
The Shlaer-Mellor Metamodel

Lee W. Riemenschneider

July 5, 2022

Abstract

A metamodel is a model of a model. The metamodel provides the rules and constraints
of modeling using a particular paradigm. This metamodel concerns the rules and con-
straints of the Shlaer-Mellor method, so it is a Shlaer-Mellor metamodel. Ideally, there
should only be one Shlaer-Mellor Metamodel, but consensus hasn’t been reached by
Shlaer-Mellor modeling experts, so this report tries to justify the reasons for this meta-
model to be the best candidate for the title, The Shlaer-Mellor Metamodel.

Part I

The Shlaer-Mellor Metamodel
Domain

1

Chapter 1

Aspects of a Metamodel Model

A metamodel is a model of a model. The metamodel provides the rules and constraints
of modeling using a particular paradigm.

The metamodel provides no guidance outside of its subject matter. e.g., the Shlaer-
Mellor metamodel provides rules and constraints for modeling using the Shlaer-Mellor
method, but it doesn’t provides rules and constraints concerning the representation
of the modeling elements. This allows the modeling to be done using any notation
(graphical or text) that can unambiguously represent the elements used in the modeling.
It also means that the metamodel also doesn’t say how the model is to be used. i.e.,
how it is transformed to machine language, or how it might be run in simulation.

A metamodel is used to describe the rules for constructing a model. It specifies
the construction elements and the constraints on the construction elements. It is the
modeled depiction of the modeling method, often done using the modeling method.

The metamodel for Shlaer-Mellor modeling has the perspective of a single domain
model. All other domains are viewed only as outgoing bridges requiring outside ser-
vicing. All accesses to the domain are viewed as incoming bridges that evoke actions
within the domain model. Therefore, an instance of metamodel should only be used
for verifying a single domain model at a time.

The Shlaer-Mellor Metamodel domain is partitioned into subsystems of closely
related objects. This partitioning makes the domain easier to manage, but all the objects
belong to the subject matter of Shlaer-Mellor domain modeling.

2

Chapter 2

The Data Subsystem

The subsystem of the domain model concerned with data usage.

3

Figure 2.1: Data Subsystem Diagram

2.1 Object and Attribute Descriptions

2.1.1 Accessor Instance
An accessor instance is instantiated in a process model to represent the accessor at that
point of access.

An instantiation is needed so the accessor can be represented with different param-
eter data sets at different places in the process model or within different process models
in the domain.

2.1.1.1 Relational Attributes

accessor_name:R640

type_name:R422

4

*id:R629

2.1.1.2 Operations

Algorithm 2.1 void Accessor Instance:delete()

s e l e c t many p r n s r e l a t e d by s e l f −>PRN[R647] ;
f o r each prn i n p r n s

prn . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e prn ;

end f o r ;
s e l e c t one i n s r e l a t e d by s e l f −>INS [R648] ;
i f (n o t empty i n s)

s e l e c t one min r e l a t e d by s e l f −>MIN[R648] ;
u n r e l a t e s e l f from i n s a c r o s s R648 u s i n g min ;

end i f ;
s e l e c t one v a l r e l a t e d by s e l f −>VAL[R629] ;
u n r e l a t e s e l f from v a l a c r o s s R629 ;
s e l e c t one dus r e l a t e d by va l −>DUS[R624] ;
u n r e l a t e v a l from dus a c r o s s R624 ;
d e l e t e o b j e c t i n s t a n c e v a l ;
dus . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e dus ;

Algorithm 2.2 void Accessor Instance:addToProcessModel()

s e l e c t one r e r e l a t e d by s e l f −>VAL[R629]−>DUS[R624]−>RE[R514] ;
s e l e c t any pro from i n s t a n c e s o f PRO where (s e l e c t e d . a c t i o n _ i d == param . a c t i o n I d) and (s e l e c t e d . o r d i n a l _ p o s i t i o n == param . o r d i n a l P o s i t i o n) ;
c r e a t e o b j e c t i n s t a n c e e l a o f ELA;
r e l a t e r e t o pro a c r o s s R502 u s i n g e l a ;
s e l e c t many p r n s r e l a t e d by s e l f −>PRN[R647] ;
f o r each prn i n p r n s

prn . addToProcessModel (a c t i o n I d : param . a c t i o n I d , o r d i n a l P o s i t i o n : param . o r d i n a l P o s i t i o n) ;
end f o r ;

2.1.2 Attribute Instance
An attribute instance models the usage of a non-referential attribute in the process
models.

2.1.2.1 Relational Attributes

object_id:R643

5

attribute_name:R642

*id:R626

2.1.2.2 Operations

Algorithm 2.3 void Attribute Instance:delete()

s e l e c t one n r a r e l a t e d by s e l f −>NRA[R642] ;
u n r e l a t e s e l f from n r a a c r o s s R642 ;
s e l e c t one i n s r e l a t e d by s e l f −>INS [R643] ;
i f (n o t empty i n s)

u n r e l a t e s e l f from i n s a c r o s s R643 ;
end i f ;
s e l e c t one v a r r e l a t e d by s e l f −>VAR[R626] ;
u n r e l a t e s e l f from v a r a c r o s s R626 ;
s e l e c t one v a l r e l a t e d by var −>VAL[R635] ;
u n r e l a t e v a r from v a l a c r o s s R635 ;
s e l e c t one dus r e l a t e d by var −>DUS[R624] ;
u n r e l a t e v a r from dus a c r o s s R624 ;
d e l e t e o b j e c t i n s t a n c e v a r ;
dus . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e dus ;

2.1.3 Data Usage
Data is used in Shlaer-Mellor via variable or value accesses. Data is always typed.

2.1.3.1 Attributes

*id:unique_id A unique identifier for the data usage.

2.1.3.2 Relational Attributes

*2reference_id:R514

type_name:R625

6

2.1.3.3 Operations

Algorithm 2.4 void Data Usage:delete()

s e l e c t one t y p e r e l a t e d by s e l f −>TYPE[R625] ;
u n r e l a t e s e l f from t y p e a c r o s s R625 ;
s e l e c t one r e r e l a t e d by s e l f −>RE[R514] ;
u n r e l a t e s e l f from r e a c r o s s R514 ;
r e . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e r e ;
s e l e c t many o p r d s r e l a t e d by s e l f −>OPRD[R631] ;
f o r each oprd i n o p r d s

oprd . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e oprd ;

end f o r ;

2.1.4 Empty Set
The empty set value is defined for all types, as all types define a set of values. e.g., 6 is
a member of the set defined by the numeric type. The only legal operations performed
on an empty set are population and comparison to the empty set.

2.1.4.1 Relational Attributes

*id:R629

2.1.5 Expression
An expression is a statement containing two operands and an operator.

Expression evaluation in the metamodel is done using Reverse Polish Notation
(RPN). The order of construction involves adding the left-hand operand, the the right-
hand operand, and then the operator. This allows the metamodel to evaluate the expres-
sion and produce an outcome.

2.1.5.1 Attributes

*2ordinal_position:integer Indicates the execution order of the expression within the
equation.

*id:unique_id

2.1.5.2 Relational Attributes

result_type_name:R632

rh_operand_name:R617

7

lh_operand_name:R616

operator_type_name:R632

operator_name:R632

equation_id:R622

2.1.6 Externally Specialized Value
The externally specialized value is the standard representation of a value that belongs
to a set defined by commonly known types (e.g., the set of numerics).

As the actual value isn’t that interesting to the metamodel, the attribute, value_name,
is used to allow process model construction within the constraints the metamodel. This
symbolic representation of the value is akin to the use of defines in C to represent
"magic numbers".

2.1.6.1 Attributes

value_name:string A symbolic representative for the value. In the case of a symbolic
value type, it could be the actual value.

2.1.6.2 Relational Attributes

type_name:R423

*id:R629

2.1.7 Keyword Instance
A keyword is a special directive to the architecture. Keywords are non-mathematical
operands in equations in the process models.

2.1.7.1 Attributes

*2keyword:string The name of the action the keyword invokes.

2.1.7.2 Relational Attributes

type_name:R423

*id:R629

2.1.8 Left Hand Operand
This is the operand on the left-hand side of the operator.

8

2.1.8.1 Relational Attributes

*name:R615

2.1.9 Method Instantiation
A method instantiation occurs whenever a process model is using an accessor.

2.1.9.1 Relational Attributes

*object_id:R648

*method_id:R648

2.1.10 Operand
An Operand is a participant in an expression or sub-expression of an equation. All
expressions are evaluated with only two operands, the one on the left-hand side of the
operator and the one on the right-hand side of the operator.

2.1.10.1 Attributes

*name:string A unique identifier for the type of operand.

2.1.10.2 Relational Attributes

*usage_id:R631

9

Operations

Algorithm 2.5 void Operand:delete()

s e l e c t one o u t r e l a t e d by s e l f −>OUT[R618] ;
i f (n o t empty o u t)

u n r e l a t e s e l f from o u t a c r o s s R618 ;
end i f ;
s e l e c t one l h o r e l a t e d by s e l f −>LHO[R615] ;
i f (n o t empty l h o)

u n r e l a t e s e l f from l h o a c r o s s R615 ;
s e l e c t one exp r e l a t e d by lho −>EXP[R616] ;
u n r e l a t e l h o from exp a c r o s s R616 ;
d e l e t e o b j e c t i n s t a n c e l h o ;
s e l e c t one equ r e l a t e d by exp −>EQU[R622] ;
equ . d e l e t e () ;

e l s e
s e l e c t one rho r e l a t e d by s e l f −>RHO[R615] ;

i f (n o t empty rho)
u n r e l a t e s e l f from rho a c r o s s R615 ;
s e l e c t one exp r e l a t e d by rho −>EXP[R617] ;
u n r e l a t e rho from exp a c r o s s R617 ;
d e l e t e o b j e c t i n s t a n c e rho ;
s e l e c t one equ r e l a t e d by exp −>EQU[R622] ;
equ . d e l e t e () ;

end i f ;
end i f ;

2.1.11 Outcome
An outcome is the result of an expression or the result of a call to a synchronous acces-
sor (function).

2.1.11.1 Attributes

*id:unique_id

2.1.11.2 Relational Attributes

result_type_name:R634

operand_name:R618

type_name:R634

operation_name:R634

10

expression_id:R611

**2equation_id:R622

2.1.12 Parameter Instance
A parameter instance models the usage of a parameter in the process models. If the
parameter is being assigned a value in the process model, then it is considered an
activated parameter instance. If the parameter is being referenced in the process model,
it is considered a placeholder parameter instance. A placeholder parameter instance
will be uninitialized, so its associated value will be the empty set.

2.1.12.1 Relational Attributes

*id:R626

*parameter_name:R645

*accessor_name:R645

*type_name:R645

*accessorInstance_id:R647

2.1.12.2 Operations

Algorithm 2.6 void Parameter Instance:delete()

s e l e c t one prm r e l a t e d by s e l f −>PRM[R645] ;
u n r e l a t e s e l f from prm a c r o s s R645 ;
s e l e c t one a i n r e l a t e d by s e l f −>AIN [R647] ;
i f (n o t empty a i n)

u n r e l a t e s e l f from a i n a c r o s s R647 ;
end i f ;
s e l e c t one v a r r e l a t e d by s e l f −>VAR[R626] ;
u n r e l a t e s e l f from v a r a c r o s s R626 ;
s e l e c t one v a l r e l a t e d by var −>VAL[R635] ;
u n r e l a t e v a r from v a l a c r o s s R635 ;
s e l e c t one dus r e l a t e d by var −>DUS[R624] ;
u n r e l a t e v a r from dus a c r o s s R624 ;
d e l e t e o b j e c t i n s t a n c e v a r ;
dus . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e dus ;

11

Algorithm 2.7 void Parameter Instance:addToProcessModel()

s e l e c t any pro from i n s t a n c e s o f PRO where (s e l e c t e d . a c t i o n _ i d == param . a c t i o n I d) and (s e l e c t e d . o r d i n a l _ p o s i t i o n == param . o r d i n a l P o s i t i o n) ;
c r e a t e o b j e c t i n s t a n c e e l a o f ELA;
s e l e c t one r e r e l a t e d by s e l f −>VAR[R626]−>DUS[R624]−>RE[R514] ;
r e l a t e r e t o pro a c r o s s R502 u s i n g e l a ;

2.1.13 Relationship Instance
A relationship instance is the instantiation of an instance relationship. Just as object
instantiations need to be tracked and handled, so do relationships. This is limited to
instance relationships, as associative relationships are handled as object instances.

The relationship represents a table containing a row for every instance of the rela-
tionship, and a column for each object participating in the relationship. When looking
at the object model, a relationship represents the empty table. In the process model,
the rows of the table are populated. The rows of the table, then represent relationship
instance values.

2.1.13.1 Relational Attributes

type_name:R421

*2left_id:R120

*2right_id:R120

*2relationship_number:R638

*id:R629

12

2.1.13.2 Operations

Algorithm 2.8 void Relationship Instance:delete()

s e l e c t one r r e f r e l a t e d by s e l f −>RREF[R421] ;
u n r e l a t e s e l f from r r e f a c r o s s R421 ;
s e l e c t one i r l r e l a t e d by s e l f −>IRL [R638] ;
u n r e l a t e s e l f from i r l a c r o s s R638 ; s e l e c t one r i n s r e l a t e d by s e l f −>INS [R120 . ’ ’ ’ ’] ;
s e l e c t one l i n s r e l a t e d by s e l f −>INS [R120 . ’ ’ i s r e l a t e d to ’ ’] ;
i f (n o t empty r i n s and n o t empty l i n s)

u n r e l a t e l i n s from r i n s a c r o s s R120 . ’ ’ i s r e l a t e d to ’ ’ u s i n g s e l f ;
end i f ;
s e l e c t one v a l r e l a t e d by s e l f −>VAL[R629] ;
u n r e l a t e s e l f from v a l a c r o s s R629 ;
s e l e c t one dus r e l a t e d by va l −>DUS[R624] ;
u n r e l a t e v a l from dus a c r o s s R624 ;
d e l e t e o b j e c t i n s t a n c e v a l ;
dus . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e dus ;

2.1.14 Right Hand Operand
This is the operand on the right-hand side of the operator.

2.1.14.1 Relational Attributes

*name:R615

2.1.15 Transient Data
Transient data is data that holds it’s value only for the span of execution of a process
model.

2.1.15.1 Attributes

name A string identifier for the data store that is unique for the process.

2.1.15.2 Relational Attributes

*id:R626

13

2.1.15.3 Operations

Algorithm 2.9 void Transient Data:delete()

s e l e c t one v a r r e l a t e d by s e l f −>VAR[R626] ;
s e l e c t one v a l r e l a t e d by var −>VAL[R635] ;
u n r e l a t e v a r from v a l a c r o s s R635 ;
u n r e l a t e s e l f from v a r a c r o s s R626 ;
s e l e c t one dus r e l a t e d by var −>DUS[R624] ;
u n r e l a t e v a r from dus a c r o s s R624 ;
d e l e t e o b j e c t i n s t a n c e v a r ;
dus . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e dus ;

2.1.16 Value
Values are typed, read-only data, often held in variables.

2.1.16.1 Relational Attributes

*id:R624

2.1.17 Variable
Variables are typed, modifiable instances of data used to hold values for further pro-
cessing.

A variable is a subset of a type set, whether the variable contains one value or many.
When a variable is created without value assignment, it is an empty subset, and it can
be thought of as uninitialized, containing no value, or null/none in common software
language terms.

Variables are the only allowed targets of assignment operations.

2.1.17.1 Relational Attributes

value_id:R635

*id:R624

2.2 Relationship Descriptions
R611 An expression results in an outcome. The outcome is the result of an expression.

R615 An operand will be considered the left-hand or right-hand operand participating
in the expression.

14

R616 An expression can use a left-hand operand, and a left-hand operand is always
used in an expression. The boolean operator, not, is an example of an expression
without a left hand operand.

R617 An expression uses a right-hand operand, and a right-hand operand is used in an
expression.

R618 An outcome results in an operand. This is always true, because assignment is
an operator, and there is no reason to have an expression without an assignment.
An operand isn’t always the result of an outcome.

Note: in complex equations, there are multiple outcomes and the production
of temporary operands. e.g., x = (a + 5) * (a - 2), and a = 3: LHO1 = x; LHO2 =
a; LHO3 = a; TYOP1 = ’+’; RHO1 = 5; RHO2 = 2; TYOP2 = ’+’. LHO1 = x;
OUT1 = 8; LHO4 = 8; OUT2 = 1; RHO3 = 1. TYOP3 = ’*’; LHO1 = x; OUT3
= 8; RHO4 = 8. TYOP4 = ’=’. OUT4 = 8; LHO5 = 8.

R622 An equation includes one or more expressions. The expressions compose the
equation. Equation evaluation in the metamodel is done using Reverse Polish
Notation (RPN). The order of construction involves evaluating the left-most ex-
pression, then evaluating the right-most expression, and then the operator. The
metamodel uses the ordinal position of the expression to decide evaluation order.

R624 Data usage is either as a variable or a value.

R625 Data usage is constrained by one type, and a type can constrain multiple data
usages.

R626 The variable data is transient data used by Process Models, attributes of object
instances, or parameters of accessor instances.

R629 The specialization of all values used in Shlaer-Mellor modeling.

R631 An operand represents one data usage, and data usage can be represented by
many operands. Even though an equation can be further broken down in a
way that’s not visible to the analyst, the break down represents atomic pieces
of data usage, so while there are many data usages through the break downs in
an operand, each individual break down is what is modeled by this relationship.
e.g., x = func(z) + (y * z) breaks down to: * value of y times the value of z is
assigned to invisible transient variable r. * value of z is assigned to parameter
of func(), p. * return value of func(p) is assigned to invisible transient variable
q. * value of q plus the value of r is assigned to x. 10 data usages(6 values + 4
variables), 10 operands

R632 An expression uses a typed operator, but a typed operator can be used in many
expressions, even in the same equation.

R634 The outcome of an expression is typed by the typed operator’s result type.

15

R635 Values can be assigned to one or more variables at any given time, and a variable
always has an assigned value. If no explicit assignment has been made, then the
variable holds the default value for the data type. Values exist without variables.
Consider the set of numeric values. It would be wrong to suggest the numeral
one or the decimal one-half don’t exist in the absence of a variable. Variables in
action language aren’t created or typed without assignment (explicit or implicit),
so there’s no reason to assume an untyped (no default) variable would exist per
this metamodel.

R636 An unspecialized value always belongs to the set defined by a type. A type
provides the definition for all of it’s values. This relationship requires creation
of a value for every type. While this seems onerous, the relationship between
value and variable implies that a default value exists for every type, therefore the
values required by this relationship compose the set of default values.

R638 A relationship instance instantiates one instance relationship, and an instance
relationship can be instantiated by many relationship instances.

R640 A accessor instance instantiates one accessor, and an accessor can be instantiated
by many accessor instances.

R642 A non-referential attribute can be instantiated as one or more attribute instances,
and an attribute instance is always the instantiation of a non-referential attribute.
Referential attributes are always instantiated as the referred to non-referential
attributes.

R643 An object instance owns one or more attribute instances, and an attribute in-
stance always belongs to one object instance.

R645 A parameter can be instantiated as one or more parameter instances, and a pa-
rameter instance is always an instantiation of one parameter.

R647 A parameter instance belongs to an accessor instance, and an accessor instance
can have many parameter instances.

R648 An accessor instance only belongs to an object instance during a method instan-
tiation, and an object instance can have a method instantiation for one or more
accessor instances.

16

Chapter 3

The Domain Subsystem

The subsystem of the metamodel concerning domain objects.

Figure 3.1: Domain Subsystem Diagram

3.1 Object and Attribute Descriptions

3.1.1 Asynchronous Bridge
An asynchronous bridge returns no data and only invokes action in the servicing do-
main.

Special considerations: A Transfer Vector provides an external domain with the
information needed to invoke an event on an instance within the domain being mod-
eled. This means that the transfer vector must include the instance reference and event

17

reference. It is up to the Architecture to determine how this information is handled, but
the external domain should treat the transfer vector information as a composite. i.e.,
the external domain will not be able to access the instance or event references directly.

"The analyst can think of the transfer vector as a partial event (an event label and an
instance identifier only) that will be filled out with supplemental data (if such is defined
for the base event) and returned to Home as a complete event at some future time. ...

When Away receives a transfer vector from Home, Away regards the transfer vector
as a data element of type ’transfer vector.’ Away must save the transfer vector for later
use. This is done by attributing the transfer vector to an object that acts as a surrogate
for the thread of control in the sending domain. ...

When it is time for Away to provide the asynchronous notification to Home, Away
invokes an asynchronous return wormhole, supplying as input data: • the previously
saved transfer vector • any additional data elements to be returned to the calling domain
(Home). These will be combined with the transfer vector as supplemental data items
to form the event expected by Home. The asynchronous return wormhole acts as a way
to "return via transfer vector" back to the Home domain."[7]

3.1.1.1 Relational Attributes

*2name:R506

*id:R3

3.1.2 Bridge
"During analysis, a bridge between two domains represents a set of assumptions (from
the client’s perspective) and a set of requirements (from the server’s).

• The client thinks of a bridge as a set of capabilities that it assumes will be pro-
vided by another domain. The client does not care which domain provides the
capabilities.

• The server thinks of the bridge as a set of requirements. The server does not care
which domain needs the service, and therefore makes no assumptions about the
client."[2]

Bridges can contain both synchronous and asynchronous processes. The following is a
list of assumptions, on bridging domains, taken from [2]:

• OOA Mechanisms: "The application and service domains assume that the mech-
anisms of OOA (data storage, event transmission, and the like) are provided in
some form." This means the other domains have a way of persisting shared data,
handling events directed at them, synchronizing time, etc. This is the same as
client and server computing machines.

• Instant Data Attributes: "The application domain assumes that sensor-based at-
tributes such as Cooking Tank.Actual Temperature have up-to-date values." The
action of such a bridge will be considered part of the atomicity in the process
model that calls it. Access will work as if it is from a data store.

18

• Counterparts: "Although an object in one domain doesn’t require the existence
of an object in another, an instance of object in one domain may have as a coun-
terpart an instance of an object in another domain. For example, a train (in the
Railroad Management domain) may have a counterpoint train icon in the User
Interface domain."

3.1.2.1 Relational Attributes

*bridge_id:R509

3.1.3 Domain
"A domain is a separate real, hypothetical, or abstract world inhabited by a distinct
set of objects that behave according to the rules and policies characteristic of the
domain."[2]

3.1.3.1 Attributes

*name:string The descriptive identifier for the domain.

3.1.4 External Domain
An external domain is a domain that requires or provides services to the domain being
modeled. An external domain can be another Shlaer-Mellor modeled domain or a
realized domain.

The realized domain can be modeled using some other modeling method, might
be existing code, or might be an executable. The bridges from a modeled domain
to a realized domain are defined in the model with respect to the modeled domain’s
requirements, and they can require some extra integration logic, external to the model,
to meet the needs of the realized domain.

3.1.4.1 Relational Attributes

*name:R1

3.1.5 Incoming Bridge
An incoming bridge represents a service provided by the domain being modeled. A
synchronous, incoming bridge returns data to the external domain in a timely fashion.
An asynchronous, incoming bridge doesn’t return data the the external domain.

An incoming bridge might also be referred to as a "domain function".
Although incoming bridges are intended for external access, they can also be called

internally by the domain being modeled.

19

3.1.5.1 Relational Attributes

*id:R4

domain_name:R6

3.1.6 Modeled Domain
A modeled domain is a domain that has been modeled in accordance with the rules of
the Shlaer-Mellor metamodel.

3.1.6.1 Relational Attributes

*name:R1

3.1.7 Outgoing Bridge
An outgoing bridge is the requirement the domain being modeled places on an external
domain for services. A synchronous, outgoing bridge is expected to return data from
the external domain. An asynchronous, outgoing bridge is expected to invoke some
action in the external domain.

3.1.7.1 Relational Attributes

*id:R4

*2ee_name:R5

*2domain_name:R5

3.1.8 Synchronous Bridge
A synchronous bridge always returns data to the caller in a timely fashion. Timely
should be defined by the domain providing the service.

A synchronous bridge provided by another domain can launch asynchronous ac-
tions to obtain the return value, but this domain will be blocked while waiting on the
actions to complete. The analyst should take this into consideration. If the external
domain definition of timely doesn’t match the modeled domain definition of timely,
then some mechanism must be put in place to allow the bridge to be treated as an
asynchronous bridge.

Special considerations: A synchronous service is used to access a data value from
an external domain.

NOTE: It is legal for the domain being modeled to call its own synchronous service
as well.

20

3.1.8.1 Relational Attributes

*2name:R524

*id:R3

3.2 Relationship Descriptions
R1 A domain is either a modeled domain or a realized domain.

R3 A bridge is expected to synchronously return data, or asynchronously invoke ac-
tion.

R4 A bridge is either incoming (handled internally) or outgoing (handled externally).

R5 In the context of the domain being modeled, the modeled domain might require
services from external domains. An external domain specified in the model will
provide services to only the modeled domain.
In reality, the external domain would provide services to other domains, modeled
and non-modeled, but in the context of the domain being modeled, it is the only
domain requiring services.
Even though a 1:M relationship doesn’t require an associative object, making the
outgoing bridge an associative object constrains outgoing bridges to be explicitly
associated with the client-server relationship between two domains.

R6 An incoming bridge models the services provided by the modeled domain.

21

Chapter 4

The Dynamics Subsystem

The subsystem of the metamodel concerned with object and relationship dynamics.

Figure 4.1: Dynamics Subsystem Diagram

4.1 Object and Attribute Descriptions

4.1.1 Assigner
The Assigner is a "state model that is responsible for creating instances of the rela-
tionship by associating instances of the participating objects with one another. ... the

22

purpose of the Assigner is to act as a single point of control through which competing
requests are serialized".[2]

An Assigner is object-based, not instance-based. This means that state is main-
tained for the object, not for each instance of the object.

4.1.1.1 Relational Attributes

*subset_name:R354

*2reference_id:R514

starter_id:R345

starter_name:R345

*id:R300

4.1.2 Assigner Machine
An assigner machine is the runtime instantiation of an assigner model. The assigner
machine exists for the life of the system, so it is not dynamically created or destroyed.

4.1.2.1 Relational Attributes

name:R352

assigner_id:R352

*id:R350

4.1.3 Assignment
An assignment is the result of an assigner state model creating a relationship between
two object instances. The assignment represents the associative relationship instantia-
tion and the associative object instantiation.

4.1.3.1 Relational Attributes

*relationship_id:R302

*machine_id:R351

4.1.4 Cannot Happen
"The "can’t happen" entry is reserved for occasions when the event simply cannot
happen in the real world. For example, the event V3: Door opened cannot happen
when the oven is in state 5, since in that state the door is already opened."[2]

23

4.1.4.1 Relational Attributes

*id:R331

4.1.5 Creation State
A creation state is a start state that might not be depicted on a state model. The Shlaer-
Mellor notation showed an arrow coming from nothing and entering a state. In that
case, the nothing is the creation state. A creation state will never have a transition
entering it.

4.1.5.1 Relational Attributes

*id:R313

*name:R313

4.1.6 Deletion State
A deletion state, upon exit, causes the lifecycle state machine and associated object
instance to cease to exist.

4.1.6.1 Relational Attributes

*id:R305

*state_name:R305

4.1.7 Destructor
The destructor is responsible for removing all segments upon completion of the state
machine processing.

4.1.7.1 Relational Attributes

delete_name:R349

delete_id:R349

machine_id:R349

4.1.8 Entry Data
An entry data is a member of the set of data defined for an entry rule. Any event
transitioning into the entry rule must carry the exact same amount and type of parameter
data as the entry data.

24

4.1.8.1 Attributes

*id:unique_id A unique identifier for the entry data.

4.1.8.2 Relational Attributes

*model_id:R357

*state_name:R357

type_name:R359

rule_id:R357

4.1.9 Entry Rule
The entry transition rule enforces the "same data rule", which states, "All events that
cause a transition into a particular state must carry exactly the same event data."[2]

OL:MWS[2] and OOA96[6] define the data as, identifier data and supplemental
data, where the supplemental data is the external data supplied as event parameters,
and the identifier data is the target state designator.

This means that an entry rule is composed of the parameter data to be carried by
the event causing the transition, and the destination state designator.

4.1.9.1 Relational Attributes

*model_id:R325

*state_name:R325

*id:R321

4.1.10 Event Ignored
"If an object refuses to respond to a particular event when it is in a certain state, enter
"event ignored" in the appropriate cell. When an event is ignored, the instance stays
in the same state it is in and does not re-execute the action. ... Note that although the
event is ignored in the sense of not causing a transition, the event is used up by the state
model."[2]

4.1.10.1 Relational Attributes

*id:R331

4.1.11 Exit Rule
An exit transition rule defines what happens when an event occurs while in the current
state. This means that an exit rule is defined for every event defined for the state
model. The exit rule requires the event designator and the transition result, which is a
destination state or a transition failure designator.

25

4.1.11.1 Relational Attributes

name:R326

state_id:R324

state_name:R324

event_name:R326

*id:R321

4.1.12 General Segment
A general segment is included in all instantiations of an object specialization branch.
It can be the whole lifecycle model for an object instance.

4.1.12.1 Relational Attributes

*id:R363

4.1.13 Lifecycle Model
A lifecycle state model abstracts the common behavior of an object that applies to all
instances. "Two forms of state models are commonly used in analysis; in OOA, we use
the Moore form."[2]

Although there is no direct relationship between instance and lifecycle, the relation-
ship is explicitly directed by the mandatory relationship between lifecycle and object
and the mandatory relationship between instance and object. The empty set makes this
very ugly to model explicitly, because the relationship between Instance and Lifecycle
has to be 1c:Mc and be dependent on the already modeled path from Instance to Object
to Lifecycle. The logical associative object would be "Active Instance", which would
imply a "Passive Instance" object be created as part of a subtyping of Instance.

A Lifecycle is instance-based, not object-based. This means that state is maintained
for each instance of the object, not for the object, but the model of behavior is defined
the same for all instances of the object.

4.1.13.1 Relational Attributes

*subset_name:R347

*id:R300

4.1.14 Lifecycle State Machine
A lifecycle state machine is the runtime instantiation of a lifecycle state model. The
lifecycle state machine can be composed of many state model segments, when the
instantiation involves multiple subsets with lifecycle state models, or is composed from
one segment when instantiating only one subset with a state model.

26

4.1.14.1 Relational Attributes

instance_id:R361

model_name:R360

model_id:R360

start_id:R348

start_name:R348

*id:R350

4.1.14.2 Operations

Algorithm 4.1 void Lifecycle State Machine:delete()

s e l e c t one smc r e l a t e d by s e l f −>SMC[R350] ;
s e l e c t one s t a r e l a t e d by smc−>STA[R353] ;
u n r e l a t e smc from s t a a c r o s s R353 ;
u n r e l a t e smc from s e l f a c r o s s R350 ;
d e l e t e o b j e c t i n s t a n c e smc ;
s e l e c t one l i f r e l a t e d by s e l f −>LIF [R360] ;
u n r e l a t e s e l f from l i f a c r o s s R360 ;
s e l e c t one c r e r e l a t e d by s e l f −>CRE[R348] ;
u n r e l a t e s e l f from c r e a c r o s s R348 ;
s e l e c t one d e l r e l a t e d by s e l f −>DEL[R349] ;
i f (n o t empty d e l)

s e l e c t one des r e l a t e d by s e l f −>DES[R349] ;
u n r e l a t e s e l f from d e l a c r o s s R349 u s i n g des ;
d e l e t e o b j e c t i n s t a n c e des ;

end i f ;
s e l e c t one i n s r e l a t e d by s e l f −>INS [R361] ;
u n r e l a t e s e l f from i n s a c r o s s R361 ;

4.1.15 Living State
A living state is any state of the object in an assigner state model, or if in a lifecycle
state model, any state that doesn’t automatically delete the associated instance at the
end of state action processing. All living states should have outgoing and incoming
transitions.

4.1.15.1 Relational Attributes

*id:R305

*name:R305

27

4.1.16 Middle State
The middle state is a state that isn’t a start or deletion state.

4.1.16.1 Relational Attributes

*id:R306

*name:R306

4.1.17 Non-Creation State
A non-creation state is a start state that has been designated as the starting state for the
existance of the state model. A non-creation state can contain a process model and be
a destination for state-to-state transition. The instance must be created outside of the
state model.

4.1.17.1 Relational Attributes

*id:R313

*name:R313

4.1.18 Peer Segment
A peer segment is a specializing segment that specializes two lifecycles. It is instanti-
ated when two overlapping sets share a common behavior for a portion of their lifecy-
cle.

4.1.18.1 Relational Attributes

*segment_id:R364

4.1.19 Splice Segment
A splice segment is a specializing segment that belongs to a single lifecycle.

4.1.19.1 Relational Attributes

*segment_id:R364

4.1.20 Splicing
A splicing represents the association between a state model segment and the lifecycle
model. When you have a single splicing instance, you don’t really have a splicing as
defined in OL:MWS[2], but the concept that a set is a subset allows this to be modeled
as all lifecycle models are splicings.

28

4.1.20.1 Relational Attributes

*model_name:R362

*model_id:R362

*segment_id:R362

4.1.21 Start State
A start state is any living state that has been designated to be the state of existence upon
object realization or instance creation in the system.

4.1.21.1 Relational Attributes

*id:R306

*name:R306

4.1.22 State
"A state represents a condition of the object in which a defined set of rules, policies,
regulations, and physical laws applies."[2]

4.1.22.1 Attributes

*2number:integer A number for the state, that can uniquely identify it within its state
model.

*name:string A symbolic value describing the state, that can uniquely identify it
within its state model.

4.1.22.2 Relational Attributes

*3activity_id:R509

**2model_id:R341

4.1.23 State Machine
A state machine is the runtime instantiation of a state model.

4.1.23.1 Attributes

*id:unique_id A unique identifier for the state machine.

29

4.1.23.2 Relational Attributes

current_id:R353

current_name:R353

4.1.24 State Model
A state model formalizes the dynamic behavior of an object or of subsets of an object.
The state models are either instance based, called lifecycle models, or assigners, which
exist regardless of instantiation.

For lifecycles, Shlaer-Mellor allows the concept of a split state model. In a split
state model, a segment of the state model is modeled in an object specialization. The
whole lifecycle depends upon which specializations compose the instantiation. This
allows object specialization on behavior.

4.1.24.1 Attributes

*id:unique_id A unique identifier for the state model.

4.1.25 State Model Segment
A state model segment is any portion of the state model that exists only in one subset
of the object. Since the subset can be a set, a state model segment in the general case
is the whole state model. In the case where the subset doesn’t represent the whole set,
the state model segment is a behavior specialization of the object.

4.1.25.1 Attributes

*id:unique_id A unique identifier for the state model segment.

4.1.26 Successful Transition
In a successful state-to-state transition, the result of the event was a state entry.

4.1.26.1 Relational Attributes

state_id:R332

state_name:R332

*id:R355

4.1.27 Transition
A transition represents a change in state within the same object state model.

30

4.1.27.1 Attributes

*id:unique_id A unique identifier for the transition.

4.1.27.2 Relational Attributes

model_id:R323

state_name:R323

exit_id:R329

entry_id:R323

4.1.28 Transition Rule
A transition rule defines the signature required for entry into or exit from a state.

4.1.28.1 Attributes

*id:unique_id A unique identifier for the transition rule.

4.1.29 Unsuccessful Transition
An unsuccessful transition does not change the state of an instance, and can be used to
trigger error handling mechanisms as directed by the architecture.

4.1.29.1 Relational Attributes

*id:R355

4.2 Relationship Descriptions
R300 There are two types of state models in Shlaer-Mellor, Lifecycle of an instance

and Assigner for relationships involving competition.

R302 An assignment instantiates an associative relationship and an instance of the
associative object. As not all associative relationships involve contention, not
every one is the result of an assignment.

R305 A state in the state model is either a living state, or in the case of a lifecycle
model is a deletion state to remove the object instance upon completion of the
state action.

R306 A living state can be designated as a creation state. A state model will only have
one creation state.
The creation aspect could be made an attribute of living state, but that would
imply that the creation aspect wasn’t permanent. There should be no reason to
dynamically change which state is designated for creation.

31

R313 A start state is either a creation state, or a non-creation, entry state.

R321 A transition rule defines either the rules for entry into or exit from a state.

R323 Every transition requires that an entry rule is defined for the destination state.
An entry rule applies to all transitions into the state.

R324 A living state requires one or more exit rules to specify the conditions required
to exit the state.

R325 An entry rule specifies the entry conditions required to be met before entry into
the target state.
Non-creation, start states might only have exit transitions, so the requirement to
have an entry rule is conditional.

R326 The exit rule must contain a reference to the event that causes exit from the
current state. An event is always referenced by an exit rule.

R329 Every transition requires an exit rule, so an exit rule is defined for each transi-
tion.

R331 An unsuccessful transition is constrained by the rules of Shlaer-Mellor to be an
"event ignored" or "can’t happen" result.

R332 A successful transition always enters a state. A state can be specified as the des-
tination for more than one transition. Only a start state might not be a destination
for a successful transition.

R341 A state model contains states. The states are specified by the state model.

R345 An assigner is started in the designated starting state on application start.

R347 A subset, which can be a whole set, can have its dynamics modeled in a lifecycle
state model. A lifecycle state model will always model the dynamics of one
subset.

R348 All state machines start in a start state designated for the state model. There is
only one start state for a state machine, but it is assigned for all the state machine
instances.

R349 A deletion state finalizes a state machine. The deletion state process will destroy
all the associated state machine instances.

R350 A state machine is either a lifecycle machine or an assigner machine.

R351 Assignments are created and managed by the assigner state machine.

R352 The assigner state model constrains the operation of the assigner state machine.
The assigner state machine must conform to the assigner state model.
Unlike for lifecycle models and machines, the relationship is unconditional on
both ends, because the assigner machine isn’t tied to an instantiation of an object.

32

R353 A state machine is currently spending time in a state, and a state is a defined
point of time for a state machine.

R354 An assigner manages contention for a subset, and a subset has contention man-
aged by an assigner.

R355 A transition is a successful transition or an unsuccessful transition. Modeling
both of these allows the state transition table to be fully specified.

R356 An event is always constrained by one entry rule, and an entry rule constrains
all the events that are directed to the same state.

R357 An entry rule is composed of its entry data, even in the no entry data case. Entry
data is used to compose a single entry rule.

R358 A single entry data is associated with one or more event parameters, but an event
parameter conforms to only one entry data.

R359 Entry data is constrained by a type, and a type can constrain entry data.

R360 A lifecycle model is instantiated as a lifecycle state machine, and a lifecycle
state machine instantiates a lifecycle model.

R361 A lifecycle state machine controls the life of one object instance, and an object
instance can be controlled by a lifecycle state machine.
Every instance has it’s own state machine.

R362 A lifecycle model is composed of one or more state model segments, and a state
model is a path in one or more lifecycles. The multiplicity of the latter is driven
by the possibility of a set intersection.

R363 A state model segment is a general segment in the case where it represents the
whole state model, and a state model segment is a specializing segment in the
case where it represents only a portion of the state model.

R364 A specializing segment can belong to more than one lifecycle when there are
intersecting sets with common behavior; this type of segment is a peer segment.
When the specializing segment belongs to only one lifecycle, it is a splice seg-
ment.

33

Chapter 5

The Object Subsystem

The subsystem of the metamodel concerning objects, instances, and attributes.

34

Figure 5.1: Object Subsystem Diagram

5.1 Object and Attribute Descriptions

5.1.1 Attribute
An attribute is used to characterize aspects of the objects within a domain.

5.1.1.1 Attributes

*name:string A descriptive string concerning the characterization.

35

5.1.1.2 Operations

Algorithm 5.1 boolean Attribute:belongsTo()

be longsTo = t r u e ;
s e l e c t one oa r e l a t e d by s e l f −>OA[R124] where s e l e c t e d . ob j ec t_name == param . o b j e c t ;
i f (empty oa)

s e l e c t one spa r e l a t e d by s e l f −>SPA[R124] where s e l e c t e d . subtype_name == param . o b j e c t ;
i f (empty spa)

be longsTo = f a l s e ;
end i f ;

end i f ;
r e t u r n be longsTo ;

5.1.2 Chording
A chording represents all the chords belonging to a supertype partitioning.

Proper subsets are never partitioned by a chord, so the supertype partitioning of a
subset requires a separate relationship in the metamodel.

5.1.2.1 Relational Attributes

*object_name:same_as<Base_Attribute>

*domain_name:same_as<Base_Attribute>

*supertype_id:same_as<Base_Attribute>

5.1.3 Derivation
A derivation is a dependency mapping between two attributes. The attributes can be
from the same object or different objects.

5.1.3.1 Relational Attributes

*derived_name:same_as<Base_Attribute>

*value_name:same_as<Base_Attribute>

attribute_id:same_as<Base_Attribute>

5.1.4 Identification Participation
Formalizes all attribute participation in identification of an object’s instances.

36

5.1.4.1 Attributes

groupId:integer A number used to identify a group of identifiers. Each group of iden-
tifiers are used to uniquely identify an object instance.
The preferred identifier will have a groupId value of 1. The preferred identifier
is the only identifier used to formalize an instance relationship as referential at-
tributes.
"An object may have several identifiers, each composed of one or more attributes.
For example, an Airport object may have the attributes
Airport Code
Latitude
Longitude
City
Number of Passenger Gates
The Airport Code attribute is an identifier of the Airport object, and the combi-
nation of Latitude and Longitude is another identifier of Airport.
If an object has multiple identifiers, one such identifier is chosen as the preferred
identifier."[2]
In tools, like BridgePoint, an indication is placed next to identifying attributes,
and grouping of identifiers is done numerically. e.g., {I}, {I2}, {I3}, etc. This
metamodel is just using a numeric indicator. The numeral, 1, is the preferred
identifier, and like BridgePoint, the editor part of the toolset might choose to
only display numerals greater than one.

5.1.4.2 Relational Attributes

*name:same_as<Base_Attribute> The name of the attribute used for identification.

*id:same_as<Base_Attribute> The unique identifier for the Identifier instance.

5.1.5 Identifier
An identifier is used to uniquely identify the members of a set. "An identifier is a
set of one or more attributes whose values uniquely distinguish each instance of an
object."[2]

The set always has one identifying attribute that applies to all set members, but
some identifying might only apply to some subset members. e.g., a subset formed
from the intersection of two sets will have at least two identifying attributes, one from
each set.

5.1.5.1 Attributes

*id:unique_id A unique identifier for the instance identifier in the domain.

37

5.1.5.2 Operations

Algorithm 5.2 void Identifier:delete()

s e l e c t many i d p s r e l a t e d by s e l f −>IDP [R102] ;
f o r each i d p i n i d p s

s e l e c t one a t r r e l a t e d by idp −>ATR[R102] ;
u n r e l a t e s e l f from a t r a c r o s s R102 u s i n g i d p ;
d e l e t e o b j e c t i n s t a n c e i d p ;

end f o r ;
s e l e c t many i t n s r e l a t e d by s e l f −>ITN [R101] ;
f o r each i t n i n i t n s

s e l e c t one i n s r e l a t e d by i t n −>INS [R101] ;
u n r e l a t e s e l f from i n s a c r o s s R101 u s i n g i t n ;
d e l e t e o b j e c t i n s t a n c e i t n ;
i n s . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e i n s ;

end f o r ;

5.1.6 Instance Identification
An instantiation is the creation of an identifier for an instance that is a member of a
subset.

5.1.6.1 Relational Attributes

*instance_id:same_as<Base_Attribute>

*id_id:same_as<Base_Attribute>

5.1.7 Intersecting
An intersecting proper subset is formed from the intersection of two or more sets.

5.1.7.1 Relational Attributes

*name:same_as<Base_Attribute>

5.1.8 Intersection
The intersection associative object is used to track the participants in the intersecting
proper subset formation brought about by multiple objects.

38

5.1.8.1 Relational Attributes

*object_name:same_as<Base_Attribute>

*domain_name:same_as<Base_Attribute>

*subtype_name:same_as<Base_Attribute>

*2specialization_id:same_as<Base_Attribute>

5.1.9 Multi-level Partitioning
Multi-level partitioning abstracts the relationship formed when a proper subset is fur-
ther partitioned (subset) by a supertype partitioning.

A multi-level partitioning is instantiated whenever a subtype is subtyped in the
object model.

5.1.9.1 Relational Attributes

*supertype_name:same_as<Base_Attribute>

*supertype_id:same_as<Base_Attribute>

5.1.10 Non-Intersecting
A non-intersecting proper subset is a subset of only one set.

5.1.10.1 Relational Attributes

supertype_id:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

5.1.11 Non-referential Attribute
A non-referential attribute "is an abstraction of a single characteristic possessed by all
entities that were themselves abstracted as an object."[2]

It should be noted that at least one of the non-referential attributes related to an
object will participate in identification of the instances. While precedence has been set
in some tools to not abstract arbitrary identifiers, a primary key must exist, and it would
be specious to say we can assume it’s existence.

5.1.11.1 Relational Attributes

type_name:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

39

5.1.11.2 Operations

Algorithm 5.3 void Non-referential Attribute:instantiate()

s e l e c t any i n s from i n s t a n c e s o f INS where s e l e c t e d . i d == param . o b j e c t I n s t a n c e ;
c r e a t e o b j e c t i n s t a n c e a t n o f ATN;
r e l a t e a t n t o s e l f a c r o s s R642 ;
r e l a t e a t n t o i n s a c r o s s R643 ;
c r e a t e o b j e c t i n s t a n c e v a r o f VAR;
r e l a t e v a r t o a t n a c r o s s R626 ;
c r e a t e o b j e c t i n s t a n c e dus o f DUS;
r e l a t e dus t o v a r a c r o s s R624 ;
s e l e c t one t y p e r e l a t e d by s e l f −>TYPE[R123] ;
r e l a t e t y p e t o dus a c r o s s R625 ;

5.1.12 Object
"An object is an abstraction of a set of real-world things such that:

• all the things in the set, the instances, have the same characteristics, and

• all instances are subject to and conform to the same set of rules and policies."[2]

5.1.12.1 Relational Attributes

name:same_as<Base_Attribute>

domain_name:same_as<Base_Attribute>

40

5.1.12.2 Operations

Algorithm 5.4 bool Object:hasSubtype()
Determines if the named subtype is this object or part of this object’s subtyping hierar-
chy.

r c = f a l s e ;
i f (s e l f . name == param . s u b t y p e)

r c = t r u e ;
e l s e

s e l e c t many sups r e l a t e d by s e l f −>SUP[R134] ;
f o r each sup i n sups

r c = sup . h a s S u b t y p e (s u b t y p e : param . s u b t y p e) ;
i f (r c)

b r e a k ;
end i f ;

end f o r ;
end i f ;
r e t u r n r c ;

5.1.13 Object Attribute
An object attribute applies to all instances of the object across any subset boundaries.
It is a non-specializer.

5.1.13.1 Relational Attributes

**2object_name:same_as<Base_Attribute>

*domain_name:same_as<Base_Attribute>

**2name:same_as<Base_Attribute>

5.1.14 Object Instance
A set member. e.g., an instantiation of an object as a specified value.

NOTE: The term, "specified value", indicates that all the attributes of the subset
have been assigned values.

5.1.14.1 Attributes

*id:unique_id A unique identifier for the instance within the domain.

41

5.1.14.2 Relational Attributes

subset_name:same_as<Base_Attribute>

type_name:same_as<Base_Attribute>

*2value_id:same_as<Base_Attribute>

42

5.1.14.3 Operations

Algorithm 5.5 void Object Instance:delete()
Satisfies deleting all relationships to this instance and all related instance data, such as
attribute instances, method instances, and state machines. Doesn’t delete this instance.
That must be handled by the caller. The architecture domain should call this at the end
of processing a deletion state.

s e l e c t one sub r e l a t e d by s e l f −>SUB[R112] ;
/ / Cleanup r e l a t i o n s h i p s
s e l e c t many r i n s r e l a t e d by s e l f −>RIN [R120 . ’ ’ i s r e l a t e d to ’ ’] ;
f o r each r i n i n r i n s

s e l e c t one i n s r e l a t e d by r i n −>INS [R120 . ’ ’ i s r e l a t e d to ’ ’] ;
u n r e l a t e s e l f from i n s a c r o s s R120 . ’ ’ i s r e l a t e d to ’ ’ u s i n g r i n ;
r i n . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e r i n ;

end f o r ;
/ / Cleanup a t t r i b u t e s
s e l e c t many a t n s r e l a t e d by s e l f −>ATN[R643] ;
f o r each a t n i n a t n s

u n r e l a t e s e l f from a t n a c r o s s R643 ;
a t n . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e a t n ;

end f o r ;
/ / Cleanup methods
s e l e c t many a i n s r e l a t e d by s e l f −>AIN [R648] ;
f o r each a i n i n a i n s

a i n . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e a i n ;

end f o r ;
/ / Cleanup s t a t e machines
s e l e c t one lsm r e l a t e d by s e l f −>LSM[R361] ;
i f (n o t empty lsm)

lsm . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e lsm ;

end i f ;
/ / Cleanup s e l f u n r e l a t e s e l f from sub a c r o s s R112 ;
s e l e c t many i t n s r e l a t e d by s e l f −>ITN [R101] ;
f o r each i t n i n i t n s

s e l e c t one i d r e l a t e d by i t n −>ID [R101] ;
u n r e l a t e s e l f from i d a c r o s s R101 u s i n g i t n ;
d e l e t e o b j e c t i n s t a n c e i t n ;

end f o r ;

43

5.1.15 Object Specialization
An object specialization is any means of subsetting a set defined by an object into
specialized instances. The specialization can occur via data or behavior.

5.1.15.1 Attributes

*id:unique_id A unique identifier for the specialization.

5.1.15.2 Relational Attributes

supertype_id:same_as<Base_Attribute>

subtype_name:same_as<Base_Attribute>

5.1.16 Proper subset
A proper subset is not equal to the containing set. If the boundaries of the set aren’t
considered to be a partition, then a proper subset exists whenever a set is partitioned.

It should be noted that a proper subset can have all the attributes and behavior of
the containing set, but still be a proper subset if there exists another proper subset of
the same set with different attributes and/or behavior.

5.1.16.1 Relational Attributes

*name:same_as<Base_Attribute>

44

5.1.16.2 Operations

Algorithm 5.6 boolean Proper subset:hasPeerSegment()
Determines if this subset’s state model segment is a peer state model segment. This rou-
tine checks for a supertype partitioning across R122, then gets the supertype object(s)
across R114 and determines if there is an associated state model segment. If there is
no associated state model segment, then this method calls itself to recurse through the
supertype object’s hierarchy.

/ / De te rmine i f t h i s i s a p e e r segment . i . e . , n o t a s p l i c e
p e e r = t r u e ;
/ / Get s u p e r t y p i n g
s e l e c t one sub r e l a t e d by s e l f −>SUB[R107] ;
s e l e c t any sup r e l a t e d by sub −>PRP [R107]−>SUP[R122] ;
i f (n o t empty sup)

s e l e c t many sups r e l a t e d by sub −>PRP [R107]−>SUP[R122] ;
f o r each sup i n sups

/ / Get s u b e r t y p e o b j e c t
s e l e c t one prp r e l a t e d by sup −>PRP [R114] ;
i f (n o t empty prp)

/ / Does t h i s s u b t y p e have a s t a t e model segment ?
s e l e c t any s p s r e l a t e d by prp −>SBT[R122]−>OBS[R126]−>SPS [R125] ;
i f (n o t empty s p s)

p e e r = f a l s e ;
e l s e

p e e r = prp . hasPee rSegment () ;
end i f ;
i f (n o t p e e r)

b r e a k ;
end i f ;

end i f ;
end f o r ;

end i f ;
r e t u r n p e e r ;

5.1.17 Referential Attribute
"Referential attributes are used to tie an instance of one object to the instance of
another."[2]

5.1.17.1 Relational Attributes

referenced_name:same_as<Base_Attribute>

identifier_id:same_as<Base_Attribute>

45

relationship_id:same_as<Base_Attribute>

relationship_number:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

5.1.18 Specializing Attribute
A specializing attribute is one that applies only to some instances of an object.

5.1.18.1 Relational Attributes

subtype_name:same_as<Base_Attribute>

*2specialization_id:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

5.1.19 Specializing Segment
A specializing segment applies to only a subset of instances of the object.

5.1.19.1 Relational Attributes

*2segment_id:same_as<Base_Attribute>

*specialization_id:same_as<Base_Attribute>

5.1.20 Subsequent Specialization
A subsequent specialization occurs due to other specializations. It shows that the subset
exists without being linked to a specific metamodel element.

The subsequent specialization can be due to specialization of the subtype leaf with
no other differentiator at its own level.

5.1.20.1 Relational Attributes

*specialization_id:same_as<Base_Attribute>

5.1.21 Subset
A proper subset represents a partitioning of a set or, in the case of an intersection,
multiple sets. An improper subset represents the entire set, so an object can also be
classified as subset.

In OOA terms, a subtype always implies a subset, so set theory terms are used to
provide better paths to common relationships in the metamodel.

46

5.1.21.1 Attributes

*2keyletters:string Keyletters allow one to be lazy about referring to a subset.

*name:string A name of the subset, that is unique in the domain. For an improper
subset, this will be the name of the object, but for a proper subset, it will be a
name, that is a sub-classification of, the object name.

5.1.21.2 Operations

Algorithm 5.7 boolean Subset:isSubInDomain()

r c = f a l s e ;
s e l e c t one o b j r e l a t e d by s e l f −>OBJ [R107] ;
i f (n o t empty o b j)

i f (o b j . domain_name == param . domain)
r c = t r u e ;

end i f ;
e l s e

s e l e c t one prp r e l a t e d by s e l f −>PRP [R107] ;
/ / Check f o r r o o t s u p e r t y p e .
s e l e c t one o b j r e l a t e d by prp −>NSB[R108]−>SUP[R136]−>OBJ [R134] ;
w h i l e (empty o b j)

s e l e c t many i t s s r e l a t e d by prp −>ISB [R108]−> ITS [R135] ;
f o r each i t s i n i t s s

i f (i t s . domain_name == param . domain)
r c = t r u e ;
b r e a k ;

end i f ;
end f o r ;
i f (n o t r c)

/ / Move up t o n e x t s u b t y p i n g
s e l e c t one prp r e l a t e d by prp −>NSB[R108]−>SUP[R136]−>PRP [R114] ;
/ / Check f o r r o o t s u p e r t y p e .
s e l e c t one o b j r e l a t e d by prp −>NSB[R108]−>SUP[R136]−>OBJ [R134] ;

end i f ;
end w h i l e ;
i f (n o t r c and (o b j . domain_name == param . domain))

r c = t r u e ;
end i f ;

end i f ;
r e t u r n r c ;

47

Algorithm 5.8 bul Subset:hasStateModel()
Returns true if the type of state model specified already exists for the subset.

r c = t r u e ;
i f (param . a s s i g n e r)

s e l e c t one a s r r e l a t e d by s e l f −>ASR[R354] ;
i f (n o t empty a s r)

r c = f a l s e ;
end i f ;

e l s e
s e l e c t one l i f r e l a t e d by s e l f −>LIF [R347] ;
i f (n o t empty l i f)

r c = f a l s e ;
end i f ;

end i f ;
r e t u r n r c ;

48

Algorithm 5.9 void Subset:instantiateAttributes()
Instantiate attributes associated directly with this subset, and then get the next level
subsets and tell them to instantiate their attributes.

s e l e c t one o b j r e l a t e d by s e l f −>OBJ [R107] ;
i f (n o t empty o b j)

s e l e c t many oas r e l a t e d by obj −>OA[R129] ;
f o r each oa i n oas

s e l e c t one n r a r e l a t e d by oa −>ATR[R124]−>NRA[R103] ;
s e l e c t one t y p e r e l a t e d by nra −>TYPE[R123] ;
n r a . i n s t a n t i a t e (o b j e c t I n s t a n c e : param . o b j e c t I n s t a n c e) ;

end f o r ;
e l s e

s e l e c t one prp r e l a t e d by s e l f −>PRP [R107] ;
s e l e c t many s p a s r e l a t e d by prp −>SPA[R130] ;
f o r each spa i n s p a s

s e l e c t one n r a r e l a t e d by spa −>ATR[R124]−>NRA[R103] ;
s e l e c t one t y p e r e l a t e d by nra −>TYPE[R123] ;
n r a . i n s t a n t i a t e (o b j e c t I n s t a n c e : param . o b j e c t I n s t a n c e) ;

end f o r ;
s e l e c t many sups r e l a t e d by prp −>SUP[R122] ;
f o r each sup i n sups

s e l e c t one sub r e l a t e d by sup −>OBJ [R134]−>SUB[R107] ;
i f (empty sub)

s e l e c t one sub r e l a t e d by sup −>PRP [R114]−>SUB[R107] ;
end i f ;
sub . i n s t a n t i a t e A t t r i b u t e s (o b j e c t I n s t a n c e : param . o b j e c t I n s t a n c e) ;

end f o r ;
end i f ;

49

Algorithm 5.10 void Subset:associateReferentials()
Finds identifiers in this subtype and creates referential identifiers, then finds any higher-
level sub/supertypes and repeats the operation.

s e l e c t any i r l from i n s t a n c e s o f IRL where s e l e c t e d . number == param . r e l a t i o n s h i p ;
/ / F i r s t c o l l e c t any i d e n t i f i e r s f o r t h i s s u b t y p e
i r l . c r e a t e R e f e r e n t i a l s (objec tName : s e l f . name) ;
/ / Then s e a r c h up t h e h i e r a r c h y u n t i l t h e r o o t s u p e r t y p e i s found .
s e l e c t one o b j r e l a t e d by s e l f −>OBJ [R107] ;
i f (empty o b j)

s e l e c t one prp r e l a t e d by s e l f −>PRP [R107] ;
s e l e c t many sups r e l a t e d by prp −>SUP[R122] ;
f o r each sup i n sups

s e l e c t one sub r e l a t e d by sup −>OBJ [R134]−>SUB[R107] ;
i f (empty sub)

s e l e c t one sub r e l a t e d by sup −>PRP [R114]−>SUB[R107] ;
end i f ;
sub . a s s o c i a t e R e f e r e n t i a l s (r e l a t i o n s h i p : param . r e l a t i o n s h i p) ;

end f o r ;
end i f ;

50

Algorithm 5.11 boolean Subset:isSubsetOf()
Checks to see if this subset is a member of the named set (object).

r c = f a l s e ;
s e l e c t one o b j r e l a t e d by s e l f −>OBJ [R107] where s e l e c t e d . name == param . o b j e c t ;
i f (n o t empty o b j)

r c = t r u e ;
e l s e

s e l e c t one nsb r e l a t e d by s e l f −>PRP [R107]−>NSB[R108] ;
i f (n o t empty nsb)

s e l e c t one o b j r e l a t e d by nsb −>SUP[R136]−>OBJ [R134] where s e l e c t e d . name == param . o b j e c t ;
i f (n o t empty o b j)

r c = t r u e ;
e l s e

s e l e c t one sub r e l a t e d by nsb −>SUP[R136]−>PRP [R114]−>SUB[R107] ;
r c = sub . i s S u b s e t O f (o b j e c t : param . o b j e c t) ;

end i f ;
e l s e

s e l e c t one i s b r e l a t e d by s e l f −>PRP [R107]−>ISB [R108] ;
s e l e c t any o b j r e l a t e d by i s b −>OBJ [R135] where s e l e c t e d . name == param . o b j e c t ;
i f (n o t empty o b j)

r c = t r u e ;
end i f ;

end i f ;
end i f ;
r e t u r n r c ;

51

Algorithm 5.12 void Subset:instantiateMethods()

s e l e c t one o b j r e l a t e d by s e l f −>OBJ [R107] ;
i f (n o t empty o b j)

s e l e c t many nms r e l a t e d by obj −>NM[R131] ;
f o r each nm i n nms

s e l e c t one im r e l a t e d by nm−>IM [R533] ;
im . i n s t a n t i a t e (o b j e c t I n s t a n c e : param . o b j e c t I n s t a n c e) ;

end f o r ;
e l s e

s e l e c t one prp r e l a t e d by s e l f −>PRP [R107] ;
s e l e c t many smts r e l a t e d by prp −>SBT[R122]−>OBS[R126]−>SMT[R125] ;
f o r each smt i n smts

s e l e c t one im r e l a t e d by smt −>IM [R533] ;
im . i n s t a n t i a t e (o b j e c t I n s t a n c e : param . o b j e c t I n s t a n c e) ;

end f o r ;
s e l e c t many sups r e l a t e d by prp −>SUP[R122] ;
f o r each sup i n sups

s e l e c t one sub r e l a t e d by sup −>OBJ [R134]−>SUB[R107] ;
i f (empty sub)

s e l e c t one sub r e l a t e d by sup −>PRP [R114]−>SUB[R107] ;
end i f ;
sub . i n s t a n t i a t e M e t h o d s (o b j e c t I n s t a n c e : param . o b j e c t I n s t a n c e) ;

end f o r ;
end i f ;

5.1.22 Subtyping
Subtyping is the defining of subsets via a supertype partitioning. The relationship is
abstracted to capture the many to many condition that arises from an intersection of
two objects.

On the object model, the subtyping is the leg from the supertype part of the rela-
tionship to the subtype object.

5.1.22.1 Relational Attributes

*supertype_id:same_as<Base_Attribute>

*subtype_name:same_as<Base_Attribute>

5.1.23 Supertype
A supertype represents a partitioning of the set associated with a specialized object.
The supertype isn’t a subset of the object, but can collect a subset of attributes that are
shared by the subsets formed by the supertype’s partitioning.

52

The representation of the metamodel supertype on the object model is the part of
the supertype/subtype relationship attached to the supertype object, not the supertype
object itself.

The identifier for the supertype is the name of the graphical relationship, that de-
notes the subtyping. i.e., the relationship with the bar across it in the Shlaer-Mellor
notation, or the relationship with the triangle on the end in the UML notation.

5.1.23.1 Attributes

*id:string

5.1.23.2 Operations

Algorithm 5.13 boolean Supertype:hasSubtype()

r c = f a l s e ;
s e l e c t any prp r e l a t e d by s e l f −>PRP [R122] where s e l e c t e d . name == param . s u b t y p e ;
i f (n o t empty prp)

r c = t r u e ;
e l s e

s e l e c t many sups r e l a t e d by s e l f −>PRP [R122]−>SUP[R114] ;
f o r each sup i n sups

r c = sup . h a s S u b t y p e (s u b t y p e : param . s u b t y p e) ;
i f (r c)

b r e a k ;
end i f ;

end f o r ;
end i f ;
r e t u r n r c ;

5.2 Relationship Descriptions
R101 An identifier uniquely identifies instances when an object is instantiated. The

instance might have multiple identifiers, each of which provides a separate path
to identification of the instance.

R102 An identifier is composed of one or more attributes. Since the identifier applies
to only one instance, the attributes used can compose many identifiers, so each
identification is abstracted as an object.

R103 Attributes can be non-referential, which means they are used to give value or
identification to an instance of an object, or referential, which means they are
used to identify the instances related to the instance of an object.

53

R105 An object inhabits only one modeled domain. The modeled domain can contain
many objects, but always has at least one.

R107 Subsets are classified as proper or improper subsets. Improper subsets are an
entire set, which is known in Shlaer-Mellor terms as an object. This partitioning
allows an association between object instance and subset, which allows the ob-
ject instance object to represent an instance member of an unspecialized object
or an instance member of a subset of a specialized object.

R108 Proper subsets are formed by partitioning of a single set or partitioning by inter-
section of more than one set.
Making this distinction is important to establish less ambiguous relationships in
the model with regard to multiplicities between objects, subsets, attributes and
instances.

R112 An instance is a member of one subset. The subset can contain many instances,
or no instances in the case where an object hasn’t been instantiated for that sub-
set. This supports the concept of the empty set.

R114 A proper subset can be partitioned by supertype partitioning. As the subset is
already formed by a partition, this is referred to as multi-level partitioning. In
the case where the subset is partitioned by more than one supertype, it is called
multi-way partitioning.

R120 Instances are related to other instances when a relationship is instantiated.

R122 Subsets are formed by supertype partitioning, and a subset is a subtype for one or
more supertypes. The partitioning relationship is thus abstracted as a subtyping.
Non-intersecting subtypes are further constrained by R136 to belong to only one
supertype.
"OOA does not permit creating an instance of the supertype without creating an
instance of one subtype, and vice versa."[2]

R123 Every non-referential attribute adheres to a known type. The type imposes type
constraints on the attribute.
NOTE: Referential attributes will also have a known type, but those are set where
they are non-referential attributes.

R124 An attribute can provide unique data about a set, or can provide unique data
about a subset of a set. The latter case is considered a specialization.

R125 An object specialization is a specializing attribute, an intersection of objects or
a specializing lifecycle segment.

R126 An object specialization results in one subtyping of an object, and the subtyping
can be the result of multiple defined object specialization types.
While a single specialization actually results in two subtypings, additional sub-
typings in the same generalization will not result in two subtypings. e.g., An
object, A, exists, and it is decided an attribute only applies to some instances of

54

A and not others. A subtype, B, is created to hold the attribute, and a subtype,
C, is created to represent the instances without the attribute. Another attribute is
defined to only apply to some instances of A, so subtype, D, is created. D re-
quires no subsequent specialization, because the remaining instances are already
defined by B and C.

R127 A non-referential attribute value can depend upon the value of other attributes.
An attribute can provide value for many dependent attributes.[5] has a discussion
on the types of dependencies possible.

R129 An object attribute characterizes an object. The object and all subsets of an
object are characterized by object attributes, as all of the object attributes apply
to all instances of the object.
As there is always an identifier attribute, an object is always characterized by at
least one object attribute.

R130 A specializing attribute always specializes one proper subset. A proper subset
can be specialized by many specializing attributes.

R128 A referential attribute always formalizes a non-composition, instance relation-
ship. All non-composition, instance relationships are formalized by one or more
referential attributes.

R131 An object can have defined non-specializing methods, and a non-specializing
method is defined for one object.

R132 An object can have defined object methods, and an object method is defined for
one object.

R133 Subset can be related to other subsets.

R134 A supertype can partition an object, or it can a partition a proper subset. An
object is partitioned by one or more supertypes.
A partitioning of an object by a single supertype should be pictured as one or
more parallel chords, each crossing the arc of the set at two distinct points.
When the partitioning of the same object is done by more than one supertype,
the chords of the supertypes intersect each other.

R135 An intersecting subset is formed from the intersection of two or more objects,
and an object can be partitioned by more than one intersecting subset. The inter-
section associative object tracks each ’subset partitions object’ association. e.g.,
in the simplest example, a subset C is formed from the intersection of object A
and object B; two intersections are needed to represent this: CA and CB. This
case has one intersecting subset, two objects, and two intersections.

R136 A non-intersecting subset is a subtype for one supertype, and the supertype de-
fines the partitioning for all of its subtypes.
This relationship adds further constraint, for non-intersecting subsets, to R122,
which defines all of the subtyping relationships.

55

R137 A referential identifier refers to an attribute participating in identification of an
object instance. An identification participant can be referenced by a referential
attribute.

56

57

Chapter 6

The Process Subsystem

Figure 6.1: Process Subsystem Diagram

58

6.1 Object and Attribute Descriptions

6.1.1 Accessor
An accessor provides access to reference elements and defines the signature of the ac-
cess. The accessor represents bridges, events, and operations. In other words, things
that would be known as functions, procedures, or methods in third generation program-
ming languages like C or Java.

An accessor is a value once instantiated in the metamodel, that can be referenced
in process models.

6.1.1.1 Attributes

*name:string

6.1.1.2 Operations

Algorithm 6.1 unique_id Accessor:instantiate()
Create an instance of this accessor, and it’s parameters.

c r e a t e o b j e c t i n s t a n c e a i n o f AIN ;
s e l e c t any a r e f from i n s t a n c e s o f AREF ;
r e l a t e a i n t o a r e f a c r o s s R422 ;
r e l a t e a i n t o s e l f a c r o s s R640 ;
c r e a t e o b j e c t i n s t a n c e v a l o f VAL;
r e l a t e a i n t o v a l a c r o s s R629 ;
c r e a t e o b j e c t i n s t a n c e dus o f DUS;
r e l a t e v a l t o dus a c r o s s R624 ;
s e l e c t one t y p e r e l a t e d by a r e f −>CORE[R403]−>TYPE[R401] ;
r e l a t e t y p e t o dus a c r o s s R625 ;
c r e a t e o b j e c t i n s t a n c e r e o f RE ;
r e l a t e dus t o r e a c r o s s R514 ;
s e l e c t many prms r e l a t e d by s e l f −>PRM[R540] ;
f o r each prm i n prms

prm . i n s t a n t i a t e (a c c e s s o r I n s t a n c e : a i n . i d) ;
end f o r ;
r e t u r n a i n . i d ;

6.1.2 Action
"All the processing that goes on in the system is stated in the actions."[2]

An Action is a single, atomic, unit of processing that can read data, write data
(implied modify), make conditional choices, and launch the execution of other actions.

59

6.1.2.1 Attributes

*id:unique_id

6.1.2.2 Relational Attributes

element_id:same_as<Base_Attribute>

6.1.2.3 Operations

Algorithm 6.2 string Action:getAccessorName()
Returns the name of the accessor or state that contains this action. In the case of states,
different event (accessor) names can be used to cause entry into the state, so the state
name must be used.

name = " " ;
s e l e c t one acc r e l a t e d by s e l f −>AE[R500]−>BRG[R509]−>ASB[R3]−>ASA[R506]−>ACC[R505] ;
i f (empty acc)

s e l e c t one acc r e l a t e d by s e l f −>AE[R500]−>BRG[R509]−>SYB[R3]−>SYA[R524]−>ACC[R505] ;
i f (empty acc)

s e l e c t one acc r e l a t e d by s e l f −>AE[R500]−>ATA[R509]−>ISY [R534]−>SYA[R524]−>ACC[R505] ;
i f (empty acc)

s e l e c t one acc r e l a t e d by s e l f −>AE[R500]−>MTH[R509]−>ISY [R534]−>SYA[R524]−>ACC[R505] ;
i f (empty acc)

s e l e c t one s t a r e l a t e d by s e l f −>AE[R500]−>STA[R509] ;
name = s t a . name ;

end i f ;
end i f ;

end i f ;
end i f ;
i f (n o t empty acc)

name = acc . name ;
end i f ;
r e t u r n name ;

6.1.3 Active Element
An active element is any OOA construct that contains a process model. The active
element must be accessible from other elements and can access other elements. The
other elements can be internal or external to the domain being modeled.

6.1.3.1 Attributes

*id:unique_id

60

6.1.4 Asynchronous Accessor
An asynchronous accessor executes some time after the action in which it was gener-
ated completes. (see [2] page 131)

6.1.4.1 Relational Attributes

*name:same_as<Base_Attribute>

6.1.5 Attribute Action
An attribute action is used to calculate the value of a derived attribute.

6.1.5.1 Relational Attributes

*2name:same_as<Base_Attribute>

nra_name:same_as<Base_Attribute>

*id:same_as<Base_Attribute>

6.1.6 Control Structure
A control structure process is used to encapsulate other process execution. Typical
control structures are if-then-else and while loops.

6.1.6.1 Attributes

closure_position:real The ordinal position of the last process in the control structure.
A closure position of zero means the control structure is unclosed.

6.1.6.2 Relational Attributes

*ordinal_position:same_as<Base_Attribute>

*action_id:same_as<Base_Attribute>

6.1.7 Element Access
Element Access represents usage of a modeled element by a Process.

6.1.7.1 Relational Attributes

*ordinal_position:same_as<Base_Attribute>

*action_id:same_as<Base_Attribute>

*referenceElement_id:same_as<Base_Attribute>

61

6.1.8 Equation
An equation is statement of equality using other values or variables. In OOA, an equa-
tion results in assignment to a variable.

6.1.8.1 Relational Attributes

*id:same_as<Base_Attribute>

62

6.1.8.2 Operations

Algorithm 6.3 void Equation:delete()

s e l e c t one r e r e l a t e d by s e l f −>RE[R514] ;
u n r e l a t e s e l f from r e a c r o s s R514 ;
r e . d e l e t e () ;
d e l e t e o b j e c t i n s t a n c e r e ;
s e l e c t many exps r e l a t e d by s e l f −>EXP[R622] ;
f o r each exp i n exps

s e l e c t one tyop r e l a t e d by exp −>TYOP[R632] ;
u n r e l a t e exp from tyop a c r o s s R632 ;
s e l e c t one o u t r e l a t e d by exp −>OUT[R611] ;
u n r e l a t e o u t from exp a c r o s s R611 ;
s e l e c t one tyop r e l a t e d by out −>TYOP[R634] ;
u n r e l a t e o u t from tyop a c r o s s R634 ;
s e l e c t one oprd r e l a t e d by out −>OPRD[R618] ;
u n r e l a t e o u t from oprd a c r o s s R618 ;
d e l e t e o b j e c t i n s t a n c e o u t ;
s e l e c t one rho r e l a t e d by exp −>RHO[R617] ;
u n r e l a t e exp from rho a c r o s s R617 ;
s e l e c t one oprd r e l a t e d by rho −>OPRD[R615] ;
u n r e l a t e rho from oprd a c r o s s R615 ;
d e l e t e o b j e c t i n s t a n c e rho ;
s e l e c t one dus r e l a t e d by oprd −>DUS[R631] ;
u n r e l a t e oprd from dus a c r o s s R631 ;
d e l e t e o b j e c t i n s t a n c e oprd ;
s e l e c t one l h o r e l a t e d by exp −>LHO[R616] ;
i f (n o t empty l h o)

u n r e l a t e exp from l h o a c r o s s R616 ;
s e l e c t one oprd r e l a t e d by lho −>OPRD[R615] ;
u n r e l a t e l h o from oprd a c r o s s R615 ;
d e l e t e o b j e c t i n s t a n c e l h o ;
s e l e c t one dus r e l a t e d by oprd −>DUS[R631] ;
u n r e l a t e oprd from dus a c r o s s R631 ;
d e l e t e o b j e c t i n s t a n c e oprd ;

end i f ;
u n r e l a t e s e l f from exp a c r o s s R622 ;
d e l e t e o b j e c t i n s t a n c e exp ;

end f o r ;

63

6.1.9 Event
An event causes a transition to occur in a state machine. The event therefore provides
access to execute any action caused by the transition.

6.1.9.1 Relational Attributes

model_id:same_as<Base_Attribute>

state_name:same_as<Base_Attribute>

entry_id:same_as<Base_Attribute>

*object_name:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

6.1.10 Event Parameter
An event parameter is a parameter assigned to an event. The subtype is required for
enforcing the "same data rule" for entry into a state.

6.1.10.1 Relational Attributes

model_id:same_as<Base_Attribute>

state_name:same_as<Base_Attribute>

id:same_as<Base_Attribute>

*type_name:same_as<Base_Attribute>

*accessor_name:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

6.1.11 Instance Method
An instance method requires an instantiation, before it can be used. The dynamics of
the instance method only apply to a single object instance.

Instance methods are favored over events when actions need to occur within the
atomicity of a process.

6.1.11.1 Relational Attributes

*name:same_as<Base_Attribute>

64

6.1.11.2 Operations

Algorithm 6.4 void Instance Method:instantiate()

s e l e c t one acc r e l a t e d by s e l f −>MTH[R532]−>ISY [R534]−>SYA[R524]−>ACC[R505] ;
i n s t I d = acc . i n s t a n t i a t e () ;
s e l e c t any a i n from i n s t a n c e s o f AIN where s e l e c t e d . i d == i n s t I d ;
s e l e c t any i n s from i n s t a n c e s o f INS where s e l e c t e d . i d == param . o b j e c t I n s t a n c e ;
c r e a t e o b j e c t i n s t a n c e min o f MIN;
r e l a t e a i n t o i n s a c r o s s R648 u s i n g min ;

6.1.12 Internal Synchronous
Internal synchronous accesses actions inside the domain being modeled.

NOTE: It is legal for the domain being modeled to call its own synchronous service
as well.

6.1.12.1 Relational Attributes

*name:same_as<Base_Attribute>

6.1.13 Iteration
An iteration process steps through an ordinal value from a specified starting point to
a specified ending point. Typical iteration processes in third generation programming
languages are for loops.

This analysis only supports a single step index into a fixed length array, therefore
the iteration always starts at the first array element (one-based) and indexes through the
end of the array. External editors will have to adjust their value arrays accordingly or
use a loop.

6.1.13.1 Attributes

current_index:integer This attribute tracks the current position in the array whose
value is contained in the variable.

6.1.13.2 Relational Attributes

*ordinal_position:same_as<Base_Attribute>

*action_id:same_as<Base_Attribute>

65

6.1.14 Loop
A loop process performs any contained processes until a specified condition is met.
Typical loop processes in third generation programming languages are while and do-
while statements.

6.1.14.1 Relational Attributes

*ordinal_position:same_as<Base_Attribute>

*action_id:same_as<Base_Attribute>

6.1.15 Method
Objects can have methods associated with them to handle synchronous processing
tasks.

In Object Lifecycles[2], methods weren’t explicitly called as such, but the processes
used in the process models were explicitly tied to an object and available for reuse in
many process models.

6.1.15.1 Relational Attributes

*name:same_as<Base_Attribute>

*2id:same_as<Base_Attribute>

6.1.15.2 Operations

Algorithm 6.5 boolean Method:belongsTo()

r c = t r u e ;
s e l e c t one om r e l a t e d by s e l f −>OM[R532] where s e l e c t e d . name == param . o b j e c t ;
i f (empty om)

s e l e c t one nm r e l a t e d by s e l f −>IM [R532]−>NM[R533] where s e l e c t e d . name == param . o b j e c t ;
i f (empty nm)

s e l e c t one obs r e l a t e d by s e l f −>IM [R532]−>SMT[R533]−>OBS[R125] where s e l e c t e d . subtype_name == param . o b j e c t ;
i f (empty obs)

r c = f a l s e ;
end i f ;

end i f ;
end i f ;
r e t u r n r c ;

6.1.16 Non-event Parameter
A non-event parameter is assigned to any accessor that isn’t an event.

66

6.1.16.1 Relational Attributes

*type_name:same_as<Base_Attribute>

*accessor_name:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

6.1.17 Non-specializing Method
A non-specializing instance method applies to all instantiations of an object, regardless
of subtyping.

In the object model, these appear in unspecialized objects and root supertypes of
specialized objects only.

6.1.17.1 Relational Attributes

*object_name:same_as<Base_Attribute>

*domain_name:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

6.1.18 Object Method
An object method doesn’t require an instantiation to be invoked. It is the method analog
to the assigner state machine. It is used for encapsulating synchronous object dynamics
that aren’t specific to an object instance.

Typical usage of an object method is to initialize an instance unconditionally related
to another instance in cases where actions must be performed upon creation of the
instance. Such a condition can’t use state machine creation, as the asynchronous nature
violates the unconditional aspect of the relationship.

6.1.18.1 Relational Attributes

*object_name:same_as<Base_Attribute>

*domain_name:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

6.1.19 Parameter
A parameter specifies a typed data instance whose value is accessible by the action
associated with the accessor.

6.1.19.1 Attributes

*name:string

67

6.1.19.2 Relational Attributes

*type_name:same_as<Base_Attribute>

*accessor_name:same_as<Base_Attribute>

6.1.19.3 Operations

Algorithm 6.6 void Parameter:instantiate()
Create an instance of this parameter related to the specified accessor instance.

s e l e c t any a i n from i n s t a n c e s o f AIN where s e l e c t e d . i d == param . a c c e s s o r I n s t a n c e ;
c r e a t e o b j e c t i n s t a n c e prn o f PRN;
r e l a t e p rn t o s e l f a c r o s s R645 ;
r e l a t e p rn t o a i n a c r o s s R647 ;
c r e a t e o b j e c t i n s t a n c e v a r o f VAR;
r e l a t e p rn t o v a r a c r o s s R626 ;
s e l e c t any emp from i n s t a n c e s o f EMP;
s e l e c t one v a l r e l a t e d by emp−>VAL[R629] ;
r e l a t e v a l t o v a r a c r o s s R635 ;
c r e a t e o b j e c t i n s t a n c e dus o f DUS;
r e l a t e v a r t o dus a c r o s s R624 ;
s e l e c t one t y p e r e l a t e d by s e l f −>TYPE[R541] ;
r e l a t e dus t o t y p e a c r o s s R625 ;
c r e a t e o b j e c t i n s t a n c e r e o f RE ;
r e l a t e dus t o r e a c r o s s R514 ;

6.1.20 Path Assignment
A path assignment is done by the path evaluation control structure to assign the nested
process to a specific path.

6.1.20.1 Relational Attributes

*nesting_ordinal_position:same_as<Base_Attribute>

*nesting_id:same_as<Base_Attribute>

*path_ordinal_position:same_as<Base_Attribute>

*path_id:same_as<Base_Attribute>

6.1.21 Path Evaluation
A path evaluation process evaluates one or more expressions and chooses the pro-
cesses to execute. Typical path evaluation processes in third generation programming
languages are if-then-else and switch-case statements.

68

6.1.21.1 Attributes

numPaths:integer The number of unique paths in this control structure. Examples:
an if statement has one path
an if-else statement has two paths
an if-elif-else statement has three paths
a switch-case statement has paths equal to the number of cases

6.1.21.2 Relational Attributes

*ordinal_position:same_as<Base_Attribute>

*action_id:same_as<Base_Attribute>

6.1.22 Process
A Process is a single execution statement in a textual model, or a single flow in a
graphical model. It can read data, write data (implied modify), make a conditional path
choice, and execute another process model.

6.1.22.1 Attributes

*ordinal_position:real The position of the process in the action. The ordinal posi-
tions of processes determine sequence of execution when the action is invoked.

6.1.22.2 Relational Attributes

*action_id:same_as<Base_Attribute>

6.1.23 Process Nesting
A process nesting is a process contained within a control structure. The control struc-
ture determines when the process is executed.

6.1.23.1 Relational Attributes

*controlStructure_ordinal_position:same_as<Base_Attribute>

*controlStructure_id:same_as<Base_Attribute>

*process_ordinal_position:same_as<Base_Attribute>

*process_id:same_as<Base_Attribute>

69

6.1.24 Reference Element
A reference element is any Shlaer-Mellor element that can be accessed as part of a
procedural model. A reference element invokes an action and/or assigns a value to a
variable.

The reference element constrains which elements in the metamodel can participate
in a process.

6.1.24.1 Attributes

*id:unique_id

6.1.25 Return Value
A return value specifies a type defined for an access that returns a data value.

6.1.25.1 Relational Attributes

*2id:same_as<Base_Attribute>

*type_name:same_as<Base_Attribute>

*access_name:same_as<Base_Attribute>

6.1.26 Specializing Method
A specializing instance method exists in only a subset of object instantiations.

6.1.26.1 Relational Attributes

*name:same_as<Base_Attribute>

**2specialization_id:same_as<Base_Attribute>

6.1.27 Statement
A statement process executes a single expression. It doesn’t contain other processes.
The typical executions are assignment, event generation, or external action calls.

6.1.27.1 Relational Attributes

*ordinal_position:same_as<Base_Attribute>

*action_id:same_as<Base_Attribute>

70

6.1.28 Synchronous Accessor
A synchronous accessor executes during the time that the action is running. (see [2]
page 131)

Only synchronous accessors can return a value. Action is suspended until the value
is returned. This means that a synchronous service provided by another domain can
launch asynchronous actions to obtain the return value, but this domain will be blocked
while waiting on the actions to complete. The analyst should take this into considera-
tion.

6.1.28.1 Relational Attributes

*name:same_as<Base_Attribute>

6.2 Relationship Descriptions
R500 An Active Element is the container for the Action. The Active Element provides

access, either internal or external, for launching the Action.

R501 The Action executes Processes upon launch. The Processes are unique for the
Action. Reuse of Processes is achieved by Actions launching other Actions via
their Active Element.

R502 Processes can use one or more Referenced Elements for data access and Action
execution.

R505 An accessor is an asynchronous accessor or a synchronous accessor.

R506 A synchronous accessor requires asynchronous action from an internal event or
an external domain.

R509 Only certain elements of OOA modeling can contain process models and there-
fore are active elements.

R514 Only certain elements of OOA can be referenced by process models, so those
elements are constrained by this relationship.

R522 An attribute action uses the derivations defined for an attribute to calculate the
attribute’s value. The derivations are only used by one attribute action.

R523 An attribute action is defined for providing a value for only one non-referential
attribute. Not all non-referential attributes have their value derived.

R524 A synchronous accessor requires synchronous action from internal processing
or an external domain.

R529 A type can be used to constrain returns from synchronous accesses, and a syn-
chronous access can return a specified data type.

R532 Methods can be applied to instantiated object instances or uninstantiated objects.

71

R533 An instance method can exist for all objects instances or only a subset of object
instances.

R534 An internal, synchronous accessor is either a method or an attribute action.

R535 An event is accessed via a subset, and a subset can provide access for many
events.

R536 Processes are single statements or control structures that contain other processes.

R537 The control structures supported in this analysis are path evaluation, iteration,
and loops.

R538 A control structure controls zero to many processes, and a process can have its
execution controlled by a control structure. Another way to look at this rela-
tionship is as containment where a control structure can contain other processes.
Scoping is avoided in this analysis as variables are scoped by the action, not by
any processes.

R539 A path evaluation assigns its nested processes to specific paths.

R540 An accessor can have parameters assigned to it. A parameter is always assigned
to an accessor.

R541 A parameter is constrained by a type, and a type can constrain many parameters.

R542 A parameter is either an event parameter or a non-event parameter. The event
parameter subtype is required to enforce the "same data rule" on entry into a
state.

72

Chapter 7

The Relationship Subsystem

The subsystem of the metamodel concerning relationships.
This diagram borrows heavily from the miUML[8] metamodel, because why rein-

vent the open-sourced wheel? The key differences are the extra level of abstraction due
to instance representation in this metamodel, and the lack of a generalization relation-
ship in this metamodel; generalizations aren’t relationships in this metamodel.

73

Figure 7.1: Relationship Subsystem Diagram

74

7.1 Object and Attribute Descriptions

7.1.1 Active Perspective
"A Binary Association has two Perspectives, one Active and one Passive Perspective.
In fact, the two sides of an Association could have just as easily been designated as the
A side and the B side. Using the terms Active / Passive offers the modeler a systematic
way to choose the phrase to apply to each side. For example, the phrase pair configures
/ is configured by readily establishes the Perspective sides.

If it’s not clear from the phrase names which side should be active or passive, then
arbitrarily assign each role and be done with it. You can always query the metamodel
later to find out which is which. Any miUML class diagram editor should provide easy
UI access to this query (highlight the A/P sides)."[8]

7.1.1.1 Relational Attributes

Rid:same_as<Base_Attribute>

Rnumber:same_as<Base_Attribute>

*id:same_as<Base_Attribute>

7.1.2 Associative Relationship
An associative relationship requires further abstraction by an object. The set defined
by the object allows instances of relationships to have further relationships, data prop-
erties, and dynamic processing.

An associative relationship relates the associative object to a relationship between
object instances.

7.1.2.1 Relational Attributes

object_name:same_as<Base_Attribute>

irl_number:same_as<Base_Attribute>

*id:same_as<Base_Attribute>

7.1.3 Asymmetric Perspective
"Each side of a Binary Association has a distinct Perspective, either Active or Pas-
sive. Since each side is from a different point of view, it establishes an Asymmetric
Perspective."[8]

7.1.3.1 Relational Attributes

*id:same_as<Base_Attribute>

75

7.1.4 Binary
"The term ’binary’ means that there are exactly two perspectives on this type of Asso-
ciation. It does NOT mean that there are two Classes. A reflexive Binary Association
may be created on a single Class such that each of the two Perspectives is viewed from
the same Class."[8]

7.1.4.1 Attributes

*id:unique_id

7.1.4.2 Relational Attributes

*number:same_as<Base_Attribute>

7.1.5 Composition
An instance of composition is the loop segment containing the relationship instance
that is the result of the composition equation.

"[When a relationship is the logical consequence of other relationships,] Such a
relationship is said to be formed by composition (as in composition of functions in
mathematics. [...] A relationship formed by composition cannot be formalized in ref-
erential attributes, since the connections between the instances is already given by the
connections between the [composing relationships].

A relationship formed by composition is annotated on the model as [composed rela-
tionship = 1st composing relationship + 2nd composing relationship [+ nth composing
relationship ...]]."[2]

"Composed Relationships. Another special case occurs when the constraint on the
referential attribute is such that it identifies a single instance of the associated object.
[...] Composition of relationships captures the constraint directly in data [...] However
the use of composition is limited in that it requires that the constraint always identify a
single associated instance."[5]

Both definitions identify compositions as relationship combinations that loop back
to the originating instance. miUML[8] calls compositions, "Constrained Loops", be-
cause the composition equation forms a constraint on the object instances allowed to
participate.

OOA ’96[5] also discusses collapsed referential identifiers, but the example shows
them to be an alternative way to draw compositions on the object model. This meta-
model will only model a composition and leave the way to display it up to the model
editor.

7.1.5.1 Relational Attributes

loop_id:same_as<Base_Attribute>

*number:same_as<Base_Attribute>

76

7.1.6 Composition Loop
A composition loop is the set of relationships participating in the composition.

7.1.6.1 Attributes

*id:unique_id

7.1.7 Instance Relationship
An instance relationship describes the constraints and associations imposed on instan-
tiation of related objects.

7.1.7.1 Attributes

*number:integer

7.1.7.2 Relational Attributes

*3left_object_name:same_as<Base_Attribute>

*3right_object_name:same_as<Base_Attribute>

*2id:same_as<Base_Attribute>

7.1.7.3 Operations

Algorithm 7.1 void Instance Relationship:createReferentials()

s e l e c t any sub from i n s t a n c e s o f SUB where s e l e c t e d . name == param . objec tName ;
s e l e c t many i d p s r e l a t e d by sub −>OBJ [R107]−>OA[R129]−>ATR[R124]−>IDP [R102] ;
i f (empty i d p s)

s e l e c t many i d p s r e l a t e d by sub −>PRP [R107]−>SPA[R130]−>ATR[R124]−>IDP [R102] ;
end i f ;
f o r each i d p i n i d p s

s e l e c t one a t r r e l a t e d by idp −>ATR[R102] ;
c r e a t e o b j e c t i n s t a n c e r e f a t r o f ATR;
r e f a t r . name = a t r . name + " (R" + TC : : i n t T o S t r i n g (i : s e l f . number) + ") " ;
c r e a t e o b j e c t i n s t a n c e r e f o f REF ;
r e l a t e r e f t o r e f a t r a c r o s s R103 ;
r e l a t e i d p t o r e f a c r o s s R137 ;
s e l e c t one ncm r e l a t e d by s e l f −>NCM[R213] ;
r e l a t e r e f t o ncm a c r o s s R128 ;

end f o r ;

77

7.1.8 Loop Segment
A loop segment is a relationship instance participating in a composition loop.

7.1.8.1 Relational Attributes

*relationship_number:same_as<Base_Attribute>

*loop_id:same_as<Base_Attribute>

7.1.9 Many Perspective
This is a Perspective with a multiplicity of many.[8]

7.1.9.1 Relational Attributes

*id:same_as<Base_Attribute>

7.1.10 Non-composition
Per Object Lifecycles[2], the basis of the composition definition is the composition of
functions in mathematics, so a function in this usage is a relationship instance that is
used to compose the composition relationship instance.

7.1.10.1 Attributes

*id:unique_id

7.1.10.2 Relational Attributes

*number:same_as<Base_Attribute>

7.1.11 One Perspective
"This is a Perspective with a multiplicity of one."[8]

7.1.11.1 Relational Attributes

*id:same_as<Base_Attribute>

7.1.12 Passive Perspective
"A Binary Association has two Perspectives, one Active and one Passive Perspective.
In fact, the two sides of an Association could have just as easily been designated as the
A side and the B side. Using the terms Active / Passive offers the modeler a systematic
way to choose the phrase to apply to each side. For example, the phrase pair configures
/ is configured by readily establishes the Perspective sides.

78

If it’s not clear from the phrase names which side should be active or passive, then
arbitrarily assign each role and be done with it. You can always query the metamodel
later to find out which is which. Any miUML class diagram editor should provide easy
UI access to this query (highlight the A/P sides)."[8]

7.1.12.1 Relational Attributes

Rid:same_as<Base_Attribute>

Rnumber:same_as<Base_Attribute>

*id:same_as<Base_Attribute>

7.1.13 Perspective
"A Perspective is a point of view from a hypothetical Instance on an Association."[8]

Perspective was taken from the miUML metamodel, which doesn’t have an instance
object, so in this metamodel, instance isn’t hypothetical and always has a perspective
when involved in a relationship.

Further discussion on perspective can be found in the chapter 4, "Reflexive Rela-
tionships", in OOA ’96[5].

7.1.13.1 Attributes

conditional:boolean

phrase:string

*id:unique_id The unique identifier for the perspective.

7.1.13.2 Relational Attributes

*2reference_id:same_as<Base_Attribute>

7.1.14 Relationship
"A relationship is an abstraction of a set of associations that hold systematically be-
tween different kinds of things in the real world."[2]

The relationship represents a table containing a row for every instance of the rela-
tionship, and a column for each object participating in the relationship. When looking
at the object model, the relationship represent the empty table. In the process model,
the rows of the table are populated. The rows of the table, then represent relationship
instance values.

7.1.14.1 Attributes

*id:unique_id

79

7.1.15 Symmetric Perspective
"A Unary Association has only one Perspective. Given two Objects (or the same Object
linked to itself) on a Unary Association, the role played by either side of the Link is
identical. There is, consequently, just one Symmetric Perspective.

Therefore, only one phrase name, one multiplicity and one conditionality need be
specified for a Unary Association."[8]

A Unary Association in this metamodel always involves just one Object. Unary
Association is the same as Symmetric Reflexive Relationship in OOA ’96[5].

7.1.15.1 Relational Attributes

Rid:same_as<Base_Attribute>

Rnumber:same_as<Base_Attribute>

*id:same_as<Base_Attribute>

7.1.16 Symmetric Reflexive
The symmetric reflexive relationship is described in OOA ’96[5]. A symmetric reflex-
ive relationship has the same multiplicity,conditionality, and verb phrase at both ends
of the relationship, so those specifiers are squished into one perspective.

7.1.16.1 Attributes

*id:unique_id

7.1.16.2 Relational Attributes

*number:same_as<Base_Attribute>

7.1.17 Traversal Direction
The direction set by the perspective on a relationship to use to traverse the relationship
to the linked object instance.

7.1.17.1 Relational Attributes

*relationshipInstance_id:same_as<Base_Attribute>

*perspective_id:same_as<Base_Attribute>

80

7.2 Relationship Descriptions
R200 Two types of relationships exist in a Shlaer-Mellor model: instance-based and

associative.

R201 The two types of instance-based relationships are unary and binary. The desig-
nation of unary and binary refer to the number of perspectives of the instances
involved, and not the number of instances.

R204 A perspective is an asymmetric perspective or symmetric perspective.

R205 An asymmetric perspective can be viewed in active or passive tense.

R206 The symmetric perspective is the view both from and on the unary relationship.

R207 The active perspective is viewed from one side of the binary relationship.

R208 The passive perspective is viewed from one side of the binary relationship.

R210 "The direction of reference of a Referential Attribute is determined by the avail-
ability of a One Perspective. Conditionality is less significant in this regard. So
to capture the basic reference rule that ‘it is always possible to refer to a One
Perspective’ it is necessary to abstract the One / Many specialization. See the
Formalization Subsystem to see how it is used.
Regardless of conditionality, every Perspective is either One or Many (1, M) or,
in UML terminology, (0..1, 1 or 0..*, 1..*)."[8]

R212 An instance relationship can abstract a single associative relationship, but an
associative relationship is always abstracted by an instance relationship.

R213 An instance relationship can be a non-composition (formalized by referential
attributes) or a composition (formalized by a relationship loop) instance rela-
tionship.

R214 A composition is bounded by a composition loop. The composition loop bounds
the composition.

R215 An instance relationship can belong to one or more composition loops. The
composition loop requires a contiguous, closed path from many instance rela-
tionships.

R202 An associative relationship is always abstracted by an object or subset of an
object. When an object is used to abstract an associative relationship, it’s life
span is the same as the relationship’s life span.

R216 A relationship instance can have traversal direction specified by a relationship
perspective, and a relationship perspective can specify traversal direction for
many relationship instances.

81

82

Chapter 8

The Type Subsystem

Figure 8.1: Type Subsystem Diagram

83

8.1 Object and Attribute Descriptions

8.1.1 Accessor Reference
An accessor reference is the type to which a variable with an accessor as a value must
conform. In OAL this is an event instance; in C it would be like a function pointer.

8.1.1.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

8.1.1.2 Operations

Algorithm 8.1 void Accessor Reference:generateSupportedOperators()
The operations permitted for instance reference data types are:

• the comparisons = and != (identical and not identical in value)

• the set existence checks of empty and not empty.

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " a c c e s s o r r e f e r e n c e " , r e s u l t : " a c c e s s o r r e f e r e n c e ") t o TYOP c l a s s ;

8.1.1.3 Instance State Model

Figure 8.2: Accessor Reference State Model

84

Algorithm 8.2 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many a r e f s from i n s t a n c e s o f AREF ;
i f (c a r d i n a l i t y a r e f s == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " a c c e s s o r r e f e r e n c e " ;
c o r e . t y p e = d a t a _ t : : ACCESSOR_REFERENCE ;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f t y p e AREF a t t e m p t e d ! ") ;
g e n e r a t e AREF2 : d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.3 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

8.1.2 Arbitrary
"To define a data type for data elements that represent arbitrary identifiers: data type
<data type name> is arbitrary

The implementation of an arbitrary type like all the base data types is determined
by the architecture domain. Hence the analyst should make no assumptions as to how
this is done: the arbitrary type may be implemented as a handle, an integer, a character
string, or by any other scheme the architects devise. For this reason, the analyst cannot
specify a default value for the base data type arbitrary."[6]

8.1.2.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

85

8.1.2.2 Operations

Algorithm 8.4 void Arbitrary:generateSupportedOperators()
The OOA of Data[6] prescribes no operators for arbitrary. Arbitrary is treated like a
composite, where the internals are unknown, so the only valid operations permitted
using data types based on arbitrary are limited to equality comparison and assignment
to another arbitrary type.

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " a r b i t r a r y " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " a r b i t r a r y " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " a r b i t r a r y " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

8.1.2.3 Instance State Model

Figure 8.3: Arbitrary State Model

86

Algorithm 8.5 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many a r i d s from i n s t a n c e s o f ARID ;
i f (c a r d i n a l i t y a r i d s == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " a r b i t r a r y " ;
c o r e . t y p e = d a t a _ t : : ARBITRARY;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f ARID a t t e m p t e d ! ") ;
g e n e r a t e ARID2 : d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.6 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

8.1.3 Boolean
"The boolean base data type is exactly what you expect: a pre-defined enumerated data
type with values True and False. To define a domain-specific data type based on a
boolean base type, write: data type <name> is boolean (default value is <value>)

The operations permitted for data elements based on these base types include the
comparison operations, represented as = (identical in value) and != (not identical in
value). The result of either comparison yields a data element of base type boolean. The
logical operations, not, and, & or, are defined in the standard way."[6]

8.1.3.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

87

8.1.3.2 Operations

Algorithm 8.7 void Boolean:generateSupportedOperators()
"The operations permitted for data elements based on these base types include the
comparison operations, represented as = (identical in value) and != (not identical in
value). The result of either comparison yields a data element of base type boolean. The
logical operations, not, and, & or, are defined in the standard way."[6]

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " b o o l e a n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " b o o l e a n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " b o o l e a n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l o g i c a l n o t " , symbol : " n o t " , t y p e : " b o o l e a n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l o g i c a l and " , symbol : " and " , t y p e : " b o o l e a n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l o g i c a l o r " , symbol : " o r " , t y p e : " b o o l e a n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

8.1.3.3 Instance State Model

Figure 8.4: Boolean State Model

88

Algorithm 8.8 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many b o o l s from i n s t a n c e s o f BOOL;
i f (c a r d i n a l i t y b o o l s == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
t y p e . name = " b o o l e a n " ;
c o r e . t y p e = d a t a _ t : : BOOLEAN;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f BOOL a t t e m p t e d ! ") ;
g e n e r a t e BOOL2: d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.9 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

8.1.4 Composite
"A type may be composite, but the corresponding attribute must always be treated by
the domain as a single unit"[3]

The operations permitted using data types based on composite are limited to equal-
ity comparison and assignment to another composite type.

If individual elements of a composite type are to be operated on within the passed-
to domain, then they must be sent individually. If they need to be treated as a group,
then a class must be declared within the domain that supports them.

The operations external to the domain to support these two mechanisms consist of
ungrouping the data from the composite, making the data available to the domain, and
then regrouping the processed data. NOTE: while this process sounds onerous, the
architecture can perform coping mechanisms, such as mapping instances of the class
in the domain to point to memory locations in the composite external to the domain.
In this case, the whole ungroup, pass-in, and regroup is done automatically and the
external operation only needs to ensure the sequence occurs without interference.

89

8.1.4.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

8.1.4.2 Operations

Algorithm 8.10 void Composite:generateSupportedOperators()
The operations permitted using data types based on composite are limited to equality
comparison and assignment to another composite type.

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " c o m p o s i t e " , r e s u l t : " c o m p o s i t e ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " c o m p o s i t e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " c o m p o s i t e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

8.1.4.3 Instance State Model

Figure 8.5: Composite State Model

90

Algorithm 8.11 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many comps from i n s t a n c e s o f COMP;
i f (c a r d i n a l i t y comps == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " c o m p o s i t e " ;
c o r e . t y p e = d a t a _ t : : COMPOSITE ;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f COMP a t t e m p t e d ! ") ;
g e n e r a t e COMP2: d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.12 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

8.1.5 Core
Core types are defined within the context of the Shlaer-Mellor Method. Every Shlaer-
Mellor model, adhering to this metamodel, will support these types. Core types are
not intended to be multiply instantiated. Each core type is defined only once in the
metamodel. Specialization of the core types are done through definitions based on the
core types. These definitions are considered domain types, so they aren’t modeled in
this metamodel. The enumeration definition is an exception to this rule, as it has a
known structure.

8.1.5.1 Attributes

*2type:data_t

8.1.5.2 Relational Attributes

operator_name:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

91

8.1.5.3 Operations

Algorithm 8.13 void Core:destroy()

s e l e c t one o p e r a t o r r e l a t e d by s e l f −>OPER[R419] ;
u n r e l a t e s e l f from o p e r a t o r a c r o s s R419 ;
s e l e c t one t y p e r e l a t e d by s e l f −>TYPE[R401] ;
i f (n o t empty t y p e)

t y p e . remove () ;
u n r e l a t e t y p e from s e l f a c r o s s R401 ;
d e l e t e o b j e c t i n s t a n c e t y p e ;

end i f ;
s e l e c t many u d t s r e l a t e d by s e l f −>DOMD[R402] ;
f o r each u d t i n u d t s

u n r e l a t e s e l f from u d t a c r o s s R402 ;
g e n e r a t e DOMD2: d e s t r o y () t o u d t ;

end f o r ;

8.1.6 Domain
Domain types are unique within the context of the domain. Domain types are often
also called user-defined types, because they are defined by the analyst when modeling
the domain. Often domain types will have a known name within the subject matter of
the domain.

Domain types are formed using a core type as a base.

8.1.6.1 Relational Attributes

domain_name:same_as<Base_Attribute>

current_state:state<State_Model>

base_name:same_as<Base_Attribute>

*name:same_as<Base_Attribute>

92

8.1.6.2 Instance State Model

Figure 8.6: Domain State Model

Algorithm 8.14 Creating

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
t y p e . name = param . name ;
c r e a t e o b j e c t i n s t a n c e domd of DOMD;
r e l a t e domd t o t y p e a c r o s s R401 ;
s e l e c t any mdom from i n s t a n c e s o f MDOM where s e l e c t e d . name == param . domain ;
r e l a t e domd t o mdom a c r o s s R412 ;
s e l e c t many c o r e s from i n s t a n c e s o f CORE;
f o r each c o r e i n c o r e s

i f (c o r e . t y p e == param . coreType)
r e l a t e c o r e t o domd a c r o s s R402 ;
b r e a k ;

end i f ;
end f o r ;

93

Algorithm 8.15 Destroying

s e l e c t one t y p e r e l a t e d by s e l f −>TYPE[R401] ;
i f (n o t empty t y p e)

t y p e . remove () ;
u n r e l a t e t y p e from s e l f a c r o s s R401 ;
d e l e t e o b j e c t i n s t a n c e t y p e ;

end i f ;
s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R402 . ’ ’ i s based on ’ ’] ;
u n r e l a t e s e l f from c o r e a c r o s s R402 . ’ ’ i s based on ’ ’ ;

8.1.7 Duration
"Similarly, to define a data type that represents duration, write data type <data type
name> is duration range is from <low limit> to <high limit> units are [year | month |
day | hour | minute | second | millisec | microsec] precision is <smallest discriminated
value>

The operations permitted using data types based on time and duration are: time :=
time ± duration duration := duration ± duration duration := duration * numeric duration
:= duration / numeric duration := time - time as well as the standard comparisons of
< (read as "before"), >, ≤ , and ≥ . Each such comparison yields a data element of
base type boolean. Comparisons are defined only between elements of the same base
type."[6]

8.1.7.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

94

8.1.7.2 Operations

Algorithm 8.16 void Duration:generateSupportedOperators()
"The operations permitted using data types based on ... duration are:

• duration := duration ± duration

• duration := duration * numeric

• duration := duration / numeric

• duration := time - time

as well as the standard comparisons of < (read as "before"), >, ≤ , and ≥ . Each such
comparison yields a data element of base type boolean. Comparisons are defined only
between elements of the same base type."[6]
NOTE: For mixed type operations, conversion operators must be supported. The ex-
plicit conversion cases are:

• duration * numeric: duration->numeric result: numeric

• duration / numeric: duration->numeric result: numeric

• duration := numeric: numeric->duration

• duration := time: time->duration

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " d u r a t i o n " , r e s u l t : " d u r a t i o n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " a d d i t i o n " , symbol : " + " , t y p e : " d u r a t i o n " , r e s u l t : " d u r a t i o n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " s u b t r a c t i o n " , symbol : " − " , t y p e : " d u r a t i o n " , r e s u l t : " d u r a t i o n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " d u r a t i o n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " d u r a t i o n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " g r e a t e r " , symbol : " > " , t y p e : " d u r a t i o n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l e s s e r " , symbol : " < " , t y p e : " d u r a t i o n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " g r e a t e r o r e q u a l " , symbol : " >=" , t y p e : " d u r a t i o n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l e s s e r o r e q u a l " , symbol : " <=" , t y p e : " d u r a t i o n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
/ / I t i s h i g h l y recommended t h a t t h e a r c h i t e c t u r e h a n d l e c o n v e r s i o n s au to −
/ / m a t i c a l l y , so t h e a n a l y s t doesn ’ ’ t have t o e x p l i c i t l y add t h e c o n v e r s i o n
/ / o p e r a t o r .
g e n e r a t e TYOP_A1 : c r e a t e (name : " c o n v e r t t o numer ic " , symbol :" − >NUMI" , t y p e : " d u r a t i o n " , r e s u l t : " numer ic ") t o TYOP c l a s s ;

95

8.1.7.3 Instance State Model

Figure 8.7: Duration State Model

Algorithm 8.17 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many d u r d s from i n s t a n c e s o f DURD;
i f (c a r d i n a l i t y d u r d s == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " d u r a t i o n " ;
c o r e . t y p e = d a t a _ t : : DURATION;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f DURD a t t e m p t e d ! ") ;
g e n e r a t e DURD2: d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.18 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

96

8.1.8 Enumeration
"If a data type permits a finite set of values, define it as: data type <name> is enumer-
ated values are <value 1 >, <value 2 >, . . . <value N > (default value is <value k >) 4
as in: data type IC color is enumerated values are red, blue, black, green, silver

The only operations permitted for data elements of an enumerated data type are the
comparison operations, represented as = (identical in value) and != (not identical in
value). The result of either comparison yields a data element of type boolean."[6]

8.1.8.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

8.1.8.2 Operations

Algorithm 8.19 void Enumeration:generateSupportedOperators()
["The only operations permitted for data elements of an enumerated data type are the
comparison operations, represented as = (identical in value) and != (not identical in
value). The result of either comparison yields a data element of type boolean."[6]

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " e n u m e r a t i o n " , r e s u l t : " e n u m e r a t i o n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " e n u m e r a t i o n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " e n u m e r a t i o n " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

8.1.8.3 Instance State Model

Figure 8.8: Enumeration State Model

97

Algorithm 8.20 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many enums from i n s t a n c e s o f ENUM;
i f (c a r d i n a l i t y enums == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " e n u m e r a t i o n " ;
c o r e . t y p e = d a t a _ t : : ENUMERATION;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f ENUM a t t e m p t e d ! ") ;
g e n e r a t e ENUM2: d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.21 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

8.1.9 Enumeration Definition
An enumeration definition bounds the set of enumeration values allowed when an enu-
meration type is used. A variable is declared as an enumeration definition as if the enu-
meration definition was the type. This is typical of how most programming languages
support the use of enumerations. e.g., <enum keyword> <type name> <enumerator
value list> <variable name>

8.1.9.1 Attributes

*name:string

8.1.9.2 Relational Attributes

type_name:same_as<Base_Attribute>

98

8.1.10 Enumeration Value
An enumeration value is one of the enumerators that compose an enumeration. The
uses of enumeration values are constrained by the operations supported by the enumer-
ation type. An enumeration value can never be identified by just the value name; it
must always use the enumeration definition name as well. e.g., def::value

8.1.10.1 Attributes

*2name:string

8.1.10.2 Relational Attributes

*2enum_name:same_as<Base_Attribute>

*id:same_as<Base_Attribute>

8.1.11 Instance Reference
An instance reference is the type to which all object instances must conform. This is a
core type that says object instances have a common set of operations defined for usage.

8.1.11.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

8.1.11.2 Operations

Algorithm 8.22 void Instance Reference:generateSupportedOperators()
The operations permitted for instance reference data types are

• the comparisons = and != (identical and not identical in value)

• the set existence checks of empty and not empty.

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " i n s t a n c e r e f e r e n c e " , r e s u l t : " i n s t a n c e r e f e r e n c e ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " i n s t a n c e r e f e r e n c e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " i n s t a n c e r e f e r e n c e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " empty " , symbol : " empty " , t y p e : " i n s t a n c e r e f e r e n c e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t empty " , symbol : " n o t empty " , t y p e : " i n s t a n c e r e f e r e n c e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

99

8.1.11.3 Instance State Model

Figure 8.9: Instance Reference State Model

Algorithm 8.23 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many i r e f s from i n s t a n c e s o f IREF ;
i f (c a r d i n a l i t y i r e f s == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " i n s t a n c e r e f e r e n c e " ;
c o r e . t y p e = d a t a _ t : : INSTANCE_REFERENCE ;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f t y p e IREF a t t e m p t e d ! ") ;
g e n e r a t e IREF2 : d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.24 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

100

8.1.12 Numeric
Numeric is as described below. NOTE: The description isn’t a model. Some seeming
attributes of numeric in the description might be modeled as their own objects. e.g.,
"units" aren’t always used, so cannot be an attribute.

"If a data type is numeric in nature, write: data type <data type name> is numeric
(base <N>) range is from <low limit> to <high limit> units are <unit symbol> preci-
sion is <smallest discriminant> (default value is <value>) where base N specifies the
base of the quantities <low limit>, <high limit>, <smallest discriminant> and <value>.
If base N is omitted, base 10 is assumed. Hence: data type ring diameter is numeric
range is from 0 to 39 units are cm precision is 0.01 data type bit pattern is numeric base
8 range is from 0 to 177777 units are octal bits precision is 1 Note that the analyst does
not specify whether a numeric data type will be implemented as an integer or a real
number. This will ultimately be determined by the architecture, based on the native
types available in the implementation language, the word length of these native types,
and the range and precision required for the data type. As a result, the OOA models of
any domain are entirely decoupled from the implementation technology, thereby max-
imizing the potential for reuse across a wide range of platforms and implementation
languages.

The operations permitted for numeric data types are: - the standard arithmetic oper-
ations +, -, * (multiplication), / (division), %% (division modulo N), and ** (exponen-
tiation). The result of such an operation is again of base type numeric. - the standard
arithmetic comparisons of = , != , <, >, <= , and >= . The result of such a comparison
yields a data element of base type boolean."[6]

8.1.12.1 Attributes

Keyword A keyword is a special processing directive.

8.1.12.2 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

101

8.1.12.3 Operations

Algorithm 8.25 void Numeric:generateSupportedOperators()
"the standard arithmetic operations +, -, * (multiplication), / (division), %% (division
modulo N), and ** (exponentiation). The result of such an operation is again of base
type numeric. the standard arithmetic comparisons of = , != , <, >, <= , and >=. The
result of such an operation is of base type boolean."[6]

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " numer ic " , r e s u l t : " numer ic ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " a d d i t i o n " , symbol : " + " , t y p e : " numer ic " , r e s u l t : " numer ic ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " s u b t r a c t i o n " , symbol : " − " , t y p e : " numer ic " , r e s u l t : " numer ic ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " m u l t i p l i c a t i o n " , symbol : " * " , t y p e : " numer ic " , r e s u l t : " numer ic ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " d i v i s i o n " , symbol : " / " , t y p e : " numer ic " , r e s u l t : " numer ic ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " modulo " , symbol :"%%" , t y p e : " numer ic " , r e s u l t : " numer ic ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e x p o n e n t i a t i o n " , symbol : " * * " , t y p e : " numer ic " , r e s u l t : " numer ic ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " numer ic " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " numer ic " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " g r e a t e r " , symbol : " > " , t y p e : " numer ic " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l e s s e r " , symbol : " < " , t y p e : " numer ic " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " g r e a t e r o r e q u a l " , symbol : " >=" , t y p e : " numer ic " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l e s s e r o r e q u a l " , symbol : " <=" , t y p e : " numer ic " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

8.1.12.4 Instance State Model

Figure 8.10: Numeric State Model

102

Algorithm 8.26 Creating
Responsible for instantiating this core data type and all operations associated with it.
NOTE: At the time of this writing, core data types are never expected to be deleted,
as deleting a core type would require deletion of all user data types based on the core
type and all attributes and synchronous functionality ultimately based on the core type.
There is no logical default value to use as a fall back.

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many numis from i n s t a n c e s o f NUMI;
i f (c a r d i n a l i t y numis == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " numer ic " ;
c o r e . t y p e = d a t a _ t : : NUMERIC;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f NUMI a t t e m p t e d ! ") ;
g e n e r a t e NUMI2 : d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.27 Destroying
Responsible for instantiating this core data type and all operations associated with it.
NOTE: At the time of this writing, core data types are never expected to be deleted,
as deleting a core type would require deletion of all user data types based on the core
type and all attributes and synchronous functionality ultimately based on the core type.
There is no logical default value to use as a fall back.

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

8.1.13 Operator
An Operator represents a function that may be defined for a Type. Not all Operators
will be visible in implementation. e.g., an action language may choose to allow auto-
matic conversion from one type to another, 5 + "5" = 10. In such a case, a string to
numeric Operator must be defined as part of the instantiation of the metamodel.

103

8.1.13.1 Attributes

*2symbol:string "A short, often single character, name to represent an Operator in a
written expression. Common examples are + , - , * , ++ , next , etc."[8]

*name:string "A descriptive name applicable to multiple Types such as add, multiply,
increment, etc."[8]

8.1.13.2 Operations

Algorithm 8.28 void Operator:associate(rh_element:inst_ref, lh_element:inst_ref)
Operator association associates the operator for use in an equation.
rh_element: The element on the right hand side of the operator.
lh_element: The element on the left hand side of the operator.

Algorithm 8.29 void Operator:unassign(type:string)

s e l e c t any t y p e r e l a t e d by s e l f −>TYPE[R406] where s e l e c t e d . name == param . t y p e ;
s e l e c t many t y o p s r e l a t e d by s e l f −>TYOP[R406] where s e l e c t e d . type_name == param . t y p e ;
f o r each tyop i n t y o p s

u n r e l a t e s e l f from t y p e a c r o s s R406 u s i n g tyop ;
s e l e c t one r e s t y p e r e l a t e d by tyop −>TYPE[R415] ;
u n r e l a t e r e s t y p e from tyop a c r o s s R415 ;
d e l e t e o b j e c t i n s t a n c e tyop ;

end f o r ;

8.1.14 Ordinal
The ordinal core type automatically populated in the metamodel is specified as ascend-
ing and based upon identifier, because the only known operation is for traversing a
collection of object instances.

To support other ordinal uses in a process model, the user must create a user-defined
ordinal type.

The below gives more detail on ordinals:
"Ordinal data types are used to express order, such as first, second, and so on. How-

ever, the subject of ordering is a lot more interesting that just this common example;
hence the following digression.

An ordering is always applied to a set of elements. The set can be finite or infinite.
There are two types of orderings to consider. The first is the most familiar; it is a
complete ordering. What this means is that you can express the concept of "before"
(represented as <) between any two members of the set. Hence, 7 is before 26 (7 < 26
). A complete ordering has the property of transitivity:

If A is before B, and B is before C, then A is before C.

104

A practical example would be the ordering of the cars that make up a freight train.
Assume we define a first car. Then we could pick any two cars and easily determine
which one was before the other. Far more interesting are the partial orderings. Consider
this sketch of a partial ordering.

A -> B -> C -> D + -> E -> F -> G
Using the obvious interpretation, we can say that A < B (A is before B), C < D, C

< E, and E < F. But we cannot say anything about the relationship between D and F:
They are non-comparable.

Examples of structures that are partially ordered include PERT charts, trees used
for any purpose, interlock chains, the connectivity of an electric grid, and the like.
All of these can be modeled in complete detail using standard OOA relationships; for
examples see [4] and Chapter 4 of Shlaer-Mellor Method: The OOA96 Report[5].
Note, however, that when modeling such a structure, one frequently finds it necessary to
employ quite a number of ancillary objects (such as root node, parent node, child node,
and leaf node) together with a significant set of relationships all required to express
a generally well-known concept. While this can be quite satisfying when one is in
a purist frame of mind, the pragmatist points out that such constructions are often of
limited value, obscuring, as they can, the true purpose of the model. This becomes
particularly pertinent when constructing models of an architecture, where ordering is
a particularly prominent theme (see The Timepoint Architecture chapter). Hence we
have defined the ordinal base data type, leaving it to the judgment of the analyst as for
when to use an ordinal attribute as opposed to using more fully expressive OOA objects
and relationships.

Returning now to the main theme, an ordinal data type is defined by:
data type <data type name> is ordinal
The operations permitted for ordinal data types are:

• the comparisons = and != (identical and not identical in value)

• the comparisons < (read as "before"), >, <= , and >= . Each such comparison
yields a data element of base type boolean if the ordering is complete, and of
base type extended boolean if the ordering is partial."[6]
NOTE: This metamodel doesn’t support an extended boolean type, so a compar-
ison of partial ordering will always yield false.

• the set existence checks of empty and not empty"[6]

Ordering implies a direct path where one can follow the path in any direction to deter-
mine what is before and what is after. Changing direction isn’t permitted (i.e., taking
another path), and traversing multiple paths is another operation (e.g., get number of
items after C on path 1 yields 1 (D), and get number of items after C on path 2 yields 3
(E, F, G); the total number of items after C is 4 (result 1 + result 2).

Any comparison operations have to be done on the same path, so an "illegal" com-
parison across two paths will yield a false. The analyst must be cautioned about this
rule, or the tool implementer could make such comparisons result in an error. This rule
on paths obviates the need for an "extended boolean" as described in [6].

105

Ordering is done based upon a common index value. This means that all the mem-
bers of the ordinal must be of the same type, but not all types can be part of an ordinal.
e.g., composites, booleans, ordinals, and enumerations.

8.1.14.1 Attributes

direction:integer Direction of ordering is either ascending or descending. The direc-
tion can be dynamically changed in the process models. A loop operation on the
ordinal will follow the set direction.

order_specifier:string The order specifier attribute determines the basis of the order-
ing. The order specifier can be an object attribute, if the ordinal is composed
of objects, a meta-attribute, e.g., identifier, name, etc., common ordering based
upon data type, i.e., numeric +/- 1, alphabetical for strings, etc., or physical
placement. (A TBD symbol or keyword will be defined to indicate placement.)
Placement is to be considered ordered by a means external to the data. e.g.,
an array. A placement ordinal will have means of inserting, moving, and re-
moving ordered elements. Placement ordinals will also have associated marks,
so placement can be based on platform considerations. e.g., memory location,
timestamp, etc. All ordinals will have the ability to add and remove elements.
The order specifier can be dynamically changed in the process models.

8.1.14.2 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

106

8.1.14.3 Operations

Algorithm 8.30 void Ordinal:generateSupportedOperators()
The operations permitted for instance reference data types are

• the comparisons = and != (identical and not identical in value)

• the set existence checks of empty and not empty.

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " o r d i n a l " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " j o i n " , symbol : " + " , t y p e : " o r d i n a l " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " o r d i n a l " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " o r d i n a l " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " empty " , symbol : " empty " , t y p e : " o r d i n a l " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t empty " , symbol : " n o t empty " , t y p e : " o r d i n a l " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " i n s e r t " , symbol : " i n s e r t i n t o " , t y p e : " numer ic " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " remove " , symbol : " remove from " , t y p e : " numer ic " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " i n s e r t " , symbol : " i n s e r t i n t o " , t y p e : " s y m b o l i c " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " remove " , symbol : " remove from " , t y p e : " s y m b o l i c " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " i n s e r t " , symbol : " i n s e r t i n t o " , t y p e : " b o o l e a n " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " remove " , symbol : " remove from " , t y p e : " b o o l e a n " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " i n s e r t " , symbol : " i n s e r t i n t o " , t y p e : " a r b i t r a r y " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " remove " , symbol : " remove from " , t y p e : " a r b i t r a r y " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " i n s e r t " , symbol : " i n s e r t i n t o " , t y p e : " d u r a t i o n " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " remove " , symbol : " remove from " , t y p e : " d u r a t i o n " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " i n s e r t " , symbol : " i n s e r t i n t o " , t y p e : " t ime " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " remove " , symbol : " remove from " , t y p e : " t ime " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " i n s e r t " , symbol : " i n s e r t i n t o " , t y p e : " i n s t a n c e r e f e r e n c e " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " remove " , symbol : " remove from " , t y p e : " i n s t a n c e r e f e r e n c e " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " i n s e r t " , symbol : " i n s e r t i n t o " , t y p e : " f u n c t i o n r e f e r e n c e " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " remove " , symbol : " remove from " , t y p e : " f u n c t i o n r e f e r e n c e " , r e s u l t : " o r d i n a l ") t o TYOP c l a s s ;

107

8.1.14.4 Instance State Model

Figure 8.11: Ordinal State Model

Algorithm 8.31 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many o r d d s from i n s t a n c e s o f ORDD;
i f (c a r d i n a l i t y o r d d s == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " o r d i n a l " ;
c o r e . t y p e = d a t a _ t : : ORDINAL;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f ORDD a t t e m p t e d ! ") ;
g e n e r a t e ORDD2: d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.32 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

108

8.1.15 Relationship Instance Reference
A relationship instance reference is the type to which all relationship instances must
conform. This is a core type that says relationship instances have a common set of
operations defined for usage.

8.1.15.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

8.1.15.2 Operations

Algorithm 8.33 void Relationship Instance Reference:generateSupportedOperators()
The operations permitted for instance reference data types are

• the comparisons = and != (identical and not identical in value)

• the set existence checks of empty and not empty.

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " r e l a t i o n s h i p i n s t a n c e r e f e r e n c e " , r e s u l t : " r e l a t i o n s h i p i n s t a n c e r e f e r e n c e ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " r e l a t i o n s h i p i n s t a n c e r e f e r e n c e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " r e l a t i o n s h i p i n s t a n c e r e f e r e n c e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " empty " , symbol : " empty " , t y p e : " r e l a t i o n s h i p i n s t a n c e r e f e r e n c e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t empty " , symbol : " n o t empty " , t y p e : " r e l a t i o n s h i p i n s t a n c e r e f e r e n c e " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

8.1.15.3 Instance State Model

Figure 8.12: Relationship Instance State Model

109

Algorithm 8.34 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many r r e f s from i n s t a n c e s o f RREF ;
i f (c a r d i n a l i t y r r e f s == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " r e l a t i o n s h i p i n s t a n c e r e f e r e n c e " ;
c o r e . t y p e = d a t a _ t : : RELATIONSHIP_INSTANCE_REFERENCE ;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f t y p e RREF a t t e m p t e d ! ") ;
g e n e r a t e RREF2 : d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.35 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

8.1.16 Symbolic
"For data elements that have the nature of names, we need to be able to define sym-
bolic data types: data type <data type name> is symbolic length is (from <minimum
number of characters> to) <maximum number of characters> (default value is <char-
acter string>) The analyst specifies the maximum and minimum number of characters
required based on his or her knowledge of the longest and shortest plausible values.
Hence: data type gas name is symbolic length is from 2 to 15 default value is Helium

The operations defined for symbolic data types are: - concatenate (represented as
+); the result of concatenation is a data element of base type symbolic. - comparison for
identical value, represented as = (identical in value) and != (not identical in value). The
result of such a comparison yields a data element of base type boolean. - comparison
for position in a collating sequence[5], represented as < (before), > (after), <= (before
or identical), and >= (identical or after). The result of such a comparison yields a data
element of base type boolean.

[5] A collating sequence prescribes the order of all the characters in a specified
character set, typically including letters, numbers, and punctuation marks. Collating

110

sequences are defined in the implementation environment, and may vary from coun-
try to country depending on the concept of "alphabetical order" and the repertoire of
characters or symbols used in the natural language."[6]

8.1.16.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

8.1.16.2 Operations

Algorithm 8.36 void Symbolic:generateSupportedOperators()
"The operations defined for symbolic data types are:

• concatenate (represented as +); the result of concatenation is a data element of
base type symbolic.

• comparison for identical value, represented as = (identical in value) and != (not
identical in value). The result of such a comparison yields a data element of base
type boolean.

• comparison for position in a collating sequence[see definition below], repre-
sented as < (before), > (after), <= (before or identical), and >= (identical or after).
The result of such a comparison yields a data element of base type boolean.

A collating sequence prescribes the order of all the characters in a specified character
set, typically including letters, numbers, and punctuation marks. Collating sequences
are defined in the implementation environment, and may vary from country to country
depending on the concept of "alphabetical order" and the repertoire of characters or
symbols used in the natural language."[6]

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " s y m b o l i c " , r e s u l t : " sy m b o l i c ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " c o n c a t e n a t e " , symbol : " + " , t y p e : " s y m b o l i c " , r e s u l t : " sy m b o l i c ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " s y m b o l i c " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " s y m b o l i c " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " g r e a t e r " , symbol : " > " , t y p e : " s y m b o l i c " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l e s s e r " , symbol : " < " , t y p e : " s y m b o l i c " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " g r e a t e r o r e q u a l " , symbol : " >=" , t y p e : " s y m b o l i c " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l e s s e r o r e q u a l " , symbol : " <=" , t y p e : " s y m b o l i c " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

111

8.1.16.3 Instance State Model

Figure 8.13: Symbolic State Model

Algorithm 8.37 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many symds from i n s t a n c e s o f SYMD;
i f (c a r d i n a l i t y symds == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name=" s y m b o l i c " ;
c o r e . t y p e = d a t a _ t : : SYMBOLIC;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f SYMD a t t e m p t e d ! ") ;
g e n e r a t e SYMD2: d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.38 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

112

8.1.17 Time
"To define a data type that represents calendar-clock time, write: data type <data type
name> is time range is from <year-mon-day> (<hour:min:sec >) to <year-mon-day>
(<hour:min:sec >) precision is <smallest discriminated value> [year | month | day |
hour | minute | second | millisec | microsec]

The operations permitted using data types based on time and duration are: time :=
time ± duration duration := duration ± duration duration := duration * numeric duration
:= duration / numeric duration := time - time as well as the standard comparisons of
< (read as "before"), >, ≤ , and ≥ . Each such comparison yields a data element of
base type boolean. Comparisons are defined only between elements of the same base
type."[6]

8.1.17.1 Relational Attributes

current_state:state<State_Model>

*name:same_as<Base_Attribute>

113

8.1.17.2 Operations

Algorithm 8.39 void Time:generateSupportedOperators()
"The operations permitted using data types based on time ... are:

• time := time ± duration as well as the standard comparisons of < (read as "be-
fore"), >, ≤ , and ≥ . Each such comparison yields a data element of base
type boolean. Comparisons are defined only between elements of the same base
type."[6]

• time := time ± time

NOTE: For mixed type operations, conversion operators must be supported. The ex-
plicit conversion cases are:

• duration := time: time->duration
NOTE: The architecture should add boundary checks on this conversion, as du-
rations are often expressed in (e.g.,) microseconds. The system needs to be able
to support very large numbers if values are more than one hour.

g e n e r a t e TYOP_A1 : c r e a t e (name : " a s s i g n m e n t " , symbol : " : = " , t y p e : " t ime " , r e s u l t : " t ime ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " a d d i t i o n " , symbol : " + " , t y p e : " t ime " , r e s u l t : " t ime ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " s u b t r a c t i o n " , symbol : " − " , t y p e : " t ime " , r e s u l t : " t ime ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " e q u a l " , symbol : " = " , t y p e : " t ime " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " n o t e q u a l " , symbol : " ! = " , t y p e : " t ime " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " g r e a t e r " , symbol : " > " , t y p e : " t ime " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l e s s e r " , symbol : " < " , t y p e : " t ime " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " g r e a t e r o r e q u a l " , symbol : " >=" , t y p e : " t ime " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;
g e n e r a t e TYOP_A1 : c r e a t e (name : " l e s s e r o r e q u a l " , symbol : " <=" , t y p e : " t ime " , r e s u l t : " b o o l e a n ") t o TYOP c l a s s ;

114

8.1.17.3 Instance State Model

Figure 8.14: Time State Model

Algorithm 8.40 Creating

/ / Only c r e a t e i f t y p e doesn ’ ’ t e x i s t
s e l e c t many t i m d s from i n s t a n c e s o f TIMD ;
i f (c a r d i n a l i t y t i m d s == 1)

c r e a t e o b j e c t i n s t a n c e t y p e o f TYPE ;
c r e a t e o b j e c t i n s t a n c e c o r e o f CORE;
r e l a t e t y p e t o c o r e a c r o s s R401 ;
t y p e . name = " t ime " ;
c o r e . t y p e = d a t a _ t : : TIME ;
r e l a t e c o r e t o s e l f a c r o s s R403 ;
s e l f . g e n e r a t e S u p p o r t e d O p e r a t o r s () ;

e l s e
LOG : : L o g F a i l u r e (message : " M u l t i p l e c r e a t i o n o f TIMD a t t e m p t e d ! ") ;
g e n e r a t e TIMD2 : d e s t r o y t o s e l f ;

end i f ;

Algorithm 8.41 Destroying

s e l e c t one c o r e r e l a t e d by s e l f −>CORE[R403] ;
i f (n o t empty c o r e)

c o r e . d e s t r o y () ;
u n r e l a t e c o r e from s e l f a c r o s s R403 ;
d e l e t e o b j e c t i n s t a n c e c o r e ;

end i f ;

115

8.1.18 Type
"A Type is a named finite or infinite set of values."[8]

"RULE: All data elements that appear in the OOA models of a domain must be
typed."[6]

8.1.18.1 Attributes

*name:string Types are uniquely identified by a string designation. The type name is
unique within its context.

8.1.18.2 Operations

Algorithm 8.42 void Type:remove()

s e l e c t many o p e r a t o r s r e l a t e d by s e l f −>OPER[R406] ;
f o r each o p e r a t o r i n o p e r a t o r s

o p e r a t o r . u n a s s i g n (t y p e : s e l f . name) ;
s e l e c t any t y p e r e l a t e d by o p e r a t o r −>TYPE[R406 . ’ ’ i s used i n a c o n t e x t e s t a b l i s h e d by ’ ’] ;
i f (empty t y p e)

d e l e t e o b j e c t i n s t a n c e o p e r a t o r ;
end i f ;

end f o r ;

8.1.19 Typed Operator
"An Operator is polymorphic in that it may be applied to multiple Types."[8] The Typed
Operator is the mapping of a Type to an Operator. The context of the result of the oper-
ation is the same as the context of the Typed Operator chosen. This implies precedence
must be built into the process model, if automatic type conversion is desired, because
the result of e.g., 5 + "5" is different if ’+’ is a string operator vs a numeric operator.
(This also requires that the corresponding conversion operator is defined.)

8.1.19.1 Attributes

definition:boolean "This is a precise specification of the processing required to trans-
form the Operands to produce either a return value or an update result, depending
on the Typed Operator specialization."[8]
NOTE: miUML has this typed as "psuedocode", because of not yet having an
"Operator definition language". In BridgePoint, it’s declared as a derived type,
so OAL can be used to define the operator.

116

Algorithm 8.43 Typed Operator:defined Derived Attribute

s e l f . d e f i n i t i o n = f a l s e ;

8.1.19.2 Relational Attributes

*result_type_name:same_as<Base_Attribute>

*type_name:same_as<Base_Attribute>

*operation_name:same_as<Base_Attribute>

8.1.19.3 Object State Model

Figure 8.15: Typed Operator State Model

117

Algorithm 8.44 Creating

s e l e c t any r e s u l t from i n s t a n c e s o f TYPE where s e l e c t e d . name == r c v d _ e v t . r e s u l t ;
i f (empty r e s u l t)

/ / Wait 10 m i l l i s e c o n d s and r e t r y , s i n c e t y p e c r e a t i o n i s a s y n c h r o n o u s . Th i s
/ / code c o u l d l a u n c h a c r e a t i o n even t , b u t t h e r e s p o n s i b i l i t y l i e s o u t s i d e o f
/ / t h i s p r o c e s s . Th i s p r o c e s s on ly has t o u n d e r s t a n d t h e a s y n c h r o n o u s n a t u r e
/ / o f t y p e c r e a t i o n and acommodate i t .
c r e a t e e v e n t i n s t a n c e r e c r e a t e o f TYOP_A1 : c r e a t e (name : r c v d _ e v t . name , symbol : r c v d _ e v t . symbol , t y p e : r c v d _ e v t . type , r e s u l t : r c v d _ e v t . r e s u l t) t o TYOP c l a s s ;
b r i d g e r e t r y _ t i m e r = TIM : : t i m e r _ s t a r t (m i c r o s e c o n d s : 1 0 0 0 0 , e v e n t _ i n s t : r e c r e a t e) ;

e l s e
s e l e c t any o p e r a t o r from i n s t a n c e s o f OPER where (s e l e c t e d . name == r c v d _ e v t . name) and (s e l e c t e d . symbol == r c v d _ e v t . symbol) ;
i f (empty o p e r a t o r)

c r e a t e o b j e c t i n s t a n c e o p e r a t o r o f OPER ;
o p e r a t o r . name = r c v d _ e v t . name ;
o p e r a t o r . symbol = r c v d _ e v t . symbol ;

end i f ;
s e l e c t any t y p e from i n s t a n c e s o f TYPE where s e l e c t e d . name == r c v d _ e v t . t y p e ;
c r e a t e o b j e c t i n s t a n c e typed_op of TYOP;
r e l a t e o p e r a t o r t o t y p e a c r o s s R406 u s i n g typed_op ;
r e l a t e typed_op t o r e s u l t a c r o s s R415 ;
/ / For a s s i g n m e n t o p e r a t o r s , make them t h e r e q u i r e d o p e r a t o r i f r e q u e s t o r i s
/ / a c o r e t y p e (which i t p r o b a b l y i s) .
i f (o p e r a t o r . name == " a s s i g n m e n t ")

s e l e c t one c o r e r e l a t e d by type −>CORE[R401] ;
i f (n o t empty c o r e)

r e l a t e c o r e t o o p e r a t o r a c r o s s R419 ;
end i f ;

end i f ;
end i f ;

8.2 Relationship Descriptions
R401 Data types in OOA are all based on a set of core data types defined by the Shlaer-

Mellor method, but the method allows the types to be further constrained to meet
the requirements of the domain being modeled.

R402 A domain data type is based on one of the core data types. A domain data type
is used to further constrain the core types to meet the requirements of the domain
more closely.

R403 The core data type is subtyped into all the supported core types defined by the
Shlaer-Mellor method.

R406 "An Operator has no utility unless it is relevant to at least one Type. The same
Operator may be used with many Types making it polymorphic.

118

A Type has no utility without at least one Operator. Since assignment and equal-
ity must be defined for all Types, there should at the very least be two Operators
defined for any given Type."[6]
A Domain Type can have its own defined operators, or it can just make use of its
associated Core Type operators, so "Type" in the second paragraph quoted above
should be read as "Core Type" with respect to this metamodel. This makes the
relationship conditional on the Operator end.

R412 A domain type is defined and unique within a modeled domain. The modeled
domain encapsulates the definition of the domain type, such that the domain type
can only be used within the modeled domain.

R415 A typed operator will result in a type that can differ from it’s assigned type. A
type can be a result type for many typed operators.

R416 Enumeration definitions are typed as an enumeration, but the enumeration type
can exist without any enumeration definitions.

R417 An Instance Reference types an Object Instance used as a value. Many Object
Instances can be typed as Instance Reference.

R419 A core type always has at least one operator defined for it, but an operator might
be defined for a domain type instead of a core type.
The assignment operator would be good to establish this relationship, as all types
have an assignment operator. i.e., what good is a datatype that can’t be assigned?

R420 An enumeration value is assigned to one enumeration definition, and an enu-
meration has one or more enumeration values.

R421 A Relationship Instance Reference types a Relationship Instance used as a value.
Many Relationship Instances can be typed as a Relationship Instance Reference.

R422 An Accessor Reference types an Accessor Instance used as a value. Many Ac-
cessor Instances can be typed as Accessor Reference.

R423 A Keyword types a Keyword Instance used as a value. Many Keyword Instances
can be typed as a Keyword.

119

8.3 Domain Services

8.3.1 Provided Services

Algorithm 8.45 void createCoreTypes()

/ / Each c o r e t y p e i s r e s p o n s i b l e f o r i t ’ ’ s own c r e a t i o n .
g e n e r a t e BOOL1: c r e a t e () t o BOOL c r e a t o r ;
g e n e r a t e COMP1: c r e a t e () t o COMP c r e a t o r ;
g e n e r a t e DURD1: c r e a t e () t o DURD c r e a t o r ;
g e n e r a t e TIMD1 : c r e a t e () t o TIMD c r e a t o r ;
g e n e r a t e NUMI1 : c r e a t e () t o NUMI c r e a t o r ;
g e n e r a t e ARID1 : c r e a t e () t o ARID c r e a t o r ;
g e n e r a t e ENUM1: c r e a t e () t o ENUM c r e a t o r ;
g e n e r a t e ORDD1: c r e a t e () t o ORDD c r e a t o r ;
g e n e r a t e SYMD1: c r e a t e () t o SYMD c r e a t o r ;
g e n e r a t e IREF1 : c r e a t e () t o IREF c r e a t o r ;
g e n e r a t e AREF1 : c r e a t e () t o AREF c r e a t o r ;

8.3.1.1 Object Model Bridges

Algorithm 8.46 void ()

8.3.1.2 Process Model Bridges

Incoming bridges for creating model elements of the Process Model subsystem as meta-
model instances.

Algorithm 8.47 void ()

8.3.1.3 Dynamic Model Bridges

Algorithm 8.48 void ()

120

8.3.1.4 Data Model Bridges

Algorithm 8.49 void ()

8.4 Domain Datatypes
User defined data types for the operation of the Shlaer-Mellor Metamodel domain.

data_t An enumeration of the core data types defined in the metamodel.

ACCESSOR_REFERENCE A data type that represents a handle to an acces-
sor instance.

ARBITRARY A data type that acts as a unique specifier.

BOOLEAN A data type that can only take one of two values. e.g., true or false

COMPOSITE An unordered grouping of data. e.g., the struct type in C

DURATION A specified period in units of time.

ENUMERATION A data type that represents a finite set of unique values, spec-
ified explicitly.

INSTANCE_REFERENCE A data type that represents a handle to a single
instantiation of an object.

KEYWORD Data that belongs to the set of special processing directives, that
should not be defined as variable names.

NUMERIC A data type used to express some number. i.e., real, integer, ...

ORDINAL A data type used to express order. e.g., an array

RELATIONSHIP_INSTANCE_REFERENCE A data type that represents a
handle to a single instantiation of a relationship.

SYMBOLIC A data type that represents a non-empty finite set of symbols (e.g.,
an alphabet), combined and used to convey meaning. Typically known as a
string in various programming languages.

TIME A calendar-clock time data type.

creationResult_t The creation result type is used in conjunction with creating a Shlaer-
Mellor domain model to verify it is compatible with the metamodel. The result
enumerator directs the verifier toward further action.

SUCCESS Creation of model element satisfies all constraints in the metamodel.
No further action recommended for the verifier.

DUPLICATE A duplicate of the specified model element has already been cre-
ated for this domain. The result is a new copy isn’t created, and a log of the
failure will be made.

121

The verifier can ignore this result, if duplication is expected in its opera-
tion, or further action can be taken.
If this occurs when creating a domain, then it could be that an old verifica-
tion attempt is still in existence.

FAILURE This means the creation resulted in a failure with respect to con-
straints in the metamodel. The result is some elements might have been
created in the metamodel, and a log entry of the constraint failure is made.
This result is to be expected at certain points of model verification. e.g.,
add_domain will fail due to the constraint that a domain model must con-
tain at least one object, but you also can’t create an object without a domain.
In unexpected cases, the log entry should be consulted before proceeding.

state_t An enumeration of the possible purposes for a state in a state model.

CREATION A creation state is a start state that causes instance creation upon
entry.

DELETION A deletion state is a state that causes instance deletion upon exit.

MIDDLE A middle state is a state that isn’t a start, creation, or deletion state.

START A start state is the residing state upon state machine creation.

transition_t An enumeration of the types of entries that are added to cells of a state
transition table (STT). "the STT is a far superior representation for verifying
the completeness of and consistency of the transition rules. Filling out the STT
requires you to consider the effect of every event-state combination."[2]

CANNOT_HAPPEN The transition results in an "can’t happen"."If an event
cannot happen when the instance is in a particular state, record the fact
by entering can’t happen in the appropriate cell [of the state transition
table]."[2]

EVENT_IGNORED The transition results in an "event ignored"."If an object
refuses to respond to a particular event when it is in a certain state, enter
event ignored in the appropriate cell [of the state transition table]."[2]

NEW_STATE The transition results in a new state. "The cell [of the state tran-
sition table] is filled in with the name of the new state that results when an
instance in the state specified by the row receives the event specified by the
column."[2]

122

Part II

Templates

123

Chapter 9

Subsystem Template

<description of subsystem>

<picture of object model for subsystem>NOTE: Scale to 70% page width.

Figure 9.1: <name> Subsystem Diagram

9.1 Object and Attribute Descriptions
<see chapter 10>

9.2 Relationship Descriptions
<see chapter 11>

124

Chapter 10

Object and Attribute List
Template1

10.0.1 <Object Name>
10.0.1.1 Attributes

[*]2<name>:<type> <description>

[Derived attributes]

Algorithm 10.1 <return type> <object>:<operation name>(<parameter
name>:<type>[, . . .])

< a c t i o n language >

10.0.1.2 Relational Attributes

[*]<name>:<relationship number> [description]3

1Imported objects (from another subsystem) aren’t included.
2Optional asterisk to indicate identifier. Additional identifiers should have a superscript number on the

right side of the asterix. There shouldn’t be a space between asterix and name.
3Descriptions for relational attributes are optional and assumed to be the same as the actual attribute.

They can be repeated here, or used to describe unique characteristics of the relational attribute in this object.

125

10.0.1.3 Operations

Algorithm 10.2 <return type> <object>:<operation name>(<parameter
name>:<type>[, . . .])
[Description]

< a c t i o n language >

10.0.1.4 Instance State Model

<state model graphics>NOTE: Scale graphics to 30%.

Figure 10.1: <object> State Model

Algorithm 10.3 <state name>
[Description]

< a c t i o n language >

<state name>

126

Chapter 11

Relationship Template

R<number> <description>

127

Bibliography

[1] Object-Oriented Systems Analysis: Modeling the World in Data. Sally Shlaer and
Stephen J. Mellor. 1988. Prentice-Hall, Inc. ISBN-13: 978-0136290230

[2] Object Lifecycles: Modeling the World in States. Sally Shlaer and Stephen J. Mel-
lor. 1992. Prentice-Hall, Inc. ISBN-13: 978-0136299400

[3] Executable UML: A Foundation for Model-driven Architecture. Stephen J. Mel-
lor and Marc J. Balcer. 2002. Addison-Wesley Professional. ISBN-13: 978-
0201748048.

[4] How to Build Shlaer-Mellor Object Models. Leon Starr. 1996.

[5] OOA ’96. Sally Shlaer and Neil Lang. 1996. Prentice-Hall, Inc. ISBN:0-13-
207663-2

[6] Data Types in OOA. Sally Shlaer and Stephen J. Mellor.

[7] Bridges and Wormholes. Sally Shlaer and Stephen J. Mellor.

[8] miUML open source executable uml. Leon Starr and Andrew Mangogna.

128

https://xtuml.org/wp-content/uploads/2015/10/Data-Types-in-OOA.pdf
https://xtuml.org/wp-content/uploads/2015/10/Bridges-and-Wormholes.pdf
https://github.com/modelint/shlaer-mellor-metamodel/tree/main/legacy-miuml

	I The Shlaer-Mellor Metamodel Domain
	Aspects of a Metamodel Model
	The Data Subsystem
	Object and Attribute Descriptions
	Accessor Instance
	Relational Attributes
	Operations

	Attribute Instance
	Relational Attributes
	Operations

	Data Usage
	Attributes
	Relational Attributes
	Operations

	Empty Set
	Relational Attributes

	Expression
	Attributes
	Relational Attributes

	Externally Specialized Value
	Attributes
	Relational Attributes

	Keyword Instance
	Attributes
	Relational Attributes

	Left Hand Operand
	Relational Attributes

	Method Instantiation
	Relational Attributes

	Operand
	Attributes
	Relational Attributes

	Outcome
	Attributes
	Relational Attributes

	Parameter Instance
	Relational Attributes
	Operations

	Relationship Instance
	Relational Attributes
	Operations

	Right Hand Operand
	Relational Attributes

	Transient Data
	Attributes
	Relational Attributes
	Operations

	Value
	Relational Attributes

	Variable
	Relational Attributes

	Relationship Descriptions

	The Domain Subsystem
	Object and Attribute Descriptions
	Asynchronous Bridge
	Relational Attributes

	Bridge
	Relational Attributes

	Domain
	Attributes

	External Domain
	Relational Attributes

	Incoming Bridge
	Relational Attributes

	Modeled Domain
	Relational Attributes

	Outgoing Bridge
	Relational Attributes

	Synchronous Bridge
	Relational Attributes

	Relationship Descriptions

	The Dynamics Subsystem
	Object and Attribute Descriptions
	Assigner
	Relational Attributes

	Assigner Machine
	Relational Attributes

	Assignment
	Relational Attributes

	Cannot Happen
	Relational Attributes

	Creation State
	Relational Attributes

	Deletion State
	Relational Attributes

	Destructor
	Relational Attributes

	Entry Data
	Attributes
	Relational Attributes

	Entry Rule
	Relational Attributes

	Event Ignored
	Relational Attributes

	Exit Rule
	Relational Attributes

	General Segment
	Relational Attributes

	Lifecycle Model
	Relational Attributes

	Lifecycle State Machine
	Relational Attributes
	Operations

	Living State
	Relational Attributes

	Middle State
	Relational Attributes

	Non-Creation State
	Relational Attributes

	Peer Segment
	Relational Attributes

	Splice Segment
	Relational Attributes

	Splicing
	Relational Attributes

	Start State
	Relational Attributes

	State
	Attributes
	Relational Attributes

	State Machine
	Attributes
	Relational Attributes

	State Model
	Attributes

	State Model Segment
	Attributes

	Successful Transition
	Relational Attributes

	Transition
	Attributes
	Relational Attributes

	Transition Rule
	Attributes

	Unsuccessful Transition
	Relational Attributes

	Relationship Descriptions

	The Object Subsystem
	Object and Attribute Descriptions
	Attribute
	Attributes
	Operations

	Chording
	Relational Attributes

	Derivation
	Relational Attributes

	Identification Participation
	Attributes
	Relational Attributes

	Identifier
	Attributes
	Operations

	Instance Identification
	Relational Attributes

	Intersecting
	Relational Attributes

	Intersection
	Relational Attributes

	Multi-level Partitioning
	Relational Attributes

	Non-Intersecting
	Relational Attributes

	Non-referential Attribute
	Relational Attributes
	Operations

	Object
	Relational Attributes
	Operations

	Object Attribute
	Relational Attributes

	Object Instance
	Attributes
	Relational Attributes
	Operations

	Object Specialization
	Attributes
	Relational Attributes

	Proper subset
	Relational Attributes
	Operations

	Referential Attribute
	Relational Attributes

	Specializing Attribute
	Relational Attributes

	Specializing Segment
	Relational Attributes

	Subsequent Specialization
	Relational Attributes

	Subset
	Attributes
	Operations

	Subtyping
	Relational Attributes

	Supertype
	Attributes
	Operations

	Relationship Descriptions

	The Process Subsystem
	Object and Attribute Descriptions
	Accessor
	Attributes
	Operations

	Action
	Attributes
	Relational Attributes
	Operations

	Active Element
	Attributes

	Asynchronous Accessor
	Relational Attributes

	Attribute Action
	Relational Attributes

	Control Structure
	Attributes
	Relational Attributes

	Element Access
	Relational Attributes

	Equation
	Relational Attributes
	Operations

	Event
	Relational Attributes

	Event Parameter
	Relational Attributes

	Instance Method
	Relational Attributes
	Operations

	Internal Synchronous
	Relational Attributes

	Iteration
	Attributes
	Relational Attributes

	Loop
	Relational Attributes

	Method
	Relational Attributes
	Operations

	Non-event Parameter
	Relational Attributes

	Non-specializing Method
	Relational Attributes

	Object Method
	Relational Attributes

	Parameter
	Attributes
	Relational Attributes
	Operations

	Path Assignment
	Relational Attributes

	Path Evaluation
	Attributes
	Relational Attributes

	Process
	Attributes
	Relational Attributes

	Process Nesting
	Relational Attributes

	Reference Element
	Attributes

	Return Value
	Relational Attributes

	Specializing Method
	Relational Attributes

	Statement
	Relational Attributes

	Synchronous Accessor
	Relational Attributes

	Relationship Descriptions

	The Relationship Subsystem
	Object and Attribute Descriptions
	Active Perspective
	Relational Attributes

	Associative Relationship
	Relational Attributes

	Asymmetric Perspective
	Relational Attributes

	Binary
	Attributes
	Relational Attributes

	Composition
	Relational Attributes

	Composition Loop
	Attributes

	Instance Relationship
	Attributes
	Relational Attributes
	Operations

	Loop Segment
	Relational Attributes

	Many Perspective
	Relational Attributes

	Non-composition
	Attributes
	Relational Attributes

	One Perspective
	Relational Attributes

	Passive Perspective
	Relational Attributes

	Perspective
	Attributes
	Relational Attributes

	Relationship
	Attributes

	Symmetric Perspective
	Relational Attributes

	Symmetric Reflexive
	Attributes
	Relational Attributes

	Traversal Direction
	Relational Attributes

	Relationship Descriptions

	The Type Subsystem
	Object and Attribute Descriptions
	Accessor Reference
	Relational Attributes
	Operations
	Instance State Model

	Arbitrary
	Relational Attributes
	Operations
	Instance State Model

	Boolean
	Relational Attributes
	Operations
	Instance State Model

	Composite
	Relational Attributes
	Operations
	Instance State Model

	Core
	Attributes
	Relational Attributes
	Operations

	Domain
	Relational Attributes
	Instance State Model

	Duration
	Relational Attributes
	Operations
	Instance State Model

	Enumeration
	Relational Attributes
	Operations
	Instance State Model

	Enumeration Definition
	Attributes
	Relational Attributes

	Enumeration Value
	Attributes
	Relational Attributes

	Instance Reference
	Relational Attributes
	Operations
	Instance State Model

	Numeric
	Attributes
	Relational Attributes
	Operations
	Instance State Model

	Operator
	Attributes
	Operations

	Ordinal
	Attributes
	Relational Attributes
	Operations
	Instance State Model

	Relationship Instance Reference
	Relational Attributes
	Operations
	Instance State Model

	Symbolic
	Relational Attributes
	Operations
	Instance State Model

	Time
	Relational Attributes
	Operations
	Instance State Model

	Type
	Attributes
	Operations

	Typed Operator
	Attributes
	Relational Attributes
	Object State Model

	Relationship Descriptions
	Domain Services
	Provided Services
	Object Model Bridges
	Process Model Bridges
	Dynamic Model Bridges
	Data Model Bridges

	Domain Datatypes

	II Templates
	Subsystem Template
	Object and Attribute Descriptions
	Relationship Descriptions

	Object and Attribute List TemplateImported objects (from another subsystem) aren't included.
	<Object Name>
	Attributes
	Relational Attributes
	Operations
	Instance State Model

	Relationship Template

