-2],i);
- init_fx_radix(fx_per_radix[i-2],i);
- }
- #ifdef DBL_DIG
- /* hard code precision for base 10 if the preprocessor tells us to... */
- scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
- #endif
- exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
- SCM_I_MAKINUM (2)));
- #include "libguile/numbers.x"
- }
- /*
- Local Variables:
- c-file-style: "gnu"
- End:
- */
|