123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- /* xsize.h -- Checked size_t computations.
- Copyright (C) 2003, 2008-2012 Free Software Foundation, Inc.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU Lesser General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public License
- along with this program; if not, write to the Free Software Foundation,
- Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
- #ifndef _XSIZE_H
- #define _XSIZE_H
- /* Get size_t. */
- #include <stddef.h>
- /* Get SIZE_MAX. */
- #include <limits.h>
- #if HAVE_STDINT_H
- # include <stdint.h>
- #endif
- /* The size of memory objects is often computed through expressions of
- type size_t. Example:
- void* p = malloc (header_size + n * element_size).
- These computations can lead to overflow. When this happens, malloc()
- returns a piece of memory that is way too small, and the program then
- crashes while attempting to fill the memory.
- To avoid this, the functions and macros in this file check for overflow.
- The convention is that SIZE_MAX represents overflow.
- malloc (SIZE_MAX) is not guaranteed to fail -- think of a malloc
- implementation that uses mmap --, it's recommended to use size_overflow_p()
- or size_in_bounds_p() before invoking malloc().
- The example thus becomes:
- size_t size = xsum (header_size, xtimes (n, element_size));
- void *p = (size_in_bounds_p (size) ? malloc (size) : NULL);
- */
- /* Convert an arbitrary value >= 0 to type size_t. */
- #define xcast_size_t(N) \
- ((N) <= SIZE_MAX ? (size_t) (N) : SIZE_MAX)
- /* Sum of two sizes, with overflow check. */
- static inline size_t
- #if __GNUC__ >= 3
- __attribute__ ((__pure__))
- #endif
- xsum (size_t size1, size_t size2)
- {
- size_t sum = size1 + size2;
- return (sum >= size1 ? sum : SIZE_MAX);
- }
- /* Sum of three sizes, with overflow check. */
- static inline size_t
- #if __GNUC__ >= 3
- __attribute__ ((__pure__))
- #endif
- xsum3 (size_t size1, size_t size2, size_t size3)
- {
- return xsum (xsum (size1, size2), size3);
- }
- /* Sum of four sizes, with overflow check. */
- static inline size_t
- #if __GNUC__ >= 3
- __attribute__ ((__pure__))
- #endif
- xsum4 (size_t size1, size_t size2, size_t size3, size_t size4)
- {
- return xsum (xsum (xsum (size1, size2), size3), size4);
- }
- /* Maximum of two sizes, with overflow check. */
- static inline size_t
- #if __GNUC__ >= 3
- __attribute__ ((__pure__))
- #endif
- xmax (size_t size1, size_t size2)
- {
- /* No explicit check is needed here, because for any n:
- max (SIZE_MAX, n) == SIZE_MAX and max (n, SIZE_MAX) == SIZE_MAX. */
- return (size1 >= size2 ? size1 : size2);
- }
- /* Multiplication of a count with an element size, with overflow check.
- The count must be >= 0 and the element size must be > 0.
- This is a macro, not an inline function, so that it works correctly even
- when N is of a wider type and N > SIZE_MAX. */
- #define xtimes(N, ELSIZE) \
- ((N) <= SIZE_MAX / (ELSIZE) ? (size_t) (N) * (ELSIZE) : SIZE_MAX)
- /* Check for overflow. */
- #define size_overflow_p(SIZE) \
- ((SIZE) == SIZE_MAX)
- /* Check against overflow. */
- #define size_in_bounds_p(SIZE) \
- ((SIZE) != SIZE_MAX)
- #endif /* _XSIZE_H */
|