12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294 |
- @c -*-texinfo-*-
- @c This is part of the GNU Guile Reference Manual.
- @c Copyright (C) 1996, 1997, 2000-2004, 2006-2017, 2019-2020, 2022-2023
- @c Free Software Foundation, Inc.
- @c See the file guile.texi for copying conditions.
- @node Data Types
- @section Data Types
- Guile's data types form a powerful built-in library of representations
- and functionality that you can apply to your problem domain. This
- chapter surveys the data types built-in to Guile, from the simple to the
- complex.
- @menu
- * Booleans:: True/false values.
- * Numbers:: Numerical data types.
- * Characters:: Single characters.
- * Character Sets:: Sets of characters.
- * Strings:: Sequences of characters.
- * Symbols:: Symbols.
- * Keywords:: Self-quoting, customizable display keywords.
- * Pairs:: Scheme's basic building block.
- * Lists:: Special list functions supported by Guile.
- * Vectors:: One-dimensional arrays of Scheme objects.
- * Bit Vectors:: Vectors of bits.
- * Bytevectors:: Sequences of bytes.
- * Arrays:: Multidimensional matrices.
- * VLists:: Vector-like lists.
- * Record Overview:: Walking through the maze of record APIs.
- * SRFI-9 Records:: The standard, recommended record API.
- * Records:: Guile's historical record API.
- * Structures:: Low-level record representation.
- * Dictionary Types:: About dictionary types in general.
- * Association Lists:: List-based dictionaries.
- * VHashes:: VList-based dictionaries.
- * Hash Tables:: Table-based dictionaries.
- * Other Types:: Other sections describe data types too.
- @end menu
- @node Booleans
- @subsection Booleans
- @tpindex Booleans
- The two boolean values are @code{#t} for true and @code{#f} for false.
- They can also be written as @code{#true} and @code{#false}, as per R7RS.
- Boolean values are returned by predicate procedures, such as the general
- equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
- (@pxref{Equality}) and numerical and string comparison operators like
- @code{string=?} (@pxref{String Comparison}) and @code{<=}
- (@pxref{Comparison}).
- @lisp
- (<= 3 8)
- @result{} #t
- (<= 3 -3)
- @result{} #f
- (equal? "house" "houses")
- @result{} #f
- (eq? #f #f)
- @result{}
- #t
- @end lisp
- In test condition contexts like @code{if} and @code{cond}
- (@pxref{Conditionals}), where a group of subexpressions will be
- evaluated only if a @var{condition} expression evaluates to ``true'',
- ``true'' means any value at all except @code{#f}.
- @lisp
- (if #t "yes" "no")
- @result{} "yes"
- (if 0 "yes" "no")
- @result{} "yes"
- (if #f "yes" "no")
- @result{} "no"
- @end lisp
- A result of this asymmetry is that typical Scheme source code more often
- uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
- represent an @code{if} or @code{cond} false value, whereas @code{#t} is
- not necessary to represent an @code{if} or @code{cond} true value.
- It is important to note that @code{#f} is @strong{not} equivalent to any
- other Scheme value. In particular, @code{#f} is not the same as the
- number 0 (like in C and C++), and not the same as the ``empty list''
- (like in some Lisp dialects).
- In C, the two Scheme boolean values are available as the two constants
- @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
- Care must be taken with the false value @code{SCM_BOOL_F}: it is not
- false when used in C conditionals. In order to test for it, use
- @code{scm_is_false} or @code{scm_is_true}.
- @rnindex not
- @deffn {Scheme Procedure} not x
- @deffnx {C Function} scm_not (x)
- Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
- @end deffn
- @rnindex boolean?
- @deffn {Scheme Procedure} boolean? obj
- @deffnx {C Function} scm_boolean_p (obj)
- Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
- return @code{#f}.
- @end deffn
- @deftypevr {C Macro} SCM SCM_BOOL_T
- The @code{SCM} representation of the Scheme object @code{#t}.
- @end deftypevr
- @deftypevr {C Macro} SCM SCM_BOOL_F
- The @code{SCM} representation of the Scheme object @code{#f}.
- @end deftypevr
- @deftypefn {C Function} int scm_is_true (SCM obj)
- Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
- @end deftypefn
- @deftypefn {C Function} int scm_is_false (SCM obj)
- Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
- @end deftypefn
- @deftypefn {C Function} int scm_is_bool (SCM obj)
- Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
- return @code{0}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_bool (int val)
- Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
- @end deftypefn
- @deftypefn {C Function} int scm_to_bool (SCM val)
- Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
- when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
- You should probably use @code{scm_is_true} instead of this function
- when you just want to test a @code{SCM} value for trueness.
- @end deftypefn
- @node Numbers
- @subsection Numerical data types
- @tpindex Numbers
- Guile supports a rich ``tower'' of numerical types --- integer,
- rational, real and complex --- and provides an extensive set of
- mathematical and scientific functions for operating on numerical
- data. This section of the manual documents those types and functions.
- You may also find it illuminating to read R5RS's presentation of numbers
- in Scheme, which is particularly clear and accessible: see
- @ref{Numbers,,,r5rs,R5RS}.
- @menu
- * Numerical Tower:: Scheme's numerical "tower".
- * Integers:: Whole numbers.
- * Reals and Rationals:: Real and rational numbers.
- * Complex Numbers:: Complex numbers.
- * Exactness:: Exactness and inexactness.
- * Number Syntax:: Read syntax for numerical data.
- * Integer Operations:: Operations on integer values.
- * Comparison:: Comparison predicates.
- * Conversion:: Converting numbers to and from strings.
- * Complex:: Complex number operations.
- * Arithmetic:: Arithmetic functions.
- * Scientific:: Scientific functions.
- * Bitwise Operations:: Logical AND, OR, NOT, and so on.
- * Random:: Random number generation.
- @end menu
- @node Numerical Tower
- @subsubsection Scheme's Numerical ``Tower''
- @rnindex number?
- Scheme's numerical ``tower'' consists of the following categories of
- numbers:
- @table @dfn
- @item integers
- Whole numbers, positive or negative; e.g.@: --5, 0, 18.
- @item rationals
- The set of numbers that can be expressed as @math{@var{p}/@var{q}}
- where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
- pi (an irrational number) doesn't. These include integers
- (@math{@var{n}/1}).
- @item real numbers
- The set of numbers that describes all possible positions along a
- one-dimensional line. This includes rationals as well as irrational
- numbers.
- @item complex numbers
- The set of numbers that describes all possible positions in a two
- dimensional space. This includes real as well as imaginary numbers
- (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
- @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
- @minus{}1.)
- @end table
- It is called a tower because each category ``sits on'' the one that
- follows it, in the sense that every integer is also a rational, every
- rational is also real, and every real number is also a complex number
- (but with zero imaginary part).
- In addition to the classification into integers, rationals, reals and
- complex numbers, Scheme also distinguishes between whether a number is
- represented exactly or not. For example, the result of
- @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
- can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
- Instead, it stores an inexact approximation, using the C type
- @code{double}.
- Guile can represent exact rationals of any magnitude, inexact
- rationals that fit into a C @code{double}, and inexact complex numbers
- with @code{double} real and imaginary parts.
- The @code{number?} predicate may be applied to any Scheme value to
- discover whether the value is any of the supported numerical types.
- @deffn {Scheme Procedure} number? obj
- @deffnx {C Function} scm_number_p (obj)
- Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
- @end deffn
- For example:
- @lisp
- (number? 3)
- @result{} #t
- (number? "hello there!")
- @result{} #f
- (define pi 3.141592654)
- (number? pi)
- @result{} #t
- @end lisp
- @deftypefn {C Function} int scm_is_number (SCM obj)
- This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
- @end deftypefn
- The next few subsections document each of Guile's numerical data types
- in detail.
- @node Integers
- @subsubsection Integers
- @tpindex Integer numbers
- @rnindex integer?
- Integers are whole numbers, that is numbers with no fractional part,
- such as 2, 83, and @minus{}3789.
- Integers in Guile can be arbitrarily big, as shown by the following
- example.
- @lisp
- (define (factorial n)
- (let loop ((n n) (product 1))
- (if (= n 0)
- product
- (loop (- n 1) (* product n)))))
- (factorial 3)
- @result{} 6
- (factorial 20)
- @result{} 2432902008176640000
- (- (factorial 45))
- @result{} -119622220865480194561963161495657715064383733760000000000
- @end lisp
- Readers whose background is in programming languages where integers are
- limited by the need to fit into just 4 or 8 bytes of memory may find
- this surprising, or suspect that Guile's representation of integers is
- inefficient. In fact, Guile achieves a near optimal balance of
- convenience and efficiency by using the host computer's native
- representation of integers where possible, and a more general
- representation where the required number does not fit in the native
- form. Conversion between these two representations is automatic and
- completely invisible to the Scheme level programmer.
- C has a host of different integer types, and Guile offers a host of
- functions to convert between them and the @code{SCM} representation.
- For example, a C @code{int} can be handled with @code{scm_to_int} and
- @code{scm_from_int}. Guile also defines a few C integer types of its
- own, to help with differences between systems.
- C integer types that are not covered can be handled with the generic
- @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
- signed types, or with @code{scm_to_unsigned_integer} and
- @code{scm_from_unsigned_integer} for unsigned types.
- Scheme integers can be exact and inexact. For example, a number
- written as @code{3.0} with an explicit decimal-point is inexact, but
- it is also an integer. The functions @code{integer?} and
- @code{scm_is_integer} report true for such a number, but the functions
- @code{exact-integer?}, @code{scm_is_exact_integer},
- @code{scm_is_signed_integer}, and @code{scm_is_unsigned_integer} only
- allow exact integers and thus report false. Likewise, the conversion
- functions like @code{scm_to_signed_integer} only accept exact
- integers.
- The motivation for this behavior is that the inexactness of a number
- should not be lost silently. If you want to allow inexact integers,
- you can explicitly insert a call to @code{inexact->exact} or to its C
- equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
- be converted by this call into exact integers; inexact non-integers
- will become exact fractions.)
- @deffn {Scheme Procedure} integer? x
- @deffnx {C Function} scm_integer_p (x)
- Return @code{#t} if @var{x} is an exact or inexact integer number, else
- return @code{#f}.
- @lisp
- (integer? 487)
- @result{} #t
- (integer? 3.0)
- @result{} #t
- (integer? -3.4)
- @result{} #f
- (integer? +inf.0)
- @result{} #f
- @end lisp
- @end deffn
- @deftypefn {C Function} int scm_is_integer (SCM x)
- This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
- @end deftypefn
- @deffn {Scheme Procedure} exact-integer? x
- @deffnx {C Function} scm_exact_integer_p (x)
- Return @code{#t} if @var{x} is an exact integer number, else
- return @code{#f}.
- @lisp
- (exact-integer? 37)
- @result{} #t
- (exact-integer? 3.0)
- @result{} #f
- @end lisp
- @end deffn
- @deftypefn {C Function} int scm_is_exact_integer (SCM x)
- This is equivalent to @code{scm_is_true (scm_exact_integer_p (x))}.
- @end deftypefn
- @defvr {C Type} scm_t_int8
- @defvrx {C Type} scm_t_uint8
- @defvrx {C Type} scm_t_int16
- @defvrx {C Type} scm_t_uint16
- @defvrx {C Type} scm_t_int32
- @defvrx {C Type} scm_t_uint32
- @defvrx {C Type} scm_t_int64
- @defvrx {C Type} scm_t_uint64
- @defvrx {C Type} scm_t_intmax
- @defvrx {C Type} scm_t_uintmax
- The C types are equivalent to the corresponding ISO C types but are
- defined on all platforms, with the exception of @code{scm_t_int64} and
- @code{scm_t_uint64}, which are only defined when a 64-bit type is
- available. For example, @code{scm_t_int8} is equivalent to
- @code{int8_t}.
- You can regard these definitions as a stop-gap measure until all
- platforms provide these types. If you know that all the platforms
- that you are interested in already provide these types, it is better
- to use them directly instead of the types provided by Guile.
- @end defvr
- @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
- @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
- Return @code{1} when @var{x} represents an exact integer that is
- between @var{min} and @var{max}, inclusive.
- These functions can be used to check whether a @code{SCM} value will
- fit into a given range, such as the range of a given C integer type.
- If you just want to convert a @code{SCM} value to a given C integer
- type, use one of the conversion functions directly.
- @end deftypefn
- @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
- @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
- When @var{x} represents an exact integer that is between @var{min} and
- @var{max} inclusive, return that integer. Else signal an error,
- either a `wrong-type' error when @var{x} is not an exact integer, or
- an `out-of-range' error when it doesn't fit the given range.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
- @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
- Return the @code{SCM} value that represents the integer @var{x}. This
- function will always succeed and will always return an exact number.
- @end deftypefn
- @deftypefn {C Function} char scm_to_char (SCM x)
- @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
- @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
- @deftypefnx {C Function} short scm_to_short (SCM x)
- @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
- @deftypefnx {C Function} int scm_to_int (SCM x)
- @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
- @deftypefnx {C Function} long scm_to_long (SCM x)
- @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
- @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
- @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
- @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
- @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
- @deftypefnx {C Function} scm_t_uintptr scm_to_uintptr_t (SCM x)
- @deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
- @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
- @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
- @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
- @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
- @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
- @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
- @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
- @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
- @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
- @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
- @deftypefnx {C Function} scm_t_intptr scm_to_intptr_t (SCM x)
- @deftypefnx {C Function} scm_t_uintptr scm_to_uintptr_t (SCM x)
- When @var{x} represents an exact integer that fits into the indicated
- C type, return that integer. Else signal an error, either a
- `wrong-type' error when @var{x} is not an exact integer, or an
- `out-of-range' error when it doesn't fit the given range.
- The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
- @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
- the corresponding types are.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_char (char x)
- @deftypefnx {C Function} SCM scm_from_schar (signed char x)
- @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
- @deftypefnx {C Function} SCM scm_from_short (short x)
- @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
- @deftypefnx {C Function} SCM scm_from_int (int x)
- @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
- @deftypefnx {C Function} SCM scm_from_long (long x)
- @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
- @deftypefnx {C Function} SCM scm_from_long_long (long long x)
- @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
- @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
- @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
- @deftypefnx {C Function} SCM scm_from_uintptr_t (uintptr_t x)
- @deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
- @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
- @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
- @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
- @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
- @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
- @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
- @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
- @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
- @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
- @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
- @deftypefnx {C Function} SCM scm_from_intptr_t (scm_t_intptr x)
- @deftypefnx {C Function} SCM scm_from_uintptr_t (scm_t_uintptr x)
- Return the @code{SCM} value that represents the integer @var{x}.
- These functions will always succeed and will always return an exact
- number.
- @end deftypefn
- @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
- Assign @var{val} to the multiple precision integer @var{rop}.
- @var{val} must be an exact integer, otherwise an error will be
- signaled. @var{rop} must have been initialized with @code{mpz_init}
- before this function is called. When @var{rop} is no longer needed
- the occupied space must be freed with @code{mpz_clear}.
- @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
- Return the @code{SCM} value that represents @var{val}.
- @end deftypefn
- @node Reals and Rationals
- @subsubsection Real and Rational Numbers
- @tpindex Real numbers
- @tpindex Rational numbers
- @rnindex real?
- @rnindex rational?
- Mathematically, the real numbers are the set of numbers that describe
- all possible points along a continuous, infinite, one-dimensional line.
- The rational numbers are the set of all numbers that can be written as
- fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
- All rational numbers are also real, but there are real numbers that
- are not rational, for example @m{\sqrt{2}, the square root of 2}, and
- @m{\pi,pi}.
- Guile can represent both exact and inexact rational numbers, but it
- cannot represent precise finite irrational numbers. Exact rationals are
- represented by storing the numerator and denominator as two exact
- integers. Inexact rationals are stored as floating point numbers using
- the C type @code{double}.
- Exact rationals are written as a fraction of integers. There must be
- no whitespace around the slash:
- @lisp
- 1/2
- -22/7
- @end lisp
- Even though the actual encoding of inexact rationals is in binary, it
- may be helpful to think of it as a decimal number with a limited
- number of significant figures and a decimal point somewhere, since
- this corresponds to the standard notation for non-whole numbers. For
- example:
- @lisp
- 0.34
- -0.00000142857931198
- -5648394822220000000000.0
- 4.0
- @end lisp
- The limited precision of Guile's encoding means that any finite ``real''
- number in Guile can be written in a rational form, by multiplying and
- then dividing by sufficient powers of 10 (or in fact, 2). For example,
- @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
- by 100000000000000000. In Guile's current incarnation, therefore, the
- @code{rational?} and @code{real?} predicates are equivalent for finite
- numbers.
- Dividing by an exact zero leads to an error message, as one might
- expect. However, dividing by an inexact zero does not produce an error.
- Instead, the result of the division is either plus or minus infinity,
- depending on the sign of the divided number and the sign of the zero
- divisor (some platforms support signed zeroes @samp{-0.0} and
- @samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
- Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
- value, although they are actually considered numbers by Scheme.
- Attempts to compare a @acronym{NaN} value with any number (including
- itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
- always returns @code{#f}. Although a @acronym{NaN} value is not
- @code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
- and other @acronym{NaN} values. However, the preferred way to test for
- them is by using @code{nan?}.
- The real @acronym{NaN} values and infinities are written @samp{+nan.0},
- @samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
- @code{read} as an extension to the usual Scheme syntax. These special
- values are considered by Scheme to be inexact real numbers but not
- rational. Note that non-real complex numbers may also contain
- infinities or @acronym{NaN} values in their real or imaginary parts. To
- test a real number to see if it is infinite, a @acronym{NaN} value, or
- neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
- Every real number in Scheme belongs to precisely one of those three
- classes.
- On platforms that follow @acronym{IEEE} 754 for their floating point
- arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
- are implemented using the corresponding @acronym{IEEE} 754 values.
- They behave in arithmetic operations like @acronym{IEEE} 754 describes
- it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
- @deffn {Scheme Procedure} real? obj
- @deffnx {C Function} scm_real_p (obj)
- Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
- that the sets of integer and rational values form subsets of the set
- of real numbers, so the predicate will also be fulfilled if @var{obj}
- is an integer number or a rational number.
- @end deffn
- @deffn {Scheme Procedure} rational? x
- @deffnx {C Function} scm_rational_p (x)
- Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
- Note that the set of integer values forms a subset of the set of
- rational numbers, i.e.@: the predicate will also be fulfilled if
- @var{x} is an integer number.
- @end deffn
- @deffn {Scheme Procedure} rationalize x eps
- @deffnx {C Function} scm_rationalize (x, eps)
- Returns the @emph{simplest} rational number differing
- from @var{x} by no more than @var{eps}.
- As required by @acronym{R5RS}, @code{rationalize} only returns an
- exact result when both its arguments are exact. Thus, you might need
- to use @code{inexact->exact} on the arguments.
- @lisp
- (rationalize (inexact->exact 1.2) 1/100)
- @result{} 6/5
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} inf? x
- @deffnx {C Function} scm_inf_p (x)
- Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
- @samp{-inf.0}. Otherwise return @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} nan? x
- @deffnx {C Function} scm_nan_p (x)
- Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
- @code{#f} otherwise.
- @end deffn
- @deffn {Scheme Procedure} finite? x
- @deffnx {C Function} scm_finite_p (x)
- Return @code{#t} if the real number @var{x} is neither infinite nor a
- NaN, @code{#f} otherwise.
- @end deffn
- @deffn {Scheme Procedure} nan
- @deffnx {C Function} scm_nan ()
- Return @samp{+nan.0}, a @acronym{NaN} value.
- @end deffn
- @deffn {Scheme Procedure} inf
- @deffnx {C Function} scm_inf ()
- Return @samp{+inf.0}, positive infinity.
- @end deffn
- @deffn {Scheme Procedure} numerator x
- @deffnx {C Function} scm_numerator (x)
- Return the numerator of the rational number @var{x}.
- @end deffn
- @deffn {Scheme Procedure} denominator x
- @deffnx {C Function} scm_denominator (x)
- Return the denominator of the rational number @var{x}.
- @end deffn
- @deftypefn {C Function} int scm_is_real (SCM val)
- @deftypefnx {C Function} int scm_is_rational (SCM val)
- Equivalent to @code{scm_is_true (scm_real_p (val))} and
- @code{scm_is_true (scm_rational_p (val))}, respectively.
- @end deftypefn
- @deftypefn {C Function} double scm_to_double (SCM val)
- Returns the number closest to @var{val} that is representable as a
- @code{double}. Returns infinity for a @var{val} that is too large in
- magnitude. The argument @var{val} must be a real number.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_double (double val)
- Return the @code{SCM} value that represents @var{val}. The returned
- value is inexact according to the predicate @code{inexact?}, but it
- will be exactly equal to @var{val}.
- @end deftypefn
- @node Complex Numbers
- @subsubsection Complex Numbers
- @tpindex Complex numbers
- @rnindex complex?
- Complex numbers are the set of numbers that describe all possible points
- in a two-dimensional space. The two coordinates of a particular point
- in this space are known as the @dfn{real} and @dfn{imaginary} parts of
- the complex number that describes that point.
- In Guile, complex numbers are written in rectangular form as the sum of
- their real and imaginary parts, using the symbol @code{i} to indicate
- the imaginary part.
- @lisp
- 3+4i
- @result{}
- 3.0+4.0i
- (* 3-8i 2.3+0.3i)
- @result{}
- 9.3-17.5i
- @end lisp
- @cindex polar form
- @noindent
- Polar form can also be used, with an @samp{@@} between magnitude and
- angle,
- @lisp
- 1@@3.141592 @result{} -1.0 (approx)
- -1@@1.57079 @result{} 0.0-1.0i (approx)
- @end lisp
- Guile represents a complex number as a pair of inexact reals, so the
- real and imaginary parts of a complex number have the same properties of
- inexactness and limited precision as single inexact real numbers.
- Note that each part of a complex number may contain any inexact real
- value, including the special values @samp{+nan.0}, @samp{+inf.0} and
- @samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
- @samp{-0.0}.
- @deffn {Scheme Procedure} complex? z
- @deffnx {C Function} scm_complex_p (z)
- Return @code{#t} if @var{z} is a complex number, @code{#f}
- otherwise. Note that the sets of real, rational and integer
- values form subsets of the set of complex numbers, i.e.@: the
- predicate will also be fulfilled if @var{z} is a real,
- rational or integer number.
- @end deffn
- @deftypefn {C Function} int scm_is_complex (SCM val)
- Equivalent to @code{scm_is_true (scm_complex_p (val))}.
- @end deftypefn
- @node Exactness
- @subsubsection Exact and Inexact Numbers
- @tpindex Exact numbers
- @tpindex Inexact numbers
- @rnindex exact?
- @rnindex inexact?
- @rnindex exact->inexact
- @rnindex inexact->exact
- R5RS requires that, with few exceptions, a calculation involving inexact
- numbers always produces an inexact result. To meet this requirement,
- Guile distinguishes between an exact integer value such as @samp{5} and
- the corresponding inexact integer value which, to the limited precision
- available, has no fractional part, and is printed as @samp{5.0}. Guile
- will only convert the latter value to the former when forced to do so by
- an invocation of the @code{inexact->exact} procedure.
- The only exception to the above requirement is when the values of the
- inexact numbers do not affect the result. For example @code{(expt n 0)}
- is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
- permitted to return an exact @samp{1}.
- @deffn {Scheme Procedure} exact? z
- @deffnx {C Function} scm_exact_p (z)
- Return @code{#t} if the number @var{z} is exact, @code{#f}
- otherwise.
- @lisp
- (exact? 2)
- @result{} #t
- (exact? 0.5)
- @result{} #f
- (exact? (/ 2))
- @result{} #t
- @end lisp
- @end deffn
- @deftypefn {C Function} int scm_is_exact (SCM z)
- Return a @code{1} if the number @var{z} is exact, and @code{0}
- otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
- An alternate approach to testing the exactness of a number is to
- use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
- @end deftypefn
- @deffn {Scheme Procedure} inexact? z
- @deffnx {C Function} scm_inexact_p (z)
- Return @code{#t} if the number @var{z} is inexact, @code{#f}
- else.
- @end deffn
- @deftypefn {C Function} int scm_is_inexact (SCM z)
- Return a @code{1} if the number @var{z} is inexact, and @code{0}
- otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
- @end deftypefn
- @deffn {Scheme Procedure} inexact->exact z
- @deffnx {C Function} scm_inexact_to_exact (z)
- Return an exact number that is numerically closest to @var{z}, when
- there is one. For inexact rationals, Guile returns the exact rational
- that is numerically equal to the inexact rational. Inexact complex
- numbers with a non-zero imaginary part can not be made exact.
- @lisp
- (inexact->exact 0.5)
- @result{} 1/2
- @end lisp
- The following happens because 12/10 is not exactly representable as a
- @code{double} (on most platforms). However, when reading a decimal
- number that has been marked exact with the ``#e'' prefix, Guile is
- able to represent it correctly.
- @lisp
- (inexact->exact 1.2)
- @result{} 5404319552844595/4503599627370496
- #e1.2
- @result{} 6/5
- @end lisp
- @end deffn
- @c begin (texi-doc-string "guile" "exact->inexact")
- @deffn {Scheme Procedure} exact->inexact z
- @deffnx {C Function} scm_exact_to_inexact (z)
- Convert the number @var{z} to its inexact representation.
- @end deffn
- @node Number Syntax
- @subsubsection Read Syntax for Numerical Data
- The read syntax for integers is a string of digits, optionally
- preceded by a minus or plus character, a code indicating the
- base in which the integer is encoded, and a code indicating whether
- the number is exact or inexact. The supported base codes are:
- @table @code
- @item #b
- @itemx #B
- the integer is written in binary (base 2)
- @item #o
- @itemx #O
- the integer is written in octal (base 8)
- @item #d
- @itemx #D
- the integer is written in decimal (base 10)
- @item #x
- @itemx #X
- the integer is written in hexadecimal (base 16)
- @end table
- If the base code is omitted, the integer is assumed to be decimal. The
- following examples show how these base codes are used.
- @lisp
- -13
- @result{} -13
- #d-13
- @result{} -13
- #x-13
- @result{} -19
- #b+1101
- @result{} 13
- #o377
- @result{} 255
- @end lisp
- The codes for indicating exactness (which can, incidentally, be applied
- to all numerical values) are:
- @table @code
- @item #e
- @itemx #E
- the number is exact
- @item #i
- @itemx #I
- the number is inexact.
- @end table
- If the exactness indicator is omitted, the number is exact unless it
- contains a radix point. Since Guile can not represent exact complex
- numbers, an error is signaled when asking for them.
- @lisp
- (exact? 1.2)
- @result{} #f
- (exact? #e1.2)
- @result{} #t
- (exact? #e+1i)
- ERROR: Wrong type argument
- @end lisp
- Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
- plus and minus infinity, respectively. The value must be written
- exactly as shown, that is, they always must have a sign and exactly
- one zero digit after the decimal point. It also understands
- @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
- The sign is ignored for `not-a-number' and the value is always printed
- as @samp{+nan.0}.
- @node Integer Operations
- @subsubsection Operations on Integer Values
- @rnindex odd?
- @rnindex even?
- @rnindex quotient
- @rnindex remainder
- @rnindex modulo
- @rnindex gcd
- @rnindex lcm
- @deffn {Scheme Procedure} odd? n
- @deffnx {C Function} scm_odd_p (n)
- Return @code{#t} if @var{n} is an odd number, @code{#f}
- otherwise.
- @end deffn
- @deffn {Scheme Procedure} even? n
- @deffnx {C Function} scm_even_p (n)
- Return @code{#t} if @var{n} is an even number, @code{#f}
- otherwise.
- @end deffn
- @c begin (texi-doc-string "guile" "quotient")
- @c begin (texi-doc-string "guile" "remainder")
- @deffn {Scheme Procedure} quotient n d
- @deffnx {Scheme Procedure} remainder n d
- @deffnx {C Function} scm_quotient (n, d)
- @deffnx {C Function} scm_remainder (n, d)
- Return the quotient or remainder from @var{n} divided by @var{d}. The
- quotient is rounded towards zero, and the remainder will have the same
- sign as @var{n}. In all cases quotient and remainder satisfy
- @math{@var{n} = @var{q}*@var{d} + @var{r}}.
- @lisp
- (remainder 13 4) @result{} 1
- (remainder -13 4) @result{} -1
- @end lisp
- See also @code{truncate-quotient}, @code{truncate-remainder} and
- related operations in @ref{Arithmetic}.
- @end deffn
- @c begin (texi-doc-string "guile" "modulo")
- @deffn {Scheme Procedure} modulo n d
- @deffnx {C Function} scm_modulo (n, d)
- Return the remainder from @var{n} divided by @var{d}, with the same
- sign as @var{d}.
- @lisp
- (modulo 13 4) @result{} 1
- (modulo -13 4) @result{} 3
- (modulo 13 -4) @result{} -3
- (modulo -13 -4) @result{} -1
- @end lisp
- See also @code{floor-quotient}, @code{floor-remainder} and
- related operations in @ref{Arithmetic}.
- @end deffn
- @c begin (texi-doc-string "guile" "gcd")
- @deffn {Scheme Procedure} gcd x@dots{}
- @deffnx {C Function} scm_gcd (x, y)
- Return the greatest common divisor of all arguments.
- If called without arguments, 0 is returned.
- The C function @code{scm_gcd} always takes two arguments, while the
- Scheme function can take an arbitrary number.
- @end deffn
- @c begin (texi-doc-string "guile" "lcm")
- @deffn {Scheme Procedure} lcm x@dots{}
- @deffnx {C Function} scm_lcm (x, y)
- Return the least common multiple of the arguments.
- If called without arguments, 1 is returned.
- The C function @code{scm_lcm} always takes two arguments, while the
- Scheme function can take an arbitrary number.
- @end deffn
- @deffn {Scheme Procedure} modulo-expt n k m
- @deffnx {C Function} scm_modulo_expt (n, k, m)
- Return @var{n} raised to the integer exponent
- @var{k}, modulo @var{m}.
- @lisp
- (modulo-expt 2 3 5)
- @result{} 3
- @end lisp
- @end deffn
- @deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
- @deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
- Return two exact non-negative integers @var{s} and @var{r}
- such that @math{@var{k} = @var{s}^2 + @var{r}} and
- @math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
- An error is raised if @var{k} is not an exact non-negative integer.
- @lisp
- (exact-integer-sqrt 10) @result{} 3 and 1
- @end lisp
- @end deftypefn
- @node Comparison
- @subsubsection Comparison Predicates
- @rnindex zero?
- @rnindex positive?
- @rnindex negative?
- The C comparison functions below always takes two arguments, while the
- Scheme functions can take an arbitrary number. Also keep in mind that
- the C functions return one of the Scheme boolean values
- @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
- is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
- y))} when testing the two Scheme numbers @code{x} and @code{y} for
- equality, for example.
- @c begin (texi-doc-string "guile" "=")
- @deffn {Scheme Procedure} =
- @deffnx {C Function} scm_num_eq_p (x, y)
- Return @code{#t} if all parameters are numerically equal.
- @end deffn
- @c begin (texi-doc-string "guile" "<")
- @deffn {Scheme Procedure} <
- @deffnx {C Function} scm_less_p (x, y)
- Return @code{#t} if the list of parameters is monotonically
- increasing.
- @end deffn
- @c begin (texi-doc-string "guile" ">")
- @deffn {Scheme Procedure} >
- @deffnx {C Function} scm_gr_p (x, y)
- Return @code{#t} if the list of parameters is monotonically
- decreasing.
- @end deffn
- @c begin (texi-doc-string "guile" "<=")
- @deffn {Scheme Procedure} <=
- @deffnx {C Function} scm_leq_p (x, y)
- Return @code{#t} if the list of parameters is monotonically
- non-decreasing.
- @end deffn
- @c begin (texi-doc-string "guile" ">=")
- @deffn {Scheme Procedure} >=
- @deffnx {C Function} scm_geq_p (x, y)
- Return @code{#t} if the list of parameters is monotonically
- non-increasing.
- @end deffn
- @c begin (texi-doc-string "guile" "zero?")
- @deffn {Scheme Procedure} zero? z
- @deffnx {C Function} scm_zero_p (z)
- Return @code{#t} if @var{z} is an exact or inexact number equal to
- zero.
- @end deffn
- @c begin (texi-doc-string "guile" "positive?")
- @deffn {Scheme Procedure} positive? x
- @deffnx {C Function} scm_positive_p (x)
- Return @code{#t} if @var{x} is an exact or inexact number greater than
- zero.
- @end deffn
- @c begin (texi-doc-string "guile" "negative?")
- @deffn {Scheme Procedure} negative? x
- @deffnx {C Function} scm_negative_p (x)
- Return @code{#t} if @var{x} is an exact or inexact number less than
- zero.
- @end deffn
- @node Conversion
- @subsubsection Converting Numbers To and From Strings
- @rnindex number->string
- @rnindex string->number
- The following procedures read and write numbers according to their
- external representation as defined by R5RS (@pxref{Lexical structure,
- R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
- Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
- i18n)} module}, for locale-dependent number parsing.
- @deffn {Scheme Procedure} number->string n [radix]
- @deffnx {C Function} scm_number_to_string (n, radix)
- Return a string holding the external representation of the
- number @var{n} in the given @var{radix}. If @var{n} is
- inexact, a radix of 10 will be used.
- @end deffn
- @deffn {Scheme Procedure} string->number string [radix]
- @deffnx {C Function} scm_string_to_number (string, radix)
- Return a number of the maximally precise representation
- expressed by the given @var{string}. @var{radix} must be an
- exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
- is a default radix that may be overridden by an explicit radix
- prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
- supplied, then the default radix is 10. If string is not a
- syntactically valid notation for a number, then
- @code{string->number} returns @code{#f}.
- @end deffn
- @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
- As per @code{string->number} above, but taking a C string, as pointer
- and length. The string characters should be in the current locale
- encoding (@code{locale} in the name refers only to that, there's no
- locale-dependent parsing).
- @end deftypefn
- @node Complex
- @subsubsection Complex Number Operations
- @rnindex make-rectangular
- @rnindex make-polar
- @rnindex real-part
- @rnindex imag-part
- @rnindex magnitude
- @rnindex angle
- @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
- @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
- Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
- @end deffn
- @deffn {Scheme Procedure} make-polar mag ang
- @deffnx {C Function} scm_make_polar (mag, ang)
- @cindex polar form
- Return the complex number @var{mag} * e^(i * @var{ang}).
- @end deffn
- @c begin (texi-doc-string "guile" "real-part")
- @deffn {Scheme Procedure} real-part z
- @deffnx {C Function} scm_real_part (z)
- Return the real part of the number @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "imag-part")
- @deffn {Scheme Procedure} imag-part z
- @deffnx {C Function} scm_imag_part (z)
- Return the imaginary part of the number @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "magnitude")
- @deffn {Scheme Procedure} magnitude z
- @deffnx {C Function} scm_magnitude (z)
- Return the magnitude of the number @var{z}. This is the same as
- @code{abs} for real arguments, but also allows complex numbers.
- @end deffn
- @c begin (texi-doc-string "guile" "angle")
- @deffn {Scheme Procedure} angle z
- @deffnx {C Function} scm_angle (z)
- Return the angle of the complex number @var{z}.
- @end deffn
- @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
- @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
- Like @code{scm_make_rectangular} or @code{scm_make_polar},
- respectively, but these functions take @code{double}s as their
- arguments.
- @end deftypefn
- @deftypefn {C Function} double scm_c_real_part (z)
- @deftypefnx {C Function} double scm_c_imag_part (z)
- Returns the real or imaginary part of @var{z} as a @code{double}.
- @end deftypefn
- @deftypefn {C Function} double scm_c_magnitude (z)
- @deftypefnx {C Function} double scm_c_angle (z)
- Returns the magnitude or angle of @var{z} as a @code{double}.
- @end deftypefn
- @node Arithmetic
- @subsubsection Arithmetic Functions
- @rnindex max
- @rnindex min
- @rnindex +
- @rnindex *
- @rnindex -
- @rnindex /
- @findex 1+
- @findex 1-
- @rnindex abs
- @rnindex floor
- @rnindex ceiling
- @rnindex truncate
- @rnindex round
- @rnindex euclidean/
- @rnindex euclidean-quotient
- @rnindex euclidean-remainder
- @rnindex floor/
- @rnindex floor-quotient
- @rnindex floor-remainder
- @rnindex ceiling/
- @rnindex ceiling-quotient
- @rnindex ceiling-remainder
- @rnindex truncate/
- @rnindex truncate-quotient
- @rnindex truncate-remainder
- @rnindex centered/
- @rnindex centered-quotient
- @rnindex centered-remainder
- @rnindex round/
- @rnindex round-quotient
- @rnindex round-remainder
- The C arithmetic functions below always takes two arguments, while the
- Scheme functions can take an arbitrary number. When you need to
- invoke them with just one argument, for example to compute the
- equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
- one: @code{scm_difference (x, SCM_UNDEFINED)}.
- @c begin (texi-doc-string "guile" "+")
- @deffn {Scheme Procedure} + z1 @dots{}
- @deffnx {C Function} scm_sum (z1, z2)
- Return the sum of all parameter values. Return 0 if called without any
- parameters.
- @end deffn
- @c begin (texi-doc-string "guile" "-")
- @deffn {Scheme Procedure} - z1 z2 @dots{}
- @deffnx {C Function} scm_difference (z1, z2)
- If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
- the sum of all but the first argument are subtracted from the first
- argument.
- @end deffn
- @c begin (texi-doc-string "guile" "*")
- @deffn {Scheme Procedure} * z1 @dots{}
- @deffnx {C Function} scm_product (z1, z2)
- Return the product of all arguments. If called without arguments, 1 is
- returned.
- @end deffn
- @c begin (texi-doc-string "guile" "/")
- @deffn {Scheme Procedure} / z1 z2 @dots{}
- @deffnx {C Function} scm_divide (z1, z2)
- Divide the first argument by the product of the remaining arguments. If
- called with one argument @var{z1}, 1/@var{z1} is returned.
- @end deffn
- @deffn {Scheme Procedure} 1+ z
- @deffnx {C Function} scm_oneplus (z)
- Return @math{@var{z} + 1}.
- @end deffn
- @deffn {Scheme Procedure} 1- z
- @deffnx {C function} scm_oneminus (z)
- Return @math{@var{z} - 1}.
- @end deffn
- @c begin (texi-doc-string "guile" "abs")
- @deffn {Scheme Procedure} abs x
- @deffnx {C Function} scm_abs (x)
- Return the absolute value of @var{x}.
- @var{x} must be a number with zero imaginary part. To calculate the
- magnitude of a complex number, use @code{magnitude} instead.
- @end deffn
- @c begin (texi-doc-string "guile" "max")
- @deffn {Scheme Procedure} max x1 x2 @dots{}
- @deffnx {C Function} scm_max (x1, x2)
- Return the maximum of all parameter values.
- @end deffn
- @c begin (texi-doc-string "guile" "min")
- @deffn {Scheme Procedure} min x1 x2 @dots{}
- @deffnx {C Function} scm_min (x1, x2)
- Return the minimum of all parameter values.
- @end deffn
- @c begin (texi-doc-string "guile" "truncate")
- @deffn {Scheme Procedure} truncate x
- @deffnx {C Function} scm_truncate_number (x)
- Round the inexact number @var{x} towards zero.
- @end deffn
- @c begin (texi-doc-string "guile" "round")
- @deffn {Scheme Procedure} round x
- @deffnx {C Function} scm_round_number (x)
- Round the inexact number @var{x} to the nearest integer. When exactly
- halfway between two integers, round to the even one.
- @end deffn
- @c begin (texi-doc-string "guile" "floor")
- @deffn {Scheme Procedure} floor x
- @deffnx {C Function} scm_floor (x)
- Round the number @var{x} towards minus infinity.
- @end deffn
- @c begin (texi-doc-string "guile" "ceiling")
- @deffn {Scheme Procedure} ceiling x
- @deffnx {C Function} scm_ceiling (x)
- Round the number @var{x} towards infinity.
- @end deffn
- @deftypefn {C Function} double scm_c_truncate (double x)
- @deftypefnx {C Function} double scm_c_round (double x)
- Like @code{scm_truncate_number} or @code{scm_round_number},
- respectively, but these functions take and return @code{double}
- values.
- @end deftypefn
- @deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
- @deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
- @deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
- @deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
- These procedures accept two real numbers @var{x} and @var{y}, where the
- divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
- integer @var{q} and @code{euclidean-remainder} returns the real number
- @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
- @math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
- @var{r}, and is more efficient than computing each separately. Note
- that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
- @math{floor(@var{x}/@var{y})}, otherwise it returns
- @math{ceiling(@var{x}/@var{y})}.
- Note that these operators are equivalent to the R6RS operators
- @code{div}, @code{mod}, and @code{div-and-mod}.
- @lisp
- (euclidean-quotient 123 10) @result{} 12
- (euclidean-remainder 123 10) @result{} 3
- (euclidean/ 123 10) @result{} 12 and 3
- (euclidean/ 123 -10) @result{} -12 and 3
- (euclidean/ -123 10) @result{} -13 and 7
- (euclidean/ -123 -10) @result{} 13 and 7
- (euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
- (euclidean/ 16/3 -10/7) @result{} -3 and 22/21
- @end lisp
- @end deftypefn
- @deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
- @deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
- @deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
- @deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
- These procedures accept two real numbers @var{x} and @var{y}, where the
- divisor @var{y} must be non-zero. @code{floor-quotient} returns the
- integer @var{q} and @code{floor-remainder} returns the real number
- @var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
- @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
- both @var{q} and @var{r}, and is more efficient than computing each
- separately. Note that @var{r}, if non-zero, will have the same sign
- as @var{y}.
- When @var{x} and @var{y} are integers, @code{floor-remainder} is
- equivalent to the R5RS integer-only operator @code{modulo}.
- @lisp
- (floor-quotient 123 10) @result{} 12
- (floor-remainder 123 10) @result{} 3
- (floor/ 123 10) @result{} 12 and 3
- (floor/ 123 -10) @result{} -13 and -7
- (floor/ -123 10) @result{} -13 and 7
- (floor/ -123 -10) @result{} 12 and -3
- (floor/ -123.2 -63.5) @result{} 1.0 and -59.7
- (floor/ 16/3 -10/7) @result{} -4 and -8/21
- @end lisp
- @end deftypefn
- @deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
- @deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
- @deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
- @deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
- These procedures accept two real numbers @var{x} and @var{y}, where the
- divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
- integer @var{q} and @code{ceiling-remainder} returns the real number
- @var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
- @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
- both @var{q} and @var{r}, and is more efficient than computing each
- separately. Note that @var{r}, if non-zero, will have the opposite sign
- of @var{y}.
- @lisp
- (ceiling-quotient 123 10) @result{} 13
- (ceiling-remainder 123 10) @result{} -7
- (ceiling/ 123 10) @result{} 13 and -7
- (ceiling/ 123 -10) @result{} -12 and 3
- (ceiling/ -123 10) @result{} -12 and -3
- (ceiling/ -123 -10) @result{} 13 and 7
- (ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
- (ceiling/ 16/3 -10/7) @result{} -3 and 22/21
- @end lisp
- @end deftypefn
- @deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
- @deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
- @deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
- @deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
- These procedures accept two real numbers @var{x} and @var{y}, where the
- divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
- integer @var{q} and @code{truncate-remainder} returns the real number
- @var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
- and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
- both @var{q} and @var{r}, and is more efficient than computing each
- separately. Note that @var{r}, if non-zero, will have the same sign
- as @var{x}.
- When @var{x} and @var{y} are integers, these operators are
- equivalent to the R5RS integer-only operators @code{quotient} and
- @code{remainder}.
- @lisp
- (truncate-quotient 123 10) @result{} 12
- (truncate-remainder 123 10) @result{} 3
- (truncate/ 123 10) @result{} 12 and 3
- (truncate/ 123 -10) @result{} -12 and 3
- (truncate/ -123 10) @result{} -12 and -3
- (truncate/ -123 -10) @result{} 12 and -3
- (truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
- (truncate/ 16/3 -10/7) @result{} -3 and 22/21
- @end lisp
- @end deftypefn
- @deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
- @deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
- @deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
- @deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
- These procedures accept two real numbers @var{x} and @var{y}, where the
- divisor @var{y} must be non-zero. @code{centered-quotient} returns the
- integer @var{q} and @code{centered-remainder} returns the real number
- @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
- @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
- returns both @var{q} and @var{r}, and is more efficient than computing
- each separately.
- Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
- rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
- exactly half-way between two integers, the tie is broken according to
- the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
- positive infinity, otherwise they are rounded toward negative infinity.
- This is a consequence of the requirement that
- @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
- Note that these operators are equivalent to the R6RS operators
- @code{div0}, @code{mod0}, and @code{div0-and-mod0}.
- @lisp
- (centered-quotient 123 10) @result{} 12
- (centered-remainder 123 10) @result{} 3
- (centered/ 123 10) @result{} 12 and 3
- (centered/ 123 -10) @result{} -12 and 3
- (centered/ -123 10) @result{} -12 and -3
- (centered/ -123 -10) @result{} 12 and -3
- (centered/ 125 10) @result{} 13 and -5
- (centered/ 127 10) @result{} 13 and -3
- (centered/ 135 10) @result{} 14 and -5
- (centered/ -123.2 -63.5) @result{} 2.0 and 3.8
- (centered/ 16/3 -10/7) @result{} -4 and -8/21
- @end lisp
- @end deftypefn
- @deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
- @deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
- @deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
- @deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
- @deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
- These procedures accept two real numbers @var{x} and @var{y}, where the
- divisor @var{y} must be non-zero. @code{round-quotient} returns the
- integer @var{q} and @code{round-remainder} returns the real number
- @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
- @var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
- with ties going to the nearest even integer. @code{round/}
- returns both @var{q} and @var{r}, and is more efficient than computing
- each separately.
- Note that @code{round/} and @code{centered/} are almost equivalent, but
- their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
- between two integers. In this case, @code{round/} chooses the nearest
- even integer, whereas @code{centered/} chooses in such a way to satisfy
- the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
- is stronger than the corresponding constraint for @code{round/},
- @math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
- when @var{x} and @var{y} are integers, the number of possible remainders
- returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
- possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
- @var{y} is even.
- @lisp
- (round-quotient 123 10) @result{} 12
- (round-remainder 123 10) @result{} 3
- (round/ 123 10) @result{} 12 and 3
- (round/ 123 -10) @result{} -12 and 3
- (round/ -123 10) @result{} -12 and -3
- (round/ -123 -10) @result{} 12 and -3
- (round/ 125 10) @result{} 12 and 5
- (round/ 127 10) @result{} 13 and -3
- (round/ 135 10) @result{} 14 and -5
- (round/ -123.2 -63.5) @result{} 2.0 and 3.8
- (round/ 16/3 -10/7) @result{} -4 and -8/21
- @end lisp
- @end deftypefn
- @node Scientific
- @subsubsection Scientific Functions
- The following procedures accept any kind of number as arguments,
- including complex numbers.
- @rnindex sqrt
- @c begin (texi-doc-string "guile" "sqrt")
- @deffn {Scheme Procedure} sqrt z
- Return the square root of @var{z}. Of the two possible roots
- (positive and negative), the one with a positive real part is
- returned, or if that's zero then a positive imaginary part. Thus,
- @example
- (sqrt 9.0) @result{} 3.0
- (sqrt -9.0) @result{} 0.0+3.0i
- (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
- (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
- @end example
- @end deffn
- @rnindex expt
- @c begin (texi-doc-string "guile" "expt")
- @deffn {Scheme Procedure} expt z1 z2
- Return @var{z1} raised to the power of @var{z2}.
- @end deffn
- @rnindex sin
- @c begin (texi-doc-string "guile" "sin")
- @deffn {Scheme Procedure} sin z
- Return the sine of @var{z}.
- @end deffn
- @rnindex cos
- @c begin (texi-doc-string "guile" "cos")
- @deffn {Scheme Procedure} cos z
- Return the cosine of @var{z}.
- @end deffn
- @rnindex tan
- @c begin (texi-doc-string "guile" "tan")
- @deffn {Scheme Procedure} tan z
- Return the tangent of @var{z}.
- @end deffn
- @rnindex asin
- @c begin (texi-doc-string "guile" "asin")
- @deffn {Scheme Procedure} asin z
- Return the arcsine of @var{z}.
- @end deffn
- @rnindex acos
- @c begin (texi-doc-string "guile" "acos")
- @deffn {Scheme Procedure} acos z
- Return the arccosine of @var{z}.
- @end deffn
- @rnindex atan
- @c begin (texi-doc-string "guile" "atan")
- @deffn {Scheme Procedure} atan z
- @deffnx {Scheme Procedure} atan y x
- Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
- @end deffn
- @rnindex exp
- @c begin (texi-doc-string "guile" "exp")
- @deffn {Scheme Procedure} exp z
- Return e to the power of @var{z}, where e is the base of natural
- logarithms (2.71828@dots{}).
- @end deffn
- @rnindex log
- @c begin (texi-doc-string "guile" "log")
- @deffn {Scheme Procedure} log z
- Return the natural logarithm of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "log10")
- @deffn {Scheme Procedure} log10 z
- Return the base 10 logarithm of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "sinh")
- @deffn {Scheme Procedure} sinh z
- Return the hyperbolic sine of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "cosh")
- @deffn {Scheme Procedure} cosh z
- Return the hyperbolic cosine of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "tanh")
- @deffn {Scheme Procedure} tanh z
- Return the hyperbolic tangent of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "asinh")
- @deffn {Scheme Procedure} asinh z
- Return the hyperbolic arcsine of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "acosh")
- @deffn {Scheme Procedure} acosh z
- Return the hyperbolic arccosine of @var{z}.
- @end deffn
- @c begin (texi-doc-string "guile" "atanh")
- @deffn {Scheme Procedure} atanh z
- Return the hyperbolic arctangent of @var{z}.
- @end deffn
- @node Bitwise Operations
- @subsubsection Bitwise Operations
- For the following bitwise functions, negative numbers are treated as
- infinite precision twos-complements. For instance @math{-6} is bits
- @math{@dots{}111010}, with infinitely many ones on the left. It can
- be seen that adding 6 (binary 110) to such a bit pattern gives all
- zeros.
- @deffn {Scheme Procedure} logand n1 n2 @dots{}
- @deffnx {C Function} scm_logand (n1, n2)
- Return the bitwise @sc{and} of the integer arguments.
- @lisp
- (logand) @result{} -1
- (logand 7) @result{} 7
- (logand #b111 #b011 #b001) @result{} 1
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logior n1 n2 @dots{}
- @deffnx {C Function} scm_logior (n1, n2)
- Return the bitwise @sc{or} of the integer arguments.
- @lisp
- (logior) @result{} 0
- (logior 7) @result{} 7
- (logior #b000 #b001 #b011) @result{} 3
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logxor n1 n2 @dots{}
- @deffnx {C Function} scm_loxor (n1, n2)
- Return the bitwise @sc{xor} of the integer arguments. A bit is
- set in the result if it is set in an odd number of arguments.
- @lisp
- (logxor) @result{} 0
- (logxor 7) @result{} 7
- (logxor #b000 #b001 #b011) @result{} 2
- (logxor #b000 #b001 #b011 #b011) @result{} 1
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} lognot n
- @deffnx {C Function} scm_lognot (n)
- Return the integer which is the ones-complement of the integer
- argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
- @lisp
- (number->string (lognot #b10000000) 2)
- @result{} "-10000001"
- (number->string (lognot #b0) 2)
- @result{} "-1"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logtest j k
- @deffnx {C Function} scm_logtest (j, k)
- Test whether @var{j} and @var{k} have any 1 bits in common. This is
- equivalent to @code{(not (zero? (logand j k)))}, but without actually
- calculating the @code{logand}, just testing for non-zero.
- @lisp
- (logtest #b0100 #b1011) @result{} #f
- (logtest #b0100 #b0111) @result{} #t
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logbit? index j
- @deffnx {C Function} scm_logbit_p (index, j)
- Test whether bit number @var{index} in @var{j} is set. @var{index}
- starts from 0 for the least significant bit.
- @lisp
- (logbit? 0 #b1101) @result{} #t
- (logbit? 1 #b1101) @result{} #f
- (logbit? 2 #b1101) @result{} #t
- (logbit? 3 #b1101) @result{} #t
- (logbit? 4 #b1101) @result{} #f
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} ash n count
- @deffnx {C Function} scm_ash (n, count)
- Return @math{floor(n * 2^{count})}.
- @var{n} and @var{count} must be exact integers.
- With @var{n} viewed as an infinite-precision twos-complement
- integer, @code{ash} means a left shift introducing zero bits
- when @var{count} is positive, or a right shift dropping bits
- when @var{count} is negative. This is an ``arithmetic'' shift.
- @lisp
- (number->string (ash #b1 3) 2) @result{} "1000"
- (number->string (ash #b1010 -1) 2) @result{} "101"
- ;; -23 is bits ...11101001, -6 is bits ...111010
- (ash -23 -2) @result{} -6
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} round-ash n count
- @deffnx {C Function} scm_round_ash (n, count)
- Return @math{round(n * 2^count)}.
- @var{n} and @var{count} must be exact integers.
- With @var{n} viewed as an infinite-precision twos-complement
- integer, @code{round-ash} means a left shift introducing zero
- bits when @var{count} is positive, or a right shift rounding
- to the nearest integer (with ties going to the nearest even
- integer) when @var{count} is negative. This is a rounded
- ``arithmetic'' shift.
- @lisp
- (number->string (round-ash #b1 3) 2) @result{} \"1000\"
- (number->string (round-ash #b1010 -1) 2) @result{} \"101\"
- (number->string (round-ash #b1010 -2) 2) @result{} \"10\"
- (number->string (round-ash #b1011 -2) 2) @result{} \"11\"
- (number->string (round-ash #b1101 -2) 2) @result{} \"11\"
- (number->string (round-ash #b1110 -2) 2) @result{} \"100\"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} logcount n
- @deffnx {C Function} scm_logcount (n)
- Return the number of bits in integer @var{n}. If @var{n} is
- positive, the 1-bits in its binary representation are counted.
- If negative, the 0-bits in its two's-complement binary
- representation are counted. If zero, 0 is returned.
- @lisp
- (logcount #b10101010)
- @result{} 4
- (logcount 0)
- @result{} 0
- (logcount -2)
- @result{} 1
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} integer-length n
- @deffnx {C Function} scm_integer_length (n)
- Return the number of bits necessary to represent @var{n}.
- For positive @var{n} this is how many bits to the most significant one
- bit. For negative @var{n} it's how many bits to the most significant
- zero bit in twos complement form.
- @lisp
- (integer-length #b10101010) @result{} 8
- (integer-length #b1111) @result{} 4
- (integer-length 0) @result{} 0
- (integer-length -1) @result{} 0
- (integer-length -256) @result{} 8
- (integer-length -257) @result{} 9
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} integer-expt n k
- @deffnx {C Function} scm_integer_expt (n, k)
- Return @var{n} raised to the power @var{k}. @var{k} must be an exact
- integer, @var{n} can be any number.
- Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
- in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
- @math{0^0} is 1.
- @lisp
- (integer-expt 2 5) @result{} 32
- (integer-expt -3 3) @result{} -27
- (integer-expt 5 -3) @result{} 1/125
- (integer-expt 0 0) @result{} 1
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} bit-extract n start end
- @deffnx {C Function} scm_bit_extract (n, start, end)
- Return the integer composed of the @var{start} (inclusive)
- through @var{end} (exclusive) bits of @var{n}. The
- @var{start}th bit becomes the 0-th bit in the result.
- @lisp
- (number->string (bit-extract #b1101101010 0 4) 2)
- @result{} "1010"
- (number->string (bit-extract #b1101101010 4 9) 2)
- @result{} "10110"
- @end lisp
- @end deffn
- @node Random
- @subsubsection Random Number Generation
- Pseudo-random numbers are generated from a random state object, which
- can be created with @code{seed->random-state} or
- @code{datum->random-state}. An external representation (i.e.@: one
- which can written with @code{write} and read with @code{read}) of a
- random state object can be obtained via
- @code{random-state->datum}. The @var{state} parameter to the
- various functions below is optional, it defaults to the state object
- in the @code{*random-state*} variable.
- @deffn {Scheme Procedure} copy-random-state [state]
- @deffnx {C Function} scm_copy_random_state (state)
- Return a copy of the random state @var{state}.
- @end deffn
- @deffn {Scheme Procedure} random n [state]
- @deffnx {C Function} scm_random (n, state)
- Return a number in [0, @var{n}).
- Accepts a positive integer or real n and returns a
- number of the same type between zero (inclusive) and
- @var{n} (exclusive). The values returned have a uniform
- distribution.
- @end deffn
- @deffn {Scheme Procedure} random:exp [state]
- @deffnx {C Function} scm_random_exp (state)
- Return an inexact real in an exponential distribution with mean
- 1. For an exponential distribution with mean @var{u} use @code{(*
- @var{u} (random:exp))}.
- @end deffn
- @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
- @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
- Fills @var{vect} with inexact real random numbers the sum of whose
- squares is equal to 1.0. Thinking of @var{vect} as coordinates in
- space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
- the coordinates are uniformly distributed over the surface of the unit
- n-sphere.
- @end deffn
- @deffn {Scheme Procedure} random:normal [state]
- @deffnx {C Function} scm_random_normal (state)
- Return an inexact real in a normal distribution. The distribution
- used has mean 0 and standard deviation 1. For a normal distribution
- with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
- (* @var{d} (random:normal)))}.
- @end deffn
- @deffn {Scheme Procedure} random:normal-vector! vect [state]
- @deffnx {C Function} scm_random_normal_vector_x (vect, state)
- Fills @var{vect} with inexact real random numbers that are
- independent and standard normally distributed
- (i.e., with mean 0 and variance 1).
- @end deffn
- @deffn {Scheme Procedure} random:solid-sphere! vect [state]
- @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
- Fills @var{vect} with inexact real random numbers the sum of whose
- squares is less than 1.0. Thinking of @var{vect} as coordinates in
- space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
- the coordinates are uniformly distributed within the unit
- @var{n}-sphere.
- @c FIXME: What does this mean, particularly the n-sphere part?
- @end deffn
- @deffn {Scheme Procedure} random:uniform [state]
- @deffnx {C Function} scm_random_uniform (state)
- Return a uniformly distributed inexact real random number in
- [0,1).
- @end deffn
- @deffn {Scheme Procedure} seed->random-state seed
- @deffnx {C Function} scm_seed_to_random_state (seed)
- Return a new random state using @var{seed}.
- @end deffn
- @deffn {Scheme Procedure} datum->random-state datum
- @deffnx {C Function} scm_datum_to_random_state (datum)
- Return a new random state from @var{datum}, which should have been
- obtained by @code{random-state->datum}.
- @end deffn
- @deffn {Scheme Procedure} random-state->datum state
- @deffnx {C Function} scm_random_state_to_datum (state)
- Return a datum representation of @var{state} that may be written out and
- read back with the Scheme reader.
- @end deffn
- @deffn {Scheme Procedure} random-state-from-platform
- @deffnx {C Function} scm_random_state_from_platform ()
- Construct a new random state seeded from a platform-specific source of
- entropy, appropriate for use in non-security-critical applications.
- Currently @file{/dev/urandom} is tried first, or else the seed is based
- on the time, date, process ID, an address from a freshly allocated heap
- cell, an address from the local stack frame, and a high-resolution timer
- if available.
- @end deffn
- @defvar *random-state*
- The global random state used by the above functions when the
- @var{state} parameter is not given.
- @end defvar
- Note that the initial value of @code{*random-state*} is the same every
- time Guile starts up. Therefore, if you don't pass a @var{state}
- parameter to the above procedures, and you don't set
- @code{*random-state*} to @code{(seed->random-state your-seed)}, where
- @code{your-seed} is something that @emph{isn't} the same every time,
- you'll get the same sequence of ``random'' numbers on every run.
- For example, unless the relevant source code has changed, @code{(map
- random (cdr (iota 30)))}, if the first use of random numbers since
- Guile started up, will always give:
- @lisp
- (map random (cdr (iota 19)))
- @result{}
- (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
- @end lisp
- To seed the random state in a sensible way for non-security-critical
- applications, do this during initialization of your program:
- @lisp
- (set! *random-state* (random-state-from-platform))
- @end lisp
- @node Characters
- @subsection Characters
- @tpindex Characters
- In Scheme, there is a data type to describe a single character.
- Defining what exactly a character @emph{is} can be more complicated
- than it seems. Guile follows the advice of R6RS and uses The Unicode
- Standard to help define what a character is. So, for Guile, a
- character is anything in the Unicode Character Database.
- @cindex code point
- @cindex Unicode code point
- The Unicode Character Database is basically a table of characters
- indexed using integers called 'code points'. Valid code points are in
- the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
- @code{#x10FFFF} inclusive, which is about 1.1 million code points.
- @cindex designated code point
- @cindex code point, designated
- Any code point that has been assigned to a character or that has
- otherwise been given a meaning by Unicode is called a 'designated code
- point'. Most of the designated code points, about 200,000 of them,
- indicate characters, accents or other combining marks that modify
- other characters, symbols, whitespace, and control characters. Some
- are not characters but indicators that suggest how to format or
- display neighboring characters.
- @cindex reserved code point
- @cindex code point, reserved
- If a code point is not a designated code point -- if it has not been
- assigned to a character by The Unicode Standard -- it is a 'reserved
- code point', meaning that they are reserved for future use. Most of
- the code points, about 800,000, are 'reserved code points'.
- By convention, a Unicode code point is written as
- ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
- this convenient notation is not valid code. Guile does not interpret
- ``U+XXXX'' as a character.
- In Scheme, a character literal is written as @code{#\@var{name}} where
- @var{name} is the name of the character that you want. Printable
- characters have their usual single character name; for example,
- @code{#\a} is a lower case @code{a}.
- Some of the code points are 'combining characters' that are not meant
- to be printed by themselves but are instead meant to modify the
- appearance of the previous character. For combining characters, an
- alternate form of the character literal is @code{#\} followed by
- U+25CC (a small, dotted circle), followed by the combining character.
- This allows the combining character to be drawn on the circle, not on
- the backslash of @code{#\}.
- Many of the non-printing characters, such as whitespace characters and
- control characters, also have names.
- The most commonly used non-printing characters have long character
- names, described in the table below.
- @multitable {@code{#\backspace}} {Preferred}
- @item Character Name @tab Codepoint
- @item @code{#\nul} @tab U+0000
- @item @code{#\alarm} @tab U+0007
- @item @code{#\backspace} @tab U+0008
- @item @code{#\tab} @tab U+0009
- @item @code{#\linefeed} @tab U+000A
- @item @code{#\newline} @tab U+000A
- @item @code{#\vtab} @tab U+000B
- @item @code{#\page} @tab U+000C
- @item @code{#\return} @tab U+000D
- @item @code{#\esc} @tab U+001B
- @item @code{#\space} @tab U+0020
- @item @code{#\delete} @tab U+007F
- @end multitable
- There are also short names for all of the ``C0 control characters''
- (those with code points below 32). The following table lists the short
- name for each character.
- @multitable @columnfractions .25 .25 .25 .25
- @item 0 = @code{#\nul}
- @tab 1 = @code{#\soh}
- @tab 2 = @code{#\stx}
- @tab 3 = @code{#\etx}
- @item 4 = @code{#\eot}
- @tab 5 = @code{#\enq}
- @tab 6 = @code{#\ack}
- @tab 7 = @code{#\bel}
- @item 8 = @code{#\bs}
- @tab 9 = @code{#\ht}
- @tab 10 = @code{#\lf}
- @tab 11 = @code{#\vt}
- @item 12 = @code{#\ff}
- @tab 13 = @code{#\cr}
- @tab 14 = @code{#\so}
- @tab 15 = @code{#\si}
- @item 16 = @code{#\dle}
- @tab 17 = @code{#\dc1}
- @tab 18 = @code{#\dc2}
- @tab 19 = @code{#\dc3}
- @item 20 = @code{#\dc4}
- @tab 21 = @code{#\nak}
- @tab 22 = @code{#\syn}
- @tab 23 = @code{#\etb}
- @item 24 = @code{#\can}
- @tab 25 = @code{#\em}
- @tab 26 = @code{#\sub}
- @tab 27 = @code{#\esc}
- @item 28 = @code{#\fs}
- @tab 29 = @code{#\gs}
- @tab 30 = @code{#\rs}
- @tab 31 = @code{#\us}
- @item 32 = @code{#\sp}
- @end multitable
- The short name for the ``delete'' character (code point U+007F) is
- @code{#\del}.
- The R7RS name for the ``escape'' character (code point U+001B) is
- @code{#\escape}.
- There are also a few alternative names left over for compatibility with
- previous versions of Guile.
- @multitable {@code{#\backspace}} {Preferred}
- @item Alternate @tab Standard
- @item @code{#\nl} @tab @code{#\newline}
- @item @code{#\np} @tab @code{#\page}
- @item @code{#\null} @tab @code{#\nul}
- @end multitable
- Characters may also be written using their code point values. They can
- be written with as an octal number, such as @code{#\10} for
- @code{#\bs} or @code{#\177} for @code{#\del}.
- If one prefers hex to octal, there is an additional syntax for character
- escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
- number of one to eight digits.
- @rnindex char?
- @deffn {Scheme Procedure} char? x
- @deffnx {C Function} scm_char_p (x)
- Return @code{#t} if @var{x} is a character, else @code{#f}.
- @end deffn
- Fundamentally, the character comparison operations below are
- numeric comparisons of the character's code points.
- @rnindex char=?
- @deffn {Scheme Procedure} char=? x y
- Return @code{#t} if code point of @var{x} is equal to the code point
- of @var{y}, else @code{#f}.
- @end deffn
- @rnindex char<?
- @deffn {Scheme Procedure} char<? x y
- Return @code{#t} if the code point of @var{x} is less than the code
- point of @var{y}, else @code{#f}.
- @end deffn
- @rnindex char<=?
- @deffn {Scheme Procedure} char<=? x y
- Return @code{#t} if the code point of @var{x} is less than or equal
- to the code point of @var{y}, else @code{#f}.
- @end deffn
- @rnindex char>?
- @deffn {Scheme Procedure} char>? x y
- Return @code{#t} if the code point of @var{x} is greater than the
- code point of @var{y}, else @code{#f}.
- @end deffn
- @rnindex char>=?
- @deffn {Scheme Procedure} char>=? x y
- Return @code{#t} if the code point of @var{x} is greater than or
- equal to the code point of @var{y}, else @code{#f}.
- @end deffn
- @cindex case folding
- Case-insensitive character comparisons use @emph{Unicode case
- folding}. In case folding comparisons, if a character is lowercase
- and has an uppercase form that can be expressed as a single character,
- it is converted to uppercase before comparison. All other characters
- undergo no conversion before the comparison occurs. This includes the
- German sharp S (Eszett) which is not uppercased before conversion
- because its uppercase form has two characters. Unicode case folding
- is language independent: it uses rules that are generally true, but,
- it cannot cover all cases for all languages.
- @rnindex char-ci=?
- @deffn {Scheme Procedure} char-ci=? x y
- Return @code{#t} if the case-folded code point of @var{x} is the same
- as the case-folded code point of @var{y}, else @code{#f}.
- @end deffn
- @rnindex char-ci<?
- @deffn {Scheme Procedure} char-ci<? x y
- Return @code{#t} if the case-folded code point of @var{x} is less
- than the case-folded code point of @var{y}, else @code{#f}.
- @end deffn
- @rnindex char-ci<=?
- @deffn {Scheme Procedure} char-ci<=? x y
- Return @code{#t} if the case-folded code point of @var{x} is less
- than or equal to the case-folded code point of @var{y}, else
- @code{#f}.
- @end deffn
- @rnindex char-ci>?
- @deffn {Scheme Procedure} char-ci>? x y
- Return @code{#t} if the case-folded code point of @var{x} is greater
- than the case-folded code point of @var{y}, else @code{#f}.
- @end deffn
- @rnindex char-ci>=?
- @deffn {Scheme Procedure} char-ci>=? x y
- Return @code{#t} if the case-folded code point of @var{x} is greater
- than or equal to the case-folded code point of @var{y}, else
- @code{#f}.
- @end deffn
- @rnindex char-alphabetic?
- @deffn {Scheme Procedure} char-alphabetic? chr
- @deffnx {C Function} scm_char_alphabetic_p (chr)
- Return @code{#t} if @var{chr} is alphabetic, else @code{#f}.
- @end deffn
- @rnindex char-numeric?
- @deffn {Scheme Procedure} char-numeric? chr
- @deffnx {C Function} scm_char_numeric_p (chr)
- Return @code{#t} if @var{chr} is numeric, else @code{#f}.
- @end deffn
- @rnindex char-whitespace?
- @deffn {Scheme Procedure} char-whitespace? chr
- @deffnx {C Function} scm_char_whitespace_p (chr)
- Return @code{#t} if @var{chr} is whitespace, else @code{#f}.
- @end deffn
- @rnindex char-upper-case?
- @deffn {Scheme Procedure} char-upper-case? chr
- @deffnx {C Function} scm_char_upper_case_p (chr)
- Return @code{#t} if @var{chr} is uppercase, else @code{#f}.
- @end deffn
- @rnindex char-lower-case?
- @deffn {Scheme Procedure} char-lower-case? chr
- @deffnx {C Function} scm_char_lower_case_p (chr)
- Return @code{#t} if @var{chr} is lowercase, else @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} char-is-both? chr
- @deffnx {C Function} scm_char_is_both_p (chr)
- Return @code{#t} if @var{chr} is either uppercase or lowercase, else
- @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} char-general-category chr
- @deffnx {C Function} scm_char_general_category (chr)
- Return a symbol giving the two-letter name of the Unicode general
- category assigned to @var{chr} or @code{#f} if no named category is
- assigned. The following table provides a list of category names along
- with their meanings.
- @multitable @columnfractions .1 .4 .1 .4
- @item Lu
- @tab Uppercase letter
- @tab Pf
- @tab Final quote punctuation
- @item Ll
- @tab Lowercase letter
- @tab Po
- @tab Other punctuation
- @item Lt
- @tab Titlecase letter
- @tab Sm
- @tab Math symbol
- @item Lm
- @tab Modifier letter
- @tab Sc
- @tab Currency symbol
- @item Lo
- @tab Other letter
- @tab Sk
- @tab Modifier symbol
- @item Mn
- @tab Non-spacing mark
- @tab So
- @tab Other symbol
- @item Mc
- @tab Combining spacing mark
- @tab Zs
- @tab Space separator
- @item Me
- @tab Enclosing mark
- @tab Zl
- @tab Line separator
- @item Nd
- @tab Decimal digit number
- @tab Zp
- @tab Paragraph separator
- @item Nl
- @tab Letter number
- @tab Cc
- @tab Control
- @item No
- @tab Other number
- @tab Cf
- @tab Format
- @item Pc
- @tab Connector punctuation
- @tab Cs
- @tab Surrogate
- @item Pd
- @tab Dash punctuation
- @tab Co
- @tab Private use
- @item Ps
- @tab Open punctuation
- @tab Cn
- @tab Unassigned
- @item Pe
- @tab Close punctuation
- @tab
- @tab
- @item Pi
- @tab Initial quote punctuation
- @tab
- @tab
- @end multitable
- @end deffn
- @rnindex char->integer
- @deffn {Scheme Procedure} char->integer chr
- @deffnx {C Function} scm_char_to_integer (chr)
- Return the code point of @var{chr}.
- @end deffn
- @rnindex integer->char
- @deffn {Scheme Procedure} integer->char n
- @deffnx {C Function} scm_integer_to_char (n)
- Return the character that has code point @var{n}. The integer @var{n}
- must be a valid code point. Valid code points are in the ranges 0 to
- @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
- @end deffn
- @rnindex char-upcase
- @deffn {Scheme Procedure} char-upcase chr
- @deffnx {C Function} scm_char_upcase (chr)
- Return the uppercase character version of @var{chr}.
- @end deffn
- @rnindex char-downcase
- @deffn {Scheme Procedure} char-downcase chr
- @deffnx {C Function} scm_char_downcase (chr)
- Return the lowercase character version of @var{chr}.
- @end deffn
- @rnindex char-titlecase
- @deffn {Scheme Procedure} char-titlecase chr
- @deffnx {C Function} scm_char_titlecase (chr)
- Return the titlecase character version of @var{chr} if one exists;
- otherwise return the uppercase version.
- For most characters these will be the same, but the Unicode Standard
- includes certain digraph compatibility characters, such as @code{U+01F3}
- ``dz'', for which the uppercase and titlecase characters are different
- (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
- respectively).
- @end deffn
- @tindex scm_t_wchar
- @deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
- @deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
- @deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
- These C functions take an integer representation of a Unicode
- codepoint and return the codepoint corresponding to its uppercase,
- lowercase, and titlecase forms respectively. The type
- @code{scm_t_wchar} is a signed, 32-bit integer.
- @end deftypefn
- Characters also have ``formal names'', which are defined by Unicode.
- These names can be accessed in Guile from the @code{(ice-9 unicode)}
- module:
- @example
- (use-modules (ice-9 unicode))
- @end example
- @deffn {Scheme Procedure} char->formal-name chr
- Return the formal all-upper-case Unicode name of @var{ch},
- as a string, or @code{#f} if the character has no name.
- @end deffn
- @deffn {Scheme Procedure} formal-name->char name
- Return the character whose formal all-upper-case Unicode name is
- @var{name}, or @code{#f} if no such character is known.
- @end deffn
- @node Character Sets
- @subsection Character Sets
- The features described in this section correspond directly to SRFI-14.
- The data type @dfn{charset} implements sets of characters
- (@pxref{Characters}). Because the internal representation of
- character sets is not visible to the user, a lot of procedures for
- handling them are provided.
- Character sets can be created, extended, tested for the membership of a
- characters and be compared to other character sets.
- @menu
- * Character Set Predicates/Comparison::
- * Iterating Over Character Sets:: Enumerate charset elements.
- * Creating Character Sets:: Making new charsets.
- * Querying Character Sets:: Test charsets for membership etc.
- * Character-Set Algebra:: Calculating new charsets.
- * Standard Character Sets:: Variables containing predefined charsets.
- @end menu
- @node Character Set Predicates/Comparison
- @subsubsection Character Set Predicates/Comparison
- Use these procedures for testing whether an object is a character set,
- or whether several character sets are equal or subsets of each other.
- @code{char-set-hash} can be used for calculating a hash value, maybe for
- usage in fast lookup procedures.
- @deffn {Scheme Procedure} char-set? obj
- @deffnx {C Function} scm_char_set_p (obj)
- Return @code{#t} if @var{obj} is a character set, @code{#f}
- otherwise.
- @end deffn
- @deffn {Scheme Procedure} char-set= char_set @dots{}
- @deffnx {C Function} scm_char_set_eq (char_sets)
- Return @code{#t} if all given character sets are equal.
- @end deffn
- @deffn {Scheme Procedure} char-set<= char_set @dots{}
- @deffnx {C Function} scm_char_set_leq (char_sets)
- Return @code{#t} if every character set @var{char_set}i is a subset
- of character set @var{char_set}i+1.
- @end deffn
- @deffn {Scheme Procedure} char-set-hash cs [bound]
- @deffnx {C Function} scm_char_set_hash (cs, bound)
- Compute a hash value for the character set @var{cs}. If
- @var{bound} is given and non-zero, it restricts the
- returned value to the range 0 @dots{} @var{bound} - 1.
- @end deffn
- @c ===================================================================
- @node Iterating Over Character Sets
- @subsubsection Iterating Over Character Sets
- Character set cursors are a means for iterating over the members of a
- character sets. After creating a character set cursor with
- @code{char-set-cursor}, a cursor can be dereferenced with
- @code{char-set-ref}, advanced to the next member with
- @code{char-set-cursor-next}. Whether a cursor has passed past the last
- element of the set can be checked with @code{end-of-char-set?}.
- Additionally, mapping and (un-)folding procedures for character sets are
- provided.
- @deffn {Scheme Procedure} char-set-cursor cs
- @deffnx {C Function} scm_char_set_cursor (cs)
- Return a cursor into the character set @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set-ref cs cursor
- @deffnx {C Function} scm_char_set_ref (cs, cursor)
- Return the character at the current cursor position
- @var{cursor} in the character set @var{cs}. It is an error to
- pass a cursor for which @code{end-of-char-set?} returns true.
- @end deffn
- @deffn {Scheme Procedure} char-set-cursor-next cs cursor
- @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
- Advance the character set cursor @var{cursor} to the next
- character in the character set @var{cs}. It is an error if the
- cursor given satisfies @code{end-of-char-set?}.
- @end deffn
- @deffn {Scheme Procedure} end-of-char-set? cursor
- @deffnx {C Function} scm_end_of_char_set_p (cursor)
- Return @code{#t} if @var{cursor} has reached the end of a
- character set, @code{#f} otherwise.
- @end deffn
- @deffn {Scheme Procedure} char-set-fold kons knil cs
- @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
- Fold the procedure @var{kons} over the character set @var{cs},
- initializing it with @var{knil}.
- @end deffn
- @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
- @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
- This is a fundamental constructor for character sets.
- @itemize @bullet
- @item @var{g} is used to generate a series of ``seed'' values
- from the initial seed: @var{seed}, (@var{g} @var{seed}),
- (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
- @item @var{p} tells us when to stop -- when it returns true
- when applied to one of the seed values.
- @item @var{f} maps each seed value to a character. These
- characters are added to the base character set @var{base_cs} to
- form the result; @var{base_cs} defaults to the empty set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
- @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
- This is a fundamental constructor for character sets.
- @itemize @bullet
- @item @var{g} is used to generate a series of ``seed'' values
- from the initial seed: @var{seed}, (@var{g} @var{seed}),
- (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
- @item @var{p} tells us when to stop -- when it returns true
- when applied to one of the seed values.
- @item @var{f} maps each seed value to a character. These
- characters are added to the base character set @var{base_cs} to
- form the result; @var{base_cs} defaults to the empty set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} char-set-for-each proc cs
- @deffnx {C Function} scm_char_set_for_each (proc, cs)
- Apply @var{proc} to every character in the character set
- @var{cs}. The return value is not specified.
- @end deffn
- @deffn {Scheme Procedure} char-set-map proc cs
- @deffnx {C Function} scm_char_set_map (proc, cs)
- Map the procedure @var{proc} over every character in @var{cs}.
- @var{proc} must be a character -> character procedure.
- @end deffn
- @c ===================================================================
- @node Creating Character Sets
- @subsubsection Creating Character Sets
- New character sets are produced with these procedures.
- @deffn {Scheme Procedure} char-set-copy cs
- @deffnx {C Function} scm_char_set_copy (cs)
- Return a newly allocated character set containing all
- characters in @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set chr @dots{}
- @deffnx {C Function} scm_char_set (chrs)
- Return a character set containing all given characters.
- @end deffn
- @deffn {Scheme Procedure} list->char-set list [base_cs]
- @deffnx {C Function} scm_list_to_char_set (list, base_cs)
- Convert the character list @var{list} to a character set. If
- the character set @var{base_cs} is given, the character in this
- set are also included in the result.
- @end deffn
- @deffn {Scheme Procedure} list->char-set! list base_cs
- @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
- Convert the character list @var{list} to a character set. The
- characters are added to @var{base_cs} and @var{base_cs} is
- returned.
- @end deffn
- @deffn {Scheme Procedure} string->char-set str [base_cs]
- @deffnx {C Function} scm_string_to_char_set (str, base_cs)
- Convert the string @var{str} to a character set. If the
- character set @var{base_cs} is given, the characters in this
- set are also included in the result.
- @end deffn
- @deffn {Scheme Procedure} string->char-set! str base_cs
- @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
- Convert the string @var{str} to a character set. The
- characters from the string are added to @var{base_cs}, and
- @var{base_cs} is returned.
- @end deffn
- @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
- @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
- Return a character set containing every character from @var{cs}
- so that it satisfies @var{pred}. If provided, the characters
- from @var{base_cs} are added to the result.
- @end deffn
- @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
- @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
- Return a character set containing every character from @var{cs}
- so that it satisfies @var{pred}. The characters are added to
- @var{base_cs} and @var{base_cs} is returned.
- @end deffn
- @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
- @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
- Return a character set containing all characters whose
- character codes lie in the half-open range
- [@var{lower},@var{upper}).
- If @var{error} is a true value, an error is signaled if the
- specified range contains characters which are not contained in
- the implemented character range. If @var{error} is @code{#f},
- these characters are silently left out of the resulting
- character set.
- The characters in @var{base_cs} are added to the result, if
- given.
- @end deffn
- @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
- @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
- Return a character set containing all characters whose
- character codes lie in the half-open range
- [@var{lower},@var{upper}).
- If @var{error} is a true value, an error is signaled if the
- specified range contains characters which are not contained in
- the implemented character range. If @var{error} is @code{#f},
- these characters are silently left out of the resulting
- character set.
- The characters are added to @var{base_cs} and @var{base_cs} is
- returned.
- @end deffn
- @deffn {Scheme Procedure} ->char-set x
- @deffnx {C Function} scm_to_char_set (x)
- Coerces x into a char-set. @var{x} may be a string, character or
- char-set. A string is converted to the set of its constituent
- characters; a character is converted to a singleton set; a char-set is
- returned as-is.
- @end deffn
- @c ===================================================================
- @node Querying Character Sets
- @subsubsection Querying Character Sets
- Access the elements and other information of a character set with these
- procedures.
- @deffn {Scheme Procedure} %char-set-dump cs
- Returns an association list containing debugging information
- for @var{cs}. The association list has the following entries.
- @table @code
- @item char-set
- The char-set itself
- @item len
- The number of groups of contiguous code points the char-set
- contains
- @item ranges
- A list of lists where each sublist is a range of code points
- and their associated characters
- @end table
- The return value of this function cannot be relied upon to be
- consistent between versions of Guile and should not be used in code.
- @end deffn
- @deffn {Scheme Procedure} char-set-size cs
- @deffnx {C Function} scm_char_set_size (cs)
- Return the number of elements in character set @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set-count pred cs
- @deffnx {C Function} scm_char_set_count (pred, cs)
- Return the number of the elements int the character set
- @var{cs} which satisfy the predicate @var{pred}.
- @end deffn
- @deffn {Scheme Procedure} char-set->list cs
- @deffnx {C Function} scm_char_set_to_list (cs)
- Return a list containing the elements of the character set
- @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set->string cs
- @deffnx {C Function} scm_char_set_to_string (cs)
- Return a string containing the elements of the character set
- @var{cs}. The order in which the characters are placed in the
- string is not defined.
- @end deffn
- @deffn {Scheme Procedure} char-set-contains? cs ch
- @deffnx {C Function} scm_char_set_contains_p (cs, ch)
- Return @code{#t} if the character @var{ch} is contained in the
- character set @var{cs}, or @code{#f} otherwise.
- @end deffn
- @deffn {Scheme Procedure} char-set-every pred cs
- @deffnx {C Function} scm_char_set_every (pred, cs)
- Return a true value if every character in the character set
- @var{cs} satisfies the predicate @var{pred}.
- @end deffn
- @deffn {Scheme Procedure} char-set-any pred cs
- @deffnx {C Function} scm_char_set_any (pred, cs)
- Return a true value if any character in the character set
- @var{cs} satisfies the predicate @var{pred}.
- @end deffn
- @c ===================================================================
- @node Character-Set Algebra
- @subsubsection Character-Set Algebra
- Character sets can be manipulated with the common set algebra operation,
- such as union, complement, intersection etc. All of these procedures
- provide side-effecting variants, which modify their character set
- argument(s).
- @deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
- @deffnx {C Function} scm_char_set_adjoin (cs, chrs)
- Add all character arguments to the first argument, which must
- be a character set.
- @end deffn
- @deffn {Scheme Procedure} char-set-delete cs chr @dots{}
- @deffnx {C Function} scm_char_set_delete (cs, chrs)
- Delete all character arguments from the first argument, which
- must be a character set.
- @end deffn
- @deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
- @deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
- Add all character arguments to the first argument, which must
- be a character set.
- @end deffn
- @deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
- @deffnx {C Function} scm_char_set_delete_x (cs, chrs)
- Delete all character arguments from the first argument, which
- must be a character set.
- @end deffn
- @deffn {Scheme Procedure} char-set-complement cs
- @deffnx {C Function} scm_char_set_complement (cs)
- Return the complement of the character set @var{cs}.
- @end deffn
- Note that the complement of a character set is likely to contain many
- reserved code points (code points that are not associated with
- characters). It may be helpful to modify the output of
- @code{char-set-complement} by computing its intersection with the set
- of designated code points, @code{char-set:designated}.
- @deffn {Scheme Procedure} char-set-union cs @dots{}
- @deffnx {C Function} scm_char_set_union (char_sets)
- Return the union of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-intersection cs @dots{}
- @deffnx {C Function} scm_char_set_intersection (char_sets)
- Return the intersection of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
- @deffnx {C Function} scm_char_set_difference (cs1, char_sets)
- Return the difference of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-xor cs @dots{}
- @deffnx {C Function} scm_char_set_xor (char_sets)
- Return the exclusive-or of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
- @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
- Return the difference and the intersection of all argument
- character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-complement! cs
- @deffnx {C Function} scm_char_set_complement_x (cs)
- Return the complement of the character set @var{cs}.
- @end deffn
- @deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
- @deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
- Return the union of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
- @deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
- Return the intersection of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
- @deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
- Return the difference of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
- @deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
- Return the exclusive-or of all argument character sets.
- @end deffn
- @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
- @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
- Return the difference and the intersection of all argument
- character sets.
- @end deffn
- @c ===================================================================
- @node Standard Character Sets
- @subsubsection Standard Character Sets
- In order to make the use of the character set data type and procedures
- useful, several predefined character set variables exist.
- @cindex codeset
- @cindex charset
- @cindex locale
- These character sets are locale independent and are not recomputed
- upon a @code{setlocale} call. They contain characters from the whole
- range of Unicode code points. For instance, @code{char-set:letter}
- contains about 100,000 characters.
- @defvr {Scheme Variable} char-set:lower-case
- @defvrx {C Variable} scm_char_set_lower_case
- All lower-case characters.
- @end defvr
- @defvr {Scheme Variable} char-set:upper-case
- @defvrx {C Variable} scm_char_set_upper_case
- All upper-case characters.
- @end defvr
- @defvr {Scheme Variable} char-set:title-case
- @defvrx {C Variable} scm_char_set_title_case
- All single characters that function as if they were an upper-case
- letter followed by a lower-case letter.
- @end defvr
- @defvr {Scheme Variable} char-set:letter
- @defvrx {C Variable} scm_char_set_letter
- All letters. This includes @code{char-set:lower-case},
- @code{char-set:upper-case}, @code{char-set:title-case}, and many
- letters that have no case at all. For example, Chinese and Japanese
- characters typically have no concept of case.
- @end defvr
- @defvr {Scheme Variable} char-set:digit
- @defvrx {C Variable} scm_char_set_digit
- All digits.
- @end defvr
- @defvr {Scheme Variable} char-set:letter+digit
- @defvrx {C Variable} scm_char_set_letter_and_digit
- The union of @code{char-set:letter} and @code{char-set:digit}.
- @end defvr
- @defvr {Scheme Variable} char-set:graphic
- @defvrx {C Variable} scm_char_set_graphic
- All characters which would put ink on the paper.
- @end defvr
- @defvr {Scheme Variable} char-set:printing
- @defvrx {C Variable} scm_char_set_printing
- The union of @code{char-set:graphic} and @code{char-set:whitespace}.
- @end defvr
- @defvr {Scheme Variable} char-set:whitespace
- @defvrx {C Variable} scm_char_set_whitespace
- All whitespace characters.
- @end defvr
- @defvr {Scheme Variable} char-set:blank
- @defvrx {C Variable} scm_char_set_blank
- All horizontal whitespace characters, which notably includes
- @code{#\space} and @code{#\tab}.
- @end defvr
- @defvr {Scheme Variable} char-set:iso-control
- @defvrx {C Variable} scm_char_set_iso_control
- The ISO control characters are the C0 control characters (U+0000 to
- U+001F), delete (U+007F), and the C1 control characters (U+0080 to
- U+009F).
- @end defvr
- @defvr {Scheme Variable} char-set:punctuation
- @defvrx {C Variable} scm_char_set_punctuation
- All punctuation characters, such as the characters
- @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
- @end defvr
- @defvr {Scheme Variable} char-set:symbol
- @defvrx {C Variable} scm_char_set_symbol
- All symbol characters, such as the characters @code{$+<=>^`|~}.
- @end defvr
- @defvr {Scheme Variable} char-set:hex-digit
- @defvrx {C Variable} scm_char_set_hex_digit
- The hexadecimal digits @code{0123456789abcdefABCDEF}.
- @end defvr
- @defvr {Scheme Variable} char-set:ascii
- @defvrx {C Variable} scm_char_set_ascii
- All ASCII characters.
- @end defvr
- @defvr {Scheme Variable} char-set:empty
- @defvrx {C Variable} scm_char_set_empty
- The empty character set.
- @end defvr
- @defvr {Scheme Variable} char-set:designated
- @defvrx {C Variable} scm_char_set_designated
- This character set contains all designated code points. This includes
- all the code points to which Unicode has assigned a character or other
- meaning.
- @end defvr
- @defvr {Scheme Variable} char-set:full
- @defvrx {C Variable} scm_char_set_full
- This character set contains all possible code points. This includes
- both designated and reserved code points.
- @end defvr
- @node Strings
- @subsection Strings
- @tpindex Strings
- Strings are fixed-length sequences of characters. They can be created
- by calling constructor procedures, but they can also literally get
- entered at the @acronym{REPL} or in Scheme source files.
- @c Guile provides a rich set of string processing procedures, because text
- @c handling is very important when Guile is used as a scripting language.
- Strings always carry the information about how many characters they are
- composed of with them, so there is no special end-of-string character,
- like in C. That means that Scheme strings can contain any character,
- even the @samp{#\nul} character @samp{\0}.
- To use strings efficiently, you need to know a bit about how Guile
- implements them. In Guile, a string consists of two parts, a head and
- the actual memory where the characters are stored. When a string (or
- a substring of it) is copied, only a new head gets created, the memory
- is usually not copied. The two heads start out pointing to the same
- memory.
- When one of these two strings is modified, as with @code{string-set!},
- their common memory does get copied so that each string has its own
- memory and modifying one does not accidentally modify the other as well.
- Thus, Guile's strings are `copy on write'; the actual copying of their
- memory is delayed until one string is written to.
- This implementation makes functions like @code{substring} very
- efficient in the common case that no modifications are done to the
- involved strings.
- If you do know that your strings are getting modified right away, you
- can use @code{substring/copy} instead of @code{substring}. This
- function performs the copy immediately at the time of creation. This
- is more efficient, especially in a multi-threaded program. Also,
- @code{substring/copy} can avoid the problem that a short substring
- holds on to the memory of a very large original string that could
- otherwise be recycled.
- If you want to avoid the copy altogether, so that modifications of one
- string show up in the other, you can use @code{substring/shared}. The
- strings created by this procedure are called @dfn{mutation sharing
- substrings} since the substring and the original string share
- modifications to each other.
- If you want to prevent modifications, use @code{substring/read-only}.
- Guile provides all procedures of SRFI-13 and a few more.
- @menu
- * String Syntax:: Read syntax for strings.
- * String Predicates:: Testing strings for certain properties.
- * String Constructors:: Creating new string objects.
- * List/String Conversion:: Converting from/to lists of characters.
- * String Selection:: Select portions from strings.
- * String Modification:: Modify parts or whole strings.
- * String Comparison:: Lexicographic ordering predicates.
- * String Searching:: Searching in strings.
- * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
- * Reversing and Appending Strings:: Appending strings to form a new string.
- * Mapping Folding and Unfolding:: Iterating over strings.
- * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
- * Representing Strings as Bytes:: Encoding and decoding strings.
- * Conversion to/from C::
- * String Internals:: The storage strategy for strings.
- @end menu
- @node String Syntax
- @subsubsection String Read Syntax
- @c In the following @code is used to get a good font in TeX etc, but
- @c is omitted for Info format, so as not to risk any confusion over
- @c whether surrounding ` ' quotes are part of the escape or are
- @c special in a string (they're not).
- The read syntax for strings is an arbitrarily long sequence of
- characters enclosed in double quotes (@nicode{"}).
- Backslash is an escape character and can be used to insert the following
- special characters. @nicode{\"} and @nicode{\\} are R5RS standard,
- @nicode{\|} is R7RS standard, the next seven are R6RS standard ---
- notice they follow C syntax --- and the remaining four are Guile
- extensions.
- @table @asis
- @item @nicode{\\}
- Backslash character.
- @item @nicode{\"}
- Double quote character (an unescaped @nicode{"} is otherwise the end
- of the string).
- @item @nicode{\|}
- Vertical bar character.
- @item @nicode{\a}
- Bell character (ASCII 7).
- @item @nicode{\f}
- Formfeed character (ASCII 12).
- @item @nicode{\n}
- Newline character (ASCII 10).
- @item @nicode{\r}
- Carriage return character (ASCII 13).
- @item @nicode{\t}
- Tab character (ASCII 9).
- @item @nicode{\v}
- Vertical tab character (ASCII 11).
- @item @nicode{\b}
- Backspace character (ASCII 8).
- @item @nicode{\0}
- NUL character (ASCII 0).
- @item @nicode{\(}
- Open parenthesis. This is intended for use at the beginning of lines in
- multiline strings to avoid confusing Emacs lisp modes.
- @item @nicode{\} followed by newline (ASCII 10)
- Nothing. This way if @nicode{\} is the last character in a line, the
- string will continue with the first character from the next line,
- without a line break.
- If the @code{hungry-eol-escapes} reader option is enabled, which is not
- the case by default, leading whitespace on the next line is discarded.
- @lisp
- "foo\
- bar"
- @result{} "foo bar"
- (read-enable 'hungry-eol-escapes)
- "foo\
- bar"
- @result{} "foobar"
- @end lisp
- @item @nicode{\xHH}
- Character code given by two hexadecimal digits. For example
- @nicode{\x7f} for an ASCII DEL (127).
- @item @nicode{\uHHHH}
- Character code given by four hexadecimal digits. For example
- @nicode{\u0100} for a capital A with macron (U+0100).
- @item @nicode{\UHHHHHH}
- Character code given by six hexadecimal digits. For example
- @nicode{\U010402}.
- @end table
- @noindent
- The following are examples of string literals:
- @lisp
- "foo"
- "bar plonk"
- "Hello World"
- "\"Hi\", he said."
- @end lisp
- The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
- chosen to not break compatibility with code written for previous versions of
- Guile. The R6RS specification suggests a different, incompatible syntax for hex
- escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
- digits terminated with a semicolon. If this escape format is desired instead,
- it can be enabled with the reader option @code{r6rs-hex-escapes}.
- @lisp
- (read-enable 'r6rs-hex-escapes)
- @end lisp
- For more on reader options, @xref{Scheme Read}.
- @node String Predicates
- @subsubsection String Predicates
- The following procedures can be used to check whether a given string
- fulfills some specified property.
- @rnindex string?
- @deffn {Scheme Procedure} string? obj
- @deffnx {C Function} scm_string_p (obj)
- Return @code{#t} if @var{obj} is a string, else @code{#f}.
- @end deffn
- @deftypefn {C Function} int scm_is_string (SCM obj)
- Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
- @end deftypefn
- @deffn {Scheme Procedure} string-null? str
- @deffnx {C Function} scm_string_null_p (str)
- Return @code{#t} if @var{str}'s length is zero, and
- @code{#f} otherwise.
- @lisp
- (string-null? "") @result{} #t
- y @result{} "foo"
- (string-null? y) @result{} #f
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} string-any char_pred s [start [end]]
- @deffnx {C Function} scm_string_any (char_pred, s, start, end)
- Check if @var{char_pred} is true for any character in string @var{s}.
- @var{char_pred} can be a character to check for any equal to that, or
- a character set (@pxref{Character Sets}) to check for any in that set,
- or a predicate procedure to call.
- For a procedure, calls @code{(@var{char_pred} c)} are made
- successively on the characters from @var{start} to @var{end}. If
- @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
- stops and that return value is the return from @code{string-any}. The
- call on the last character (ie.@: at @math{@var{end}-1}), if that
- point is reached, is a tail call.
- If there are no characters in @var{s} (ie.@: @var{start} equals
- @var{end}) then the return is @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} string-every char_pred s [start [end]]
- @deffnx {C Function} scm_string_every (char_pred, s, start, end)
- Check if @var{char_pred} is true for every character in string
- @var{s}.
- @var{char_pred} can be a character to check for every character equal
- to that, or a character set (@pxref{Character Sets}) to check for
- every character being in that set, or a predicate procedure to call.
- For a procedure, calls @code{(@var{char_pred} c)} are made
- successively on the characters from @var{start} to @var{end}. If
- @var{char_pred} returns @code{#f}, @code{string-every} stops and
- returns @code{#f}. The call on the last character (ie.@: at
- @math{@var{end}-1}), if that point is reached, is a tail call and the
- return from that call is the return from @code{string-every}.
- If there are no characters in @var{s} (ie.@: @var{start} equals
- @var{end}) then the return is @code{#t}.
- @end deffn
- @node String Constructors
- @subsubsection String Constructors
- The string constructor procedures create new string objects, possibly
- initializing them with some specified character data. See also
- @xref{String Selection}, for ways to create strings from existing
- strings.
- @c FIXME::martin: list->string belongs into `List/String Conversion'
- @deffn {Scheme Procedure} string char@dots{}
- @rnindex string
- Return a newly allocated string made from the given character
- arguments.
- @example
- (string #\x #\y #\z) @result{} "xyz"
- (string) @result{} ""
- @end example
- @end deffn
- @deffn {Scheme Procedure} list->string lst
- @deffnx {C Function} scm_string (lst)
- @rnindex list->string
- Return a newly allocated string made from a list of characters.
- @example
- (list->string '(#\a #\b #\c)) @result{} "abc"
- @end example
- @end deffn
- @deffn {Scheme Procedure} reverse-list->string lst
- @deffnx {C Function} scm_reverse_list_to_string (lst)
- Return a newly allocated string made from a list of characters, in
- reverse order.
- @example
- (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
- @end example
- @end deffn
- @rnindex make-string
- @deffn {Scheme Procedure} make-string k [chr]
- @deffnx {C Function} scm_make_string (k, chr)
- Return a newly allocated string of
- length @var{k}. If @var{chr} is given, then all elements of
- the string are initialized to @var{chr}, otherwise the contents
- of the string are unspecified.
- @end deffn
- @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
- Like @code{scm_make_string}, but expects the length as a
- @code{size_t}.
- @end deftypefn
- @deffn {Scheme Procedure} string-tabulate proc len
- @deffnx {C Function} scm_string_tabulate (proc, len)
- @var{proc} is an integer->char procedure. Construct a string
- of size @var{len} by applying @var{proc} to each index to
- produce the corresponding string element. The order in which
- @var{proc} is applied to the indices is not specified.
- @end deffn
- @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
- @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
- Append the string in the string list @var{ls}, using the string
- @var{delimiter} as a delimiter between the elements of @var{ls}.
- @var{delimiter} defaults to @w{@samp{ }}, that is, strings in @var{ls}
- are appended with the space character in between them. @var{grammar} is
- a symbol which specifies how the delimiter is placed between the
- strings, and defaults to the symbol @code{infix}.
- @table @code
- @item infix
- Insert the separator between list elements. An empty string
- will produce an empty list.
- @item strict-infix
- Like @code{infix}, but will raise an error if given the empty
- list.
- @item suffix
- Insert the separator after every list element.
- @item prefix
- Insert the separator before each list element.
- @end table
- @end deffn
- @node List/String Conversion
- @subsubsection List/String conversion
- When processing strings, it is often convenient to first convert them
- into a list representation by using the procedure @code{string->list},
- work with the resulting list, and then convert it back into a string.
- These procedures are useful for similar tasks.
- @rnindex string->list
- @deffn {Scheme Procedure} string->list str [start [end]]
- @deffnx {C Function} scm_substring_to_list (str, start, end)
- @deffnx {C Function} scm_string_to_list (str)
- Convert the string @var{str} into a list of characters.
- @end deffn
- @deffn {Scheme Procedure} string-split str char_pred
- @deffnx {C Function} scm_string_split (str, char_pred)
- Split the string @var{str} into a list of substrings delimited
- by appearances of characters that
- @itemize @bullet
- @item
- equal @var{char_pred}, if it is a character,
- @item
- satisfy the predicate @var{char_pred}, if it is a procedure,
- @item
- are in the set @var{char_pred}, if it is a character set.
- @end itemize
- Note that an empty substring between separator characters will result in
- an empty string in the result list.
- @lisp
- (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
- @result{}
- ("root" "x" "0" "0" "root" "/root" "/bin/bash")
- (string-split "::" #\:)
- @result{}
- ("" "" "")
- (string-split "" #\:)
- @result{}
- ("")
- @end lisp
- @end deffn
- @node String Selection
- @subsubsection String Selection
- Portions of strings can be extracted by these procedures.
- @code{string-ref} delivers individual characters whereas
- @code{substring} can be used to extract substrings from longer strings.
- @rnindex string-length
- @deffn {Scheme Procedure} string-length string
- @deffnx {C Function} scm_string_length (string)
- Return the number of characters in @var{string}.
- @end deffn
- @deftypefn {C Function} size_t scm_c_string_length (SCM str)
- Return the number of characters in @var{str} as a @code{size_t}.
- @end deftypefn
- @rnindex string-ref
- @deffn {Scheme Procedure} string-ref str k
- @deffnx {C Function} scm_string_ref (str, k)
- Return character @var{k} of @var{str} using zero-origin
- indexing. @var{k} must be a valid index of @var{str}.
- @end deffn
- @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
- Return character @var{k} of @var{str} using zero-origin
- indexing. @var{k} must be a valid index of @var{str}.
- @end deftypefn
- @rnindex string-copy
- @deffn {Scheme Procedure} string-copy str [start [end]]
- @deffnx {C Function} scm_substring_copy (str, start, end)
- @deffnx {C Function} scm_string_copy (str)
- Return a copy of the given string @var{str}.
- The returned string shares storage with @var{str} initially, but it is
- copied as soon as one of the two strings is modified.
- @end deffn
- @rnindex substring
- @deffn {Scheme Procedure} substring str start [end]
- @deffnx {C Function} scm_substring (str, start, end)
- Return a new string formed from the characters
- of @var{str} beginning with index @var{start} (inclusive) and
- ending with index @var{end} (exclusive).
- @var{str} must be a string, @var{start} and @var{end} must be
- exact integers satisfying:
- 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
- The returned string shares storage with @var{str} initially, but it is
- copied as soon as one of the two strings is modified.
- @end deffn
- @deffn {Scheme Procedure} substring/shared str start [end]
- @deffnx {C Function} scm_substring_shared (str, start, end)
- Like @code{substring}, but the strings continue to share their storage
- even if they are modified. Thus, modifications to @var{str} show up
- in the new string, and vice versa.
- @end deffn
- @deffn {Scheme Procedure} substring/copy str start [end]
- @deffnx {C Function} scm_substring_copy (str, start, end)
- Like @code{substring}, but the storage for the new string is copied
- immediately.
- @end deffn
- @deffn {Scheme Procedure} substring/read-only str start [end]
- @deffnx {C Function} scm_substring_read_only (str, start, end)
- Like @code{substring}, but the resulting string can not be modified.
- @end deffn
- @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
- @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
- @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
- @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
- Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
- @end deftypefn
- @deffn {Scheme Procedure} string-take s n
- @deffnx {C Function} scm_string_take (s, n)
- Return the @var{n} first characters of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-drop s n
- @deffnx {C Function} scm_string_drop (s, n)
- Return all but the first @var{n} characters of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-take-right s n
- @deffnx {C Function} scm_string_take_right (s, n)
- Return the @var{n} last characters of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-drop-right s n
- @deffnx {C Function} scm_string_drop_right (s, n)
- Return all but the last @var{n} characters of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
- @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
- @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
- @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
- Take characters @var{start} to @var{end} from the string @var{s} and
- either pad with @var{chr} or truncate them to give @var{len}
- characters.
- @code{string-pad} pads or truncates on the left, so for example
- @example
- (string-pad "x" 3) @result{} " x"
- (string-pad "abcde" 3) @result{} "cde"
- @end example
- @code{string-pad-right} pads or truncates on the right, so for example
- @example
- (string-pad-right "x" 3) @result{} "x "
- (string-pad-right "abcde" 3) @result{} "abc"
- @end example
- @end deffn
- @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
- @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
- @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
- @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
- @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
- @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
- Trim occurrences of @var{char_pred} from the ends of @var{s}.
- @code{string-trim} trims @var{char_pred} characters from the left
- (start) of the string, @code{string-trim-right} trims them from the
- right (end) of the string, @code{string-trim-both} trims from both
- ends.
- @var{char_pred} can be a character, a character set, or a predicate
- procedure to call on each character. If @var{char_pred} is not given
- the default is whitespace as per @code{char-set:whitespace}
- (@pxref{Standard Character Sets}).
- @example
- (string-trim " x ") @result{} "x "
- (string-trim-right "banana" #\a) @result{} "banan"
- (string-trim-both ".,xy:;" char-set:punctuation)
- @result{} "xy"
- (string-trim-both "xyzzy" (lambda (c)
- (or (eqv? c #\x)
- (eqv? c #\y))))
- @result{} "zz"
- @end example
- @end deffn
- @node String Modification
- @subsubsection String Modification
- These procedures are for modifying strings in-place. This means that the
- result of the operation is not a new string; instead, the original string's
- memory representation is modified.
- @rnindex string-set!
- @deffn {Scheme Procedure} string-set! str k chr
- @deffnx {C Function} scm_string_set_x (str, k, chr)
- Store @var{chr} in element @var{k} of @var{str} and return
- an unspecified value. @var{k} must be a valid index of
- @var{str}.
- @end deffn
- @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
- Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
- @end deftypefn
- @rnindex string-fill!
- @anchor{x-string-fill!}
- @deffn {Scheme Procedure} string-fill! str chr [start [end]]
- @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
- @deffnx {C Function} scm_string_fill_x (str, chr)
- Stores @var{chr} in every element of the given @var{str} and
- returns an unspecified value.
- @end deffn
- @deffn {Scheme Procedure} substring-fill! str start end fill
- @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
- Change every character in @var{str} between @var{start} and
- @var{end} to @var{fill}.
- @lisp
- (define y (string-copy "abcdefg"))
- (substring-fill! y 1 3 #\r)
- y
- @result{} "arrdefg"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
- @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
- Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
- into @var{str2} beginning at position @var{start2}.
- @var{str1} and @var{str2} can be the same string.
- @end deffn
- @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
- @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
- Copy the sequence of characters from index range [@var{start},
- @var{end}) in string @var{s} to string @var{target}, beginning
- at index @var{tstart}. The characters are copied left-to-right
- or right-to-left as needed -- the copy is guaranteed to work,
- even if @var{target} and @var{s} are the same string. It is an
- error if the copy operation runs off the end of the target
- string.
- @end deffn
- @node String Comparison
- @subsubsection String Comparison
- The procedures in this section are similar to the character ordering
- predicates (@pxref{Characters}), but are defined on character sequences.
- The first set is specified in R5RS and has names that end in @code{?}.
- The second set is specified in SRFI-13 and the names have not ending
- @code{?}.
- The predicates ending in @code{-ci} ignore the character case
- when comparing strings. For now, case-insensitive comparison is done
- using the R5RS rules, where every lower-case character that has a
- single character upper-case form is converted to uppercase before
- comparison. See @xref{Text Collation, the @code{(ice-9
- i18n)} module}, for locale-dependent string comparison.
- @rnindex string=?
- @deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
- Lexicographic equality predicate; return @code{#t} if all strings are
- the same length and contain the same characters in the same positions,
- otherwise return @code{#f}.
- The procedure @code{string-ci=?} treats upper and lower case
- letters as though they were the same character, but
- @code{string=?} treats upper and lower case as distinct
- characters.
- @end deffn
- @rnindex string<?
- @deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
- Lexicographic ordering predicate; return @code{#t} if, for every pair of
- consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
- lexicographically less than @var{str_i+1}.
- @end deffn
- @rnindex string<=?
- @deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
- Lexicographic ordering predicate; return @code{#t} if, for every pair of
- consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
- lexicographically less than or equal to @var{str_i+1}.
- @end deffn
- @rnindex string>?
- @deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
- Lexicographic ordering predicate; return @code{#t} if, for every pair of
- consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
- lexicographically greater than @var{str_i+1}.
- @end deffn
- @rnindex string>=?
- @deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
- Lexicographic ordering predicate; return @code{#t} if, for every pair of
- consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
- lexicographically greater than or equal to @var{str_i+1}.
- @end deffn
- @rnindex string-ci=?
- @deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
- Case-insensitive string equality predicate; return @code{#t} if
- all strings are the same length and their component
- characters match (ignoring case) at each position; otherwise
- return @code{#f}.
- @end deffn
- @rnindex string-ci<?
- @deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
- Case insensitive lexicographic ordering predicate; return @code{#t} if,
- for every pair of consecutive string arguments @var{str_i} and
- @var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
- regardless of case.
- @end deffn
- @rnindex string<=?
- @deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
- Case insensitive lexicographic ordering predicate; return @code{#t} if,
- for every pair of consecutive string arguments @var{str_i} and
- @var{str_i+1}, @var{str_i} is lexicographically less than or equal to
- @var{str_i+1} regardless of case.
- @end deffn
- @rnindex string-ci>?
- @deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
- Case insensitive lexicographic ordering predicate; return @code{#t} if,
- for every pair of consecutive string arguments @var{str_i} and
- @var{str_i+1}, @var{str_i} is lexicographically greater than
- @var{str_i+1} regardless of case.
- @end deffn
- @rnindex string-ci>=?
- @deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
- Case insensitive lexicographic ordering predicate; return @code{#t} if,
- for every pair of consecutive string arguments @var{str_i} and
- @var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
- @var{str_i+1} regardless of case.
- @end deffn
- @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
- Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
- mismatch index, depending upon whether @var{s1} is less than,
- equal to, or greater than @var{s2}. The mismatch index is the
- largest index @var{i} such that for every 0 <= @var{j} <
- @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
- @var{i} is the first position that does not match.
- @end deffn
- @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
- Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
- mismatch index, depending upon whether @var{s1} is less than,
- equal to, or greater than @var{s2}. The mismatch index is the
- largest index @var{i} such that for every 0 <= @var{j} <
- @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
- @var{i} is the first position where the lowercased letters
- do not match.
- @end deffn
- @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
- value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} and @var{s2} are equal, a true
- value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
- true value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
- true value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is greater to @var{s2}, a true
- value otherwise.
- @end deffn
- @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is less to @var{s2}, a true value
- otherwise.
- @end deffn
- @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
- value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} and @var{s2} are equal, a true
- value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
- true value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
- true value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is greater to @var{s2}, a true
- value otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
- Return @code{#f} if @var{s1} is less to @var{s2}, a true value
- otherwise. The character comparison is done
- case-insensitively.
- @end deffn
- @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
- @deffnx {C Function} scm_substring_hash (s, bound, start, end)
- Compute a hash value for @var{s}. The optional argument @var{bound} is
- a non-negative exact integer specifying the range of the hash function.
- A positive value restricts the return value to the range [0,bound).
- @end deffn
- @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
- @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
- Compute a hash value for @var{s}. The optional argument @var{bound} is
- a non-negative exact integer specifying the range of the hash function.
- A positive value restricts the return value to the range [0,bound).
- @end deffn
- Because the same visual appearance of an abstract Unicode character can
- be obtained via multiple sequences of Unicode characters, even the
- case-insensitive string comparison functions described above may return
- @code{#f} when presented with strings containing different
- representations of the same character. For example, the Unicode
- character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
- represented with a single character (U+1E69) or by the character ``LATIN
- SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
- DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
- For this reason, it is often desirable to ensure that the strings
- to be compared are using a mutually consistent representation for every
- character. The Unicode standard defines two methods of normalizing the
- contents of strings: Decomposition, which breaks composite characters
- into a set of constituent characters with an ordering defined by the
- Unicode Standard; and composition, which performs the converse.
- There are two decomposition operations. ``Canonical decomposition''
- produces character sequences that share the same visual appearance as
- the original characters, while ``compatibility decomposition'' produces
- ones whose visual appearances may differ from the originals but which
- represent the same abstract character.
- These operations are encapsulated in the following set of normalization
- forms:
- @table @dfn
- @item NFD
- Characters are decomposed to their canonical forms.
- @item NFKD
- Characters are decomposed to their compatibility forms.
- @item NFC
- Characters are decomposed to their canonical forms, then composed.
- @item NFKC
- Characters are decomposed to their compatibility forms, then composed.
- @end table
- The functions below put their arguments into one of the forms described
- above.
- @deffn {Scheme Procedure} string-normalize-nfd s
- @deffnx {C Function} scm_string_normalize_nfd (s)
- Return the @code{NFD} normalized form of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-normalize-nfkd s
- @deffnx {C Function} scm_string_normalize_nfkd (s)
- Return the @code{NFKD} normalized form of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-normalize-nfc s
- @deffnx {C Function} scm_string_normalize_nfc (s)
- Return the @code{NFC} normalized form of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-normalize-nfkc s
- @deffnx {C Function} scm_string_normalize_nfkc (s)
- Return the @code{NFKC} normalized form of @var{s}.
- @end deffn
- @node String Searching
- @subsubsection String Searching
- @deffn {Scheme Procedure} string-index s char_pred [start [end]]
- @deffnx {C Function} scm_string_index (s, char_pred, start, end)
- Search through the string @var{s} from left to right, returning
- the index of the first occurrence of a character which
- @itemize @bullet
- @item
- equals @var{char_pred}, if it is character,
- @item
- satisfies the predicate @var{char_pred}, if it is a procedure,
- @item
- is in the set @var{char_pred}, if it is a character set.
- @end itemize
- Return @code{#f} if no match is found.
- @end deffn
- @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
- @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
- Search through the string @var{s} from right to left, returning
- the index of the last occurrence of a character which
- @itemize @bullet
- @item
- equals @var{char_pred}, if it is character,
- @item
- satisfies the predicate @var{char_pred}, if it is a procedure,
- @item
- is in the set if @var{char_pred} is a character set.
- @end itemize
- Return @code{#f} if no match is found.
- @end deffn
- @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
- Return the length of the longest common prefix of the two
- strings.
- @end deffn
- @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
- Return the length of the longest common prefix of the two
- strings, ignoring character case.
- @end deffn
- @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
- Return the length of the longest common suffix of the two
- strings.
- @end deffn
- @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
- Return the length of the longest common suffix of the two
- strings, ignoring character case.
- @end deffn
- @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
- Is @var{s1} a prefix of @var{s2}?
- @end deffn
- @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
- Is @var{s1} a prefix of @var{s2}, ignoring character case?
- @end deffn
- @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
- Is @var{s1} a suffix of @var{s2}?
- @end deffn
- @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
- Is @var{s1} a suffix of @var{s2}, ignoring character case?
- @end deffn
- @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
- @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
- Search through the string @var{s} from right to left, returning
- the index of the last occurrence of a character which
- @itemize @bullet
- @item
- equals @var{char_pred}, if it is character,
- @item
- satisfies the predicate @var{char_pred}, if it is a procedure,
- @item
- is in the set if @var{char_pred} is a character set.
- @end itemize
- Return @code{#f} if no match is found.
- @end deffn
- @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
- @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
- Search through the string @var{s} from left to right, returning
- the index of the first occurrence of a character which
- @itemize @bullet
- @item
- does not equal @var{char_pred}, if it is character,
- @item
- does not satisfy the predicate @var{char_pred}, if it is a
- procedure,
- @item
- is not in the set if @var{char_pred} is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
- @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
- Search through the string @var{s} from right to left, returning
- the index of the last occurrence of a character which
- @itemize @bullet
- @item
- does not equal @var{char_pred}, if it is character,
- @item
- does not satisfy the predicate @var{char_pred}, if it is a
- procedure,
- @item
- is not in the set if @var{char_pred} is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-count s char_pred [start [end]]
- @deffnx {C Function} scm_string_count (s, char_pred, start, end)
- Return the count of the number of characters in the string
- @var{s} which
- @itemize @bullet
- @item
- equals @var{char_pred}, if it is character,
- @item
- satisfies the predicate @var{char_pred}, if it is a procedure.
- @item
- is in the set @var{char_pred}, if it is a character set.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
- Does string @var{s1} contain string @var{s2}? Return the index
- in @var{s1} where @var{s2} occurs as a substring, or false.
- The optional start/end indices restrict the operation to the
- indicated substrings.
- @end deffn
- @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
- Does string @var{s1} contain string @var{s2}? Return the index
- in @var{s1} where @var{s2} occurs as a substring, or false.
- The optional start/end indices restrict the operation to the
- indicated substrings. Character comparison is done
- case-insensitively.
- @end deffn
- @node Alphabetic Case Mapping
- @subsubsection Alphabetic Case Mapping
- These are procedures for mapping strings to their upper- or lower-case
- equivalents, respectively, or for capitalizing strings.
- They use the basic case mapping rules for Unicode characters. No
- special language or context rules are considered. The resulting strings
- are guaranteed to be the same length as the input strings.
- @xref{Character Case Mapping, the @code{(ice-9
- i18n)} module}, for locale-dependent case conversions.
- @deffn {Scheme Procedure} string-upcase str [start [end]]
- @deffnx {C Function} scm_substring_upcase (str, start, end)
- @deffnx {C Function} scm_string_upcase (str)
- Upcase every character in @code{str}.
- @end deffn
- @deffn {Scheme Procedure} string-upcase! str [start [end]]
- @deffnx {C Function} scm_substring_upcase_x (str, start, end)
- @deffnx {C Function} scm_string_upcase_x (str)
- Destructively upcase every character in @code{str}.
- @lisp
- (string-upcase! y)
- @result{} "ARRDEFG"
- y
- @result{} "ARRDEFG"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} string-downcase str [start [end]]
- @deffnx {C Function} scm_substring_downcase (str, start, end)
- @deffnx {C Function} scm_string_downcase (str)
- Downcase every character in @var{str}.
- @end deffn
- @deffn {Scheme Procedure} string-downcase! str [start [end]]
- @deffnx {C Function} scm_substring_downcase_x (str, start, end)
- @deffnx {C Function} scm_string_downcase_x (str)
- Destructively downcase every character in @var{str}.
- @lisp
- y
- @result{} "ARRDEFG"
- (string-downcase! y)
- @result{} "arrdefg"
- y
- @result{} "arrdefg"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} string-capitalize str
- @deffnx {C Function} scm_string_capitalize (str)
- Return a freshly allocated string with the characters in
- @var{str}, where the first character of every word is
- capitalized.
- @end deffn
- @deffn {Scheme Procedure} string-capitalize! str
- @deffnx {C Function} scm_string_capitalize_x (str)
- Upcase the first character of every word in @var{str}
- destructively and return @var{str}.
- @lisp
- y @result{} "hello world"
- (string-capitalize! y) @result{} "Hello World"
- y @result{} "Hello World"
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} string-titlecase str [start [end]]
- @deffnx {C Function} scm_string_titlecase (str, start, end)
- Titlecase every first character in a word in @var{str}.
- @end deffn
- @deffn {Scheme Procedure} string-titlecase! str [start [end]]
- @deffnx {C Function} scm_string_titlecase_x (str, start, end)
- Destructively titlecase every first character in a word in
- @var{str}.
- @end deffn
- @node Reversing and Appending Strings
- @subsubsection Reversing and Appending Strings
- @deffn {Scheme Procedure} string-reverse str [start [end]]
- @deffnx {C Function} scm_string_reverse (str, start, end)
- Reverse the string @var{str}. The optional arguments
- @var{start} and @var{end} delimit the region of @var{str} to
- operate on.
- @end deffn
- @deffn {Scheme Procedure} string-reverse! str [start [end]]
- @deffnx {C Function} scm_string_reverse_x (str, start, end)
- Reverse the string @var{str} in-place. The optional arguments
- @var{start} and @var{end} delimit the region of @var{str} to
- operate on. The return value is unspecified.
- @end deffn
- @rnindex string-append
- @deffn {Scheme Procedure} string-append arg @dots{}
- @deffnx {C Function} scm_string_append (args)
- Return a newly allocated string whose characters form the
- concatenation of the given strings, @var{arg} @enddots{}.
- @example
- (let ((h "hello "))
- (string-append h "world"))
- @result{} "hello world"
- @end example
- @end deffn
- @deffn {Scheme Procedure} string-append/shared arg @dots{}
- @deffnx {C Function} scm_string_append_shared (args)
- Like @code{string-append}, but the result may share memory
- with the argument strings.
- @end deffn
- @deffn {Scheme Procedure} string-concatenate ls
- @deffnx {C Function} scm_string_concatenate (ls)
- Append the elements (which must be strings) of @var{ls} together into a
- single string. Guaranteed to return a freshly allocated string.
- @end deffn
- @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
- @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
- Without optional arguments, this procedure is equivalent to
- @lisp
- (string-concatenate (reverse ls))
- @end lisp
- If the optional argument @var{final_string} is specified, it is
- consed onto the beginning to @var{ls} before performing the
- list-reverse and string-concatenate operations. If @var{end}
- is given, only the characters of @var{final_string} up to index
- @var{end} are used.
- Guaranteed to return a freshly allocated string.
- @end deffn
- @deffn {Scheme Procedure} string-concatenate/shared ls
- @deffnx {C Function} scm_string_concatenate_shared (ls)
- Like @code{string-concatenate}, but the result may share memory
- with the strings in the list @var{ls}.
- @end deffn
- @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
- @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
- Like @code{string-concatenate-reverse}, but the result may
- share memory with the strings in the @var{ls} arguments.
- @end deffn
- @node Mapping Folding and Unfolding
- @subsubsection Mapping, Folding, and Unfolding
- @deffn {Scheme Procedure} string-map proc s [start [end]]
- @deffnx {C Function} scm_string_map (proc, s, start, end)
- @var{proc} is a char->char procedure, it is mapped over
- @var{s}. The order in which the procedure is applied to the
- string elements is not specified.
- @end deffn
- @deffn {Scheme Procedure} string-map! proc s [start [end]]
- @deffnx {C Function} scm_string_map_x (proc, s, start, end)
- @var{proc} is a char->char procedure, it is mapped over
- @var{s}. The order in which the procedure is applied to the
- string elements is not specified. The string @var{s} is
- modified in-place, the return value is not specified.
- @end deffn
- @deffn {Scheme Procedure} string-for-each proc s [start [end]]
- @deffnx {C Function} scm_string_for_each (proc, s, start, end)
- @var{proc} is mapped over @var{s} in left-to-right order. The
- return value is not specified.
- @end deffn
- @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
- @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
- Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
- right.
- For example, to change characters to alternately upper and lower case,
- @example
- (define str (string-copy "studly"))
- (string-for-each-index
- (lambda (i)
- (string-set! str i
- ((if (even? i) char-upcase char-downcase)
- (string-ref str i))))
- str)
- str @result{} "StUdLy"
- @end example
- @end deffn
- @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
- @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
- Fold @var{kons} over the characters of @var{s}, with @var{knil}
- as the terminating element, from left to right. @var{kons}
- must expect two arguments: The actual character and the last
- result of @var{kons}' application.
- @end deffn
- @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
- @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
- Fold @var{kons} over the characters of @var{s}, with @var{knil}
- as the terminating element, from right to left. @var{kons}
- must expect two arguments: The actual character and the last
- result of @var{kons}' application.
- @end deffn
- @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
- @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
- @itemize @bullet
- @item @var{g} is used to generate a series of @emph{seed}
- values from the initial @var{seed}: @var{seed}, (@var{g}
- @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
- @dots{}
- @item @var{p} tells us when to stop -- when it returns true
- when applied to one of these seed values.
- @item @var{f} maps each seed value to the corresponding
- character in the result string. These chars are assembled
- into the string in a left-to-right order.
- @item @var{base} is the optional initial/leftmost portion
- of the constructed string; it default to the empty
- string.
- @item @var{make_final} is applied to the terminal seed
- value (on which @var{p} returns true) to produce
- the final/rightmost portion of the constructed string.
- The default is nothing extra.
- @end itemize
- @end deffn
- @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
- @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
- @itemize @bullet
- @item @var{g} is used to generate a series of @emph{seed}
- values from the initial @var{seed}: @var{seed}, (@var{g}
- @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
- @dots{}
- @item @var{p} tells us when to stop -- when it returns true
- when applied to one of these seed values.
- @item @var{f} maps each seed value to the corresponding
- character in the result string. These chars are assembled
- into the string in a right-to-left order.
- @item @var{base} is the optional initial/rightmost portion
- of the constructed string; it default to the empty
- string.
- @item @var{make_final} is applied to the terminal seed
- value (on which @var{p} returns true) to produce
- the final/leftmost portion of the constructed string.
- It defaults to @code{(lambda (x) )}.
- @end itemize
- @end deffn
- @node Miscellaneous String Operations
- @subsubsection Miscellaneous String Operations
- @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
- @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
- This is the @emph{extended substring} procedure that implements
- replicated copying of a substring of some string.
- @var{s} is a string, @var{start} and @var{end} are optional
- arguments that demarcate a substring of @var{s}, defaulting to
- 0 and the length of @var{s}. Replicate this substring up and
- down index space, in both the positive and negative directions.
- @code{xsubstring} returns the substring of this string
- beginning at index @var{from}, and ending at @var{to}, which
- defaults to @var{from} + (@var{end} - @var{start}).
- @end deffn
- @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
- @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
- Exactly the same as @code{xsubstring}, but the extracted text
- is written into the string @var{target} starting at index
- @var{tstart}. The operation is not defined if @code{(eq?
- @var{target} @var{s})} or these arguments share storage -- you
- cannot copy a string on top of itself.
- @end deffn
- @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
- @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
- Return the string @var{s1}, but with the characters
- @var{start1} @dots{} @var{end1} replaced by the characters
- @var{start2} @dots{} @var{end2} from @var{s2}.
- @end deffn
- @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
- @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
- Split the string @var{s} into a list of substrings, where each
- substring is a maximal non-empty contiguous sequence of
- characters from the character set @var{token_set}, which
- defaults to @code{char-set:graphic}.
- If @var{start} or @var{end} indices are provided, they restrict
- @code{string-tokenize} to operating on the indicated substring
- of @var{s}.
- @end deffn
- @deffn {Scheme Procedure} string-filter char_pred s [start [end]]
- @deffnx {C Function} scm_string_filter (char_pred, s, start, end)
- Filter the string @var{s}, retaining only those characters which
- satisfy @var{char_pred}.
- If @var{char_pred} is a procedure, it is applied to each character as
- a predicate, if it is a character, it is tested for equality and if it
- is a character set, it is tested for membership.
- @end deffn
- @deffn {Scheme Procedure} string-delete char_pred s [start [end]]
- @deffnx {C Function} scm_string_delete (char_pred, s, start, end)
- Delete characters satisfying @var{char_pred} from @var{s}.
- If @var{char_pred} is a procedure, it is applied to each character as
- a predicate, if it is a character, it is tested for equality and if it
- is a character set, it is tested for membership.
- @end deffn
- The following additional functions are available in the module
- @code{(ice-9 string-fun)}. They can be used with:
- @example
- (use-modules (ice-9 string-fun))
- @end example
- @deffn {Scheme Procedure} string-replace-substring str substring replacement
- Return a new string where every instance of @var{substring} in string
- @var{str} has been replaced by @var{replacement}. For example:
- @lisp
- (string-replace-substring "a ring of strings" "ring" "rut")
- @result{} "a rut of struts"
- @end lisp
- @end deffn
- @node Representing Strings as Bytes
- @subsubsection Representing Strings as Bytes
- In the cold world outside of Guile, not all strings are treated in
- the same way. Out there there are only bytes, and there are many ways
- of representing a strings (sequences of characters) as binary data
- (sequences of bytes).
- As a user, usually you don't have to think about this very much. When
- you type on your keyboard, your system encodes your keystrokes as bytes
- according to the locale that you have configured on your computer.
- Guile uses the locale to decode those bytes back into characters --
- hopefully the same characters that you typed in.
- All is not so clear when dealing with a system with multiple users, such
- as a web server. Your web server might get a request from one user for
- data encoded in the ISO-8859-1 character set, and then another request
- from a different user for UTF-8 data.
- @cindex iconv
- @cindex character encoding
- Guile provides an @dfn{iconv} module for converting between strings and
- sequences of bytes. @xref{Bytevectors}, for more on how Guile
- represents raw byte sequences. This module gets its name from the
- common @sc{unix} command of the same name.
- Note that often it is sufficient to just read and write strings from
- ports instead of using these functions. To do this, specify the port
- encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
- ports and character encodings.
- Unlike the rest of the procedures in this section, you have to load the
- @code{iconv} module before having access to these procedures:
- @example
- (use-modules (ice-9 iconv))
- @end example
- @deffn {Scheme Procedure} string->bytevector string encoding [conversion-strategy]
- Encode @var{string} as a sequence of bytes.
- The string will be encoded in the character set specified by the
- @var{encoding} string. If the string has characters that cannot be
- represented in the encoding, by default this procedure raises an
- @code{encoding-error}. Pass a @var{conversion-strategy} argument to
- specify other behaviors.
- The return value is a bytevector. @xref{Bytevectors}, for more on
- bytevectors. @xref{Ports}, for more on character encodings and
- conversion strategies.
- @end deffn
- @deffn {Scheme Procedure} bytevector->string bytevector encoding [conversion-strategy]
- Decode @var{bytevector} into a string.
- The bytes will be decoded from the character set by the @var{encoding}
- string. If the bytes do not form a valid encoding, by default this
- procedure raises an @code{decoding-error}. As with
- @code{string->bytevector}, pass the optional @var{conversion-strategy}
- argument to modify this behavior. @xref{Ports}, for more on character
- encodings and conversion strategies.
- @end deffn
- @deffn {Scheme Procedure} call-with-output-encoded-string encoding proc [conversion-strategy]
- Like @code{call-with-output-string}, but instead of returning a string,
- returns a encoding of the string according to @var{encoding}, as a
- bytevector. This procedure can be more efficient than collecting a
- string and then converting it via @code{string->bytevector}.
- @end deffn
- @node Conversion to/from C
- @subsubsection Conversion to/from C
- When creating a Scheme string from a C string or when converting a
- Scheme string to a C string, the concept of character encoding becomes
- important.
- In C, a string is just a sequence of bytes, and the character encoding
- describes the relation between these bytes and the actual characters
- that make up the string. For Scheme strings, character encoding is not
- an issue (most of the time), since in Scheme you usually treat strings
- as character sequences, not byte sequences.
- Converting to C and converting from C each have their own challenges.
- When converting from C to Scheme, it is important that the sequence of
- bytes in the C string be valid with respect to its encoding. ASCII
- strings, for example, can't have any bytes greater than 127. An ASCII
- byte greater than 127 is considered @emph{ill-formed} and cannot be
- converted into a Scheme character.
- Problems can occur in the reverse operation as well. Not all character
- encodings can hold all possible Scheme characters. Some encodings, like
- ASCII for example, can only describe a small subset of all possible
- characters. So, when converting to C, one must first decide what to do
- with Scheme characters that can't be represented in the C string.
- Converting a Scheme string to a C string will often allocate fresh
- memory to hold the result. You must take care that this memory is
- properly freed eventually. In many cases, this can be achieved by
- using @code{scm_dynwind_free} inside an appropriate dynwind context,
- @xref{Dynamic Wind}.
- @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
- @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
- Creates a new Scheme string that has the same contents as @var{str} when
- interpreted in the character encoding of the current locale.
- For @code{scm_from_locale_string}, @var{str} must be null-terminated.
- For @code{scm_from_locale_stringn}, @var{len} specifies the length of
- @var{str} in bytes, and @var{str} does not need to be null-terminated.
- If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
- null-terminated and the real length will be found with @code{strlen}.
- If the C string is ill-formed, an error will be raised.
- Note that these functions should @emph{not} be used to convert C string
- constants, because there is no guarantee that the current locale will
- match that of the execution character set, used for string and character
- constants. Most modern C compilers use UTF-8 by default, so to convert
- C string constants we recommend @code{scm_from_utf8_string}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_take_locale_string (char *str)
- @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
- Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
- respectively, but also frees @var{str} with @code{free} eventually.
- Thus, you can use this function when you would free @var{str} anyway
- immediately after creating the Scheme string. In certain cases, Guile
- can then use @var{str} directly as its internal representation.
- @end deftypefn
- @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
- @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
- Returns a C string with the same contents as @var{str} in the character
- encoding of the current locale. The C string must be freed with
- @code{free} eventually, maybe by using @code{scm_dynwind_free},
- @xref{Dynamic Wind}.
- For @code{scm_to_locale_string}, the returned string is
- null-terminated and an error is signaled when @var{str} contains
- @code{#\nul} characters.
- For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
- @var{str} might contain @code{#\nul} characters and the length of the
- returned string in bytes is stored in @code{*@var{lenp}}. The
- returned string will not be null-terminated in this case. If
- @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
- @code{scm_to_locale_string}.
- If a character in @var{str} cannot be represented in the character
- encoding of the current locale, the default port conversion strategy is
- used. @xref{Ports}, for more on conversion strategies.
- If the conversion strategy is @code{error}, an error will be raised. If
- it is @code{substitute}, a replacement character, such as a question
- mark, will be inserted in its place. If it is @code{escape}, a hex
- escape will be inserted in its place.
- @end deftypefn
- @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
- Puts @var{str} as a C string in the current locale encoding into the
- memory pointed to by @var{buf}. The buffer at @var{buf} has room for
- @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
- more than that. No terminating @code{'\0'} will be stored.
- The return value of @code{scm_to_locale_stringbuf} is the number of
- bytes that are needed for all of @var{str}, regardless of whether
- @var{buf} was large enough to hold them. Thus, when the return value
- is larger than @var{max_len}, only @var{max_len} bytes have been
- stored and you probably need to try again with a larger buffer.
- @end deftypefn
- For most situations, string conversion should occur using the current
- locale, such as with the functions above. But there may be cases where
- one wants to convert strings from a character encoding other than the
- locale's character encoding. For these cases, the lower-level functions
- @code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
- functions should seldom be necessary if one is properly using locales.
- @deftp {C Type} scm_t_string_failed_conversion_handler
- This is an enumerated type that can take one of three values:
- @code{SCM_FAILED_CONVERSION_ERROR},
- @code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
- @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
- a strategy for handling characters that cannot be converted to or from a
- given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
- that a conversion should throw an error if some characters cannot be
- converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
- conversion should replace unconvertable characters with the question
- mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
- requests that a conversion should replace an unconvertable character
- with an escape sequence.
- While all three strategies apply when converting Scheme strings to C,
- only @code{SCM_FAILED_CONVERSION_ERROR} and
- @code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
- strings to Scheme.
- @end deftp
- @deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
- This function returns a newly allocated C string from the Guile string
- @var{str}. The length of the returned string in bytes will be returned in
- @var{lenp}. The character encoding of the C string is passed as the ASCII,
- null-terminated C string @var{encoding}. The @var{handler} parameter
- gives a strategy for dealing with characters that cannot be converted
- into @var{encoding}.
- If @var{lenp} is @code{NULL}, this function will return a null-terminated C
- string. It will throw an error if the string contains a null
- character.
- The Scheme interface to this function is @code{string->bytevector}, from the
- @code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
- This function returns a scheme string from the C string @var{str}. The
- length in bytes of the C string is input as @var{len}. The encoding of the C
- string is passed as the ASCII, null-terminated C string @code{encoding}.
- The @var{handler} parameters suggests a strategy for dealing with
- unconvertable characters.
- The Scheme interface to this function is @code{bytevector->string}.
- @xref{Representing Strings as Bytes}.
- @end deftypefn
- The following conversion functions are provided as a convenience for the
- most commonly used encodings.
- @deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
- @deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
- @deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
- Return a scheme string from the null-terminated C string @var{str},
- which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
- be used to convert hard-coded C string constants into Scheme strings.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
- @deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
- @deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
- Return a scheme string from C string @var{str}, which is ISO-8859-1-,
- UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
- of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
- @code{scm_from_utf8_stringn}; it is the number of elements (code points)
- in @var{str} in the case of @code{scm_from_utf32_stringn}.
- @end deftypefn
- @deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
- @deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
- @deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
- Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
- from Scheme string @var{str}. An error is thrown when @var{str}
- cannot be converted to the specified encoding. If @var{lenp} is
- @code{NULL}, the returned C string will be null terminated, and an error
- will be thrown if the C string would otherwise contain null
- characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
- and the length of the returned string is returned in @var{lenp}. The length
- returned is the number of bytes for @code{scm_to_latin1_stringn} and
- @code{scm_to_utf8_stringn}; it is the number of elements (code points)
- for @code{scm_to_utf32_stringn}.
- @end deftypefn
- It is not often the case, but sometimes when you are dealing with the
- implementation details of a port, you need to encode and decode strings
- according to the encoding and conversion strategy of the port. There
- are some convenience functions for that purpose as well.
- @deftypefn {C Function} SCM scm_from_port_string (const char *str, SCM port)
- @deftypefnx {C Function} SCM scm_from_port_stringn (const char *str, size_t len, SCM port)
- @deftypefnx {C Function} char* scm_to_port_string (SCM str, SCM port)
- @deftypefnx {C Function} char* scm_to_port_stringn (SCM str, size_t *lenp, SCM port)
- Like @code{scm_from_stringn} and friends, except they take their
- encoding and conversion strategy from a given port object.
- @end deftypefn
- @node String Internals
- @subsubsection String Internals
- Guile stores each string in memory as a contiguous array of Unicode code
- points along with an associated set of attributes. If all of the code
- points of a string have an integer range between 0 and 255 inclusive,
- the code point array is stored as one byte per code point: it is stored
- as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
- string has an integer value greater that 255, the code point array is
- stored as four bytes per code point: it is stored as a UTF-32 string.
- Conversion between the one-byte-per-code-point and
- four-bytes-per-code-point representations happens automatically as
- necessary.
- No API is provided to set the internal representation of strings;
- however, there are pair of procedures available to query it. These are
- debugging procedures. Using them in production code is discouraged,
- since the details of Guile's internal representation of strings may
- change from release to release.
- @deffn {Scheme Procedure} string-bytes-per-char str
- @deffnx {C Function} scm_string_bytes_per_char (str)
- Return the number of bytes used to encode a Unicode code point in string
- @var{str}. The result is one or four.
- @end deffn
- @deffn {Scheme Procedure} %string-dump str
- @deffnx {C Function} scm_sys_string_dump (str)
- Returns an association list containing debugging information for
- @var{str}. The association list has the following entries.
- @table @code
- @item string
- The string itself.
- @item start
- The start index of the string into its stringbuf
- @item length
- The length of the string
- @item shared
- If this string is a substring, it returns its
- parent string. Otherwise, it returns @code{#f}
- @item read-only
- @code{#t} if the string is read-only
- @item stringbuf-chars
- A new string containing this string's stringbuf's characters
- @item stringbuf-length
- The number of characters in this stringbuf
- @item stringbuf-shared
- @code{#t} if this stringbuf is shared
- @item stringbuf-wide
- @code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
- or @code{#f} if they are stored in an 8-bit buffer
- @end table
- @end deffn
- @node Symbols
- @subsection Symbols
- @tpindex Symbols
- Symbols in Scheme are widely used in three ways: as items of discrete
- data, as lookup keys for alists and hash tables, and to denote variable
- references.
- A @dfn{symbol} is similar to a string in that it is defined by a
- sequence of characters. The sequence of characters is known as the
- symbol's @dfn{name}. In the usual case --- that is, where the symbol's
- name doesn't include any characters that could be confused with other
- elements of Scheme syntax --- a symbol is written in a Scheme program by
- writing the sequence of characters that make up the name, @emph{without}
- any quotation marks or other special syntax. For example, the symbol
- whose name is ``multiply-by-2'' is written, simply:
- @lisp
- multiply-by-2
- @end lisp
- Notice how this differs from a @emph{string} with contents
- ``multiply-by-2'', which is written with double quotation marks, like
- this:
- @lisp
- "multiply-by-2"
- @end lisp
- Looking beyond how they are written, symbols are different from strings
- in two important respects.
- The first important difference is uniqueness. If the same-looking
- string is read twice from two different places in a program, the result
- is two @emph{different} string objects whose contents just happen to be
- the same. If, on the other hand, the same-looking symbol is read twice
- from two different places in a program, the result is the @emph{same}
- symbol object both times.
- Given two read symbols, you can use @code{eq?} to test whether they are
- the same (that is, have the same name). @code{eq?} is the most
- efficient comparison operator in Scheme, and comparing two symbols like
- this is as fast as comparing, for example, two numbers. Given two
- strings, on the other hand, you must use @code{equal?} or
- @code{string=?}, which are much slower comparison operators, to
- determine whether the strings have the same contents.
- @lisp
- (define sym1 (quote hello))
- (define sym2 (quote hello))
- (eq? sym1 sym2) @result{} #t
- (define str1 "hello")
- (define str2 "hello")
- (eq? str1 str2) @result{} #f
- (equal? str1 str2) @result{} #t
- @end lisp
- The second important difference is that symbols, unlike strings, are not
- self-evaluating. This is why we need the @code{(quote @dots{})}s in the
- example above: @code{(quote hello)} evaluates to the symbol named
- "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
- symbol named "hello" and evaluated as a variable reference @dots{} about
- which more below (@pxref{Symbol Variables}).
- @menu
- * Symbol Data:: Symbols as discrete data.
- * Symbol Keys:: Symbols as lookup keys.
- * Symbol Variables:: Symbols as denoting variables.
- * Symbol Primitives:: Operations related to symbols.
- * Symbol Read Syntax:: Extended read syntax for symbols.
- * Symbol Uninterned:: Uninterned symbols.
- @end menu
- @node Symbol Data
- @subsubsection Symbols as Discrete Data
- Numbers and symbols are similar to the extent that they both lend
- themselves to @code{eq?} comparison. But symbols are more descriptive
- than numbers, because a symbol's name can be used directly to describe
- the concept for which that symbol stands.
- For example, imagine that you need to represent some colors in a
- computer program. Using numbers, you would have to choose arbitrarily
- some mapping between numbers and colors, and then take care to use that
- mapping consistently:
- @lisp
- ;; 1=red, 2=green, 3=purple
- (if (eq? (color-of vehicle) 1)
- ...)
- @end lisp
- @noindent
- You can make the mapping more explicit and the code more readable by
- defining constants:
- @lisp
- (define red 1)
- (define green 2)
- (define purple 3)
- (if (eq? (color-of vehicle) red)
- ...)
- @end lisp
- @noindent
- But the simplest and clearest approach is not to use numbers at all, but
- symbols whose names specify the colors that they refer to:
- @lisp
- (if (eq? (color-of vehicle) 'red)
- ...)
- @end lisp
- The descriptive advantages of symbols over numbers increase as the set
- of concepts that you want to describe grows. Suppose that a car object
- can have other properties as well, such as whether it has or uses:
- @itemize @bullet
- @item
- automatic or manual transmission
- @item
- leaded or unleaded fuel
- @item
- power steering (or not).
- @end itemize
- @noindent
- Then a car's combined property set could be naturally represented and
- manipulated as a list of symbols:
- @lisp
- (properties-of vehicle1)
- @result{}
- (red manual unleaded power-steering)
- (if (memq 'power-steering (properties-of vehicle1))
- (display "Unfit people can drive this vehicle.\n")
- (display "You'll need strong arms to drive this vehicle!\n"))
- @print{}
- Unfit people can drive this vehicle.
- @end lisp
- Remember, the fundamental property of symbols that we are relying on
- here is that an occurrence of @code{'red} in one part of a program is an
- @emph{indistinguishable} symbol from an occurrence of @code{'red} in
- another part of a program; this means that symbols can usefully be
- compared using @code{eq?}. At the same time, symbols have naturally
- descriptive names. This combination of efficiency and descriptive power
- makes them ideal for use as discrete data.
- @node Symbol Keys
- @subsubsection Symbols as Lookup Keys
- Given their efficiency and descriptive power, it is natural to use
- symbols as the keys in an association list or hash table.
- To illustrate this, consider a more structured representation of the car
- properties example from the preceding subsection. Rather than
- mixing all the properties up together in a flat list, we could use an
- association list like this:
- @lisp
- (define car1-properties '((color . red)
- (transmission . manual)
- (fuel . unleaded)
- (steering . power-assisted)))
- @end lisp
- Notice how this structure is more explicit and extensible than the flat
- list. For example it makes clear that @code{manual} refers to the
- transmission rather than, say, the windows or the locking of the car.
- It also allows further properties to use the same symbols among their
- possible values without becoming ambiguous:
- @lisp
- (define car1-properties '((color . red)
- (transmission . manual)
- (fuel . unleaded)
- (steering . power-assisted)
- (seat-color . red)
- (locking . manual)))
- @end lisp
- With a representation like this, it is easy to use the efficient
- @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
- extract or change individual pieces of information:
- @lisp
- (assq-ref car1-properties 'fuel) @result{} unleaded
- (assq-ref car1-properties 'transmission) @result{} manual
- (assq-set! car1-properties 'seat-color 'black)
- @result{}
- ((color . red)
- (transmission . manual)
- (fuel . unleaded)
- (steering . power-assisted)
- (seat-color . black)
- (locking . manual)))
- @end lisp
- Hash tables also have keys, and exactly the same arguments apply to the
- use of symbols in hash tables as in association lists. The hash value
- that Guile uses to decide where to add a symbol-keyed entry to a hash
- table can be obtained by calling the @code{symbol-hash} procedure:
- @deffn {Scheme Procedure} symbol-hash symbol
- @deffnx {C Function} scm_symbol_hash (symbol)
- Return a hash value for @var{symbol}.
- @end deffn
- See @ref{Hash Tables} for information about hash tables in general, and
- for why you might choose to use a hash table rather than an association
- list.
- @node Symbol Variables
- @subsubsection Symbols as Denoting Variables
- When an unquoted symbol in a Scheme program is evaluated, it is
- interpreted as a variable reference, and the result of the evaluation is
- the appropriate variable's value.
- For example, when the expression @code{(string-length "abcd")} is read
- and evaluated, the sequence of characters @code{string-length} is read
- as the symbol whose name is "string-length". This symbol is associated
- with a variable whose value is the procedure that implements string
- length calculation. Therefore evaluation of the @code{string-length}
- symbol results in that procedure.
- The details of the connection between an unquoted symbol and the
- variable to which it refers are explained elsewhere. See @ref{Binding
- Constructs}, for how associations between symbols and variables are
- created, and @ref{Modules}, for how those associations are affected by
- Guile's module system.
- @node Symbol Primitives
- @subsubsection Operations Related to Symbols
- Given any Scheme value, you can determine whether it is a symbol using
- the @code{symbol?} primitive:
- @rnindex symbol?
- @deffn {Scheme Procedure} symbol? obj
- @deffnx {C Function} scm_symbol_p (obj)
- Return @code{#t} if @var{obj} is a symbol, otherwise return
- @code{#f}.
- @end deffn
- @deftypefn {C Function} int scm_is_symbol (SCM val)
- Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
- @end deftypefn
- Once you know that you have a symbol, you can obtain its name as a
- string by calling @code{symbol->string}. Note that Guile differs by
- default from R5RS on the details of @code{symbol->string} as regards
- case-sensitivity:
- @rnindex symbol->string
- @deffn {Scheme Procedure} symbol->string s
- @deffnx {C Function} scm_symbol_to_string (s)
- Return the name of symbol @var{s} as a string. By default, Guile reads
- symbols case-sensitively, so the string returned will have the same case
- variation as the sequence of characters that caused @var{s} to be
- created.
- If Guile is set to read symbols case-insensitively (as specified by
- R5RS), and @var{s} comes into being as part of a literal expression
- (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
- by a call to the @code{read} or @code{string-ci->symbol} procedures,
- Guile converts any alphabetic characters in the symbol's name to
- lower case before creating the symbol object, so the string returned
- here will be in lower case.
- If @var{s} was created by @code{string->symbol}, the case of characters
- in the string returned will be the same as that in the string that was
- passed to @code{string->symbol}, regardless of Guile's case-sensitivity
- setting at the time @var{s} was created.
- It is an error to apply mutation procedures like @code{string-set!} to
- strings returned by this procedure.
- @end deffn
- Most symbols are created by writing them literally in code. However it
- is also possible to create symbols programmatically using the following
- procedures:
- @deffn {Scheme Procedure} symbol char@dots{}
- @rnindex symbol
- Return a newly allocated symbol made from the given character arguments.
- @example
- (symbol #\x #\y #\z) @result{} xyz
- @end example
- @end deffn
- @deffn {Scheme Procedure} list->symbol lst
- @rnindex list->symbol
- Return a newly allocated symbol made from a list of characters.
- @example
- (list->symbol '(#\a #\b #\c)) @result{} abc
- @end example
- @end deffn
- @rnindex symbol-append
- @deffn {Scheme Procedure} symbol-append arg @dots{}
- Return a newly allocated symbol whose characters form the
- concatenation of the given symbols, @var{arg} @enddots{}.
- @example
- (let ((h 'hello))
- (symbol-append h 'world))
- @result{} helloworld
- @end example
- @end deffn
- @rnindex string->symbol
- @deffn {Scheme Procedure} string->symbol string
- @deffnx {C Function} scm_string_to_symbol (string)
- Return the symbol whose name is @var{string}. This procedure can create
- symbols with names containing special characters or letters in the
- non-standard case, but it is usually a bad idea to create such symbols
- because in some implementations of Scheme they cannot be read as
- themselves.
- @end deffn
- @deffn {Scheme Procedure} string-ci->symbol str
- @deffnx {C Function} scm_string_ci_to_symbol (str)
- Return the symbol whose name is @var{str}. If Guile is currently
- reading symbols case-insensitively, @var{str} is converted to lowercase
- before the returned symbol is looked up or created.
- @end deffn
- The following examples illustrate Guile's detailed behavior as regards
- the case-sensitivity of symbols:
- @lisp
- (read-enable 'case-insensitive) ; R5RS compliant behavior
- (symbol->string 'flying-fish) @result{} "flying-fish"
- (symbol->string 'Martin) @result{} "martin"
- (symbol->string
- (string->symbol "Malvina")) @result{} "Malvina"
- (eq? 'mISSISSIppi 'mississippi) @result{} #t
- (string->symbol "mISSISSIppi") @result{} mISSISSIppi
- (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
- (eq? 'LolliPop
- (string->symbol (symbol->string 'LolliPop))) @result{} #t
- (string=? "K. Harper, M.D."
- (symbol->string
- (string->symbol "K. Harper, M.D."))) @result{} #t
- (read-disable 'case-insensitive) ; Guile default behavior
- (symbol->string 'flying-fish) @result{} "flying-fish"
- (symbol->string 'Martin) @result{} "Martin"
- (symbol->string
- (string->symbol "Malvina")) @result{} "Malvina"
- (eq? 'mISSISSIppi 'mississippi) @result{} #f
- (string->symbol "mISSISSIppi") @result{} mISSISSIppi
- (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
- (eq? 'LolliPop
- (string->symbol (symbol->string 'LolliPop))) @result{} #t
- (string=? "K. Harper, M.D."
- (symbol->string
- (string->symbol "K. Harper, M.D."))) @result{} #t
- @end lisp
- From C, there are lower level functions that construct a Scheme symbol
- from a C string in the current locale encoding.
- When you want to do more from C, you should convert between symbols
- and strings using @code{scm_symbol_to_string} and
- @code{scm_string_to_symbol} and work with the strings.
- @deftypefn {C Function} SCM scm_from_latin1_symbol (const char *name)
- @deftypefnx {C Function} SCM scm_from_utf8_symbol (const char *name)
- Construct and return a Scheme symbol whose name is specified by the
- null-terminated C string @var{name}. These are appropriate when
- the C string is hard-coded in the source code.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_locale_symbol (const char *name)
- @deftypefnx {C Function} SCM scm_from_locale_symboln (const char *name, size_t len)
- Construct and return a Scheme symbol whose name is specified by
- @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
- terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
- specified explicitly by @var{len}.
- Note that these functions should @emph{not} be used when @var{name} is a
- C string constant, because there is no guarantee that the current locale
- will match that of the execution character set, used for string and
- character constants. Most modern C compilers use UTF-8 by default, so
- in such cases we recommend @code{scm_from_utf8_symbol}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
- @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
- Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
- respectively, but also frees @var{str} with @code{free} eventually.
- Thus, you can use this function when you would free @var{str} anyway
- immediately after creating the Scheme string. In certain cases, Guile
- can then use @var{str} directly as its internal representation.
- @end deftypefn
- The size of a symbol can also be obtained from C:
- @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
- Return the number of characters in @var{sym}.
- @end deftypefn
- Finally, some applications, especially those that generate new Scheme
- code dynamically, need to generate symbols for use in the generated
- code. The @code{gensym} primitive meets this need:
- @deffn {Scheme Procedure} gensym [prefix]
- @deffnx {C Function} scm_gensym (prefix)
- Create a new symbol with a name constructed from a prefix and a counter
- value. The string @var{prefix} can be specified as an optional
- argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
- at each call. There is no provision for resetting the counter.
- @end deffn
- The symbols generated by @code{gensym} are @emph{likely} to be unique,
- since their names begin with a space and it is only otherwise possible
- to generate such symbols if a programmer goes out of their way to do
- so. Uniqueness can be guaranteed by instead using uninterned symbols
- (@pxref{Symbol Uninterned}), though they can't be usefully written out
- and read back in.
- @node Symbol Read Syntax
- @subsubsection Extended Read Syntax for Symbols
- @cindex r7rs-symbols
- The read syntax for a symbol is a sequence of letters, digits, and
- @dfn{extended alphabetic characters}, beginning with a character that
- cannot begin a number. In addition, the special cases of @code{+},
- @code{-}, and @code{...} are read as symbols even though numbers can
- begin with @code{+}, @code{-} or @code{.}.
- Extended alphabetic characters may be used within identifiers as if
- they were letters. The set of extended alphabetic characters is:
- @example
- ! $ % & * + - . / : < = > ? @@ ^ _ ~
- @end example
- In addition to the standard read syntax defined above (which is taken
- from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
- Scheme})), Guile provides an extended symbol read syntax that allows the
- inclusion of unusual characters such as space characters, newlines and
- parentheses. If (for whatever reason) you need to write a symbol
- containing characters not mentioned above, you can do so as follows.
- @itemize @bullet
- @item
- Begin the symbol with the characters @code{#@{},
- @item
- write the characters of the symbol and
- @item
- finish the symbol with the characters @code{@}#}.
- @end itemize
- Here are a few examples of this form of read syntax. The first symbol
- needs to use extended syntax because it contains a space character, the
- second because it contains a line break, and the last because it looks
- like a number.
- @lisp
- #@{foo bar@}#
- #@{what
- ever@}#
- #@{4242@}#
- @end lisp
- Although Guile provides this extended read syntax for symbols,
- widespread usage of it is discouraged because it is not portable and not
- very readable.
- Alternatively, if you enable the @code{r7rs-symbols} read option (see
- @pxref{Scheme Read}), you can write arbitrary symbols using the same
- notation used for strings, except delimited by vertical bars instead of
- double quotes.
- @example
- |foo bar|
- |\x3BB; is a greek lambda|
- |\| is a vertical bar|
- @end example
- Note that there's also an @code{r7rs-symbols} print option
- (@pxref{Scheme Write}). To enable the use of this notation, evaluate
- one or both of the following expressions:
- @example
- (read-enable 'r7rs-symbols)
- (print-enable 'r7rs-symbols)
- @end example
- @node Symbol Uninterned
- @subsubsection Uninterned Symbols
- What makes symbols useful is that they are automatically kept unique.
- There are no two symbols that are distinct objects but have the same
- name. But of course, there is no rule without exception. In addition
- to the normal symbols that have been discussed up to now, you can also
- create special @dfn{uninterned} symbols that behave slightly
- differently.
- To understand what is different about them and why they might be useful,
- we look at how normal symbols are actually kept unique.
- Whenever Guile wants to find the symbol with a specific name, for
- example during @code{read} or when executing @code{string->symbol}, it
- first looks into a table of all existing symbols to find out whether a
- symbol with the given name already exists. When this is the case, Guile
- just returns that symbol. When not, a new symbol with the name is
- created and entered into the table so that it can be found later.
- Sometimes you might want to create a symbol that is guaranteed `fresh',
- i.e.@: a symbol that did not exist previously. You might also want to
- somehow guarantee that no one else will ever unintentionally stumble
- across your symbol in the future. These properties of a symbol are
- often needed when generating code during macro expansion. When
- introducing new temporary variables, you want to guarantee that they
- don't conflict with variables in other people's code.
- The simplest way to arrange for this is to create a new symbol but
- not enter it into the global table of all symbols. That way, no one
- will ever get access to your symbol by chance. Symbols that are not in
- the table are called @dfn{uninterned}. Of course, symbols that
- @emph{are} in the table are called @dfn{interned}.
- You create new uninterned symbols with the function @code{make-symbol}.
- You can test whether a symbol is interned or not with
- @code{symbol-interned?}.
- Uninterned symbols break the rule that the name of a symbol uniquely
- identifies the symbol object. Because of this, they can not be written
- out and read back in like interned symbols. Currently, Guile has no
- support for reading uninterned symbols. Note that the function
- @code{gensym} does not return uninterned symbols for this reason.
- @deffn {Scheme Procedure} make-symbol name
- @deffnx {C Function} scm_make_symbol (name)
- Return a new uninterned symbol with the name @var{name}. The returned
- symbol is guaranteed to be unique and future calls to
- @code{string->symbol} will not return it.
- @end deffn
- @deffn {Scheme Procedure} symbol-interned? symbol
- @deffnx {C Function} scm_symbol_interned_p (symbol)
- Return @code{#t} if @var{symbol} is interned, otherwise return
- @code{#f}.
- @end deffn
- For example:
- @lisp
- (define foo-1 (string->symbol "foo"))
- (define foo-2 (string->symbol "foo"))
- (define foo-3 (make-symbol "foo"))
- (define foo-4 (make-symbol "foo"))
- (eq? foo-1 foo-2)
- @result{} #t
- ; Two interned symbols with the same name are the same object,
- (eq? foo-1 foo-3)
- @result{} #f
- ; but a call to make-symbol with the same name returns a
- ; distinct object.
- (eq? foo-3 foo-4)
- @result{} #f
- ; A call to make-symbol always returns a new object, even for
- ; the same name.
- foo-3
- @result{} #<uninterned-symbol foo 8085290>
- ; Uninterned symbols print differently from interned symbols,
- (symbol? foo-3)
- @result{} #t
- ; but they are still symbols,
- (symbol-interned? foo-3)
- @result{} #f
- ; just not interned.
- @end lisp
- @node Keywords
- @subsection Keywords
- @tpindex Keywords
- Keywords are self-evaluating objects with a convenient read syntax that
- makes them easy to type.
- Guile's keyword support conforms to R5RS, and adds a (switchable) read
- syntax extension to permit keywords to begin with @code{:} as well as
- @code{#:}, or to end with @code{:}.
- @menu
- * Why Use Keywords?:: Motivation for keyword usage.
- * Coding With Keywords:: How to use keywords.
- * Keyword Read Syntax:: Read syntax for keywords.
- * Keyword Procedures:: Procedures for dealing with keywords.
- @end menu
- @node Why Use Keywords?
- @subsubsection Why Use Keywords?
- Keywords are useful in contexts where a program or procedure wants to be
- able to accept a large number of optional arguments without making its
- interface unmanageable.
- To illustrate this, consider a hypothetical @code{make-window}
- procedure, which creates a new window on the screen for drawing into
- using some graphical toolkit. There are many parameters that the caller
- might like to specify, but which could also be sensibly defaulted, for
- example:
- @itemize @bullet
- @item
- color depth -- Default: the color depth for the screen
- @item
- background color -- Default: white
- @item
- width -- Default: 600
- @item
- height -- Default: 400
- @end itemize
- If @code{make-window} did not use keywords, the caller would have to
- pass in a value for each possible argument, remembering the correct
- argument order and using a special value to indicate the default value
- for that argument:
- @lisp
- (make-window 'default ;; Color depth
- 'default ;; Background color
- 800 ;; Width
- 100 ;; Height
- @dots{}) ;; More make-window arguments
- @end lisp
- With keywords, on the other hand, defaulted arguments are omitted, and
- non-default arguments are clearly tagged by the appropriate keyword. As
- a result, the invocation becomes much clearer:
- @lisp
- (make-window #:width 800 #:height 100)
- @end lisp
- On the other hand, for a simpler procedure with few arguments, the use
- of keywords would be a hindrance rather than a help. The primitive
- procedure @code{cons}, for example, would not be improved if it had to
- be invoked as
- @lisp
- (cons #:car x #:cdr y)
- @end lisp
- So the decision whether to use keywords or not is purely pragmatic: use
- them if they will clarify the procedure invocation at point of call.
- @node Coding With Keywords
- @subsubsection Coding With Keywords
- If a procedure wants to support keywords, it should take a rest argument
- and then use whatever means is convenient to extract keywords and their
- corresponding arguments from the contents of that rest argument.
- The following example illustrates the principle: the code for
- @code{make-window} uses a helper procedure called
- @code{get-keyword-value} to extract individual keyword arguments from
- the rest argument.
- @lisp
- (define (get-keyword-value args keyword default)
- (let ((kv (memq keyword args)))
- (if (and kv (>= (length kv) 2))
- (cadr kv)
- default)))
- (define (make-window . args)
- (let ((depth (get-keyword-value args #:depth screen-depth))
- (bg (get-keyword-value args #:bg "white"))
- (width (get-keyword-value args #:width 800))
- (height (get-keyword-value args #:height 100))
- @dots{})
- @dots{}))
- @end lisp
- But you don't need to write @code{get-keyword-value}. The @code{(ice-9
- optargs)} module provides a set of powerful macros that you can use to
- implement keyword-supporting procedures like this:
- @lisp
- (use-modules (ice-9 optargs))
- (define (make-window . args)
- (let-keywords args #f ((depth screen-depth)
- (bg "white")
- (width 800)
- (height 100))
- ...))
- @end lisp
- @noindent
- Or, even more economically, like this:
- @lisp
- (use-modules (ice-9 optargs))
- (define* (make-window #:key (depth screen-depth)
- (bg "white")
- (width 800)
- (height 100))
- ...)
- @end lisp
- For further details on @code{let-keywords}, @code{define*} and other
- facilities provided by the @code{(ice-9 optargs)} module, see
- @ref{Optional Arguments}.
- To handle keyword arguments from procedures implemented in C,
- use @code{scm_c_bind_keyword_arguments} (@pxref{Keyword Procedures}).
- @node Keyword Read Syntax
- @subsubsection Keyword Read Syntax
- Guile, by default, only recognizes a keyword syntax that is compatible
- with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
- same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
- external representation of the keyword named @code{NAME}. Keyword
- objects print using this syntax as well, so values containing keyword
- objects can be read back into Guile. When used in an expression,
- keywords are self-quoting objects.
- If the @code{keywords} read option is set to @code{'prefix}, Guile also
- recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
- of the form @code{:NAME} are read as symbols, as required by R5RS.
- @cindex SRFI-88 keyword syntax
- If the @code{keywords} read option is set to @code{'postfix}, Guile
- recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
- Otherwise, tokens of this form are read as symbols.
- To enable and disable the alternative non-R5RS keyword syntax, you use
- the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
- the @code{prefix} and @code{postfix} syntax are mutually exclusive.
- @lisp
- (read-set! keywords 'prefix)
- #:type
- @result{}
- #:type
- :type
- @result{}
- #:type
- (read-set! keywords 'postfix)
- type:
- @result{}
- #:type
- :type
- @result{}
- :type
- (read-set! keywords #f)
- #:type
- @result{}
- #:type
- :type
- @print{}
- ERROR: In expression :type:
- ERROR: Unbound variable: :type
- ABORT: (unbound-variable)
- @end lisp
- @node Keyword Procedures
- @subsubsection Keyword Procedures
- @deffn {Scheme Procedure} keyword? obj
- @deffnx {C Function} scm_keyword_p (obj)
- Return @code{#t} if the argument @var{obj} is a keyword, else
- @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} keyword->symbol keyword
- @deffnx {C Function} scm_keyword_to_symbol (keyword)
- Return the symbol with the same name as @var{keyword}.
- @end deffn
- @deffn {Scheme Procedure} symbol->keyword symbol
- @deffnx {C Function} scm_symbol_to_keyword (symbol)
- Return the keyword with the same name as @var{symbol}.
- @end deffn
- @deftypefn {C Function} int scm_is_keyword (SCM obj)
- Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
- @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
- Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
- (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
- (@var{name}, @var{len}))}, respectively.
- Note that these functions should @emph{not} be used when @var{name} is a
- C string constant, because there is no guarantee that the current locale
- will match that of the execution character set, used for string and
- character constants. Most modern C compilers use UTF-8 by default, so
- in such cases we recommend @code{scm_from_utf8_keyword}.
- @end deftypefn
- @deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
- @deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
- Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
- (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
- (@var{name}))}, respectively.
- @end deftypefn
- @deftypefn {C Function} void scm_c_bind_keyword_arguments (const char *subr, @
- SCM rest, scm_t_keyword_arguments_flags flags, @
- SCM keyword1, SCM *argp1, @
- @dots{}, @
- SCM keywordN, SCM *argpN, @
- @nicode{SCM_UNDEFINED})
- Extract the specified keyword arguments from @var{rest}, which is not
- modified. If the keyword argument @var{keyword1} is present in
- @var{rest} with an associated value, that value is stored in the
- variable pointed to by @var{argp1}, otherwise the variable is left
- unchanged. Similarly for the other keywords and argument pointers up to
- @var{keywordN} and @var{argpN}. The argument list to
- @code{scm_c_bind_keyword_arguments} must be terminated by
- @code{SCM_UNDEFINED}.
- Note that since the variables pointed to by @var{argp1} through
- @var{argpN} are left unchanged if the associated keyword argument is not
- present, they should be initialized to their default values before
- calling @code{scm_c_bind_keyword_arguments}. Alternatively, you can
- initialize them to @code{SCM_UNDEFINED} before the call, and then use
- @code{SCM_UNBNDP} after the call to see which ones were provided.
- If an unrecognized keyword argument is present in @var{rest} and
- @var{flags} does not contain @code{SCM_ALLOW_OTHER_KEYS}, or if
- non-keyword arguments are present and @var{flags} does not contain
- @code{SCM_ALLOW_NON_KEYWORD_ARGUMENTS}, an exception is raised.
- @var{subr} should be the name of the procedure receiving the keyword
- arguments, for purposes of error reporting.
- For example:
- @example
- SCM k_delimiter;
- SCM k_grammar;
- SCM sym_infix;
- SCM my_string_join (SCM strings, SCM rest)
- @{
- SCM delimiter = SCM_UNDEFINED;
- SCM grammar = sym_infix;
- scm_c_bind_keyword_arguments ("my-string-join", rest, 0,
- k_delimiter, &delimiter,
- k_grammar, &grammar,
- SCM_UNDEFINED);
- if (SCM_UNBNDP (delimiter))
- delimiter = scm_from_utf8_string (" ");
- return scm_string_join (strings, delimiter, grammar);
- @}
- void my_init ()
- @{
- k_delimiter = scm_from_utf8_keyword ("delimiter");
- k_grammar = scm_from_utf8_keyword ("grammar");
- sym_infix = scm_from_utf8_symbol ("infix");
- scm_c_define_gsubr ("my-string-join", 1, 0, 1, my_string_join);
- @}
- @end example
- @end deftypefn
- @node Pairs
- @subsection Pairs
- @tpindex Pairs
- Pairs are used to combine two Scheme objects into one compound object.
- Hence the name: A pair stores a pair of objects.
- The data type @dfn{pair} is extremely important in Scheme, just like in
- any other Lisp dialect. The reason is that pairs are not only used to
- make two values available as one object, but that pairs are used for
- constructing lists of values. Because lists are so important in Scheme,
- they are described in a section of their own (@pxref{Lists}).
- Pairs can literally get entered in source code or at the REPL, in the
- so-called @dfn{dotted list} syntax. This syntax consists of an opening
- parentheses, the first element of the pair, a dot, the second element
- and a closing parentheses. The following example shows how a pair
- consisting of the two numbers 1 and 2, and a pair containing the symbols
- @code{foo} and @code{bar} can be entered. It is very important to write
- the whitespace before and after the dot, because otherwise the Scheme
- parser would not be able to figure out where to split the tokens.
- @lisp
- (1 . 2)
- (foo . bar)
- @end lisp
- But beware, if you want to try out these examples, you have to
- @dfn{quote} the expressions. More information about quotation is
- available in the section @ref{Expression Syntax}. The correct way
- to try these examples is as follows.
- @lisp
- '(1 . 2)
- @result{}
- (1 . 2)
- '(foo . bar)
- @result{}
- (foo . bar)
- @end lisp
- A new pair is made by calling the procedure @code{cons} with two
- arguments. Then the argument values are stored into a newly allocated
- pair, and the pair is returned. The name @code{cons} stands for
- "construct". Use the procedure @code{pair?} to test whether a
- given Scheme object is a pair or not.
- @rnindex cons
- @deffn {Scheme Procedure} cons x y
- @deffnx {C Function} scm_cons (x, y)
- Return a newly allocated pair whose car is @var{x} and whose
- cdr is @var{y}. The pair is guaranteed to be different (in the
- sense of @code{eq?}) from every previously existing object.
- @end deffn
- @rnindex pair?
- @deffn {Scheme Procedure} pair? x
- @deffnx {C Function} scm_pair_p (x)
- Return @code{#t} if @var{x} is a pair; otherwise return
- @code{#f}.
- @end deffn
- @deftypefn {C Function} int scm_is_pair (SCM x)
- Return 1 when @var{x} is a pair; otherwise return 0.
- @end deftypefn
- The two parts of a pair are traditionally called @dfn{car} and
- @dfn{cdr}. They can be retrieved with procedures of the same name
- (@code{car} and @code{cdr}), and can be modified with the procedures
- @code{set-car!} and @code{set-cdr!}.
- Since a very common operation in Scheme programs is to access the car of
- a car of a pair, or the car of the cdr of a pair, etc., the procedures
- called @code{caar}, @code{cadr} and so on are also predefined. However,
- using these procedures is often detrimental to readability, and
- error-prone. Thus, accessing the contents of a list is usually better
- achieved using pattern matching techniques (@pxref{Pattern Matching}).
- @rnindex car
- @rnindex cdr
- @deffn {Scheme Procedure} car pair
- @deffnx {Scheme Procedure} cdr pair
- @deffnx {C Function} scm_car (pair)
- @deffnx {C Function} scm_cdr (pair)
- Return the car or the cdr of @var{pair}, respectively.
- @end deffn
- @deftypefn {C Macro} SCM SCM_CAR (SCM pair)
- @deftypefnx {C Macro} SCM SCM_CDR (SCM pair)
- These two macros are the fastest way to access the car or cdr of a
- pair; they can be thought of as compiling into a single memory
- reference.
- These macros do no checking at all. The argument @var{pair} must be a
- valid pair.
- @end deftypefn
- @deffn {Scheme Procedure} cddr pair
- @deffnx {Scheme Procedure} cdar pair
- @deffnx {Scheme Procedure} cadr pair
- @deffnx {Scheme Procedure} caar pair
- @deffnx {Scheme Procedure} cdddr pair
- @deffnx {Scheme Procedure} cddar pair
- @deffnx {Scheme Procedure} cdadr pair
- @deffnx {Scheme Procedure} cdaar pair
- @deffnx {Scheme Procedure} caddr pair
- @deffnx {Scheme Procedure} cadar pair
- @deffnx {Scheme Procedure} caadr pair
- @deffnx {Scheme Procedure} caaar pair
- @deffnx {Scheme Procedure} cddddr pair
- @deffnx {Scheme Procedure} cdddar pair
- @deffnx {Scheme Procedure} cddadr pair
- @deffnx {Scheme Procedure} cddaar pair
- @deffnx {Scheme Procedure} cdaddr pair
- @deffnx {Scheme Procedure} cdadar pair
- @deffnx {Scheme Procedure} cdaadr pair
- @deffnx {Scheme Procedure} cdaaar pair
- @deffnx {Scheme Procedure} cadddr pair
- @deffnx {Scheme Procedure} caddar pair
- @deffnx {Scheme Procedure} cadadr pair
- @deffnx {Scheme Procedure} cadaar pair
- @deffnx {Scheme Procedure} caaddr pair
- @deffnx {Scheme Procedure} caadar pair
- @deffnx {Scheme Procedure} caaadr pair
- @deffnx {Scheme Procedure} caaaar pair
- @deffnx {C Function} scm_cddr (pair)
- @deffnx {C Function} scm_cdar (pair)
- @deffnx {C Function} scm_cadr (pair)
- @deffnx {C Function} scm_caar (pair)
- @deffnx {C Function} scm_cdddr (pair)
- @deffnx {C Function} scm_cddar (pair)
- @deffnx {C Function} scm_cdadr (pair)
- @deffnx {C Function} scm_cdaar (pair)
- @deffnx {C Function} scm_caddr (pair)
- @deffnx {C Function} scm_cadar (pair)
- @deffnx {C Function} scm_caadr (pair)
- @deffnx {C Function} scm_caaar (pair)
- @deffnx {C Function} scm_cddddr (pair)
- @deffnx {C Function} scm_cdddar (pair)
- @deffnx {C Function} scm_cddadr (pair)
- @deffnx {C Function} scm_cddaar (pair)
- @deffnx {C Function} scm_cdaddr (pair)
- @deffnx {C Function} scm_cdadar (pair)
- @deffnx {C Function} scm_cdaadr (pair)
- @deffnx {C Function} scm_cdaaar (pair)
- @deffnx {C Function} scm_cadddr (pair)
- @deffnx {C Function} scm_caddar (pair)
- @deffnx {C Function} scm_cadadr (pair)
- @deffnx {C Function} scm_cadaar (pair)
- @deffnx {C Function} scm_caaddr (pair)
- @deffnx {C Function} scm_caadar (pair)
- @deffnx {C Function} scm_caaadr (pair)
- @deffnx {C Function} scm_caaaar (pair)
- These procedures are compositions of @code{car} and @code{cdr}, where
- for example @code{caddr} could be defined by
- @lisp
- (define caddr (lambda (x) (car (cdr (cdr x)))))
- @end lisp
- @code{cadr}, @code{caddr} and @code{cadddr} pick out the second, third
- or fourth elements of a list, respectively. SRFI-1 provides the same
- under the names @code{second}, @code{third} and @code{fourth}
- (@pxref{SRFI-1 Selectors}).
- @end deffn
- @rnindex set-car!
- @deffn {Scheme Procedure} set-car! pair value
- @deffnx {C Function} scm_set_car_x (pair, value)
- Stores @var{value} in the car field of @var{pair}. The value returned
- by @code{set-car!} is unspecified.
- @end deffn
- @rnindex set-cdr!
- @deffn {Scheme Procedure} set-cdr! pair value
- @deffnx {C Function} scm_set_cdr_x (pair, value)
- Stores @var{value} in the cdr field of @var{pair}. The value returned
- by @code{set-cdr!} is unspecified.
- @end deffn
- @node Lists
- @subsection Lists
- @tpindex Lists
- A very important data type in Scheme---as well as in all other Lisp
- dialects---is the data type @dfn{list}.@footnote{Strictly speaking,
- Scheme does not have a real datatype @dfn{list}. Lists are made up of
- @dfn{chained pairs}, and only exist by definition---a list is a chain
- of pairs which looks like a list.}
- This is the short definition of what a list is:
- @itemize @bullet
- @item
- Either the empty list @code{()},
- @item
- or a pair which has a list in its cdr.
- @end itemize
- @c FIXME::martin: Describe the pair chaining in more detail.
- @c FIXME::martin: What is a proper, what an improper list?
- @c What is a circular list?
- @c FIXME::martin: Maybe steal some graphics from the Elisp reference
- @c manual?
- @menu
- * List Syntax:: Writing literal lists.
- * List Predicates:: Testing lists.
- * List Constructors:: Creating new lists.
- * List Selection:: Selecting from lists, getting their length.
- * Append/Reverse:: Appending and reversing lists.
- * List Modification:: Modifying existing lists.
- * List Searching:: Searching for list elements
- * List Mapping:: Applying procedures to lists.
- @end menu
- @node List Syntax
- @subsubsection List Read Syntax
- The syntax for lists is an opening parentheses, then all the elements of
- the list (separated by whitespace) and finally a closing
- parentheses.@footnote{Note that there is no separation character between
- the list elements, like a comma or a semicolon.}.
- @lisp
- (1 2 3) ; @r{a list of the numbers 1, 2 and 3}
- ("foo" bar 3.1415) ; @r{a string, a symbol and a real number}
- () ; @r{the empty list}
- @end lisp
- The last example needs a bit more explanation. A list with no elements,
- called the @dfn{empty list}, is special in some ways. It is used for
- terminating lists by storing it into the cdr of the last pair that makes
- up a list. An example will clear that up:
- @lisp
- (car '(1))
- @result{}
- 1
- (cdr '(1))
- @result{}
- ()
- @end lisp
- This example also shows that lists have to be quoted when written
- (@pxref{Expression Syntax}), because they would otherwise be
- mistakenly taken as procedure applications (@pxref{Simple
- Invocation}).
- @node List Predicates
- @subsubsection List Predicates
- Often it is useful to test whether a given Scheme object is a list or
- not. List-processing procedures could use this information to test
- whether their input is valid, or they could do different things
- depending on the datatype of their arguments.
- @rnindex list?
- @deffn {Scheme Procedure} list? x
- @deffnx {C Function} scm_list_p (x)
- Return @code{#t} if @var{x} is a proper list, else @code{#f}.
- @end deffn
- The predicate @code{null?} is often used in list-processing code to
- tell whether a given list has run out of elements. That is, a loop
- somehow deals with the elements of a list until the list satisfies
- @code{null?}. Then, the algorithm terminates.
- @rnindex null?
- @deffn {Scheme Procedure} null? x
- @deffnx {C Function} scm_null_p (x)
- Return @code{#t} if @var{x} is the empty list, else @code{#f}.
- @end deffn
- @deftypefn {C Function} int scm_is_null (SCM x)
- Return 1 when @var{x} is the empty list; otherwise return 0.
- @end deftypefn
- @node List Constructors
- @subsubsection List Constructors
- This section describes the procedures for constructing new lists.
- @code{list} simply returns a list where the elements are the arguments,
- @code{cons*} is similar, but the last argument is stored in the cdr of
- the last pair of the list.
- @c C Function scm_list(rest) used to be documented here, but it's a
- @c no-op since it does nothing but return the list the caller must
- @c have already created.
- @c
- @deffn {Scheme Procedure} list elem @dots{}
- @deffnx {C Function} scm_list_1 (elem1)
- @deffnx {C Function} scm_list_2 (elem1, elem2)
- @deffnx {C Function} scm_list_3 (elem1, elem2, elem3)
- @deffnx {C Function} scm_list_4 (elem1, elem2, elem3, elem4)
- @deffnx {C Function} scm_list_5 (elem1, elem2, elem3, elem4, elem5)
- @deffnx {C Function} scm_list_n (elem1, @dots{}, elemN, @nicode{SCM_UNDEFINED})
- @rnindex list
- Return a new list containing elements @var{elem} @enddots{}.
- @code{scm_list_n} takes a variable number of arguments, terminated by
- the special @code{SCM_UNDEFINED}. That final @code{SCM_UNDEFINED} is
- not included in the list. None of @var{elem} @dots{} can
- themselves be @code{SCM_UNDEFINED}, or @code{scm_list_n} will
- terminate at that point.
- @end deffn
- @c C Function scm_cons_star(arg1,rest) used to be documented here,
- @c but it's not really a useful interface, since it expects the
- @c caller to have already consed up all but the first argument
- @c already.
- @c
- @deffn {Scheme Procedure} cons* arg1 arg2 @dots{}
- Like @code{list}, but the last arg provides the tail of the
- constructed list, returning @code{(cons @var{arg1} (cons
- @var{arg2} (cons @dots{} @var{argn})))}. Requires at least one
- argument. If given one argument, that argument is returned as
- result. This function is called @code{list*} in some other
- Schemes and in Common LISP.
- @end deffn
- @deffn {Scheme Procedure} list-copy lst
- @deffnx {C Function} scm_list_copy (lst)
- Return a (newly-created) copy of @var{lst}.
- @end deffn
- @deffn {Scheme Procedure} make-list n [init]
- Create a list containing of @var{n} elements, where each element is
- initialized to @var{init}. @var{init} defaults to the empty list
- @code{()} if not given.
- @end deffn
- Note that @code{list-copy} only makes a copy of the pairs which make up
- the spine of the lists. The list elements are not copied, which means
- that modifying the elements of the new list also modifies the elements
- of the old list. On the other hand, applying procedures like
- @code{set-cdr!} or @code{delv!} to the new list will not alter the old
- list. If you also need to copy the list elements (making a deep copy),
- use the procedure @code{copy-tree} from @code{(ice-9 copy-tree)}
- (@pxref{Copying}).
- @node List Selection
- @subsubsection List Selection
- These procedures are used to get some information about a list, or to
- retrieve one or more elements of a list.
- @rnindex length
- @deffn {Scheme Procedure} length lst
- @deffnx {C Function} scm_length (lst)
- Return the number of elements in list @var{lst}.
- @end deffn
- @deffn {Scheme Procedure} last-pair lst
- @deffnx {C Function} scm_last_pair (lst)
- Return the last pair in @var{lst}, signaling an error if
- @var{lst} is circular.
- @end deffn
- @rnindex list-ref
- @deffn {Scheme Procedure} list-ref list k
- @deffnx {C Function} scm_list_ref (list, k)
- Return the @var{k}th element from @var{list}.
- @end deffn
- @rnindex list-tail
- @deffn {Scheme Procedure} list-tail lst k
- @deffnx {Scheme Procedure} list-cdr-ref lst k
- @deffnx {C Function} scm_list_tail (lst, k)
- Return the "tail" of @var{lst} beginning with its @var{k}th element.
- The first element of the list is considered to be element 0.
- @code{list-tail} and @code{list-cdr-ref} are identical. It may help to
- think of @code{list-cdr-ref} as accessing the @var{k}th cdr of the list,
- or returning the results of cdring @var{k} times down @var{lst}.
- @end deffn
- @deffn {Scheme Procedure} list-head lst k
- @deffnx {C Function} scm_list_head (lst, k)
- Copy the first @var{k} elements from @var{lst} into a new list, and
- return it.
- @end deffn
- @node Append/Reverse
- @subsubsection Append and Reverse
- @code{append} and @code{append!} are used to concatenate two or more
- lists in order to form a new list. @code{reverse} and @code{reverse!}
- return lists with the same elements as their arguments, but in reverse
- order. The procedure variants with an @code{!} directly modify the
- pairs which form the list, whereas the other procedures create new
- pairs. This is why you should be careful when using the side-effecting
- variants.
- @rnindex append
- @deffn {Scheme Procedure} append lst @dots{} obj
- @deffnx {Scheme Procedure} append
- @deffnx {Scheme Procedure} append! lst @dots{} obj
- @deffnx {Scheme Procedure} append!
- @deffnx {C Function} scm_append (lstlst)
- @deffnx {C Function} scm_append_x (lstlst)
- Return a list comprising all the elements of lists @var{lst} @dots{}
- @var{obj}. If called with no arguments, return the empty list.
- @lisp
- (append '(x) '(y)) @result{} (x y)
- (append '(a) '(b c d)) @result{} (a b c d)
- (append '(a (b)) '((c))) @result{} (a (b) (c))
- @end lisp
- The last argument @var{obj} may actually be any object; an improper
- list results if the last argument is not a proper list.
- @lisp
- (append '(a b) '(c . d)) @result{} (a b c . d)
- (append '() 'a) @result{} a
- @end lisp
- @code{append} doesn't modify the given lists, but the return may share
- structure with the final @var{obj}. @code{append!} is permitted, but
- not required, to modify the given lists to form its return.
- For @code{scm_append} and @code{scm_append_x}, @var{lstlst} is a list
- of the list operands @var{lst} @dots{} @var{obj}. That @var{lstlst}
- itself is not modified or used in the return.
- @end deffn
- @rnindex reverse
- @deffn {Scheme Procedure} reverse lst
- @deffnx {Scheme Procedure} reverse! lst [newtail]
- @deffnx {C Function} scm_reverse (lst)
- @deffnx {C Function} scm_reverse_x (lst, newtail)
- Return a list comprising the elements of @var{lst}, in reverse order.
- @code{reverse} constructs a new list. @code{reverse!} is permitted, but
- not required, to modify @var{lst} in constructing its return.
- For @code{reverse!}, the optional @var{newtail} is appended to the
- result. @var{newtail} isn't reversed, it simply becomes the list
- tail. For @code{scm_reverse_x}, the @var{newtail} parameter is
- mandatory, but can be @code{SCM_EOL} if no further tail is required.
- @end deffn
- @node List Modification
- @subsubsection List Modification
- The following procedures modify an existing list, either by changing
- elements of the list, or by changing the list structure itself.
- @deffn {Scheme Procedure} list-set! list k val
- @deffnx {C Function} scm_list_set_x (list, k, val)
- Set the @var{k}th element of @var{list} to @var{val}.
- @end deffn
- @deffn {Scheme Procedure} list-cdr-set! list k val
- @deffnx {C Function} scm_list_cdr_set_x (list, k, val)
- Set the @var{k}th cdr of @var{list} to @var{val}.
- @end deffn
- @deffn {Scheme Procedure} delq item lst
- @deffnx {C Function} scm_delq (item, lst)
- Return a newly-created copy of @var{lst} with elements
- @code{eq?} to @var{item} removed. This procedure mirrors
- @code{memq}: @code{delq} compares elements of @var{lst} against
- @var{item} with @code{eq?}.
- @end deffn
- @deffn {Scheme Procedure} delv item lst
- @deffnx {C Function} scm_delv (item, lst)
- Return a newly-created copy of @var{lst} with elements
- @code{eqv?} to @var{item} removed. This procedure mirrors
- @code{memv}: @code{delv} compares elements of @var{lst} against
- @var{item} with @code{eqv?}.
- @end deffn
- @deffn {Scheme Procedure} delete item lst
- @deffnx {C Function} scm_delete (item, lst)
- Return a newly-created copy of @var{lst} with elements
- @code{equal?} to @var{item} removed. This procedure mirrors
- @code{member}: @code{delete} compares elements of @var{lst}
- against @var{item} with @code{equal?}.
- See also SRFI-1 which has an extended @code{delete} (@ref{SRFI-1
- Deleting}), and also an @code{lset-difference} which can delete
- multiple @var{item}s in one call (@ref{SRFI-1 Set Operations}).
- @end deffn
- @deffn {Scheme Procedure} delq! item lst
- @deffnx {Scheme Procedure} delv! item lst
- @deffnx {Scheme Procedure} delete! item lst
- @deffnx {C Function} scm_delq_x (item, lst)
- @deffnx {C Function} scm_delv_x (item, lst)
- @deffnx {C Function} scm_delete_x (item, lst)
- These procedures are destructive versions of @code{delq}, @code{delv}
- and @code{delete}: they modify the pointers in the existing @var{lst}
- rather than creating a new list. Caveat evaluator: Like other
- destructive list functions, these functions cannot modify the binding of
- @var{lst}, and so cannot be used to delete the first element of
- @var{lst} destructively.
- @end deffn
- @deffn {Scheme Procedure} delq1! item lst
- @deffnx {C Function} scm_delq1_x (item, lst)
- Like @code{delq!}, but only deletes the first occurrence of
- @var{item} from @var{lst}. Tests for equality using
- @code{eq?}. See also @code{delv1!} and @code{delete1!}.
- @end deffn
- @deffn {Scheme Procedure} delv1! item lst
- @deffnx {C Function} scm_delv1_x (item, lst)
- Like @code{delv!}, but only deletes the first occurrence of
- @var{item} from @var{lst}. Tests for equality using
- @code{eqv?}. See also @code{delq1!} and @code{delete1!}.
- @end deffn
- @deffn {Scheme Procedure} delete1! item lst
- @deffnx {C Function} scm_delete1_x (item, lst)
- Like @code{delete!}, but only deletes the first occurrence of
- @var{item} from @var{lst}. Tests for equality using
- @code{equal?}. See also @code{delq1!} and @code{delv1!}.
- @end deffn
- @deffn {Scheme Procedure} filter pred lst
- @deffnx {Scheme Procedure} filter! pred lst
- Return a list containing all elements from @var{lst} which satisfy the
- predicate @var{pred}. The elements in the result list have the same
- order as in @var{lst}. The order in which @var{pred} is applied to
- the list elements is not specified.
- @code{filter} does not change @var{lst}, but the result may share a
- tail with it. @code{filter!} may modify @var{lst} to construct its
- return.
- @end deffn
- @node List Searching
- @subsubsection List Searching
- The following procedures search lists for particular elements. They use
- different comparison predicates for comparing list elements with the
- object to be searched. When they fail, they return @code{#f}, otherwise
- they return the sublist whose car is equal to the search object, where
- equality depends on the equality predicate used.
- @rnindex memq
- @deffn {Scheme Procedure} memq x lst
- @deffnx {C Function} scm_memq (x, lst)
- Return the first sublist of @var{lst} whose car is @code{eq?}
- to @var{x} where the sublists of @var{lst} are the non-empty
- lists returned by @code{(list-tail @var{lst} @var{k})} for
- @var{k} less than the length of @var{lst}. If @var{x} does not
- occur in @var{lst}, then @code{#f} (not the empty list) is
- returned.
- @end deffn
- @rnindex memv
- @deffn {Scheme Procedure} memv x lst
- @deffnx {C Function} scm_memv (x, lst)
- Return the first sublist of @var{lst} whose car is @code{eqv?}
- to @var{x} where the sublists of @var{lst} are the non-empty
- lists returned by @code{(list-tail @var{lst} @var{k})} for
- @var{k} less than the length of @var{lst}. If @var{x} does not
- occur in @var{lst}, then @code{#f} (not the empty list) is
- returned.
- @end deffn
- @rnindex member
- @deffn {Scheme Procedure} member x lst
- @deffnx {C Function} scm_member (x, lst)
- Return the first sublist of @var{lst} whose car is
- @code{equal?} to @var{x} where the sublists of @var{lst} are
- the non-empty lists returned by @code{(list-tail @var{lst}
- @var{k})} for @var{k} less than the length of @var{lst}. If
- @var{x} does not occur in @var{lst}, then @code{#f} (not the
- empty list) is returned.
- See also SRFI-1 which has an extended @code{member} function
- (@ref{SRFI-1 Searching}).
- @end deffn
- @node List Mapping
- @subsubsection List Mapping
- List processing is very convenient in Scheme because the process of
- iterating over the elements of a list can be highly abstracted. The
- procedures in this section are the most basic iterating procedures for
- lists. They take a procedure and one or more lists as arguments, and
- apply the procedure to each element of the list. They differ in their
- return value.
- @rnindex map
- @c begin (texi-doc-string "guile" "map")
- @deffn {Scheme Procedure} map proc arg1 arg2 @dots{}
- @deffnx {Scheme Procedure} map-in-order proc arg1 arg2 @dots{}
- @deffnx {C Function} scm_map (proc, arg1, args)
- Apply @var{proc} to each element of the list @var{arg1} (if only two
- arguments are given), or to the corresponding elements of the argument
- lists (if more than two arguments are given). The result(s) of the
- procedure applications are saved and returned in a list. For
- @code{map}, the order of procedure applications is not specified,
- @code{map-in-order} applies the procedure from left to right to the list
- elements.
- @end deffn
- @rnindex for-each
- @c begin (texi-doc-string "guile" "for-each")
- @deffn {Scheme Procedure} for-each proc arg1 arg2 @dots{}
- Like @code{map}, but the procedure is always applied from left to right,
- and the result(s) of the procedure applications are thrown away. The
- return value is not specified.
- @end deffn
- See also SRFI-1 which extends these functions to take lists of unequal
- lengths (@ref{SRFI-1 Fold and Map}).
- @node Vectors
- @subsection Vectors
- @tpindex Vectors
- Vectors are sequences of Scheme objects. Unlike lists, the length of a
- vector, once the vector is created, cannot be changed. The advantage of
- vectors over lists is that the time required to access one element of a vector
- given its @dfn{position} (synonymous with @dfn{index}), a zero-origin number,
- is constant, whereas lists have an access time linear to the position of the
- accessed element in the list.
- Vectors can contain any kind of Scheme object; it is even possible to
- have different types of objects in the same vector. For vectors
- containing vectors, you may wish to use @ref{Arrays} instead.
- Note, too, that vectors are a special case of one dimensional
- non-uniform arrays and that array procedures operate happily on vectors.
- Also see @ref{SRFI-43}, @ref{R6RS Support}, or @ref{R7RS Support}, for
- more comprehensive vector libraries.
- @menu
- * Vector Syntax:: Read syntax for vectors.
- * Vector Creation:: Dynamic vector creation and validation.
- * Vector Accessors:: Accessing and modifying vector contents.
- * Vector Accessing from C:: Ways to work with vectors from C.
- * Uniform Numeric Vectors:: Vectors of unboxed numeric values.
- @end menu
- @node Vector Syntax
- @subsubsection Read Syntax for Vectors
- Vectors can literally be entered in source code, just like strings,
- characters or some of the other data types. The read syntax for vectors
- is as follows: A sharp sign (@code{#}), followed by an opening
- parentheses, all elements of the vector in their respective read syntax,
- and finally a closing parentheses. Like strings, vectors do not have to
- be quoted.
- The following are examples of the read syntax for vectors; where the
- first vector only contains numbers and the second three different object
- types: a string, a symbol and a number in hexadecimal notation.
- @lisp
- #(1 2 3)
- #("Hello" foo #xdeadbeef)
- @end lisp
- @node Vector Creation
- @subsubsection Dynamic Vector Creation and Validation
- Instead of creating a vector implicitly by using the read syntax just
- described, you can create a vector dynamically by calling one of the
- @code{vector} and @code{list->vector} primitives with the list of Scheme
- values that you want to place into a vector. The size of the vector
- thus created is determined implicitly by the number of arguments given.
- @rnindex vector
- @rnindex list->vector
- @deffn {Scheme Procedure} vector arg @dots{}
- @deffnx {Scheme Procedure} list->vector l
- @deffnx {C Function} scm_vector (l)
- Return a newly allocated vector composed of the
- given arguments. Analogous to @code{list}.
- @lisp
- (vector 'a 'b 'c) @result{} #(a b c)
- @end lisp
- @end deffn
- The inverse operation is @code{vector->list}:
- @rnindex vector->list
- @deffn {Scheme Procedure} vector->list v
- @deffnx {C Function} scm_vector_to_list (v)
- Return a newly allocated list composed of the elements of @var{v}.
- @lisp
- (vector->list #(dah dah didah)) @result{} (dah dah didah)
- (list->vector '(dididit dah)) @result{} #(dididit dah)
- @end lisp
- @end deffn
- To allocate a vector with an explicitly specified size, use
- @code{make-vector}. With this primitive you can also specify an initial
- value for the vector elements (the same value for all elements, that
- is):
- @rnindex make-vector
- @deffn {Scheme Procedure} make-vector len [fill]
- @deffnx {C Function} scm_make_vector (len, fill)
- Return a newly allocated vector of @var{len} elements. If a
- second argument is given, then each position is initialized to
- @var{fill}. Otherwise the initial contents of each position is
- unspecified.
- @end deffn
- @deftypefn {C Function} SCM scm_c_make_vector (size_t k, SCM fill)
- Like @code{scm_make_vector}, but the length is given as a @code{size_t}.
- @end deftypefn
- To check whether an arbitrary Scheme value @emph{is} a vector, use the
- @code{vector?} primitive:
- @rnindex vector?
- @deffn {Scheme Procedure} vector? obj
- @deffnx {C Function} scm_vector_p (obj)
- Return @code{#t} if @var{obj} is a vector, otherwise return
- @code{#f}.
- @end deffn
- @deftypefn {C Function} int scm_is_vector (SCM obj)
- Return non-zero when @var{obj} is a vector, otherwise return
- @code{zero}.
- @end deftypefn
- @node Vector Accessors
- @subsubsection Accessing and Modifying Vector Contents
- @code{vector-length} and @code{vector-ref} return information about a
- given vector, respectively its size and the elements that are contained
- in the vector.
- @rnindex vector-length
- @deffn {Scheme Procedure} vector-length vector
- @deffnx {C Function} scm_vector_length (vector)
- Return the number of elements in @var{vector} as an exact integer.
- @end deffn
- @deftypefn {C Function} size_t scm_c_vector_length (SCM vec)
- Return the number of elements in @var{vec} as a @code{size_t}.
- @end deftypefn
- @rnindex vector-ref
- @deffn {Scheme Procedure} vector-ref vec k
- @deffnx {C Function} scm_vector_ref (vec, k)
- Return the contents of position @var{k} of @var{vec}.
- @var{k} must be a valid index of @var{vec}.
- @lisp
- (vector-ref #(1 1 2 3 5 8 13 21) 5) @result{} 8
- (vector-ref #(1 1 2 3 5 8 13 21)
- (let ((i (round (* 2 (acos -1)))))
- (if (inexact? i)
- (inexact->exact i)
- i))) @result{} 13
- @end lisp
- @end deffn
- @anchor{x-scm_c_vector_ref}
- @deftypefn {C Function} SCM scm_c_vector_ref (SCM vec, size_t k)
- Return the contents of position @var{k} (a @code{size_t}) of
- @var{vec}.
- @end deftypefn
- A vector created by one of the dynamic vector constructor procedures
- (@pxref{Vector Creation}) can be modified using the following
- procedures.
- @emph{NOTE:} According to R5RS, it is an error to use any of these
- procedures on a literally read vector, because such vectors should be
- considered as constants. Currently, however, Guile does not detect this
- error.
- @rnindex vector-set!
- @deffn {Scheme Procedure} vector-set! vec k obj
- @deffnx {C Function} scm_vector_set_x (vec, k, obj)
- Store @var{obj} in position @var{k} of @var{vec}.
- @var{k} must be a valid index of @var{vec}.
- The value returned by @samp{vector-set!} is unspecified.
- @lisp
- (let ((vec (vector 0 '(2 2 2 2) "Anna")))
- (vector-set! vec 1 '("Sue" "Sue"))
- vec) @result{} #(0 ("Sue" "Sue") "Anna")
- @end lisp
- @end deffn
- @anchor{x-scm_c_vector_set_x}
- @deftypefn {C Function} void scm_c_vector_set_x (SCM vec, size_t k, SCM obj)
- Store @var{obj} in position @var{k} (a @code{size_t}) of @var{vec}.
- @end deftypefn
- @rnindex vector-fill!
- @anchor{x-vector-fill!}
- @deffn {Scheme Procedure} vector-fill! vec fill [start [end]]
- @deffnx {C Function} scm_vector_fill_x (vec, fill)
- Store @var{fill} in every position of @var{vec} in the range
- [@var{start} ... @var{end}). @var{start} defaults to 0 and @var{end}
- defaults to the length of @var{vec}.
- The value returned by @code{vector-fill!} is unspecified.
- @end deffn
- @rnindex vector-copy
- @anchor{x-vector-copy}
- @deffn {Scheme Procedure} vector-copy vec [start [end]]
- @deffnx {C Function} scm_vector_copy (vec)
- Returns a freshly allocated vector containing the elements of @var{vec}
- in the range [@var{start} ... @var{end}). @var{start} defaults to 0 and
- @var{end} defaults to the length of @var{vec}.
- @end deffn
- @rnindex vector-copy!
- @anchor{x-vector-copy!}
- @deffn {Scheme Procedure} vector-copy! dst at src [start [end]]
- Copy the block of elements from vector @var{src} in the range
- [@var{start} ... @var{end}) into vector @var{dst}, starting at position
- @var{at}. @var{at} and @var{start} default to 0 and @var{end} defaults
- to the length of @var{src}.
- It is an error for @var{dst} to have a length less than @var{at} +
- (@var{end} - @var{start}).
- The order in which elements are copied is unspecified, except that if the
- source and destination overlap, copying takes place as if the source is
- first copied into a temporary vector and then into the destination.
- The value returned by @code{vector-copy!} is unspecified.
- @end deffn
- @deffn {Scheme Procedure} vector-move-left! vec1 start1 end1 vec2 start2
- @deffnx {C Function} scm_vector_move_left_x (vec1, start1, end1, vec2, start2)
- Copy elements from @var{vec1}, positions @var{start1} to @var{end1},
- to @var{vec2} starting at position @var{start2}. @var{start1} and
- @var{start2} are inclusive indices; @var{end1} is exclusive.
- @code{vector-move-left!} copies elements in leftmost order.
- Therefore, in the case where @var{vec1} and @var{vec2} refer to the
- same vector, @code{vector-move-left!} is usually appropriate when
- @var{start1} is greater than @var{start2}.
- The value returned by @code{vector-move-left!} is unspecified.
- @end deffn
- @deffn {Scheme Procedure} vector-move-right! vec1 start1 end1 vec2 start2
- @deffnx {C Function} scm_vector_move_right_x (vec1, start1, end1, vec2, start2)
- Copy elements from @var{vec1}, positions @var{start1} to @var{end1},
- to @var{vec2} starting at position @var{start2}. @var{start1} and
- @var{start2} are inclusive indices; @var{end1} is exclusive.
- @code{vector-move-right!} copies elements in rightmost order.
- Therefore, in the case where @var{vec1} and @var{vec2} refer to the
- same vector, @code{vector-move-right!} is usually appropriate when
- @var{start1} is less than @var{start2}.
- The value returned by @code{vector-move-right!} is unspecified.
- @end deffn
- @node Vector Accessing from C
- @subsubsection Vector Accessing from C
- A vector can be read and modified from C with the functions
- @ref{x-scm_c_vector_ref,@code{scm_c_vector_ref}} and
- @ref{x-scm_c_vector_set_x,@code{scm_c_vector_set_x}}. In addition to
- these functions, there are two other ways to access vectors from C that
- might be more efficient in certain situations: you can use the unsafe
- @emph{vector macros}; or you can use the general framework for accessing
- all kinds of arrays (@pxref{Accessing Arrays from C}), which is more
- verbose, but can deal efficiently with all kinds of vectors (and
- arrays). For arrays of rank 1 whose backing store is a vector, you can
- use the @code{scm_vector_elements} and
- @code{scm_vector_writable_elements} functions as shortcuts.
- @deftypefn {C Macro} size_t SCM_SIMPLE_VECTOR_LENGTH (SCM vec)
- Evaluates to the length of the vector @var{vec}. No type
- checking is done.
- @end deftypefn
- @deftypefn {C Macro} SCM SCM_SIMPLE_VECTOR_REF (SCM vec, size_t idx)
- Evaluates to the element at position @var{idx} in the vector @var{vec}.
- No type or range checking is done.
- @end deftypefn
- @deftypefn {C Macro} void SCM_SIMPLE_VECTOR_SET (SCM vec, size_t idx, SCM val)
- Sets the element at position @var{idx} in the vector @var{vec} to
- @var{val}. No type or range checking is done.
- @end deftypefn
- @deftypefn {C Function} {const SCM *} scm_vector_elements (SCM array, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
- Acquire a @ref{Accessing Arrays from C,handle} for @var{array} and
- return a read-only pointer to its elements. @var{array} must be either
- a vector, or an array of rank 1 whose backing store is a vector;
- otherwise an error is signaled. The handle must eventually be released
- with @ref{x-scm_array_handle_release,@code{scm_array_handle_release}}.
- The variables pointed to by @var{lenp} and @var{incp} are filled with
- the number of elements of the array and the increment (number of
- elements) between successive elements, respectively. Successive
- elements of @var{array} need not be contiguous in their underlying
- ``root vector'' returned here; hence the increment is not necessarily
- equal to 1 and may well be negative too (@pxref{Shared Arrays}).
- The following example shows the typical way to use this function. It
- creates a list of all elements of @var{array} (in reverse order).
- @example
- scm_t_array_handle handle;
- size_t i, len;
- ssize_t inc;
- const SCM *elt;
- SCM list;
- elt = scm_vector_elements (array, &handle, &len, &inc);
- list = SCM_EOL;
- for (i = 0; i < len; i++, elt += inc)
- list = scm_cons (*elt, list);
- scm_array_handle_release (&handle);
- @end example
- @end deftypefn
- @deftypefn {C Function} {SCM *} scm_vector_writable_elements (SCM array, scm_t_array_handle *handle, size_t *lenp, ssize_t *incp)
- Like @code{scm_vector_elements} but the pointer can be used to modify
- the array.
- The following example shows the typical way to use this function. It
- fills an array with @code{#t}.
- @example
- scm_t_array_handle handle;
- size_t i, len;
- ssize_t inc;
- SCM *elt;
- elt = scm_vector_writable_elements (array, &handle, &len, &inc);
- for (i = 0; i < len; i++, elt += inc)
- *elt = SCM_BOOL_T;
- scm_array_handle_release (&handle);
- @end example
- @end deftypefn
- @node Uniform Numeric Vectors
- @subsubsection Uniform Numeric Vectors
- A uniform numeric vector is a vector whose elements are all of a single
- numeric type. Guile offers uniform numeric vectors for signed and
- unsigned 8-bit, 16-bit, 32-bit, and 64-bit integers, two sizes of
- floating point values, and complex floating-point numbers of these two
- sizes. @xref{SRFI-4}, for more information.
- For many purposes, bytevectors work just as well as uniform vectors, and have
- the advantage that they integrate well with binary input and output.
- @xref{Bytevectors}, for more information on bytevectors.
- @node Bit Vectors
- @subsection Bit Vectors
- @noindent
- Bit vectors are zero-origin, one-dimensional arrays of booleans. They
- are displayed as a sequence of @code{0}s and @code{1}s prefixed by
- @code{#*}, e.g.,
- @example
- (make-bitvector 8 #f) @result{}
- #*00000000
- @end example
- Bit vectors are the special case of one dimensional bit arrays, and can
- thus be used with the array procedures, @xref{Arrays}.
- @deffn {Scheme Procedure} bitvector? obj
- Return @code{#t} when @var{obj} is a bitvector, else
- return @code{#f}.
- @end deffn
- @deffn {Scheme Procedure} make-bitvector len [fill]
- Create a new bitvector of length @var{len} and
- optionally initialize all elements to @var{fill}.
- @end deffn
- @deffn {Scheme Procedure} bitvector bit @dots{}
- Create a new bitvector with the arguments as elements.
- @end deffn
- @deffn {Scheme Procedure} bitvector-length vec
- Return the length of the bitvector @var{vec}.
- @end deffn
- @deffn {Scheme Procedure} bitvector-bit-set? vec idx
- @deffnx {Scheme Procedure} bitvector-bit-clear? vec idx
- Return @code{#t} if the bit at index @var{idx} of the bitvector
- @var{vec} is set (for @code{bitvector-bit-set?}) or clear (for
- @code{bitvector-bit-clear?}).
- @end deffn
- @deffn {Scheme Procedure} bitvector-set-bit! vec idx
- @deffnx {Scheme Procedure} bitvector-clear-bit! vec idx
- Set (for @code{bitvector-set-bit!}) or clear (for
- @code{bitvector-clear-bit!}) the bit at index @var{idx} of the bitvector
- @var{vec}.
- @end deffn
- @deffn {Scheme Procedure} bitvector-set-all-bits! vec
- @deffnx {Scheme Procedure} bitvector-clear-all-bits! vec
- @deffnx {Scheme Procedure} bitvector-flip-all-bits! vec
- Set, clear, or flip all bits of @var{vec}.
- @end deffn
- @deffn {Scheme Procedure} list->bitvector list
- @deffnx {C Function} scm_list_to_bitvector (list)
- Return a new bitvector initialized with the elements
- of @var{list}.
- @end deffn
- @deffn {Scheme Procedure} bitvector->list vec
- @deffnx {C Function} scm_bitvector_to_list (vec)
- Return a new list initialized with the elements
- of the bitvector @var{vec}.
- @end deffn
- @deffn {Scheme Procedure} bitvector-copy bitvector [start [end]]
- @deffnx {C Function} scm_bitvector_copy (bitvector, start, end)
- Returns a freshly allocated bitvector containing the elements of @var{bitvector}
- in the range [@var{start} ... @var{end}). @var{start} defaults to 0 and
- @var{end} defaults to the length of @var{bitvector}.
- @end deffn
- @deffn {Scheme Procedure} bitvector-count bitvector
- Return a count of how many entries in @var{bitvector} are set.
- @example
- (bitvector-count #*000111000) @result{} 3
- @end example
- @end deffn
- @deffn {Scheme Procedure} bitvector-count-bits bitvector bits
- Return a count of how many entries in @var{bitvector} are set, with the
- bitvector @var{bits} selecting the entries to consider. @var{bitvector}
- must be at least as long as @var{bits}.
- For example,
- @example
- (bitvector-count-bits #*01110111 #*11001101) @result{} 3
- @end example
- @end deffn
- @deffn {Scheme Procedure} bitvector-position bitvector bool start
- @deffnx {C Function} scm_bitvector_position (bitvector, bool, start)
- Return the index of the first occurrence of @var{bool} in
- @var{bitvector}, starting from @var{start}. If there is no @var{bool}
- entry between @var{start} and the end of @var{bitvector}, then return
- @code{#f}. For example,
- @example
- (bitvector-position #*000101 #t 0) @result{} 3
- (bitvector-position #*0001111 #f 3) @result{} #f
- @end example
- @end deffn
- @deffn {Scheme Procedure} bitvector-set-bits! bitvector bits
- Set entries of @var{bitvector} to @code{#t}, with @var{bits} selecting
- the bits to set. The return value is unspecified. @var{bitvector} must
- be at least as long as @var{bits}.
- @example
- (define bv (bitvector-copy #*11000010))
- (bitvector-set-bits! bv #*10010001)
- bv
- @result{} #*11010011
- @end example
- @end deffn
- @deffn {Scheme Procedure} bitvector-clear-bits! bitvector bits
- Set entries of @var{bitvector} to @code{#f}, with @var{bits} selecting
- the bits to clear. The return value is unspecified. @var{bitvector}
- must be at least as long as @var{bits}.
- @example
- (define bv (bitvector-copy #*11000010))
- (bitvector-clear-bits! bv #*10010001)
- bv
- @result{} #*01000010
- @end example
- @end deffn
- @deftypefn {C Function} int scm_is_bitvector (SCM obj)
- @deftypefnx {C Function} SCM scm_c_make_bitvector (size_t len, SCM fill)
- @deftypefnx {C Function} int scm_bitvector_bit_is_set (SCM vec, size_t idx)
- @deftypefnx {C Function} int scm_bitvector_bit_is_clear (SCM vec, size_t idx)
- @deftypefnx {C Function} void scm_c_bitvector_set_bit_x (SCM vec, size_t idx)
- @deftypefnx {C Function} void scm_c_bitvector_clear_bit_x (SCM vec, size_t idx)
- @deftypefnx {C Function} void scm_c_bitvector_set_bits_x (SCM vec, SCM bits)
- @deftypefnx {C Function} void scm_c_bitvector_clear_bits_x (SCM vec, SCM bits)
- @deftypefnx {C Function} void scm_c_bitvector_set_all_bits_x (SCM vec)
- @deftypefnx {C Function} void scm_c_bitvector_clear_all_bits_x (SCM vec)
- @deftypefnx {C Function} void scm_c_bitvector_flip_all_bits_x (SCM vec)
- @deftypefnx {C Function} size_t scm_c_bitvector_length (SCM bitvector)
- @deftypefnx {C Function} size_t scm_c_bitvector_count (SCM bitvector)
- @deftypefnx {C Function} size_t scm_c_bitvector_count_bits (SCM bitvector, SCM bits)
- C API for the corresponding Scheme bitvector interfaces.
- @end deftypefn
- @deftypefn {C Function} {const scm_t_uint32 *} scm_bitvector_elements (SCM vec, scm_t_array_handle *handle, size_t *offp, size_t *lenp, ssize_t *incp)
- Like @code{scm_vector_elements} (@pxref{Vector Accessing from C}), but
- for bitvectors. The variable pointed to by @var{offp} is set to the
- value returned by @code{scm_array_handle_bit_elements_offset}. See
- @code{scm_array_handle_bit_elements} for how to use the returned
- pointer and the offset.
- @end deftypefn
- @deftypefn {C Function} {scm_t_uint32 *} scm_bitvector_writable_elements (SCM vec, scm_t_array_handle *handle, size_t *offp, size_t *lenp, ssize_t *incp)
- Like @code{scm_bitvector_elements}, but the pointer is good for reading
- and writing.
- @end deftypefn
- @node Bytevectors
- @subsection Bytevectors
- @cindex bytevector
- @cindex R6RS
- A @dfn{bytevector} is a raw byte string. The @code{(rnrs bytevectors)}
- module provides the programming interface specified by the
- @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
- Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
- interpret their contents in a number of ways: as signed or unsigned
- integer of various sizes and endianness, as IEEE-754 floating point
- numbers, or as strings. It is a useful tool to encode and decode binary
- data. The @ref{R7RS Support,R7RS} offers its own set of bytevector
- procedures (@pxref{Bytevector Procedures in R7RS}).
- The R6RS (Section 4.3.4) specifies an external representation for
- bytevectors, whereby the octets (integers in the range 0--255) contained
- in the bytevector are represented as a list prefixed by @code{#vu8}:
- @lisp
- #vu8(1 53 204)
- @end lisp
- denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
- string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
- they do not need to be quoted:
- @lisp
- #vu8(1 53 204)
- @result{} #vu8(1 53 204)
- @end lisp
- Bytevectors can be used with the binary input/output primitives
- (@pxref{Binary I/O}).
- @menu
- * Bytevector Endianness:: Dealing with byte order.
- * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
- * Bytevectors as Integers:: Interpreting bytes as integers.
- * Bytevectors and Integer Lists:: Converting to/from an integer list.
- * Bytevectors as Floats:: Interpreting bytes as real numbers.
- * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
- * Bytevectors as Arrays:: Guile extension to the bytevector API.
- * Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
- * Bytevector Procedures in R7RS:: R7RS interface for bytevectors.
- * Bytevector Slices:: Aliases for parts of a bytevector.
- @end menu
- @node Bytevector Endianness
- @subsubsection Endianness
- @cindex endianness
- @cindex byte order
- @cindex word order
- Some of the following procedures take an @var{endianness} parameter.
- The @dfn{endianness} is defined as the order of bytes in multi-byte
- numbers: numbers encoded in @dfn{big endian} have their most
- significant bytes written first, whereas numbers encoded in
- @dfn{little endian} have their least significant bytes
- first@footnote{Big-endian and little-endian are the most common
- ``endiannesses'', but others do exist. For instance, the GNU MP
- library allows @dfn{word order} to be specified independently of
- @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
- Multiple Precision Arithmetic Library Manual}).}.
- Little-endian is the native endianness of the IA32 architecture and
- its derivatives, while big-endian is native to SPARC and PowerPC,
- among others. The @code{native-endianness} procedure returns the
- native endianness of the machine it runs on.
- @deffn {Scheme Procedure} native-endianness
- @deffnx {C Function} scm_native_endianness ()
- Return a value denoting the native endianness of the host machine.
- @end deffn
- @deffn {Scheme Macro} endianness symbol
- Return an object denoting the endianness specified by @var{symbol}. If
- @var{symbol} is neither @code{big} nor @code{little} then an error is
- raised at expand-time.
- @end deffn
- @defvr {C Variable} scm_endianness_big
- @defvrx {C Variable} scm_endianness_little
- The objects denoting big- and little-endianness, respectively.
- @end defvr
- @node Bytevector Manipulation
- @subsubsection Manipulating Bytevectors
- Bytevectors can be created, copied, and analyzed with the following
- procedures and C functions.
- @anchor{x-make-bytevector}
- @deffn {Scheme Procedure} make-bytevector len [fill]
- @deffnx {C Function} scm_make_bytevector (len, fill)
- @deffnx {C Function} scm_c_make_bytevector (size_t len)
- Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
- is given, fill it with @var{fill}; @var{fill} must be in the range
- [-128,255].
- @end deffn
- @anchor{x-bytevector?}
- @deffn {Scheme Procedure} bytevector? obj
- @deffnx {C Function} scm_bytevector_p (obj)
- Return true if @var{obj} is a bytevector.
- @end deffn
- @deftypefn {C Function} int scm_is_bytevector (SCM obj)
- Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
- @end deftypefn
- @anchor{x-bytevector-length}
- @deffn {Scheme Procedure} bytevector-length bv
- @deffnx {C Function} scm_bytevector_length (bv)
- Return the length in bytes of bytevector @var{bv}.
- @end deffn
- @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
- Likewise, return the length in bytes of bytevector @var{bv}.
- @end deftypefn
- @deffn {Scheme Procedure} bytevector=? bv1 bv2
- @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
- Return @code{#t} if @var{bv1} equals @var{bv2}---i.e., if they have the same
- length and contents.
- @end deffn
- @deffn {Scheme Procedure} bytevector-fill! bv fill [start [end]]
- @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
- Fill positions [@var{start} ... @var{end}) of bytevector @var{bv} with
- byte @var{fill}. @var{start} defaults to 0 and @var{end} defaults to the
- length of @var{bv}.@footnote{R6RS only defines @code{(bytevector-fill! bv
- fill)}. Arguments @var{start} and @var{end} are a Guile extension
- (cf. @ref{x-vector-fill!,@code{vector-fill!}},
- @ref{x-string-fill!,@code{string-fill!}}).}
- @end deffn
- @anchor{x-r6:bytevector-copy!}
- @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
- @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
- Copy @var{len} bytes from @var{source} into @var{target}, starting
- reading from @var{source-start} (an index index within @var{source})
- and writing at @var{target-start}.
- It is permitted for the @var{source} and @var{target} regions to
- overlap. In that case, copying takes place as if the source is first
- copied into a temporary bytevector and then into the destination.
- @end deffn
- @anchor{x-r6:bytevector-copy}
- @deffn {Scheme Procedure} bytevector-copy bv
- @deffnx {C Function} scm_bytevector_copy (bv)
- Return a newly allocated copy of @var{bv}.
- @end deffn
- @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
- Return the byte at @var{index} in bytevector @var{bv}.
- @end deftypefn
- @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
- Set the byte at @var{index} in @var{bv} to @var{value}.
- @end deftypefn
- Low-level C macros are available. They do not perform any
- type-checking; as such they should be used with care.
- @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
- Return the length in bytes of bytevector @var{bv}.
- @end deftypefn
- @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
- Return a pointer to the contents of bytevector @var{bv}.
- @end deftypefn
- @node Bytevectors as Integers
- @subsubsection Interpreting Bytevector Contents as Integers
- The contents of a bytevector can be interpreted as a sequence of
- integers of any given size, sign, and endianness.
- @lisp
- (let ((bv (make-bytevector 4)))
- (bytevector-u8-set! bv 0 #x12)
- (bytevector-u8-set! bv 1 #x34)
- (bytevector-u8-set! bv 2 #x56)
- (bytevector-u8-set! bv 3 #x78)
- (map (lambda (number)
- (number->string number 16))
- (list (bytevector-u8-ref bv 0)
- (bytevector-u16-ref bv 0 (endianness big))
- (bytevector-u32-ref bv 0 (endianness little)))))
- @result{} ("12" "1234" "78563412")
- @end lisp
- The most generic procedures to interpret bytevector contents as integers
- are described below.
- @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
- @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
- Return the @var{size}-byte long unsigned integer at index @var{index} in
- @var{bv}, decoded according to @var{endianness}.
- @end deffn
- @deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
- @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
- Return the @var{size}-byte long signed integer at index @var{index} in
- @var{bv}, decoded according to @var{endianness}.
- @end deffn
- @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
- @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
- Set the @var{size}-byte long unsigned integer at @var{index} to
- @var{value}, encoded according to @var{endianness}.
- @end deffn
- @deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
- @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
- Set the @var{size}-byte long signed integer at @var{index} to
- @var{value}, encoded according to @var{endianness}.
- @end deffn
- The following procedures are similar to the ones above, but specialized
- to a given integer size:
- @anchor{x-bytevector-u8-ref}
- @deffn {Scheme Procedure} bytevector-u8-ref bv index
- @deffnx {Scheme Procedure} bytevector-s8-ref bv index
- @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
- @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
- @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
- @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
- @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
- @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
- @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
- @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
- @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
- @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
- @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
- @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
- @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
- @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
- Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
- 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
- @var{endianness}.
- @end deffn
- @anchor{x-bytevector-u8-set!}
- @deffn {Scheme Procedure} bytevector-u8-set! bv index value
- @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
- @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
- @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
- @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
- @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
- @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
- @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
- @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
- @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
- @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
- @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
- @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
- @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
- @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
- @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
- Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
- 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
- @var{endianness}.
- @end deffn
- Finally, a variant specialized for the host's endianness is available
- for each of these functions (with the exception of the @code{u8} and
- @code{s8} accessors, as endianness is about byte order and there is only
- 1 byte):
- @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
- @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
- @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
- @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
- @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
- @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
- @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
- @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
- @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
- @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
- @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
- @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
- Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
- 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
- host's native endianness.
- @end deffn
- @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
- @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
- @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
- @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
- @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
- @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
- @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
- @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
- @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
- @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
- @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
- @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
- Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
- 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
- host's native endianness.
- @end deffn
- @node Bytevectors and Integer Lists
- @subsubsection Converting Bytevectors to/from Integer Lists
- Bytevector contents can readily be converted to/from lists of signed or
- unsigned integers:
- @lisp
- (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
- (endianness little) 2)
- @result{} (-1 -1)
- @end lisp
- @deffn {Scheme Procedure} bytevector->u8-list bv
- @deffnx {C Function} scm_bytevector_to_u8_list (bv)
- Return a newly allocated list of unsigned 8-bit integers from the
- contents of @var{bv}.
- @end deffn
- @anchor{x-u8-list->bytevector}
- @deffn {Scheme Procedure} u8-list->bytevector lst
- @deffnx {C Function} scm_u8_list_to_bytevector (lst)
- Return a newly allocated bytevector consisting of the unsigned 8-bit
- integers listed in @var{lst}.
- @end deffn
- @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
- @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
- Return a list of unsigned integers of @var{size} bytes representing the
- contents of @var{bv}, decoded according to @var{endianness}.
- @end deffn
- @deffn {Scheme Procedure} bytevector->sint-list bv endianness size
- @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
- Return a list of signed integers of @var{size} bytes representing the
- contents of @var{bv}, decoded according to @var{endianness}.
- @end deffn
- @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
- @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
- Return a new bytevector containing the unsigned integers listed in
- @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
- @end deffn
- @deffn {Scheme Procedure} sint-list->bytevector lst endianness size
- @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
- Return a new bytevector containing the signed integers listed in
- @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
- @end deffn
- @node Bytevectors as Floats
- @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
- @cindex IEEE-754 floating point numbers
- Bytevector contents can also be accessed as IEEE-754 single- or
- double-precision floating point numbers (respectively 32 and 64-bit
- long) using the procedures described here.
- @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
- @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
- @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
- @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
- Return the IEEE-754 single-precision floating point number from @var{bv}
- at @var{index} according to @var{endianness}.
- @end deffn
- @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
- @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
- @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
- @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
- Store real number @var{value} in @var{bv} at @var{index} according to
- @var{endianness}.
- @end deffn
- Specialized procedures are also available:
- @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
- @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
- @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
- @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
- Return the IEEE-754 single-precision floating point number from @var{bv}
- at @var{index} according to the host's native endianness.
- @end deffn
- @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
- @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
- @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
- @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
- Store real number @var{value} in @var{bv} at @var{index} according to
- the host's native endianness.
- @end deffn
- @node Bytevectors as Strings
- @subsubsection Interpreting Bytevector Contents as Unicode Strings
- @cindex Unicode string encoding
- Bytevector contents can also be interpreted as Unicode strings encoded
- in one of the most commonly available encoding formats.
- @xref{Representing Strings as Bytes}, for a more generic interface.
- @lisp
- (utf8->string (u8-list->bytevector '(99 97 102 101)))
- @result{} "cafe"
- (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
- @result{} #vu8(99 97 102 195 169)
- @end lisp
- @deftypefn {Scheme Procedure} {} string-utf8-length str
- @deftypefnx {C function} SCM scm_string_utf8_length (str)
- @deftypefnx {C function} size_t scm_c_string_utf8_length (str)
- Return the number of bytes in the UTF-8 representation of @var{str}.
- @end deftypefn
- @deffn {Scheme Procedure} string->utf8 str
- @deffnx {Scheme Procedure} string->utf16 str [endianness]
- @deffnx {Scheme Procedure} string->utf32 str [endianness]
- @deffnx {C Function} scm_string_to_utf8 (str)
- @deffnx {C Function} scm_string_to_utf16 (str, endianness)
- @deffnx {C Function} scm_string_to_utf32 (str, endianness)
- Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
- UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
- @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
- it defaults to big endian.
- @end deffn
- @deffn {Scheme Procedure} utf8->string utf
- @deffnx {Scheme Procedure} utf16->string utf [endianness]
- @deffnx {Scheme Procedure} utf32->string utf [endianness]
- @deffnx {C Function} scm_utf8_to_string (utf)
- @deffnx {C Function} scm_utf16_to_string (utf, endianness)
- @deffnx {C Function} scm_utf32_to_string (utf, endianness)
- Return a newly allocated string that contains from the UTF-8-, UTF-16-,
- or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
- @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
- it defaults to big endian.
- @end deffn
- @node Bytevectors as Arrays
- @subsubsection Accessing Bytevectors with the Array API
- As an extension to the R6RS, Guile allows bytevectors to be manipulated
- with the @dfn{array} procedures (@pxref{Arrays}). When using these
- APIs, bytes are accessed one at a time as 8-bit unsigned integers:
- @example
- (define bv #vu8(0 1 2 3))
- (array? bv)
- @result{} #t
- (array-rank bv)
- @result{} 1
- (array-ref bv 2)
- @result{} 2
- ;; Note the different argument order on array-set!.
- (array-set! bv 77 2)
- (array-ref bv 2)
- @result{} 77
- (array-type bv)
- @result{} vu8
- @end example
- @node Bytevectors as Uniform Vectors
- @subsubsection Accessing Bytevectors with the SRFI-4 API
- Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
- Bytevectors}, for more information.
- @node Bytevector Procedures in R7RS
- @subsubsection Bytevector Procedures in R7RS
- The @ref{R7RS Support,R7RS} (Section 6.9) defines a set of
- bytevector manipulation procedures, accessible with
- @example
- (use-modules (scheme base))
- @end example
- Of these, @ref{x-make-bytevector,@code{make-bytevector}},
- @ref{x-bytevector?,@code{bytevector?}},
- @ref{x-bytevector-length,@code{bytevector-length}},
- @ref{x-bytevector-u8-ref,@code{bytevector-u8-ref}} and
- @ref{x-bytevector-u8-set!,@code{bytevector-u8-set!}} have the same
- definition as in R6RS. The procedures listed below either have a
- different definition in R7RS and R6RS, or are not defined in R6RS.
- @deffn {Scheme Procedure} bytevector arg @dots{}
- Return a newly allocated bytevector composed of the given arguments.
- Analogous to @code{list}.
- @lisp
- (bytevector 2 3 4) @result{} #vu8(2 3 4)
- @end lisp
- See also @ref{x-u8-list->bytevector,@code{u8-list->bytevector}}.
- @end deffn
- @anchor{x-r7:bytevector-copy}
- @deffn {Scheme Procedure} bytevector-copy bv [start [end]]
- Returns a newly allocated bytevector containing the elements of @var{bv}
- in the range [@var{start} ... @var{end}). @var{start} defaults to 0 and
- @var{end} defaults to the length of @var{bv}.
- @lisp
- (define bv #vu8(0 1 2 3 4 5))
- (bytevector-copy bv) @result{} #vu8(0 1 2 3 4 5)
- (bytevector-copy bv 2) @result{} #vu8(2 3 4 5)
- (bytevector-copy bv 2 4) @result{} #vu8(2 3)
- @end lisp
- See also @ref{x-r6:bytevector-copy,the R6RS version}.
- @end deffn
- @anchor{x-r7:bytevector-copy!}
- @deffn {Scheme Procedure} bytevector-copy! dst at src [start [end]]
- Copy the block of elements from bytevector @var{src} in the range
- [@var{start} ... @var{end}) into bytevector @var{dst}, starting at
- position @var{at}. @var{start} defaults to 0 and @var{end} defaults to
- the length of @var{src}. It is an error for @var{dst}
- to have a length less than @var{at} + (@var{end} - @var{start}).
- See also @ref{x-r6:bytevector-copy!,the R6RS version}. With
- @lisp
- (use-modules ((rnrs bytevectors) #:prefix r6:)
- ((scheme base) #:prefix r7:))
- @end lisp
- the following calls are equivalent:
- @lisp
- (r6:bytevector-copy! source source-start target target-start len)
- (r7:bytevector-copy! target target-start source source-start (+ source-start len))
- @end lisp
- @end deffn
- @rnindex bytevector-append
- @deffn {Scheme Procedure} bytevector-append arg @dots{}
- Return a newly allocated bytevector whose characters form the
- concatenation of the given bytevectors @var{arg} @enddots{}
- @lisp
- (bytevector-append #vu8(0 1 2) #vu8(3 4 5))
- @result{} #vu8(0 1 2 3 4 5)
- @end lisp
- @end deffn
- @node Bytevector Slices
- @subsubsection Bytevector Slices
- @cindex subset, of a bytevector
- @cindex slice, of a bytevector
- @cindex slice, of a uniform vector
- As an extension to the R6RS specification, the @code{(rnrs bytevectors
- gnu)} module provides the @code{bytevector-slice} procedure, which
- returns a bytevector aliasing part of an existing bytevector.
- @deffn {Scheme Procedure} bytevector-slice @var{bv} @var{offset} [@var{size}]
- @deffnx {C Function} scm_bytevector_slice (@var{bv}, @var{offset}, @var{size})
- Return the slice of @var{bv} starting at @var{offset} and counting
- @var{size} bytes. When @var{size} is omitted, the slice covers all
- of @var{bv} starting from @var{offset}. The returned slice shares
- storage with @var{bv}: changes to the slice are visible in @var{bv}
- and vice-versa.
- When @var{bv} is actually a SRFI-4 uniform vector, its element
- type is preserved unless @var{offset} and @var{size} are not aligned
- on its element type size.
- @end deffn
- Here is an example showing how to use it:
- @lisp
- (use-modules (rnrs bytevectors)
- (rnrs bytevectors gnu))
- (define bv (u8-list->bytevector (iota 10)))
- (define slice (bytevector-slice bv 2 3))
- slice
- @result{} #vu8(2 3 4)
- (bytevector-u8-set! slice 0 77)
- slice
- @result{} #vu8(77 3 4)
- bv
- @result{} #vu8(0 1 77 3 4 5 6 7 8 9)
- @end lisp
- @node Arrays
- @subsection Arrays
- @tpindex Arrays
- @dfn{Arrays} are a collection of cells organized into an arbitrary
- number of dimensions. Each cell can be accessed in constant time by
- supplying an index for each dimension.
- In the current implementation, an array uses a vector of some kind for
- the actual storage of its elements. Any kind of vector will do, so you
- can have arrays of uniform numeric values, arrays of characters, arrays
- of bits, and of course, arrays of arbitrary Scheme values. For example,
- arrays with an underlying @code{c64vector} might be nice for digital
- signal processing, while arrays made from a @code{u8vector} might be
- used to hold gray-scale images.
- The number of dimensions of an array is called its @dfn{rank}. Thus,
- a matrix is an array of rank 2, while a vector has rank 1. When
- accessing an array element, you have to specify one exact integer for
- each dimension. These integers are called the @dfn{indices} of the
- element. An array specifies the allowed range of indices for each
- dimension via an inclusive lower and upper bound. These bounds can
- well be negative, but the upper bound must be greater than or equal to
- the lower bound minus one. When all lower bounds of an array are
- zero, it is called a @dfn{zero-origin} array.
- Arrays can be of rank 0, which could be interpreted as a scalar.
- Thus, a zero-rank array can store exactly one object and the list of
- indices of this element is the empty list.
- Arrays contain zero elements when one of their dimensions has a zero
- length. These empty arrays maintain information about their shape: a
- matrix with zero columns and 3 rows is different from a matrix with 3
- columns and zero rows, which again is different from a vector of
- length zero.
- The array procedures are all polymorphic, treating strings, uniform
- numeric vectors, bytevectors, bit vectors and ordinary vectors as one
- dimensional arrays.
- @menu
- * Array Syntax::
- * Array Procedures::
- * Shared Arrays::
- * Arrays as arrays of arrays::
- * Accessing Arrays from C::
- @end menu
- @node Array Syntax
- @subsubsection Array Syntax
- An array is displayed as @code{#} followed by its rank, followed by a
- tag that describes the underlying vector, optionally followed by
- information about its shape, and finally followed by the cells,
- organized into dimensions using parentheses.
- In more words, the array tag is of the form
- @example
- #<rank><vectag><@@lower><:len><@@lower><:len>...
- @end example
- where @code{<rank>} is a positive integer in decimal giving the rank of
- the array. It is omitted when the rank is 1 and the array is non-shared
- and has zero-origin (see below). For shared arrays and for a non-zero
- origin, the rank is always printed even when it is 1 to distinguish
- them from ordinary vectors.
- The @code{<vectag>} part is the tag for a uniform numeric vector, like
- @code{u8}, @code{s16}, etc, @code{b} for bitvectors, or @code{a} for
- strings. It is empty for ordinary vectors.
- The @code{<@@lower>} part is a @samp{@@} character followed by a signed
- integer in decimal giving the lower bound of a dimension. There is one
- @code{<@@lower>} for each dimension. When all lower bounds are zero,
- all @code{<@@lower>} parts are omitted.
- The @code{<:len>} part is a @samp{:} character followed by an unsigned
- integer in decimal giving the length of a dimension. Like for the lower
- bounds, there is one @code{<:len>} for each dimension, and the
- @code{<:len>} part always follows the @code{<@@lower>} part for a
- dimension. Lengths are only then printed when they can't be deduced
- from the nested lists of elements of the array literal, which can happen
- when at least one length is zero.
- As a special case, an array of rank 0 is printed as
- @code{#0<vectag>(<scalar>)}, where @code{<scalar>} is the result of
- printing the single element of the array.
- Thus,
- @table @code
- @item #(1 2 3)
- is an ordinary array of rank 1 with lower bound 0 in dimension 0.
- (I.e., a regular vector.)
- @item #@@2(1 2 3)
- is an ordinary array of rank 1 with lower bound 2 in dimension 0.
- @item #2((1 2 3) (4 5 6))
- is a non-uniform array of rank 2; a 2@cross{}3 matrix with index ranges 0..1
- and 0..2.
- @item #u8(0 1 2)
- is a uniform u8 array of rank 1.
- @item #2u32@@2@@3((1 2) (2 3))
- is a uniform u32 array of rank 2 with index ranges 2..3 and 3..4.
- @item #2()
- is a two-dimensional array with index ranges 0..-1 and 0..-1, i.e.@:
- both dimensions have length zero.
- @item #2:0:2()
- is a two-dimensional array with index ranges 0..-1 and 0..1, i.e.@: the
- first dimension has length zero, but the second has length 2.
- @item #0(12)
- is a rank-zero array with contents 12.
- @end table
- In addition, bytevectors are also arrays, but use a different syntax
- (@pxref{Bytevectors}):
- @table @code
- @item #vu8(1 2 3)
- is a 3-byte long bytevector, with contents 1, 2, 3.
- @end table
- @node Array Procedures
- @subsubsection Array Procedures
- When an array is created, the range of each dimension must be
- specified, e.g., to create a 2@cross{}3 array with a zero-based index:
- @example
- (make-array 'ho 2 3) @result{} #2((ho ho ho) (ho ho ho))
- @end example
- The range of each dimension can also be given explicitly, e.g., another
- way to create the same array:
- @example
- (make-array 'ho '(0 1) '(0 2)) @result{} #2((ho ho ho) (ho ho ho))
- @end example
- The following procedures can be used with arrays (or vectors). An
- argument shown as @var{idx}@dots{} means one parameter for each
- dimension in the array. A @var{idxlist} argument means a list of such
- values, one for each dimension.
- @deffn {Scheme Procedure} array? obj
- @deffnx {C Function} scm_array_p (obj, unused)
- Return @code{#t} if the @var{obj} is an array, and @code{#f} if
- not.
- The second argument to scm_array_p is there for historical reasons,
- but it is not used. You should always pass @code{SCM_UNDEFINED} as
- its value.
- @end deffn
- @deffn {Scheme Procedure} typed-array? obj type
- @deffnx {C Function} scm_typed_array_p (obj, type)
- Return @code{#t} if the @var{obj} is an array of type @var{type}, and
- @code{#f} if not.
- @end deffn
- @deftypefn {C Function} int scm_is_array (SCM obj)
- Return @code{1} if the @var{obj} is an array and @code{0} if not.
- @end deftypefn
- @deftypefn {C Function} int scm_is_typed_array (SCM obj, SCM type)
- Return @code{0} if the @var{obj} is an array of type @var{type}, and
- @code{1} if not.
- @end deftypefn
- @deffn {Scheme Procedure} make-array fill bound @dots{}
- @deffnx {C Function} scm_make_array (fill, bounds)
- Equivalent to @code{(make-typed-array #t @var{fill} @var{bound} ...)}.
- @end deffn
- @deffn {Scheme Procedure} make-typed-array type fill bound @dots{}
- @deffnx {C Function} scm_make_typed_array (type, fill, bounds)
- Create and return an array that has as many dimensions as there are
- @var{bound}s and (maybe) fill it with @var{fill}.
- The underlying storage vector is created according to @var{type},
- which must be a symbol whose name is the `vectag' of the array as
- explained above, or @code{#t} for ordinary, non-specialized arrays.
- For example, using the symbol @code{f64} for @var{type} will create an
- array that uses a @code{f64vector} for storing its elements, and
- @code{a} will use a string.
- When @var{fill} is not the special @emph{unspecified} value, the new
- array is filled with @var{fill}. Otherwise, the initial contents of
- the array is unspecified. The special @emph{unspecified} value is
- stored in the variable @code{*unspecified*} so that for example
- @code{(make-typed-array 'u32 *unspecified* 4)} creates a uninitialized
- @code{u32} vector of length 4.
- Each @var{bound} may be a positive non-zero integer @var{n}, in which
- case the index for that dimension can range from 0 through @var{n}-1; or
- an explicit index range specifier in the form @code{(LOWER UPPER)},
- where both @var{lower} and @var{upper} are integers, possibly less than
- zero, and possibly the same number (however, @var{lower} cannot be
- greater than @var{upper}).
- @end deffn
- @deffn {Scheme Procedure} list->array dimspec list
- Equivalent to @code{(list->typed-array #t @var{dimspec}
- @var{list})}.
- @end deffn
- @deffn {Scheme Procedure} list->typed-array type dimspec list
- @deffnx {C Function} scm_list_to_typed_array (type, dimspec, list)
- Return an array of the type indicated by @var{type} with elements the
- same as those of @var{list}.
- The argument @var{dimspec} determines the number of dimensions of the
- array and their lower bounds. When @var{dimspec} is an exact integer,
- it gives the number of dimensions directly and all lower bounds are
- zero. When it is a list of exact integers, then each element is the
- lower index bound of a dimension, and there will be as many dimensions
- as elements in the list.
- @end deffn
- @deffn {Scheme Procedure} array-type array
- @deffnx {C Function} scm_array_type (array)
- Return the type of @var{array}. This is the `vectag' used for
- printing @var{array} (or @code{#t} for ordinary arrays) and can be
- used with @code{make-typed-array} to create an array of the same kind
- as @var{array}.
- @end deffn
- @deffn {Scheme Procedure} array-ref array idx @dots{}
- @deffnx {C Function} scm_array_ref (array, idxlist)
- Return the element at @code{(idx @dots{})} in @var{array}.
- @example
- (define a (make-array 999 '(1 2) '(3 4)))
- (array-ref a 2 4) @result{} 999
- @end example
- @end deffn
- @deffn {Scheme Procedure} array-in-bounds? array idx @dots{}
- @deffnx {C Function} scm_array_in_bounds_p (array, idxlist)
- Return @code{#t} if the given indices would be acceptable to
- @code{array-ref}.
- @example
- (define a (make-array #f '(1 2) '(3 4)))
- (array-in-bounds? a 2 3) @result{} #t
- (array-in-bounds? a 0 0) @result{} #f
- @end example
- @end deffn
- @deffn {Scheme Procedure} array-set! array obj idx @dots{}
- @deffnx {C Function} scm_array_set_x (array, obj, idxlist)
- Set the element at @code{(idx @dots{})} in @var{array} to @var{obj}.
- The return value is unspecified.
- @example
- (define a (make-array #f '(0 1) '(0 1)))
- (array-set! a #t 1 1)
- a @result{} #2((#f #f) (#f #t))
- @end example
- @end deffn
- @deffn {Scheme Procedure} array-shape array
- @deffnx {Scheme Procedure} array-dimensions array
- @deffnx {C Function} scm_array_dimensions (array)
- Return a list of the bounds for each dimension of @var{array}.
- @code{array-shape} gives @code{(@var{lower} @var{upper})} for each
- dimension. @code{array-dimensions} instead returns just
- @math{@var{upper}+1} for dimensions with a 0 lower bound. Both are
- suitable as input to @code{make-array}.
- For example,
- @example
- (define a (make-array 'foo '(-1 3) 5))
- (array-shape a) @result{} ((-1 3) (0 4))
- (array-dimensions a) @result{} ((-1 3) 5)
- @end example
- @end deffn
- @deffn {Scheme Procedure} array-length array
- @deffnx {C Function} scm_array_length (array)
- @deffnx {C Function} size_t scm_c_array_length (array)
- Return the length of an array: its first dimension. It is an error to
- ask for the length of an array of rank 0.
- @end deffn
- @deffn {Scheme Procedure} array-rank array
- @deffnx {C Function} scm_array_rank (array)
- Return the rank of @var{array}.
- @end deffn
- @deftypefn {C Function} size_t scm_c_array_rank (SCM array)
- Return the rank of @var{array} as a @code{size_t}.
- @end deftypefn
- @deffn {Scheme Procedure} array->list array
- @deffnx {C Function} scm_array_to_list (array)
- Return a list consisting of all the elements, in order, of
- @var{array}.
- @end deffn
- @c FIXME: Describe how the order affects the copying (it matters for
- @c shared arrays with the same underlying root vector, presumably).
- @c
- @deffn {Scheme Procedure} array-copy! src dst
- @deffnx {Scheme Procedure} array-copy-in-order! src dst
- @deffnx {C Function} scm_array_copy_x (src, dst)
- Copy every element from vector or array @var{src} to the corresponding
- element of @var{dst}. @var{dst} must have the same rank as @var{src},
- and be at least as large in each dimension. The return value is
- unspecified.
- @end deffn
- @deffn {Scheme Procedure} array-fill! array fill
- @deffnx {C Function} scm_array_fill_x (array, fill)
- Store @var{fill} in every element of @var{array}. The value returned
- is unspecified.
- @end deffn
- @c begin (texi-doc-string "guile" "array-equal?")
- @deffn {Scheme Procedure} array-equal? array @dots{}
- Return @code{#t} if all arguments are arrays with the same shape, the
- same type, and have corresponding elements which are either
- @code{equal?} or @code{array-equal?}. This function differs from
- @code{equal?} (@pxref{Equality}) in that all arguments must be arrays.
- @end deffn
- @c FIXME: array-for-each doesn't say what happens if the sources have
- @c different index ranges. The code currently iterates over the
- @c indices of the first and expects the others to cover those. That
- @c at least vaguely matches array-map!, but is it meant to be a
- @c documented feature?
- @deffn {Scheme Procedure} array-map! dst proc src @dots{}
- @deffnx {Scheme Procedure} array-map-in-order! dst proc src @dots{}
- @deffnx {C Function} scm_array_map_x (dst, proc, srclist)
- Set each element of the @var{dst} array to values obtained from calls to
- @var{proc}. The list of @var{src} arguments may be empty. The value
- returned is unspecified.
- Each call is @code{(@var{proc} @var{elem} @dots{})}, where each
- @var{elem} is from the corresponding @var{src} array, at the
- @var{dst} index. @code{array-map-in-order!} makes the calls in
- row-major order, @code{array-map!} makes them in an unspecified order.
- The @var{src} arrays must have the same number of dimensions as
- @var{dst}, and must have a range for each dimension which covers the
- range in @var{dst}. This ensures all @var{dst} indices are valid in
- each @var{src}.
- @end deffn
- @deffn {Scheme Procedure} array-for-each proc src1 src2 @dots{}
- @deffnx {C Function} scm_array_for_each (proc, src1, srclist)
- Apply @var{proc} to each tuple of elements of @var{src1} @var{src2}
- @dots{}, in row-major order. The value returned is unspecified.
- @end deffn
- @deffn {Scheme Procedure} array-index-map! dst proc
- @deffnx {C Function} scm_array_index_map_x (dst, proc)
- Set each element of the @var{dst} array to values returned by calls to
- @var{proc}. The value returned is unspecified.
- Each call is @code{(@var{proc} @var{i1} @dots{} @var{iN})}, where
- @var{i1}@dots{}@var{iN} is the destination index, one parameter for
- each dimension. The order in which the calls are made is unspecified.
- For example, to create a @m{4\times4, 4x4} matrix representing a
- cyclic group,
- @tex
- \advance\leftskip by 2\lispnarrowing {
- $\left(\matrix{%
- 0 & 1 & 2 & 3 \cr
- 1 & 2 & 3 & 0 \cr
- 2 & 3 & 0 & 1 \cr
- 3 & 0 & 1 & 2 \cr
- }\right)$} \par
- @end tex
- @ifnottex
- @example
- / 0 1 2 3 \
- | 1 2 3 0 |
- | 2 3 0 1 |
- \ 3 0 1 2 /
- @end example
- @end ifnottex
- @example
- (define a (make-array #f 4 4))
- (array-index-map! a (lambda (i j)
- (modulo (+ i j) 4)))
- @end example
- @end deffn
- An additional array function is available in the module
- @code{(ice-9 arrays)}. It can be used with:
- @example
- (use-modules (ice-9 arrays))
- @end example
- @deffn {Scheme Procedure} array-copy src
- Return a new array with the same elements, type and shape as
- @var{src}. However, the array increments may be different from those of
- @var{src}. In the current implementation, the returned array will be in
- row-major order, but that might change in the future. Use
- @code{array-copy!} on an array of known order if that is a concern.
- @end deffn
- @node Shared Arrays
- @subsubsection Shared Arrays
- @deffn {Scheme Procedure} make-shared-array oldarray mapfunc bound @dots{}
- @deffnx {C Function} scm_make_shared_array (oldarray, mapfunc, boundlist)
- Return a new array which shares the storage of @var{oldarray}.
- Changes made through either affect the same underlying storage. The
- @var{bound} @dots{} arguments are the shape of the new array, the same
- as @code{make-array} (@pxref{Array Procedures}).
- @var{mapfunc} translates coordinates from the new array to the
- @var{oldarray}. It's called as @code{(@var{mapfunc} newidx1 @dots{})}
- with one parameter for each dimension of the new array, and should
- return a list of indices for @var{oldarray}, one for each dimension of
- @var{oldarray}.
- @var{mapfunc} must be affine linear, meaning that each @var{oldarray}
- index must be formed by adding integer multiples (possibly negative)
- of some or all of @var{newidx1} etc, plus a possible integer offset.
- The multiples and offset must be the same in each call.
- @sp 1
- One good use for a shared array is to restrict the range of some
- dimensions, so as to apply say @code{array-for-each} or
- @code{array-fill!} to only part of an array. The plain @code{list}
- function can be used for @var{mapfunc} in this case, making no changes
- to the index values. For example,
- @example
- (make-shared-array #2((a b c) (d e f) (g h i)) list 3 2)
- @result{} #2((a b) (d e) (g h))
- @end example
- The new array can have fewer dimensions than @var{oldarray}, for
- example to take a column from an array.
- @example
- (make-shared-array #2((a b c) (d e f) (g h i))
- (lambda (i) (list i 2))
- '(0 2))
- @result{} #1(c f i)
- @end example
- A diagonal can be taken by using the single new array index for both
- row and column in the old array. For example,
- @example
- (make-shared-array #2((a b c) (d e f) (g h i))
- (lambda (i) (list i i))
- '(0 2))
- @result{} #1(a e i)
- @end example
- Dimensions can be increased by for instance considering portions of a
- one dimensional array as rows in a two dimensional array.
- (@code{array-contents} below can do the opposite, flattening an
- array.)
- @example
- (make-shared-array #1(a b c d e f g h i j k l)
- (lambda (i j) (list (+ (* i 3) j)))
- 4 3)
- @result{} #2((a b c) (d e f) (g h i) (j k l))
- @end example
- By negating an index the order that elements appear can be reversed.
- The following just reverses the column order,
- @example
- (make-shared-array #2((a b c) (d e f) (g h i))
- (lambda (i j) (list i (- 2 j)))
- 3 3)
- @result{} #2((c b a) (f e d) (i h g))
- @end example
- A fixed offset on indexes allows for instance a change from a 0 based
- to a 1 based array,
- @example
- (define x #2((a b c) (d e f) (g h i)))
- (define y (make-shared-array x
- (lambda (i j) (list (1- i) (1- j)))
- '(1 3) '(1 3)))
- (array-ref x 0 0) @result{} a
- (array-ref y 1 1) @result{} a
- @end example
- A multiple on an index allows every Nth element of an array to be
- taken. The following is every third element,
- @example
- (make-shared-array #1(a b c d e f g h i j k l)
- (lambda (i) (list (* i 3)))
- 4)
- @result{} #1(a d g j)
- @end example
- The above examples can be combined to make weird and wonderful
- selections from an array, but it's important to note that because
- @var{mapfunc} must be affine linear, arbitrary permutations are not
- possible.
- In the current implementation, @var{mapfunc} is not called for every
- access to the new array but only on some sample points to establish a
- base and stride for new array indices in @var{oldarray} data. A few
- sample points are enough because @var{mapfunc} is linear.
- @end deffn
- @deffn {Scheme Procedure} shared-array-increments array
- @deffnx {C Function} scm_shared_array_increments (array)
- For each dimension, return the distance between elements in the root vector.
- @end deffn
- @deffn {Scheme Procedure} shared-array-offset array
- @deffnx {C Function} scm_shared_array_offset (array)
- Return the root vector index of the first element in the array.
- @end deffn
- @deffn {Scheme Procedure} shared-array-root array
- @deffnx {C Function} scm_shared_array_root (array)
- Return the root vector of a shared array.
- @end deffn
- @deffn {Scheme Procedure} array-contents array [strict]
- @deffnx {C Function} scm_array_contents (array, strict)
- If @var{array} may be @dfn{unrolled} into a one dimensional shared array
- without changing their order (last subscript changing fastest), then
- @code{array-contents} returns that shared array, otherwise it returns
- @code{#f}. All arrays made by @code{make-array} and
- @code{make-typed-array} may be unrolled, some arrays made by
- @code{make-shared-array} may not be.
- If the optional argument @var{strict} is provided, a shared array will
- be returned only if its elements are stored internally contiguous in
- memory.
- @end deffn
- @deffn {Scheme Procedure} transpose-array array dim1 dim2 @dots{}
- @deffnx {C Function} scm_transpose_array (array, dimlist)
- Return an array sharing contents with @var{array}, but with
- dimensions arranged in a different order. There must be one
- @var{dim} argument for each dimension of @var{array}.
- @var{dim1}, @var{dim2}, @dots{} should be integers between 0
- and the rank of the array to be returned. Each integer in that
- range must appear at least once in the argument list.
- The values of @var{dim1}, @var{dim2}, @dots{} correspond to
- dimensions in the array to be returned, and their positions in the
- argument list to dimensions of @var{array}. Several @var{dim}s
- may have the same value, in which case the returned array will
- have smaller rank than @var{array}.
- @lisp
- (transpose-array '#2((a b) (c d)) 1 0) @result{} #2((a c) (b d))
- (transpose-array '#2((a b) (c d)) 0 0) @result{} #1(a d)
- (transpose-array '#3(((a b c) (d e f)) ((1 2 3) (4 5 6))) 1 1 0) @result{}
- #2((a 4) (b 5) (c 6))
- @end lisp
- @end deffn
- @node Arrays as arrays of arrays
- @subsubsection Arrays as arrays of arrays
- @cindex array cell
- One can see an array of rank @math{n} (an
- @math{n}-array) as an array of lower rank where the elements are
- themselves arrays (`cells').
- @cindex array frame
- @cindex frame rank
- We speak of the first @math{n-k} dimensions of the array as the
- @math{n-k}-`frame' of the array, while the last @math{k} dimensions are
- the dimensions of the @math{k}-`cells'. For example, a 3-array can be
- seen as a 2-array of vectors (1-arrays) or as a 1-array of matrices
- (2-arrays). In each case, the vectors or matrices are the 1-cells or
- 2-cells of the array. This terminology originates in the J language.
- @cindex array slice
- @cindex prefix slice
- The more vague concept of a `slice' refers to a subset of the array
- where some indices are fixed and others are left free. As a Guile data
- object, a cell is the same as a `prefix slice' (the first @math{n-k}
- indices into the original array are fixed), except that a 0-cell is not
- a shared array of the original array, but a 0-slice (where all the
- indices into the original array are fixed) is.
- @cindex enclosed array
- Before @w{version 2.0}, Guile had a feature called `enclosed arrays' to
- create special `array of arrays' objects. The functions in this section
- do not need special types; instead, the frame rank is given in the
- arguments, either implicitly (through the number of indices) or
- explicitly.
- @deffn {Scheme Procedure} array-cell-ref array idx @dots{}
- @deffnx {C Function} scm_array_cell_ref (array, idxlist)
- If the length of @var{idxlist} equals the rank @math{n} of @var{array},
- return the element at @code{(idx @dots{})}, just like @code{(array-ref
- array idx @dots{})}. If, however, the length @math{k} of @var{idxlist}
- is smaller than @math{n}, then return the @math{(n-k)}-cell of
- @var{array} given by @var{idxlist}, as a shared array.
- For example:
- @lisp
- (array-cell-ref #2((a b) (c d)) 0) @result{} #1(a b)
- (array-cell-ref #2((a b) (c d)) 1) @result{} #1(c d)
- (array-cell-ref #2((a b) (c d)) 1 1) @result{} d
- (array-cell-ref #2((a b) (c d))) @result{} #2((a b) (c d))
- @end lisp
- @code{(apply array-cell-ref array indices)} is equivalent to
- @lisp
- (let ((len (length indices)))
- (if (= (array-rank a) len)
- (apply array-ref a indices)
- (apply make-shared-array a
- (lambda t (append indices t))
- (drop (array-dimensions a) len))))
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} array-slice array idx @dots{}
- @deffnx {C Function} scm_array_slice (array, idxlist)
- Like @code{(array-cell-ref array idx @dots{})}, but return a 0-rank
- shared array into @var{ARRAY} if the length of @var{idxlist} matches the
- rank of @var{array}. This can be useful when using @var{ARRAY} as a
- place to write to.
- Compare:
- @lisp
- (array-cell-ref #2((a b) (c d)) 1 1) @result{} d
- (array-slice #2((a b) (c d)) 1 1) @result{} #0(d)
- (define a (make-array 'a 2 2))
- (array-fill! (array-slice a 1 1) 'b)
- a @result{} #2((a a) (a b)).
- (array-fill! (array-cell-ref a 1 1) 'b) @result{} error: not an array
- @end lisp
- @code{(apply array-slice array indices)} is equivalent to
- @lisp
- (apply make-shared-array a
- (lambda t (append indices t))
- (drop (array-dimensions a) (length indices)))
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} array-cell-set! array x idx @dots{}
- @deffnx {C Function} scm_array_cell_set_x (array, x, idxlist)
- If the length of @var{idxlist} equals the rank @math{n} of
- @var{array}, set the element at @code{(idx @dots{})} of @var{array} to
- @var{x}, just like @code{(array-set! array x idx @dots{})}. If,
- however, the length @math{k} of @var{idxlist} is smaller than
- @math{n}, then copy the @math{(n-k)}-rank array @var{x}
- into the @math{(n-k)}-cell of @var{array} given by
- @var{idxlist}. In this case, the last @math{(n-k)} dimensions of
- @var{array} and the dimensions of @var{x} must match exactly.
- This function returns the modified @var{array}.
- For example:
- @lisp
- (array-cell-set! (make-array 'a 2 2) 'b 1 1)
- @result{} #2((a a) (a b))
- (array-cell-set! (make-array 'a 2 2) #(x y) 1)
- @result{} #2((a a) (x y))
- @end lisp
- Note that @code{array-cell-set!} expects elements, not arrays, when
- the destination has rank 0. Use @code{array-slice} for the opposite
- behavior.
- @lisp
- (array-cell-set! (make-array 'a 2 2) #0(b) 1 1)
- @result{} #2((a a) (a #0(b)))
- (let ((a (make-array 'a 2 2)))
- (array-copy! #0(b) (array-slice a 1 1)) a)
- @result{} #2((a a) (a b))
- @end lisp
- @code{(apply array-cell-set! array x indices)} is equivalent to
- @lisp
- (let ((len (length indices)))
- (if (= (array-rank array) len)
- (apply array-set! array x indices)
- (array-copy! x (apply array-cell-ref array indices)))
- array)
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} array-slice-for-each frame-rank op x @dots{}
- @deffnx {C Function} scm_array_slice_for_each (array, frame_rank, op, xlist)
- Each @var{x} must be an array of rank ≥ @var{frame-rank}, and
- the first @var{frame-rank} dimensions of each @var{x} must all be the
- same. @var{array-slice-for-each} calls @var{op} with each set of
- (rank(@var{x}) - @var{frame-rank})-cells from @var{x}, in unspecified order.
- @var{array-slice-for-each} allows you to loop over cells of any rank
- without having to carry an index list or construct shared arrays
- manually. The slices passed to @var{op} are always shared arrays of
- @var{X}, even if they are of rank 0, so it is possible to write to them.
- This function returns an unspecified value.
- For example, to sort each row of rank-2 array @code{a}:
- @lisp
- (array-slice-for-each 1 (lambda (x) (sort! x <)) a)
- @end lisp
- As another example, let @code{a} be a rank-2 array where each row is a
- 2-element vector @math{(x,y)}. Let's compute the arguments of these
- vectors and store them in rank-1 array @code{b}.
- @lisp
- (array-slice-for-each 1
- (lambda (a b)
- (array-set! b (atan (array-ref a 1) (array-ref a 0))))
- a b)
- @end lisp
- @code{(apply array-slice-for-each frame-rank op x)} is equivalent to
- @lisp
- (let ((frame (take (array-dimensions (car x)) frank)))
- (unless (every (lambda (x)
- (equal? frame (take (array-dimensions x) frank)))
- (cdr x))
- (error))
- (array-index-map!
- (apply make-shared-array (make-array #t) (const '()) frame)
- (lambda i (apply op (map (lambda (x) (apply array-slice x i)) x)))))
- @end lisp
- @end deffn
- @deffn {Scheme Procedure} array-slice-for-each-in-order frame-rank op x @dots{}
- @deffnx {C Function} scm_array_slice_for_each_in_order (array, frame_rank, op, xlist)
- Same as @code{array-slice-for-each}, but the arguments are traversed
- sequentially and in row-major order.
- @end deffn
- @node Accessing Arrays from C
- @subsubsection Accessing Arrays from C
- For interworking with external C code, Guile provides an API to allow C
- code to access the elements of a Scheme array. In particular, for
- uniform numeric arrays, the API exposes the underlying uniform data as a
- C array of numbers of the relevant type.
- While pointers to the elements of an array are in use, the array itself
- must be protected so that the pointer remains valid. Such a protected
- array is said to be @dfn{reserved}. A reserved array can be read but
- modifications to it that would cause the pointer to its elements to
- become invalid are prevented. When you attempt such a modification, an
- error is signaled.
- (This is similar to locking the array while it is in use, but without
- the danger of a deadlock. In a multi-threaded program, you will need
- additional synchronization to avoid modifying reserved arrays.)
- You must take care to always unreserve an array after reserving it,
- even in the presence of non-local exits. If a non-local exit can
- happen between these two calls, you should install a dynwind context
- that releases the array when it is left (@pxref{Dynamic Wind}).
- In addition, array reserving and unreserving must be properly
- paired. For instance, when reserving two or more arrays in a certain
- order, you need to unreserve them in the opposite order.
- Once you have reserved an array and have retrieved the pointer to its
- elements, you must figure out the layout of the elements in memory.
- Guile allows slices to be taken out of arrays without actually making a
- copy, such as making an alias for the diagonal of a matrix that can be
- treated as a vector. Arrays that result from such an operation are not
- stored contiguously in memory and when working with their elements
- directly, you need to take this into account.
- The layout of array elements in memory can be defined via a
- @emph{mapping function} that computes a scalar position from a vector of
- indices. The scalar position then is the offset of the element with the
- given indices from the start of the storage block of the array.
- In Guile, this mapping function is restricted to be @dfn{affine}: all
- mapping functions of Guile arrays can be written as @code{p = b +
- c[0]*i[0] + c[1]*i[1] + ... + c[n-1]*i[n-1]} where @code{i[k]} is the
- @nicode{k}th index and @code{n} is the rank of the array. For
- example, a matrix of size 3x3 would have @code{b == 0}, @code{c[0] ==
- 3} and @code{c[1] == 1}. When you transpose this matrix (with
- @code{transpose-array}, say), you will get an array whose mapping
- function has @code{b == 0}, @code{c[0] == 1} and @code{c[1] == 3}.
- The function @code{scm_array_handle_dims} gives you (indirect) access to
- the coefficients @code{c[k]}.
- @c XXX
- Note that there are no functions for accessing the elements of a
- character array yet. Once the string implementation of Guile has been
- changed to use Unicode, we will provide them.
- @deftp {C Type} scm_t_array_handle
- This is a structure type that holds all information necessary to manage
- the reservation of arrays as explained above. Structures of this type
- must be allocated on the stack and must only be accessed by the
- functions listed below.
- @end deftp
- @deftypefn {C Function} void scm_array_get_handle (SCM array, scm_t_array_handle *handle)
- Reserve @var{array}, which must be an array, and prepare @var{handle} to
- be used with the functions below. You must eventually call
- @code{scm_array_handle_release} on @var{handle}, and do this in a
- properly nested fashion, as explained above. The structure pointed to
- by @var{handle} does not need to be initialized before calling this
- function.
- @end deftypefn
- @anchor{x-scm_array_handle_release}
- @deftypefn {C Function} void scm_array_handle_release (scm_t_array_handle *handle)
- End the array reservation represented by @var{handle}. After a call to
- this function, @var{handle} might be used for another reservation.
- @end deftypefn
- @deftypefn {C Function} size_t scm_array_handle_rank (scm_t_array_handle *handle)
- Return the rank of the array represented by @var{handle}.
- @end deftypefn
- @deftp {C Type} scm_t_array_dim
- This structure type holds information about the layout of one dimension
- of an array. It includes the following fields:
- @table @code
- @item ssize_t lbnd
- @itemx ssize_t ubnd
- The lower and upper bounds (both inclusive) of the permissible index
- range for the given dimension. Both values can be negative, but
- @var{lbnd} is always less than or equal to @var{ubnd}.
- @item ssize_t inc
- The distance from one element of this dimension to the next. Note, too,
- that this can be negative.
- @end table
- @end deftp
- @deftypefn {C Function} {const scm_t_array_dim *} scm_array_handle_dims (scm_t_array_handle *handle)
- Return a pointer to a C vector of information about the dimensions of
- the array represented by @var{handle}. This pointer is valid as long as
- the array remains reserved. As explained above, the
- @code{scm_t_array_dim} structures returned by this function can be used
- calculate the position of an element in the storage block of the array
- from its indices.
- This position can then be used as an index into the C array pointer
- returned by the various @code{scm_array_handle_<foo>_elements}
- functions, or with @code{scm_array_handle_ref} and
- @code{scm_array_handle_set}.
- Here is how one can compute the position @var{pos} of an element given
- its indices in the vector @var{indices}:
- @example
- ssize_t indices[RANK];
- scm_t_array_dim *dims;
- ssize_t pos;
- size_t i;
- pos = 0;
- for (i = 0; i < RANK; i++)
- @{
- if (indices[i] < dims[i].lbnd || indices[i] > dims[i].ubnd)
- out_of_range ();
- pos += (indices[i] - dims[i].lbnd) * dims[i].inc;
- @}
- @end example
- @end deftypefn
- @deftypefn {C Function} ssize_t scm_array_handle_pos (scm_t_array_handle *handle, SCM indices)
- Compute the position corresponding to @var{indices}, a list of
- indices. The position is computed as described above for
- @code{scm_array_handle_dims}. The number of the indices and their
- range is checked and an appropriate error is signaled for invalid
- indices.
- @end deftypefn
- @deftypefn {C Function} SCM scm_array_handle_ref (scm_t_array_handle *handle, ssize_t pos)
- Return the element at position @var{pos} in the storage block of the
- array represented by @var{handle}. Any kind of array is acceptable. No
- range checking is done on @var{pos}.
- @end deftypefn
- @deftypefn {C Function} void scm_array_handle_set (scm_t_array_handle *handle, ssize_t pos, SCM val)
- Set the element at position @var{pos} in the storage block of the array
- represented by @var{handle} to @var{val}. Any kind of array is
- acceptable. No range checking is done on @var{pos}. An error is
- signaled when the array can not store @var{val}.
- @end deftypefn
- @deftypefn {C Function} {const SCM *} scm_array_handle_elements (scm_t_array_handle *handle)
- Return a pointer to the elements of a ordinary array of general Scheme
- values (i.e., a non-uniform array) for reading. This pointer is valid
- as long as the array remains reserved.
- @end deftypefn
- @deftypefn {C Function} {SCM *} scm_array_handle_writable_elements (scm_t_array_handle *handle)
- Like @code{scm_array_handle_elements}, but the pointer is good for
- reading and writing.
- @end deftypefn
- @deftypefn {C Function} {const void *} scm_array_handle_uniform_elements (scm_t_array_handle *handle)
- Return a pointer to the elements of a uniform numeric array for reading.
- This pointer is valid as long as the array remains reserved. The size
- of each element is given by @code{scm_array_handle_uniform_element_size}.
- @end deftypefn
- @deftypefn {C Function} {void *} scm_array_handle_uniform_writable_elements (scm_t_array_handle *handle)
- Like @code{scm_array_handle_uniform_elements}, but the pointer is good
- reading and writing.
- @end deftypefn
- @deftypefn {C Function} size_t scm_array_handle_uniform_element_size (scm_t_array_handle *handle)
- Return the size of one element of the uniform numeric array represented
- by @var{handle}.
- @end deftypefn
- @deftypefn {C Function} {const scm_t_uint8 *} scm_array_handle_u8_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const scm_t_int8 *} scm_array_handle_s8_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const scm_t_uint16 *} scm_array_handle_u16_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const scm_t_int16 *} scm_array_handle_s16_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const scm_t_uint32 *} scm_array_handle_u32_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const scm_t_int32 *} scm_array_handle_s32_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const scm_t_uint64 *} scm_array_handle_u64_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const scm_t_int64 *} scm_array_handle_s64_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const float *} scm_array_handle_f32_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const double *} scm_array_handle_f64_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const float *} scm_array_handle_c32_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {const double *} scm_array_handle_c64_elements (scm_t_array_handle *handle)
- Return a pointer to the elements of a uniform numeric array of the
- indicated kind for reading. This pointer is valid as long as the array
- remains reserved.
- The pointers for @code{c32} and @code{c64} uniform numeric arrays point
- to pairs of floating point numbers. The even index holds the real part,
- the odd index the imaginary part of the complex number.
- @end deftypefn
- @deftypefn {C Function} {scm_t_uint8 *} scm_array_handle_u8_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {scm_t_int8 *} scm_array_handle_s8_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {scm_t_uint16 *} scm_array_handle_u16_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {scm_t_int16 *} scm_array_handle_s16_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {scm_t_uint32 *} scm_array_handle_u32_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {scm_t_int32 *} scm_array_handle_s32_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {scm_t_uint64 *} scm_array_handle_u64_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {scm_t_int64 *} scm_array_handle_s64_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {float *} scm_array_handle_f32_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {double *} scm_array_handle_f64_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {float *} scm_array_handle_c32_writable_elements (scm_t_array_handle *handle)
- @deftypefnx {C Function} {double *} scm_array_handle_c64_writable_elements (scm_t_array_handle *handle)
- Like @code{scm_array_handle_<kind>_elements}, but the pointer is good
- for reading and writing.
- @end deftypefn
- @deftypefn {C Function} {const scm_t_uint32 *} scm_array_handle_bit_elements (scm_t_array_handle *handle)
- Return a pointer to the words that store the bits of the represented
- array, which must be a bit array.
- Unlike other arrays, bit arrays have an additional offset that must be
- figured into index calculations. That offset is returned by
- @code{scm_array_handle_bit_elements_offset}.
- To find a certain bit you first need to calculate its position as
- explained above for @code{scm_array_handle_dims} and then add the
- offset. This gives the absolute position of the bit, which is always a
- non-negative integer.
- Each word of the bit array storage block contains exactly 32 bits, with
- the least significant bit in that word having the lowest absolute
- position number. The next word contains the next 32 bits.
- Thus, the following code can be used to access a bit whose position
- according to @code{scm_array_handle_dims} is given in @var{pos}:
- @example
- SCM bit_array;
- scm_t_array_handle handle;
- scm_t_uint32 *bits;
- ssize_t pos;
- size_t abs_pos;
- size_t word_pos, mask;
- scm_array_get_handle (&bit_array, &handle);
- bits = scm_array_handle_bit_elements (&handle);
- pos = ...
- abs_pos = pos + scm_array_handle_bit_elements_offset (&handle);
- word_pos = abs_pos / 32;
- mask = 1L << (abs_pos % 32);
- if (bits[word_pos] & mask)
- /* bit is set. */
- scm_array_handle_release (&handle);
- @end example
- @end deftypefn
- @deftypefn {C Function} {scm_t_uint32 *} scm_array_handle_bit_writable_elements (scm_t_array_handle *handle)
- Like @code{scm_array_handle_bit_elements} but the pointer is good for
- reading and writing. You must take care not to modify bits outside of
- the allowed index range of the array, even for contiguous arrays.
- @end deftypefn
- @node VLists
- @subsection VLists
- @cindex vlist
- The @code{(ice-9 vlist)} module provides an implementation of the @dfn{VList}
- data structure designed by Phil Bagwell in 2002. VLists are immutable lists,
- which can contain any Scheme object. They improve on standard Scheme linked
- lists in several areas:
- @itemize
- @item
- Random access has typically constant-time complexity.
- @item
- Computing the length of a VList has time complexity logarithmic in the number of
- elements.
- @item
- VLists use less storage space than standard lists.
- @item
- VList elements are stored in contiguous regions, which improves memory locality
- and leads to more efficient use of hardware caches.
- @end itemize
- The idea behind VLists is to store vlist elements in increasingly large
- contiguous blocks (implemented as vectors here). These blocks are linked to one
- another using a pointer to the next block and an offset within that block. The
- size of these blocks form a geometric series with ratio
- @code{block-growth-factor} (2 by default).
- The VList structure also serves as the basis for the @dfn{VList-based hash
- lists} or ``vhashes'', an immutable dictionary type (@pxref{VHashes}).
- However, the current implementation in @code{(ice-9 vlist)} has several
- noteworthy shortcomings:
- @itemize
- @item
- It is @emph{not} thread-safe. Although operations on vlists are all
- @dfn{referentially transparent} (i.e., purely functional), adding elements to a
- vlist with @code{vlist-cons} mutates part of its internal structure, which makes
- it non-thread-safe. This could be fixed, but it would slow down
- @code{vlist-cons}.
- @item
- @code{vlist-cons} always allocates at least as much memory as @code{cons}.
- Again, Phil Bagwell describes how to fix it, but that would require tuning the
- garbage collector in a way that may not be generally beneficial.
- @item
- @code{vlist-cons} is a Scheme procedure compiled to bytecode, and it does not
- compete with the straightforward C implementation of @code{cons}, and with the
- fact that the VM has a special @code{cons} instruction.
- @end itemize
- We hope to address these in the future.
- The programming interface exported by @code{(ice-9 vlist)} is defined below.
- Most of it is the same as SRFI-1 with an added @code{vlist-} prefix to function
- names.
- @deffn {Scheme Procedure} vlist? obj
- Return true if @var{obj} is a VList.
- @end deffn
- @defvr {Scheme Variable} vlist-null
- The empty VList. Note that it's possible to create an empty VList not
- @code{eq?} to @code{vlist-null}; thus, callers should always use
- @code{vlist-null?} when testing whether a VList is empty.
- @end defvr
- @deffn {Scheme Procedure} vlist-null? vlist
- Return true if @var{vlist} is empty.
- @end deffn
- @deffn {Scheme Procedure} vlist-cons item vlist
- Return a new vlist with @var{item} as its head and @var{vlist} as its tail.
- @end deffn
- @deffn {Scheme Procedure} vlist-head vlist
- Return the head of @var{vlist}.
- @end deffn
- @deffn {Scheme Procedure} vlist-tail vlist
- Return the tail of @var{vlist}.
- @end deffn
- @defvr {Scheme Variable} block-growth-factor
- A fluid that defines the growth factor of VList blocks, 2 by default.
- @end defvr
- The functions below provide the usual set of higher-level list operations.
- @deffn {Scheme Procedure} vlist-fold proc init vlist
- @deffnx {Scheme Procedure} vlist-fold-right proc init vlist
- Fold over @var{vlist}, calling @var{proc} for each element, as for SRFI-1
- @code{fold} and @code{fold-right} (@pxref{SRFI-1, @code{fold}}).
- @end deffn
- @deffn {Scheme Procedure} vlist-ref vlist index
- Return the element at index @var{index} in @var{vlist}. This is typically a
- constant-time operation.
- @end deffn
- @deffn {Scheme Procedure} vlist-length vlist
- Return the length of @var{vlist}. This is typically logarithmic in the number
- of elements in @var{vlist}.
- @end deffn
- @deffn {Scheme Procedure} vlist-reverse vlist
- Return a new @var{vlist} whose content are those of @var{vlist} in reverse
- order.
- @end deffn
- @deffn {Scheme Procedure} vlist-map proc vlist
- Map @var{proc} over the elements of @var{vlist} and return a new vlist.
- @end deffn
- @deffn {Scheme Procedure} vlist-for-each proc vlist
- Call @var{proc} on each element of @var{vlist}. The result is unspecified.
- @end deffn
- @deffn {Scheme Procedure} vlist-drop vlist count
- Return a new vlist that does not contain the @var{count} first elements of
- @var{vlist}. This is typically a constant-time operation.
- @end deffn
- @deffn {Scheme Procedure} vlist-take vlist count
- Return a new vlist that contains only the @var{count} first elements of
- @var{vlist}.
- @end deffn
- @deffn {Scheme Procedure} vlist-filter pred vlist
- Return a new vlist containing all the elements from @var{vlist} that satisfy
- @var{pred}.
- @end deffn
- @deffn {Scheme Procedure} vlist-delete x vlist [equal?]
- Return a new vlist corresponding to @var{vlist} without the elements
- @var{equal?} to @var{x}.
- @end deffn
- @deffn {Scheme Procedure} vlist-unfold p f g seed [tail-gen]
- @deffnx {Scheme Procedure} vlist-unfold-right p f g seed [tail]
- Return a new vlist, as for SRFI-1 @code{unfold} and @code{unfold-right}
- (@pxref{SRFI-1, @code{unfold}}).
- @end deffn
- @deffn {Scheme Procedure} vlist-append vlist @dots{}
- Append the given vlists and return the resulting vlist.
- @end deffn
- @deffn {Scheme Procedure} list->vlist lst
- Return a new vlist whose contents correspond to @var{lst}.
- @end deffn
- @deffn {Scheme Procedure} vlist->list vlist
- Return a new list whose contents match those of @var{vlist}.
- @end deffn
- @node Record Overview
- @subsection Record Overview
- @cindex record
- @cindex structure
- @dfn{Records}, also called @dfn{structures}, are Scheme's primary
- mechanism to define new disjoint types. A @dfn{record type} defines a
- list of @dfn{fields} that instances of the type consist of. This is like
- C's @code{struct}.
- Historically, Guile has offered several different ways to define record
- types and to create records, offering different features, and making
- different trade-offs. Over the years, each ``standard'' has also come
- with its own new record interface, leading to a maze of record APIs.
- At the highest level is SRFI-9, a high-level record interface
- implemented by most Scheme implementations (@pxref{SRFI-9 Records}). It
- defines a simple and efficient syntactic abstraction of record types and
- their associated type predicate, fields, and field accessors. SRFI-9 is
- suitable for most uses, and this is the recommended way to create record
- types in Guile. Similar high-level record APIs include SRFI-35
- (@pxref{SRFI-35}) and R6RS records (@pxref{rnrs records syntactic}).
- Then comes Guile's historical ``records'' API (@pxref{Records}). Record
- types defined this way are first-class objects. Introspection
- facilities are available, allowing users to query the list of fields or
- the value of a specific field at run-time, without prior knowledge of
- the type.
- Finally, the common denominator of these interfaces is Guile's
- @dfn{structure} API (@pxref{Structures}). Guile's structures are the
- low-level building block for all other record APIs. Application writers
- will normally not need to use it.
- Records created with these APIs may all be pattern-matched using Guile's
- standard pattern matcher (@pxref{Pattern Matching}).
- @node SRFI-9 Records
- @subsection SRFI-9 Records
- @cindex SRFI-9
- @cindex record
- SRFI-9 standardizes a syntax for defining new record types and creating
- predicate, constructor, and field getter and setter functions. In Guile
- this is the recommended option to create new record types (@pxref{Record
- Overview}). It can be used with:
- @example
- (use-modules (srfi srfi-9))
- @end example
- @deffn {Scheme Syntax} define-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
- @sp 1
- Create a new record type, and make various @code{define}s for using
- it. This syntax can only occur at the top-level, not nested within
- some other form.
- @var{type} is bound to the record type, which is as per the return
- from the core @code{make-record-type}. @var{type} also provides the
- name for the record, as per @code{record-type-name}.
- @var{constructor} is bound to a function to be called as
- @code{(@var{constructor} fieldval @dots{})} to create a new record of
- this type. The arguments are initial values for the fields, one
- argument for each field, in the order they appear in the
- @code{define-record-type} form.
- The @var{fieldname}s provide the names for the record fields, as per
- the core @code{record-type-fields} etc, and are referred to in the
- subsequent accessor/modifier forms.
- @var{predicate} is bound to a function to be called as
- @code{(@var{predicate} obj)}. It returns @code{#t} or @code{#f}
- according to whether @var{obj} is a record of this type.
- Each @var{accessor} is bound to a function to be called
- @code{(@var{accessor} record)} to retrieve the respective field from a
- @var{record}. Similarly each @var{modifier} is bound to a function to
- be called @code{(@var{modifier} record val)} to set the respective
- field in a @var{record}.
- @end deffn
- @noindent
- An example will illustrate typical usage,
- @example
- (define-record-type <employee>
- (make-employee name age salary)
- employee?
- (name employee-name)
- (age employee-age set-employee-age!)
- (salary employee-salary set-employee-salary!))
- @end example
- This creates a new employee data type, with name, age and salary
- fields. Accessor functions are created for each field, but no
- modifier function for the name (the intention in this example being
- that it's established only when an employee object is created). These
- can all then be used as for example,
- @example
- <employee> @result{} #<record-type <employee>>
- (define fred (make-employee "Fred" 45 20000.00))
- (employee? fred) @result{} #t
- (employee-age fred) @result{} 45
- (set-employee-salary! fred 25000.00) ;; pay rise
- @end example
- The functions created by @code{define-record-type} are ordinary
- top-level @code{define}s. They can be redefined or @code{set!} as
- desired, exported from a module, etc.
- @unnumberedsubsubsec Non-toplevel Record Definitions
- The SRFI-9 specification explicitly disallows record definitions in a
- non-toplevel context, such as inside @code{lambda} body or inside a
- @var{let} block. However, Guile's implementation does not enforce that
- restriction.
- @unnumberedsubsubsec Custom Printers
- You may use @code{set-record-type-printer!} to customize the default printing
- behavior of records. This is a Guile extension and is not part of SRFI-9. It
- is located in the @nicode{(srfi srfi-9 gnu)} module.
- @deffn {Scheme Syntax} set-record-type-printer! type proc
- Where @var{type} corresponds to the first argument of @code{define-record-type},
- and @var{proc} is a procedure accepting two arguments, the record to print, and
- an output port.
- @end deffn
- @noindent
- This example prints the employee's name in brackets, for instance @code{[Fred]}.
- @example
- (set-record-type-printer! <employee>
- (lambda (record port)
- (write-char #\[ port)
- (display (employee-name record) port)
- (write-char #\] port)))
- @end example
- @unnumberedsubsubsec Functional ``Setters''
- @cindex functional setters
- When writing code in a functional style, it is desirable to never alter
- the contents of records. For such code, a simple way to return new
- record instances based on existing ones is highly desirable.
- The @code{(srfi srfi-9 gnu)} module extends SRFI-9 with facilities to
- return new record instances based on existing ones, only with one or
- more field values changed---@dfn{functional setters}. First, the
- @code{define-immutable-record-type} works like
- @code{define-record-type}, except that fields are immutable and setters
- are defined as functional setters.
- @deffn {Scheme Syntax} define-immutable-record-type type @* (constructor fieldname @dots{}) @* predicate @* (fieldname accessor [modifier]) @dots{}
- Define @var{type} as a new record type, like @code{define-record-type}.
- However, the record type is made @emph{immutable} (records may not be
- mutated, even with @code{struct-set!}), and any @var{modifier} is
- defined to be a functional setter---a procedure that returns a new
- record instance with the specified field changed, and leaves the
- original unchanged (see example below.)
- @end deffn
- @noindent
- In addition, the generic @code{set-field} and @code{set-fields} macros
- may be applied to any SRFI-9 record.
- @deffn {Scheme Syntax} set-field record (field sub-fields ...) value
- Return a new record of @var{record}'s type whose fields are equal to
- the corresponding fields of @var{record} except for the one specified by
- @var{field}.
- @var{field} must be the name of the getter corresponding to the field of
- @var{record} being ``set''. Subsequent @var{sub-fields} must be record
- getters designating sub-fields within that field value to be set (see
- example below.)
- @end deffn
- @deffn {Scheme Syntax} set-fields record ((field sub-fields ...) value) ...
- Like @code{set-field}, but can be used to set more than one field at a
- time. This expands to code that is more efficient than a series of
- single @code{set-field} calls.
- @end deffn
- To illustrate the use of functional setters, let's assume these two
- record type definitions:
- @example
- (define-record-type <address>
- (address street city country)
- address?
- (street address-street)
- (city address-city)
- (country address-country))
- (define-immutable-record-type <person>
- (person age email address)
- person?
- (age person-age set-person-age)
- (email person-email set-person-email)
- (address person-address set-person-address))
- @end example
- @noindent
- First, note that the @code{<person>} record type definition introduces
- named functional setters. These may be used like this:
- @example
- (define fsf-address
- (address "Franklin Street" "Boston" "USA"))
- (define rms
- (person 30 "rms@@gnu.org" fsf-address))
- (and (equal? (set-person-age rms 60)
- (person 60 "rms@@gnu.org" fsf-address))
- (= (person-age rms) 30))
- @result{} #t
- @end example
- @noindent
- Here, the original @code{<person>} record, to which @var{rms} is bound,
- is left unchanged.
- Now, suppose we want to change both the street and age of @var{rms}.
- This can be achieved using @code{set-fields}:
- @example
- (set-fields rms
- ((person-age) 60)
- ((person-address address-street) "Temple Place"))
- @result{} #<<person> age: 60 email: "rms@@gnu.org"
- address: #<<address> street: "Temple Place" city: "Boston" country: "USA">>
- @end example
- @noindent
- Notice how the above changed two fields of @var{rms}, including the
- @code{street} field of its @code{address} field, in a concise way. Also
- note that @code{set-fields} works equally well for types defined with
- just @code{define-record-type}.
- @node Records
- @subsection Records
- A @dfn{record type} is a first class object representing a user-defined
- data type. A @dfn{record} is an instance of a record type.
- Note that in many ways, this interface is too low-level for every-day
- use. Most uses of records are better served by SRFI-9 records.
- @xref{SRFI-9 Records}.
- @deffn {Scheme Procedure} record? obj
- Return @code{#t} if @var{obj} is a record of any type and @code{#f}
- otherwise.
- Note that @code{record?} may be true of any Scheme value; there is no
- promise that records are disjoint with other Scheme types.
- @end deffn
- @deffn {Scheme Procedure} make-record-type type-name field-names [print] @
- [#:parent=@code{#f}] [#:uid=@code{#f}] @
- [#:extensible?=@code{#f}] [#:opaque?=@code{#f}] @
- [#:allow-duplicate-field-names?=@code{#t}]
- Create and return a new @dfn{record-type descriptor}.
- @var{type-name} is a string naming the type. Currently it's only used
- in the printed representation of records, and in diagnostics.
- @var{field-names} is a list of elements of the form @code{(immutable
- @var{name})}, @code{(mutable @var{name})}, or @var{name}, where
- @var{name} are symbols naming the fields of a record of the type.
- Duplicates are not allowed among these symbols, unless
- @var{allow-duplicate-field-names?} is true.
- @example
- (make-record-type "employee" '(name age salary))
- @end example
- The optional @var{print} argument is a function used by
- @code{display}, @code{write}, etc, for printing a record of the new
- type. It's called as @code{(@var{print} record port)} and should look
- at @var{record} and write to @var{port}.
- Pass the @code{#:parent} keyword to derive a record type from a
- supertype. A derived record type has the fields from its parent type,
- followed by fields declared in the @code{make-record-type} call. Record
- predicates and field accessors for instance of a parent type will also
- work on any instance of a subtype.
- @cindex extensible record types
- @cindex record types, extensible
- Allowing record subtyping has a small amount of overhead. To avoid this
- overhead, prevent extensibility by passing @code{#:extensible? #f}.
- By default, record types in Guile are not extensible.
- @cindex prefab record types
- @cindex record types, prefab
- @cindex record types, nongenerative
- Generally speaking, calling @code{make-record-type} returns a fresh
- record type; it @emph{generates} new record types. However sometimes
- you only want to define a record type if one hasn't been defined
- already. For a @emph{nongenerative} record type definition, pass a
- symbol as the @code{#:uid} keyword parameter. If a record with the
- given @var{uid} was already defined, it will be returned instead. The
- type name, fields, parent (if any), and so on for the previously-defined
- type must be compatible.
- @cindex record types, opaque
- R6RS defines a notion of ``opaque'' record types. Given an instance of
- an opaque record type, one cannot obtain a run-time representation of
- the record type. @xref{rnrs records procedural}, for full details. The
- @code{#:opaque?} flag is used by Guile's R6RS layer to record this
- information. The default is determined by whether the parent type, if
- any, was opaque.
- Fields are mutable by default, meaning that @code{record-modifier} will
- return a procedure that can update a record in place. Specifying a
- field using the form @code{(immutable @var{name})} instead marks a field
- as immutable.
- @end deffn
- @deffn {Scheme Procedure} record-constructor rtd
- Return a procedure for constructing new members of the type represented
- by @var{rtd}. The result will be a procedure accepting exactly as many
- arguments as there are fields in the record type.
- @end deffn
- @deffn {Scheme Procedure} record-predicate rtd
- Return a procedure for testing membership in the type represented by
- @var{rtd}. The returned procedure accepts exactly one argument and
- returns a true value if the argument is a member of the indicated record
- type; it returns a false value otherwise.
- @end deffn
- @deffn {Scheme Procedure} record-accessor rtd field-name
- Return a procedure for reading the value of a particular field of a
- member of the type represented by @var{rtd}. The returned procedure
- accepts exactly one argument which must be a record of the appropriate
- type; it returns the current value of the field named by the symbol
- @var{field-name} in that record.
- If @var{field-name} is a symbol, it must be a member of the list of
- field-names in the call to @code{make-record-type} that created the type
- represented by @var{rtd}. If multiple fields in @var{rtd} have the same
- name, @code{record-accessor} returns the first one.
- If @var{field-name} is an integer, it should be an index into
- @code{(record-type-fields @var{rtd})}. This allows accessing fields
- with duplicate names.
- @end deffn
- @deffn {Scheme Procedure} record-modifier rtd field-name
- Return a procedure for writing the value of a particular field of a
- member of the type represented by @var{rtd}. The returned procedure
- accepts exactly two arguments: first, a record of the appropriate type,
- and second, an arbitrary Scheme value; it modifies the field named by
- the symbol @var{field-name} in that record to contain the given value.
- The returned value of the modifier procedure is unspecified. The symbol
- @var{field-name} is a field name or a field index, as in
- @code{record-modifier}.
- @end deffn
- @deffn {Scheme Procedure} record-type-descriptor record
- Return a record-type descriptor representing the type of the given
- record. That is, for example, if the returned descriptor were passed to
- @code{record-predicate}, the resulting predicate would return a true
- value when passed the given record. Note that it is not necessarily the
- case that the returned descriptor is the one that was passed to
- @code{record-constructor} in the call that created the constructor
- procedure that created the given record.
- @end deffn
- @deffn {Scheme Procedure} record-type-name rtd
- Return the type-name associated with the type represented by rtd. The
- returned value is @code{eqv?} to the @var{type-name} argument given in
- the call to @code{make-record-type} that created the type represented by
- @var{rtd}.
- @end deffn
- @deffn {Scheme Procedure} record-type-fields rtd
- Return a list of the symbols naming the fields in members of the type
- represented by @var{rtd}. The returned value is @code{equal?} to the
- field-names argument given in the call to @code{make-record-type} that
- created the type represented by @var{rtd}.
- @end deffn
- @node Structures
- @subsection Structures
- @tpindex Structures
- A @dfn{structure} is a first class data type which holds Scheme values
- or C words in fields numbered 0 upwards. A @dfn{vtable} is a structure
- that represents a structure type, giving field types and permissions,
- and an optional print function for @code{write} etc.
- Structures are lower level than records (@pxref{Records}). Usually,
- when you need to represent structured data, you just want to use
- records. But sometimes you need to implement new kinds of structured
- data abstractions, and for that purpose structures are useful. Indeed,
- records in Guile are implemented with structures.
- @menu
- * Vtables::
- * Structure Basics::
- * Vtable Contents::
- * Meta-Vtables::
- * Vtable Example::
- @end menu
- @node Vtables
- @subsubsection Vtables
- A vtable is a structure type, specifying its layout, and other
- information. A vtable is actually itself a structure, but there's no
- need to worry about that initially (@pxref{Vtable Contents}.)
- @deffn {Scheme Procedure} make-vtable fields [print]
- Create a new vtable.
- @var{fields} is a string describing the fields in the structures to be
- created. Each field is represented by two characters, a type letter
- and a permissions letter, for example @code{"pw"}. The types are as
- follows.
- @itemize @bullet{}
- @item
- @code{p} -- a Scheme value. ``p'' stands for ``protected'' meaning
- it's protected against garbage collection.
- @item
- @code{u} -- an arbitrary word of data (an @code{scm_t_bits}). At the
- Scheme level it's read and written as an unsigned integer. ``u'' stands
- for ``unboxed'', as it's stored as a raw value without additional type
- annotations.
- @end itemize
- It used to be that the second letter for each field was a permission
- code, such as @code{w} for writable or @code{r} for read-only. However
- over time structs have become more of a raw low-level facility; access
- control is better implemented as a layer on top. After all,
- @code{struct-set!} is a cross-cutting operator that can bypass
- abstractions made by higher-level record facilities; it's not generally
- safe (in the sense of abstraction-preserving) to expose
- @code{struct-set!} to ``untrusted'' code, even if the fields happen to
- be writable. Additionally, permission checks added overhead to every
- structure access in a way that couldn't be optimized out, hampering the
- ability of structs to act as a low-level building block. For all of
- these reasons, all fields in Guile structs are now writable; attempting
- to make a read-only field will now issue a deprecation warning, and the
- field will be writable regardless.
- @example
- (make-vtable "pw") ;; one scheme field
- (make-vtable "pwuwuw") ;; one scheme and two unboxed fields
- @end example
- The optional @var{print} argument is a function called by
- @code{display} and @code{write} (etc) to give a printed representation
- of a structure created from this vtable. It's called
- @code{(@var{print} struct port)} and should look at @var{struct} and
- write to @var{port}. The default print merely gives a form like
- @samp{#<struct ADDR:ADDR>} with a pair of machine addresses.
- The following print function for example shows the two fields of its
- structure.
- @example
- (make-vtable "pwpw"
- (lambda (struct port)
- (format port "#<~a and ~a>"
- (struct-ref struct 0)
- (struct-ref struct 1))))
- @end example
- @end deffn
- @node Structure Basics
- @subsubsection Structure Basics
- This section describes the basic procedures for working with structures.
- @code{make-struct/no-tail} creates a structure, and @code{struct-ref}
- and @code{struct-set!} access its fields.
- @deffn {Scheme Procedure} make-struct/no-tail vtable init @dots{}
- Create a new structure, with layout per the given @var{vtable}
- (@pxref{Vtables}).
- The optional @var{init}@dots{} arguments are initial values for the
- fields of the structure. This is the only way to
- put values in read-only fields. If there are fewer @var{init}
- arguments than fields then the defaults are @code{#f} for a Scheme
- field (type @code{p}) or 0 for an unboxed field (type @code{u}).
- The name is a bit strange, we admit. The reason for it is that Guile
- used to have a @code{make-struct} that took an additional argument;
- while we deprecate that old interface, @code{make-struct/no-tail} is the
- new name for this functionality.
- For example,
- @example
- (define v (make-vtable "pwpwpw"))
- (define s (make-struct/no-tail v 123 "abc" 456))
- (struct-ref s 0) @result{} 123
- (struct-ref s 1) @result{} "abc"
- @end example
- @end deffn
- @deftypefn {C Function} SCM scm_make_struct (SCM vtable, SCM tail_size, SCM init_list)
- @deftypefnx {C Function} SCM scm_c_make_struct (SCM vtable, SCM tail_size, SCM init, ...)
- @deftypefnx {C Function} SCM scm_c_make_structv (SCM vtable, SCM tail_size, size_t n_inits, scm_t_bits init[])
- There are a few ways to make structures from C. @code{scm_make_struct}
- takes a list, @code{scm_c_make_struct} takes variable arguments
- terminated with SCM_UNDEFINED, and @code{scm_c_make_structv} takes a
- packed array.
- For all of these, @var{tail_size} should be zero (as a SCM value).
- @end deftypefn
- @deffn {Scheme Procedure} struct? obj
- @deffnx {C Function} scm_struct_p (obj)
- Return @code{#t} if @var{obj} is a structure, or @code{#f} if not.
- @end deffn
- @deffn {Scheme Procedure} struct-ref struct n
- @deffnx {C Function} scm_struct_ref (struct, n)
- Return the contents of field number @var{n} in @var{struct}. The
- first field is number 0.
- An error is thrown if @var{n} is out of range.
- @end deffn
- @deffn {Scheme Procedure} struct-set! struct n value
- @deffnx {C Function} scm_struct_set_x (struct, n, value)
- Set field number @var{n} in @var{struct} to @var{value}. The first
- field is number 0.
- An error is thrown if @var{n} is out of range, or if the field cannot
- be written because it's @code{r} read-only.
- @end deffn
- Unboxed fields (those with type @code{u}) need to be accessed with
- special procedures.
- @deffn {Scheme Procedure} struct-ref/unboxed struct n
- @deffnx {Scheme Procedure} struct-set!/unboxed struct n value
- @deffnx {C Function} scm_struct_ref_unboxed (struct, n)
- @deffnx {C Function} scm_struct_set_x_unboxed (struct, n, value)
- Like @code{struct-ref} and @code{struct-set!}, except that these may
- only be used on unboxed fields. @code{struct-ref/unboxed} will always
- return a positive integer. Likewise, @code{struct-set!/unboxed} takes
- an unsigned integer as the @var{value} argument, and will signal an
- error otherwise.
- @end deffn
- @deffn {Scheme Procedure} struct-vtable struct
- @deffnx {C Function} scm_struct_vtable (struct)
- Return the vtable that describes @var{struct}.
- The vtable is effectively the type of the structure. See @ref{Vtable
- Contents}, for more on vtables.
- @end deffn
- @node Vtable Contents
- @subsubsection Vtable Contents
- A vtable is itself a structure. It has a specific set of fields
- describing various aspects of its @dfn{instances}: the structures
- created from a vtable. Some of the fields are internal to Guile, some
- of them are part of the public interface, and there may be additional
- fields added on by the user.
- Every vtable has a field for the layout of their instances, a field for
- the procedure used to print its instances, and a field for the name of
- the vtable itself. Access to the layout and printer is exposed directly
- via field indexes. Access to the vtable name is exposed via accessor
- procedures.
- @defvr {Scheme Variable} vtable-index-layout
- @defvrx {C Macro} scm_vtable_index_layout
- The field number of the layout specification in a vtable. The layout
- specification is a symbol like @code{pwpw} formed from the fields
- string passed to @code{make-vtable}, or created by
- @code{make-struct-layout} (@pxref{Meta-Vtables}).
- @example
- (define v (make-vtable "pwpw" 0))
- (struct-ref v vtable-index-layout) @result{} pwpw
- @end example
- This field is read-only, since the layout of structures using a vtable
- cannot be changed.
- @end defvr
- @defvr {Scheme Variable} vtable-index-printer
- @defvrx {C Macro} scm_vtable_index_printer
- The field number of the printer function. This field contains @code{#f}
- if the default print function should be used.
- @example
- (define (my-print-func struct port)
- ...)
- (define v (make-vtable "pwpw" my-print-func))
- (struct-ref v vtable-index-printer) @result{} my-print-func
- @end example
- This field is writable, allowing the print function to be changed
- dynamically.
- @end defvr
- @deffn {Scheme Procedure} struct-vtable-name vtable
- @deffnx {Scheme Procedure} set-struct-vtable-name! vtable name
- @deffnx {C Function} scm_struct_vtable_name (vtable)
- @deffnx {C Function} scm_set_struct_vtable_name_x (vtable, name)
- Get or set the name of @var{vtable}. @var{name} is a symbol and is
- used in the default print function when printing structures created
- from @var{vtable}.
- @example
- (define v (make-vtable "pw"))
- (set-struct-vtable-name! v 'my-name)
- (define s (make-struct v 0))
- (display s) @print{} #<my-name b7ab3ae0:b7ab3730>
- @end example
- @end deffn
- @node Meta-Vtables
- @subsubsection Meta-Vtables
- As a structure, a vtable also has a vtable, which is also a structure.
- Structures, their vtables, the vtables of the vtables, and so on form a
- tree of structures. Making a new structure adds a leaf to the tree, and
- if that structure is a vtable, it may be used to create other leaves.
- If you traverse up the tree of vtables, via calling
- @code{struct-vtable}, eventually you reach a root which is the vtable of
- itself:
- @example
- scheme@@(guile-user)> (current-module)
- $1 = #<directory (guile-user) 221b090>
- scheme@@(guile-user)> (struct-vtable $1)
- $2 = #<record-type module>
- scheme@@(guile-user)> (struct-vtable $2)
- $3 = #<<standard-vtable> 12c30a0>
- scheme@@(guile-user)> (struct-vtable $3)
- $4 = #<<standard-vtable> 12c3fa0>
- scheme@@(guile-user)> (struct-vtable $4)
- $5 = #<<standard-vtable> 12c3fa0>
- scheme@@(guile-user)> <standard-vtable>
- $6 = #<<standard-vtable> 12c3fa0>
- @end example
- In this example, we can say that @code{$1} is an instance of @code{$2},
- @code{$2} is an instance of @code{$3}, @code{$3} is an instance of
- @code{$4}, and @code{$4}, strangely enough, is an instance of itself.
- The value bound to @code{$4} in this console session also bound to
- @code{<standard-vtable>} in the default environment.
- @defvr {Scheme Variable} <standard-vtable>
- A meta-vtable, useful for making new vtables.
- @end defvr
- All of these values are structures. All but @code{$1} are vtables. As
- @code{$2} is an instance of @code{$3}, and @code{$3} is a vtable, we can
- say that @code{$3} is a @dfn{meta-vtable}: a vtable that can create
- vtables.
- With this definition, we can specify more precisely what a vtable is: a
- vtable is a structure made from a meta-vtable. Making a structure from
- a meta-vtable runs some special checks to ensure that the first field of
- the structure is a valid layout. Additionally, if these checks see that
- the layout of the child vtable contains all the required fields of a
- vtable, in the correct order, then the child vtable will also be a
- meta-table, inheriting a magical bit from the parent.
- @deffn {Scheme Procedure} struct-vtable? obj
- @deffnx {C Function} scm_struct_vtable_p (obj)
- Return @code{#t} if @var{obj} is a vtable structure: an instance of a
- meta-vtable.
- @end deffn
- @code{<standard-vtable>} is a root of the vtable tree. (Normally there
- is only one root in a given Guile process, but due to some legacy
- interfaces there may be more than one.)
- The set of required fields of a vtable is the set of fields in the
- @code{<standard-vtable>}, and is bound to @code{standard-vtable-fields}
- in the default environment. It is possible to create a meta-vtable that
- with additional fields in its layout, which can be used to create
- vtables with additional data:
- @example
- scheme@@(guile-user)> (struct-ref $3 vtable-index-layout)
- $6 = pwuhuhpwphuhuhpwpwpw
- scheme@@(guile-user)> (struct-ref $4 vtable-index-layout)
- $7 = pwuhuhpwphuhuh
- scheme@@(guile-user)> standard-vtable-fields
- $8 = "pwuhuhpwphuhuh"
- scheme@@(guile-user)> (struct-ref $2 vtable-offset-user)
- $9 = module
- @end example
- In this continuation of our earlier example, @code{$2} is a vtable that
- has extra fields, because its vtable, @code{$3}, was made from a
- meta-vtable with an extended layout. @code{vtable-offset-user} is a
- convenient definition that indicates the number of fields in
- @code{standard-vtable-fields}.
- @defvr {Scheme Variable} standard-vtable-fields
- A string containing the ordered set of fields that a vtable must have.
- @end defvr
- @defvr {Scheme Variable} vtable-offset-user
- The first index in a vtable that is available for a user.
- @end defvr
- @deffn {Scheme Procedure} make-struct-layout fields
- @deffnx {C Function} scm_make_struct_layout (fields)
- Return a structure layout symbol, from a @var{fields} string.
- @var{fields} is as described under @code{make-vtable}
- (@pxref{Vtables}). An invalid @var{fields} string is an error.
- @end deffn
- With these definitions, one can define @code{make-vtable} in this way:
- @example
- (define* (make-vtable fields #:optional printer)
- (make-struct/no-tail <standard-vtable>
- (make-struct-layout fields)
- printer))
- @end example
- @node Vtable Example
- @subsubsection Vtable Example
- Let us bring these points together with an example. Consider a simple
- object system with single inheritance. Objects will be normal
- structures, and classes will be vtables with three extra class fields:
- the name of the class, the parent class, and the list of fields.
- So, first we need a meta-vtable that allocates instances with these
- extra class fields.
- @example
- (define <class>
- (make-vtable
- (string-append standard-vtable-fields "pwpwpw")
- (lambda (x port)
- (format port "<<class> ~a>" (class-name x)))))
- (define (class? x)
- (and (struct? x)
- (eq? (struct-vtable x) <class>)))
- @end example
- To make a structure with a specific meta-vtable, we will use
- @code{make-struct/no-tail}, passing it the computed instance layout and
- printer, as with @code{make-vtable}, and additionally the extra three
- class fields.
- @example
- (define (make-class name parent fields)
- (let* ((fields (compute-fields parent fields))
- (layout (compute-layout fields)))
- (make-struct/no-tail <class>
- layout
- (lambda (x port)
- (print-instance x port))
- name
- parent
- fields)))
- @end example
- Instances will store their associated data in slots in the structure: as
- many slots as there are fields. The @code{compute-layout} procedure
- below can compute a layout, and @code{field-index} returns the slot
- corresponding to a field.
- @example
- (define-syntax-rule (define-accessor name n)
- (define (name obj)
- (struct-ref obj n)))
- ;; Accessors for classes
- (define-accessor class-name (+ vtable-offset-user 0))
- (define-accessor class-parent (+ vtable-offset-user 1))
- (define-accessor class-fields (+ vtable-offset-user 2))
- (define (compute-fields parent fields)
- (if parent
- (append (class-fields parent) fields)
- fields))
- (define (compute-layout fields)
- (make-struct-layout
- (string-concatenate (make-list (length fields) "pw"))))
- (define (field-index class field)
- (list-index (class-fields class) field))
- (define (print-instance x port)
- (format port "<~a" (class-name (struct-vtable x)))
- (for-each (lambda (field idx)
- (format port " ~a: ~a" field (struct-ref x idx)))
- (class-fields (struct-vtable x))
- (iota (length (class-fields (struct-vtable x)))))
- (format port ">"))
- @end example
- So, at this point we can actually make a few classes:
- @example
- (define-syntax-rule (define-class name parent field ...)
- (define name (make-class 'name parent '(field ...))))
- (define-class <surface> #f
- width height)
- (define-class <window> <surface>
- x y)
- @end example
- And finally, make an instance:
- @example
- (make-struct/no-tail <window> 400 300 10 20)
- @result{} <<window> width: 400 height: 300 x: 10 y: 20>
- @end example
- And that's that. Note that there are many possible optimizations and
- feature enhancements that can be made to this object system, and the
- included GOOPS system does make most of them. For more simple use
- cases, the records facility is usually sufficient. But sometimes you
- need to make new kinds of data abstractions, and for that purpose,
- structs are here.
- @node Dictionary Types
- @subsection Dictionary Types
- A @dfn{dictionary} object is a data structure used to index
- information in a user-defined way. In standard Scheme, the main
- aggregate data types are lists and vectors. Lists are not really
- indexed at all, and vectors are indexed only by number
- (e.g.@: @code{(vector-ref foo 5)}). Often you will find it useful
- to index your data on some other type; for example, in a library
- catalog you might want to look up a book by the name of its
- author. Dictionaries are used to help you organize information in
- such a way.
- An @dfn{association list} (or @dfn{alist} for short) is a list of
- key-value pairs. Each pair represents a single quantity or
- object; the @code{car} of the pair is a key which is used to
- identify the object, and the @code{cdr} is the object's value.
- A @dfn{hash table} also permits you to index objects with
- arbitrary keys, but in a way that makes looking up any one object
- extremely fast. A well-designed hash system makes hash table
- lookups almost as fast as conventional array or vector references.
- Alists are popular among Lisp programmers because they use only
- the language's primitive operations (lists, @dfn{car}, @dfn{cdr}
- and the equality primitives). No changes to the language core are
- necessary. Therefore, with Scheme's built-in list manipulation
- facilities, it is very convenient to handle data stored in an
- association list. Also, alists are highly portable and can be
- easily implemented on even the most minimal Lisp systems.
- However, alists are inefficient, especially for storing large
- quantities of data. Because we want Guile to be useful for large
- software systems as well as small ones, Guile provides a rich set
- of tools for using either association lists or hash tables.
- @node Association Lists
- @subsection Association Lists
- @tpindex Association Lists
- @tpindex Alist
- @cindex association List
- @cindex alist
- @cindex database
- An association list is a conventional data structure that is often used
- to implement simple key-value databases. It consists of a list of
- entries in which each entry is a pair. The @dfn{key} of each entry is
- the @code{car} of the pair and the @dfn{value} of each entry is the
- @code{cdr}.
- @example
- ASSOCIATION LIST ::= '( (KEY1 . VALUE1)
- (KEY2 . VALUE2)
- (KEY3 . VALUE3)
- @dots{}
- )
- @end example
- @noindent
- Association lists are also known, for short, as @dfn{alists}.
- The structure of an association list is just one example of the infinite
- number of possible structures that can be built using pairs and lists.
- As such, the keys and values in an association list can be manipulated
- using the general list structure procedures @code{cons}, @code{car},
- @code{cdr}, @code{set-car!}, @code{set-cdr!} and so on. However,
- because association lists are so useful, Guile also provides specific
- procedures for manipulating them.
- @menu
- * Alist Key Equality::
- * Adding or Setting Alist Entries::
- * Retrieving Alist Entries::
- * Removing Alist Entries::
- * Sloppy Alist Functions::
- * Alist Example::
- @end menu
- @node Alist Key Equality
- @subsubsection Alist Key Equality
- All of Guile's dedicated association list procedures, apart from
- @code{acons}, come in three flavors, depending on the level of equality
- that is required to decide whether an existing key in the association
- list is the same as the key that the procedure call uses to identify the
- required entry.
- @itemize @bullet
- @item
- Procedures with @dfn{assq} in their name use @code{eq?} to determine key
- equality.
- @item
- Procedures with @dfn{assv} in their name use @code{eqv?} to determine
- key equality.
- @item
- Procedures with @dfn{assoc} in their name use @code{equal?} to
- determine key equality.
- @end itemize
- @code{acons} is an exception because it is used to build association
- lists which do not require their entries' keys to be unique.
- @node Adding or Setting Alist Entries
- @subsubsection Adding or Setting Alist Entries
- @code{acons} adds a new entry to an association list and returns the
- combined association list. The combined alist is formed by consing the
- new entry onto the head of the alist specified in the @code{acons}
- procedure call. So the specified alist is not modified, but its
- contents become shared with the tail of the combined alist that
- @code{acons} returns.
- In the most common usage of @code{acons}, a variable holding the
- original association list is updated with the combined alist:
- @example
- (set! address-list (acons name address address-list))
- @end example
- In such cases, it doesn't matter that the old and new values of
- @code{address-list} share some of their contents, since the old value is
- usually no longer independently accessible.
- Note that @code{acons} adds the specified new entry regardless of
- whether the alist may already contain entries with keys that are, in
- some sense, the same as that of the new entry. Thus @code{acons} is
- ideal for building alists where there is no concept of key uniqueness.
- @example
- (set! task-list (acons 3 "pay gas bill" '()))
- task-list
- @result{}
- ((3 . "pay gas bill"))
- (set! task-list (acons 3 "tidy bedroom" task-list))
- task-list
- @result{}
- ((3 . "tidy bedroom") (3 . "pay gas bill"))
- @end example
- @code{assq-set!}, @code{assv-set!} and @code{assoc-set!} are used to add
- or replace an entry in an association list where there @emph{is} a
- concept of key uniqueness. If the specified association list already
- contains an entry whose key is the same as that specified in the
- procedure call, the existing entry is replaced by the new one.
- Otherwise, the new entry is consed onto the head of the old association
- list to create the combined alist. In all cases, these procedures
- return the combined alist.
- @code{assq-set!} and friends @emph{may} destructively modify the
- structure of the old association list in such a way that an existing
- variable is correctly updated without having to @code{set!} it to the
- value returned:
- @example
- address-list
- @result{}
- (("mary" . "34 Elm Road") ("james" . "16 Bow Street"))
- (assoc-set! address-list "james" "1a London Road")
- @result{}
- (("mary" . "34 Elm Road") ("james" . "1a London Road"))
- address-list
- @result{}
- (("mary" . "34 Elm Road") ("james" . "1a London Road"))
- @end example
- Or they may not:
- @example
- (assoc-set! address-list "bob" "11 Newington Avenue")
- @result{}
- (("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")
- ("james" . "1a London Road"))
- address-list
- @result{}
- (("mary" . "34 Elm Road") ("james" . "1a London Road"))
- @end example
- The only safe way to update an association list variable when adding or
- replacing an entry like this is to @code{set!} the variable to the
- returned value:
- @example
- (set! address-list
- (assoc-set! address-list "bob" "11 Newington Avenue"))
- address-list
- @result{}
- (("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")
- ("james" . "1a London Road"))
- @end example
- Because of this slight inconvenience, you may find it more convenient to
- use hash tables to store dictionary data. If your application will not
- be modifying the contents of an alist very often, this may not make much
- difference to you.
- If you need to keep the old value of an association list in a form
- independent from the list that results from modification by
- @code{acons}, @code{assq-set!}, @code{assv-set!} or @code{assoc-set!},
- use @code{list-copy} to copy the old association list before modifying
- it.
- @deffn {Scheme Procedure} acons key value alist
- @deffnx {C Function} scm_acons (key, value, alist)
- Add a new key-value pair to @var{alist}. A new pair is
- created whose car is @var{key} and whose cdr is @var{value}, and the
- pair is consed onto @var{alist}, and the new list is returned. This
- function is @emph{not} destructive; @var{alist} is not modified.
- @end deffn
- @deffn {Scheme Procedure} assq-set! alist key val
- @deffnx {Scheme Procedure} assv-set! alist key value
- @deffnx {Scheme Procedure} assoc-set! alist key value
- @deffnx {C Function} scm_assq_set_x (alist, key, val)
- @deffnx {C Function} scm_assv_set_x (alist, key, val)
- @deffnx {C Function} scm_assoc_set_x (alist, key, val)
- Reassociate @var{key} in @var{alist} with @var{value}: find any existing
- @var{alist} entry for @var{key} and associate it with the new
- @var{value}. If @var{alist} does not contain an entry for @var{key},
- add a new one. Return the (possibly new) alist.
- These functions do not attempt to verify the structure of @var{alist},
- and so may cause unusual results if passed an object that is not an
- association list.
- @end deffn
- @node Retrieving Alist Entries
- @subsubsection Retrieving Alist Entries
- @rnindex assq
- @rnindex assv
- @rnindex assoc
- @code{assq}, @code{assv} and @code{assoc} find the entry in an alist
- for a given key, and return the @code{(@var{key} . @var{value})} pair.
- @code{assq-ref}, @code{assv-ref} and @code{assoc-ref} do a similar
- lookup, but return just the @var{value}.
- @deffn {Scheme Procedure} assq key alist
- @deffnx {Scheme Procedure} assv key alist
- @deffnx {Scheme Procedure} assoc key alist
- @deffnx {C Function} scm_assq (key, alist)
- @deffnx {C Function} scm_assv (key, alist)
- @deffnx {C Function} scm_assoc (key, alist)
- Return the first entry in @var{alist} with the given @var{key}. The
- return is the pair @code{(KEY . VALUE)} from @var{alist}. If there's
- no matching entry the return is @code{#f}.
- @code{assq} compares keys with @code{eq?}, @code{assv} uses
- @code{eqv?} and @code{assoc} uses @code{equal?}. See also SRFI-1
- which has an extended @code{assoc} (@ref{SRFI-1 Association Lists}).
- @end deffn
- @deffn {Scheme Procedure} assq-ref alist key
- @deffnx {Scheme Procedure} assv-ref alist key
- @deffnx {Scheme Procedure} assoc-ref alist key
- @deffnx {C Function} scm_assq_ref (alist, key)
- @deffnx {C Function} scm_assv_ref (alist, key)
- @deffnx {C Function} scm_assoc_ref (alist, key)
- Return the value from the first entry in @var{alist} with the given
- @var{key}, or @code{#f} if there's no such entry.
- @code{assq-ref} compares keys with @code{eq?}, @code{assv-ref} uses
- @code{eqv?} and @code{assoc-ref} uses @code{equal?}.
- Notice these functions have the @var{key} argument last, like other
- @code{-ref} functions, but this is opposite to what @code{assq}
- etc above use.
- When the return is @code{#f} it can be either @var{key} not found, or
- an entry which happens to have value @code{#f} in the @code{cdr}. Use
- @code{assq} etc above if you need to differentiate these cases.
- @end deffn
- @node Removing Alist Entries
- @subsubsection Removing Alist Entries
- To remove the element from an association list whose key matches a
- specified key, use @code{assq-remove!}, @code{assv-remove!} or
- @code{assoc-remove!} (depending, as usual, on the level of equality
- required between the key that you specify and the keys in the
- association list).
- As with @code{assq-set!} and friends, the specified alist may or may not
- be modified destructively, and the only safe way to update a variable
- containing the alist is to @code{set!} it to the value that
- @code{assq-remove!} and friends return.
- @example
- address-list
- @result{}
- (("bob" . "11 Newington Avenue") ("mary" . "34 Elm Road")
- ("james" . "1a London Road"))
- (set! address-list (assoc-remove! address-list "mary"))
- address-list
- @result{}
- (("bob" . "11 Newington Avenue") ("james" . "1a London Road"))
- @end example
- Note that, when @code{assq/v/oc-remove!} is used to modify an
- association list that has been constructed only using the corresponding
- @code{assq/v/oc-set!}, there can be at most one matching entry in the
- alist, so the question of multiple entries being removed in one go does
- not arise. If @code{assq/v/oc-remove!} is applied to an association
- list that has been constructed using @code{acons}, or an
- @code{assq/v/oc-set!} with a different level of equality, or any mixture
- of these, it removes only the first matching entry from the alist, even
- if the alist might contain further matching entries. For example:
- @example
- (define address-list '())
- (set! address-list (assq-set! address-list "mary" "11 Elm Street"))
- (set! address-list (assq-set! address-list "mary" "57 Pine Drive"))
- address-list
- @result{}
- (("mary" . "57 Pine Drive") ("mary" . "11 Elm Street"))
- (set! address-list (assoc-remove! address-list "mary"))
- address-list
- @result{}
- (("mary" . "11 Elm Street"))
- @end example
- In this example, the two instances of the string "mary" are not the same
- when compared using @code{eq?}, so the two @code{assq-set!} calls add
- two distinct entries to @code{address-list}. When compared using
- @code{equal?}, both "mary"s in @code{address-list} are the same as the
- "mary" in the @code{assoc-remove!} call, but @code{assoc-remove!} stops
- after removing the first matching entry that it finds, and so one of the
- "mary" entries is left in place.
- @deffn {Scheme Procedure} assq-remove! alist key
- @deffnx {Scheme Procedure} assv-remove! alist key
- @deffnx {Scheme Procedure} assoc-remove! alist key
- @deffnx {C Function} scm_assq_remove_x (alist, key)
- @deffnx {C Function} scm_assv_remove_x (alist, key)
- @deffnx {C Function} scm_assoc_remove_x (alist, key)
- Delete the first entry in @var{alist} associated with @var{key}, and return
- the resulting alist.
- @end deffn
- @node Sloppy Alist Functions
- @subsubsection Sloppy Alist Functions
- @code{sloppy-assq}, @code{sloppy-assv} and @code{sloppy-assoc} behave
- like the corresponding non-@code{sloppy-} procedures, except that they
- return @code{#f} when the specified association list is not well-formed,
- where the non-@code{sloppy-} versions would signal an error.
- Specifically, there are two conditions for which the non-@code{sloppy-}
- procedures signal an error, which the @code{sloppy-} procedures handle
- instead by returning @code{#f}. Firstly, if the specified alist as a
- whole is not a proper list:
- @example
- (assoc "mary" '((1 . 2) ("key" . "door") . "open sesame"))
- @result{}
- ERROR: In procedure assoc in expression (assoc "mary" (quote #)):
- ERROR: Wrong type argument in position 2 (expecting
- association list): ((1 . 2) ("key" . "door") . "open sesame")
- (sloppy-assoc "mary" '((1 . 2) ("key" . "door") . "open sesame"))
- @result{}
- #f
- @end example
- @noindent
- Secondly, if one of the entries in the specified alist is not a pair:
- @example
- (assoc 2 '((1 . 1) 2 (3 . 9)))
- @result{}
- ERROR: In procedure assoc in expression (assoc 2 (quote #)):
- ERROR: Wrong type argument in position 2 (expecting
- association list): ((1 . 1) 2 (3 . 9))
- (sloppy-assoc 2 '((1 . 1) 2 (3 . 9)))
- @result{}
- #f
- @end example
- Unless you are explicitly working with badly formed association lists,
- it is much safer to use the non-@code{sloppy-} procedures, because they
- help to highlight coding and data errors that the @code{sloppy-}
- versions would silently cover up.
- @deffn {Scheme Procedure} sloppy-assq key alist
- @deffnx {C Function} scm_sloppy_assq (key, alist)
- Behaves like @code{assq} but does not do any error checking.
- Recommended only for use in Guile internals.
- @end deffn
- @deffn {Scheme Procedure} sloppy-assv key alist
- @deffnx {C Function} scm_sloppy_assv (key, alist)
- Behaves like @code{assv} but does not do any error checking.
- Recommended only for use in Guile internals.
- @end deffn
- @deffn {Scheme Procedure} sloppy-assoc key alist
- @deffnx {C Function} scm_sloppy_assoc (key, alist)
- Behaves like @code{assoc} but does not do any error checking.
- Recommended only for use in Guile internals.
- @end deffn
- @node Alist Example
- @subsubsection Alist Example
- Here is a longer example of how alists may be used in practice.
- @lisp
- (define capitals '(("New York" . "Albany")
- ("Oregon" . "Salem")
- ("Florida" . "Miami")))
- ;; What's the capital of Oregon?
- (assoc "Oregon" capitals) @result{} ("Oregon" . "Salem")
- (assoc-ref capitals "Oregon") @result{} "Salem"
- ;; We left out South Dakota.
- (set! capitals
- (assoc-set! capitals "South Dakota" "Pierre"))
- capitals
- @result{} (("South Dakota" . "Pierre")
- ("New York" . "Albany")
- ("Oregon" . "Salem")
- ("Florida" . "Miami"))
- ;; And we got Florida wrong.
- (set! capitals
- (assoc-set! capitals "Florida" "Tallahassee"))
- capitals
- @result{} (("South Dakota" . "Pierre")
- ("New York" . "Albany")
- ("Oregon" . "Salem")
- ("Florida" . "Tallahassee"))
- ;; After Oregon secedes, we can remove it.
- (set! capitals
- (assoc-remove! capitals "Oregon"))
- capitals
- @result{} (("South Dakota" . "Pierre")
- ("New York" . "Albany")
- ("Florida" . "Tallahassee"))
- @end lisp
- @node VHashes
- @subsection VList-Based Hash Lists or ``VHashes''
- @cindex VList-based hash lists
- @cindex VHash
- The @code{(ice-9 vlist)} module provides an implementation of @dfn{VList-based
- hash lists} (@pxref{VLists}). VList-based hash lists, or @dfn{vhashes}, are an
- immutable dictionary type similar to association lists that maps @dfn{keys} to
- @dfn{values}. However, unlike association lists, accessing a value given its
- key is typically a constant-time operation.
- The VHash programming interface of @code{(ice-9 vlist)} is mostly the same as
- that of association lists found in SRFI-1, with procedure names prefixed by
- @code{vhash-} instead of @code{alist-} (@pxref{SRFI-1 Association Lists}).
- In addition, vhashes can be manipulated using VList operations:
- @example
- (vlist-head (vhash-consq 'a 1 vlist-null))
- @result{} (a . 1)
- (define vh1 (vhash-consq 'b 2 (vhash-consq 'a 1 vlist-null)))
- (define vh2 (vhash-consq 'c 3 (vlist-tail vh1)))
- (vhash-assq 'a vh2)
- @result{} (a . 1)
- (vhash-assq 'b vh2)
- @result{} #f
- (vhash-assq 'c vh2)
- @result{} (c . 3)
- (vlist->list vh2)
- @result{} ((c . 3) (a . 1))
- @end example
- However, keep in mind that procedures that construct new VLists
- (@code{vlist-map}, @code{vlist-filter}, etc.) return raw VLists, not vhashes:
- @example
- (define vh (alist->vhash '((a . 1) (b . 2) (c . 3)) hashq))
- (vhash-assq 'a vh)
- @result{} (a . 1)
- (define vl
- ;; This will create a raw vlist.
- (vlist-filter (lambda (key+value) (odd? (cdr key+value))) vh))
- (vhash-assq 'a vl)
- @result{} ERROR: Wrong type argument in position 2
- (vlist->list vl)
- @result{} ((a . 1) (c . 3))
- @end example
- @deffn {Scheme Procedure} vhash? obj
- Return true if @var{obj} is a vhash.
- @end deffn
- @deffn {Scheme Procedure} vhash-cons key value vhash [hash-proc]
- @deffnx {Scheme Procedure} vhash-consq key value vhash
- @deffnx {Scheme Procedure} vhash-consv key value vhash
- Return a new hash list based on @var{vhash} where @var{key} is associated with
- @var{value}, using @var{hash-proc} to compute the hash of @var{key}.
- @var{vhash} must be either @code{vlist-null} or a vhash returned by a previous
- call to @code{vhash-cons}. @var{hash-proc} defaults to @code{hash} (@pxref{Hash
- Table Reference, @code{hash} procedure}). With @code{vhash-consq}, the
- @code{hashq} hash function is used; with @code{vhash-consv} the @code{hashv}
- hash function is used.
- All @code{vhash-cons} calls made to construct a vhash should use the same
- @var{hash-proc}. Failing to do that, the result is undefined.
- @end deffn
- @deffn {Scheme Procedure} vhash-assoc key vhash [equal? [hash-proc]]
- @deffnx {Scheme Procedure} vhash-assq key vhash
- @deffnx {Scheme Procedure} vhash-assv key vhash
- Return the first key/value pair from @var{vhash} whose key is equal to @var{key}
- according to the @var{equal?} equality predicate (which defaults to
- @code{equal?}), and using @var{hash-proc} (which defaults to @code{hash}) to
- compute the hash of @var{key}. The second form uses @code{eq?} as the equality
- predicate and @code{hashq} as the hash function; the last form uses @code{eqv?}
- and @code{hashv}.
- Note that it is important to consistently use the same hash function for
- @var{hash-proc} as was passed to @code{vhash-cons}. Failing to do that, the
- result is unpredictable.
- @end deffn
- @deffn {Scheme Procedure} vhash-delete key vhash [equal? [hash-proc]]
- @deffnx {Scheme Procedure} vhash-delq key vhash
- @deffnx {Scheme Procedure} vhash-delv key vhash
- Remove all associations from @var{vhash} with @var{key}, comparing keys with
- @var{equal?} (which defaults to @code{equal?}), and computing the hash of
- @var{key} using @var{hash-proc} (which defaults to @code{hash}). The second
- form uses @code{eq?} as the equality predicate and @code{hashq} as the hash
- function; the last one uses @code{eqv?} and @code{hashv}.
- Again the choice of @var{hash-proc} must be consistent with previous calls to
- @code{vhash-cons}.
- @end deffn
- @deffn {Scheme Procedure} vhash-fold proc init vhash
- @deffnx {Scheme Procedure} vhash-fold-right proc init vhash
- Fold over the key/value elements of @var{vhash} in the given direction,
- with each call to @var{proc} having the form @code{(@var{proc} key value
- result)}, where @var{result} is the result of the previous call to
- @var{proc} and @var{init} the value of @var{result} for the first call
- to @var{proc}.
- @end deffn
- @deffn {Scheme Procedure} vhash-fold* proc init key vhash [equal? [hash]]
- @deffnx {Scheme Procedure} vhash-foldq* proc init key vhash
- @deffnx {Scheme Procedure} vhash-foldv* proc init key vhash
- Fold over all the values associated with @var{key} in @var{vhash}, with each
- call to @var{proc} having the form @code{(proc value result)}, where
- @var{result} is the result of the previous call to @var{proc} and @var{init} the
- value of @var{result} for the first call to @var{proc}.
- Keys in @var{vhash} are hashed using @var{hash} are compared using @var{equal?}.
- The second form uses @code{eq?} as the equality predicate and @code{hashq} as
- the hash function; the third one uses @code{eqv?} and @code{hashv}.
- Example:
- @example
- (define vh
- (alist->vhash '((a . 1) (a . 2) (z . 0) (a . 3))))
- (vhash-fold* cons '() 'a vh)
- @result{} (3 2 1)
- (vhash-fold* cons '() 'z vh)
- @result{} (0)
- @end example
- @end deffn
- @deffn {Scheme Procedure} alist->vhash alist [hash-proc]
- Return the vhash corresponding to @var{alist}, an association list, using
- @var{hash-proc} to compute key hashes. When omitted, @var{hash-proc} defaults
- to @code{hash}.
- @end deffn
- @node Hash Tables
- @subsection Hash Tables
- @tpindex Hash Tables
- Hash tables are dictionaries which offer similar functionality as
- association lists: They provide a mapping from keys to values. The
- difference is that association lists need time linear in the size of
- elements when searching for entries, whereas hash tables can normally
- search in constant time. The drawback is that hash tables require a
- little bit more memory, and that you can not use the normal list
- procedures (@pxref{Lists}) for working with them.
- @menu
- * Hash Table Examples:: Demonstration of hash table usage.
- * Hash Table Reference:: Hash table procedure descriptions.
- @end menu
- @node Hash Table Examples
- @subsubsection Hash Table Examples
- For demonstration purposes, this section gives a few usage examples of
- some hash table procedures, together with some explanation what they do.
- First we start by creating a new hash table with 31 slots, and
- populate it with two key/value pairs.
- @lisp
- (define h (make-hash-table 31))
- ;; This is an opaque object
- h
- @result{}
- #<hash-table 0/31>
- ;; Inserting into a hash table can be done with hashq-set!
- (hashq-set! h 'foo "bar")
- @result{}
- "bar"
- (hashq-set! h 'braz "zonk")
- @result{}
- "zonk"
- ;; Or with hash-create-handle!
- (hashq-create-handle! h 'frob #f)
- @result{}
- (frob . #f)
- @end lisp
- You can get the value for a given key with the procedure
- @code{hashq-ref}, but the problem with this procedure is that you
- cannot reliably determine whether a key does exists in the table. The
- reason is that the procedure returns @code{#f} if the key is not in
- the table, but it will return the same value if the key is in the
- table and just happens to have the value @code{#f}, as you can see in
- the following examples.
- @lisp
- (hashq-ref h 'foo)
- @result{}
- "bar"
- (hashq-ref h 'frob)
- @result{}
- #f
- (hashq-ref h 'not-there)
- @result{}
- #f
- @end lisp
- It is often better is to use the procedure @code{hashq-get-handle},
- which makes a distinction between the two cases. Just like @code{assq},
- this procedure returns a key/value-pair on success, and @code{#f} if the
- key is not found.
- @lisp
- (hashq-get-handle h 'foo)
- @result{}
- (foo . "bar")
- (hashq-get-handle h 'not-there)
- @result{}
- #f
- @end lisp
- Interesting results can be computed by using @code{hash-fold} to work
- through each element. This example will count the total number of
- elements:
- @lisp
- (hash-fold (lambda (key value seed) (+ 1 seed)) 0 h)
- @result{}
- 3
- @end lisp
- The same thing can be done with the procedure @code{hash-count}, which
- can also count the number of elements matching a particular predicate.
- For example, count the number of elements with string values:
- @lisp
- (hash-count (lambda (key value) (string? value)) h)
- @result{}
- 2
- @end lisp
- Counting all the elements is a simple task using @code{const}:
- @lisp
- (hash-count (const #t) h)
- @result{}
- 3
- @end lisp
- @node Hash Table Reference
- @subsubsection Hash Table Reference
- @c FIXME: Describe in broad terms what happens for resizing, and what
- @c the initial size means for this.
- Like the association list functions, the hash table functions come in
- several varieties, according to the equality test used for the keys.
- Plain @code{hash-} functions use @code{equal?}, @code{hashq-}
- functions use @code{eq?}, @code{hashv-} functions use @code{eqv?}, and
- the @code{hashx-} functions use an application supplied test.
- A single @code{make-hash-table} creates a hash table suitable for use
- with any set of functions, but it's imperative that just one set is
- then used consistently, or results will be unpredictable.
- Hash tables are implemented as a vector indexed by a hash value formed
- from the key, with an association list of key/value pairs for each
- bucket in case distinct keys hash together. Direct access to the
- pairs in those lists is provided by the @code{-handle-} functions.
- When the number of entries in a hash table goes above a threshold, the
- vector is made larger and the entries are rehashed, to prevent the
- bucket lists from becoming too long and slowing down accesses. When the
- number of entries goes below a threshold, the vector is shrunk to save
- space.
- For the @code{hashx-} ``extended'' routines, an application supplies a
- @var{hash} function producing an integer index like @code{hashq} etc
- below, and an @var{assoc} alist search function like @code{assq} etc
- (@pxref{Retrieving Alist Entries}). Here's an example of such
- functions implementing case-insensitive hashing of string keys,
- @example
- (use-modules (srfi srfi-1)
- (srfi srfi-13))
- (define (my-hash str size)
- (remainder (string-hash-ci str) size))
- (define (my-assoc str alist)
- (find (lambda (pair) (string-ci=? str (car pair))) alist))
- (define my-table (make-hash-table))
- (hashx-set! my-hash my-assoc my-table "foo" 123)
- (hashx-ref my-hash my-assoc my-table "FOO")
- @result{} 123
- @end example
- In a @code{hashx-} @var{hash} function the aim is to spread keys
- across the vector, so bucket lists don't become long. But the actual
- values are arbitrary as long as they're in the range 0 to
- @math{@var{size}-1}. Helpful functions for forming a hash value, in
- addition to @code{hashq} etc below, include @code{symbol-hash}
- (@pxref{Symbol Keys}), @code{string-hash} and @code{string-hash-ci}
- (@pxref{String Comparison}), and @code{char-set-hash}
- (@pxref{Character Set Predicates/Comparison}).
- @sp 1
- @deffn {Scheme Procedure} make-hash-table [size]
- Create a new hash table object, with an optional minimum
- vector @var{size}.
- When @var{size} is given, the table vector will still grow and shrink
- automatically, as described above, but with @var{size} as a minimum.
- If an application knows roughly how many entries the table will hold
- then it can use @var{size} to avoid rehashing when initial entries are
- added.
- @end deffn
- @deffn {Scheme Procedure} alist->hash-table alist
- @deffnx {Scheme Procedure} alist->hashq-table alist
- @deffnx {Scheme Procedure} alist->hashv-table alist
- @deffnx {Scheme Procedure} alist->hashx-table hash assoc alist
- Convert @var{alist} into a hash table. When keys are repeated in
- @var{alist}, the leftmost association takes precedence.
- @example
- (use-modules (ice-9 hash-table))
- (alist->hash-table '((foo . 1) (bar . 2)))
- @end example
- When converting to an extended hash table, custom @var{hash} and
- @var{assoc} procedures must be provided.
- @example
- (alist->hashx-table hash assoc '((foo . 1) (bar . 2)))
- @end example
- @end deffn
- @deffn {Scheme Procedure} hash-table? obj
- @deffnx {C Function} scm_hash_table_p (obj)
- Return @code{#t} if @var{obj} is a abstract hash table object.
- @end deffn
- @deffn {Scheme Procedure} hash-clear! table
- @deffnx {C Function} scm_hash_clear_x (table)
- Remove all items from @var{table} (without triggering a resize).
- @end deffn
- @deffn {Scheme Procedure} hash-ref table key [dflt]
- @deffnx {Scheme Procedure} hashq-ref table key [dflt]
- @deffnx {Scheme Procedure} hashv-ref table key [dflt]
- @deffnx {Scheme Procedure} hashx-ref hash assoc table key [dflt]
- @deffnx {C Function} scm_hash_ref (table, key, dflt)
- @deffnx {C Function} scm_hashq_ref (table, key, dflt)
- @deffnx {C Function} scm_hashv_ref (table, key, dflt)
- @deffnx {C Function} scm_hashx_ref (hash, assoc, table, key, dflt)
- Lookup @var{key} in the given hash @var{table}, and return the
- associated value. If @var{key} is not found, return @var{dflt}, or
- @code{#f} if @var{dflt} is not given.
- @end deffn
- @deffn {Scheme Procedure} hash-set! table key val
- @deffnx {Scheme Procedure} hashq-set! table key val
- @deffnx {Scheme Procedure} hashv-set! table key val
- @deffnx {Scheme Procedure} hashx-set! hash assoc table key val
- @deffnx {C Function} scm_hash_set_x (table, key, val)
- @deffnx {C Function} scm_hashq_set_x (table, key, val)
- @deffnx {C Function} scm_hashv_set_x (table, key, val)
- @deffnx {C Function} scm_hashx_set_x (hash, assoc, table, key, val)
- Associate @var{val} with @var{key} in the given hash @var{table}. If
- @var{key} is already present then it's associated value is changed.
- If it's not present then a new entry is created.
- @end deffn
- @deffn {Scheme Procedure} hash-remove! table key
- @deffnx {Scheme Procedure} hashq-remove! table key
- @deffnx {Scheme Procedure} hashv-remove! table key
- @deffnx {Scheme Procedure} hashx-remove! hash assoc table key
- @deffnx {C Function} scm_hash_remove_x (table, key)
- @deffnx {C Function} scm_hashq_remove_x (table, key)
- @deffnx {C Function} scm_hashv_remove_x (table, key)
- @deffnx {C Function} scm_hashx_remove_x (hash, assoc, table, key)
- Remove any association for @var{key} in the given hash @var{table}.
- If @var{key} is not in @var{table} then nothing is done.
- @end deffn
- @deffn {Scheme Procedure} hash key size
- @deffnx {Scheme Procedure} hashq key size
- @deffnx {Scheme Procedure} hashv key size
- @deffnx {C Function} scm_hash (key, size)
- @deffnx {C Function} scm_hashq (key, size)
- @deffnx {C Function} scm_hashv (key, size)
- Return a hash value for @var{key}. This is a number in the range
- @math{0} to @math{@var{size}-1}, which is suitable for use in a hash
- table of the given @var{size}.
- Note that @code{hashq} and @code{hashv} may use internal addresses of
- objects, so if an object is garbage collected and re-created it can
- have a different hash value, even when the two are notionally
- @code{eq?}. For instance with symbols,
- @example
- (hashq 'something 123) @result{} 19
- (gc)
- (hashq 'something 123) @result{} 62
- @end example
- In normal use this is not a problem, since an object entered into a
- hash table won't be garbage collected until removed. It's only if
- hashing calculations are somehow separated from normal references that
- its lifetime needs to be considered.
- @end deffn
- @deffn {Scheme Procedure} hash-get-handle table key
- @deffnx {Scheme Procedure} hashq-get-handle table key
- @deffnx {Scheme Procedure} hashv-get-handle table key
- @deffnx {Scheme Procedure} hashx-get-handle hash assoc table key
- @deffnx {C Function} scm_hash_get_handle (table, key)
- @deffnx {C Function} scm_hashq_get_handle (table, key)
- @deffnx {C Function} scm_hashv_get_handle (table, key)
- @deffnx {C Function} scm_hashx_get_handle (hash, assoc, table, key)
- Return the @code{(@var{key} . @var{value})} pair for @var{key} in the
- given hash @var{table}, or @code{#f} if @var{key} is not in
- @var{table}.
- @end deffn
- @deffn {Scheme Procedure} hash-create-handle! table key init
- @deffnx {Scheme Procedure} hashq-create-handle! table key init
- @deffnx {Scheme Procedure} hashv-create-handle! table key init
- @deffnx {Scheme Procedure} hashx-create-handle! hash assoc table key init
- @deffnx {C Function} scm_hash_create_handle_x (table, key, init)
- @deffnx {C Function} scm_hashq_create_handle_x (table, key, init)
- @deffnx {C Function} scm_hashv_create_handle_x (table, key, init)
- @deffnx {C Function} scm_hashx_create_handle_x (hash, assoc, table, key, init)
- Return the @code{(@var{key} . @var{value})} pair for @var{key} in the
- given hash @var{table}. If @var{key} is not in @var{table} then
- create an entry for it with @var{init} as the value, and return that
- pair.
- @end deffn
- @deffn {Scheme Procedure} hash-map->list proc table
- @deffnx {Scheme Procedure} hash-for-each proc table
- @deffnx {C Function} scm_hash_map_to_list (proc, table)
- @deffnx {C Function} scm_hash_for_each (proc, table)
- Apply @var{proc} to the entries in the given hash @var{table}. Each
- call is @code{(@var{proc} @var{key} @var{value})}. @code{hash-map->list}
- returns a list of the results from these calls, @code{hash-for-each}
- discards the results and returns an unspecified value.
- Calls are made over the table entries in an unspecified order, and for
- @code{hash-map->list} the order of the values in the returned list is
- unspecified. Results will be unpredictable if @var{table} is modified
- while iterating.
- For example the following returns a new alist comprising all the
- entries from @code{mytable}, in no particular order.
- @example
- (hash-map->list cons mytable)
- @end example
- @end deffn
- @deffn {Scheme Procedure} hash-for-each-handle proc table
- @deffnx {C Function} scm_hash_for_each_handle (proc, table)
- Apply @var{proc} to the entries in the given hash @var{table}. Each
- call is @code{(@var{proc} @var{handle})}, where @var{handle} is a
- @code{(@var{key} . @var{value})} pair. Return an unspecified value.
- @code{hash-for-each-handle} differs from @code{hash-for-each} only in
- the argument list of @var{proc}.
- @end deffn
- @deffn {Scheme Procedure} hash-fold proc init table
- @deffnx {C Function} scm_hash_fold (proc, init, table)
- Accumulate a result by applying @var{proc} to the elements of the
- given hash @var{table}. Each call is @code{(@var{proc} @var{key}
- @var{value} @var{prior-result})}, where @var{key} and @var{value} are
- from the @var{table} and @var{prior-result} is the return from the
- previous @var{proc} call. For the first call, @var{prior-result} is
- the given @var{init} value.
- Calls are made over the table entries in an unspecified order.
- Results will be unpredictable if @var{table} is modified while
- @code{hash-fold} is running.
- For example, the following returns a count of how many keys in
- @code{mytable} are strings.
- @example
- (hash-fold (lambda (key value prior)
- (if (string? key) (1+ prior) prior))
- 0 mytable)
- @end example
- @end deffn
- @deffn {Scheme Procedure} hash-count pred table
- @deffnx {C Function} scm_hash_count (pred, table)
- Return the number of elements in the given hash @var{table} that cause
- @code{(@var{pred} @var{key} @var{value})} to return true. To quickly
- determine the total number of elements, use @code{(const #t)} for
- @var{pred}.
- @end deffn
- @node Other Types
- @subsection Other Types
- Procedures are documented in their own section. @xref{Procedures}.
- Variable objects are documented as part of the description of Guile's
- module system: see @ref{Variables}.
- @xref{Scheduling}, for discussion of threads, mutexes, and so on.
- Ports are described in the section on I/O: see @ref{Input and Output}.
- Regular expressions are described in their own section: see @ref{Regular
- Expressions}.
- There are quite a number of additional data types documented in this
- manual; if you feel a link is missing here, please file a bug.
- @c Local Variables:
- @c TeX-master: "guile.texi"
- @c End:
|