1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019 |
- #include <math.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <ctype.h>
- #include <float.h>
- #include <string.h>
- #include <stdarg.h>
- #include "svm.h"
- typedef float Qfloat;
- typedef signed char schar;
- #ifndef min
- template <class T> inline T min(T x,T y) { return (x<y)?x:y; }
- #endif
- #ifndef max
- template <class T> inline T max(T x,T y) { return (x>y)?x:y; }
- #endif
- template <class T> inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
- template <class S, class T> inline void clone(T*& dst, S* src, int n)
- {
- dst = new T[n];
- memcpy((void *)dst,(void *)src,sizeof(T)*n);
- }
- inline double powi(double base, int times)
- {
- double tmp = base, ret = 1.0;
- for(int t=times; t>0; t/=2)
- {
- if(t%2==1) ret*=tmp;
- tmp = tmp * tmp;
- }
- return ret;
- }
- #define INF HUGE_VAL
- #define TAU 1e-12
- #define Malloc(type,n) (type *)malloc((n)*sizeof(type))
- #if 1
- void info(const char *fmt,...)
- {
- va_list ap;
- va_start(ap,fmt);
- vprintf(fmt,ap);
- va_end(ap);
- }
- void info_flush()
- {
- fflush(stdout);
- }
- #else
- void info(char *fmt,...) {}
- void info_flush() {}
- #endif
- //
- // Kernel Cache
- //
- // l is the number of total data items
- // size is the cache size limit in bytes
- //
- class Cache
- {
- public:
- Cache(int l,long int size);
- ~Cache();
- // request data [0,len)
- // return some position p where [p,len) need to be filled
- // (p >= len if nothing needs to be filled)
- int get_data(const int index, Qfloat **data, int len);
- void swap_index(int i, int j); // future_option
- private:
- int l;
- long int size;
- struct head_t
- {
- head_t *prev, *next; // a cicular list
- Qfloat *data;
- int len; // data[0,len) is cached in this entry
- };
- head_t *head;
- head_t lru_head;
- void lru_delete(head_t *h);
- void lru_insert(head_t *h);
- };
- Cache::Cache(int l_,long int size_):l(l_),size(size_)
- {
- head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0
- size /= sizeof(Qfloat);
- size -= l * sizeof(head_t) / sizeof(Qfloat);
- size = max(size, 2 * (long int) l); // cache must be large enough for two columns
- lru_head.next = lru_head.prev = &lru_head;
- }
- Cache::~Cache()
- {
- for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
- free(h->data);
- free(head);
- }
- void Cache::lru_delete(head_t *h)
- {
- // delete from current location
- h->prev->next = h->next;
- h->next->prev = h->prev;
- }
- void Cache::lru_insert(head_t *h)
- {
- // insert to last position
- h->next = &lru_head;
- h->prev = lru_head.prev;
- h->prev->next = h;
- h->next->prev = h;
- }
- int Cache::get_data(const int index, Qfloat **data, int len)
- {
- head_t *h = &head[index];
- if(h->len) lru_delete(h);
- int more = len - h->len;
- if(more > 0)
- {
- // free old space
- while(size < more)
- {
- head_t *old = lru_head.next;
- lru_delete(old);
- free(old->data);
- size += old->len;
- old->data = 0;
- old->len = 0;
- }
- // allocate new space
- h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
- size -= more;
- swap(h->len,len);
- }
- lru_insert(h);
- *data = h->data;
- return len;
- }
- void Cache::swap_index(int i, int j)
- {
- if(i==j) return;
- if(head[i].len) lru_delete(&head[i]);
- if(head[j].len) lru_delete(&head[j]);
- swap(head[i].data,head[j].data);
- swap(head[i].len,head[j].len);
- if(head[i].len) lru_insert(&head[i]);
- if(head[j].len) lru_insert(&head[j]);
- if(i>j) swap(i,j);
- for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
- {
- if(h->len > i)
- {
- if(h->len > j)
- swap(h->data[i],h->data[j]);
- else
- {
- // give up
- lru_delete(h);
- free(h->data);
- size += h->len;
- h->data = 0;
- h->len = 0;
- }
- }
- }
- }
- //
- // Kernel evaluation
- //
- // the static method k_function is for doing single kernel evaluation
- // the constructor of Kernel prepares to calculate the l*l kernel matrix
- // the member function get_Q is for getting one column from the Q Matrix
- //
- class QMatrix {
- public:
- virtual Qfloat *get_Q(int column, int len) const = 0;
- virtual Qfloat *get_QD() const = 0;
- virtual void swap_index(int i, int j) const = 0;
- virtual ~QMatrix() {}
- };
- class Kernel: public QMatrix {
- public:
- Kernel(int l, svm_node * const * x, const svm_parameter& param);
- virtual ~Kernel();
- static double k_function(const svm_node *x, const svm_node *y,
- const svm_parameter& param);
- virtual Qfloat *get_Q(int column, int len) const = 0;
- virtual Qfloat *get_QD() const = 0;
- virtual void swap_index(int i, int j) const // no so const...
- {
- swap(x[i],x[j]);
- if(x_square) swap(x_square[i],x_square[j]);
- }
- protected:
- double (Kernel::*kernel_function)(int i, int j) const;
- private:
- const svm_node **x;
- double *x_square;
- // svm_parameter
- const int kernel_type;
- const int degree;
- const double gamma;
- const double coef0;
- static double dot(const svm_node *px, const svm_node *py);
- double kernel_linear(int i, int j) const
- {
- return dot(x[i],x[j]);
- }
- double kernel_poly(int i, int j) const
- {
- return powi(gamma*dot(x[i],x[j])+coef0,degree);
- }
- double kernel_rbf(int i, int j) const
- {
- return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
- }
- double kernel_sigmoid(int i, int j) const
- {
- return tanh(gamma*dot(x[i],x[j])+coef0);
- }
- double kernel_precomputed(int i, int j) const
- {
- return x[i][(int)(x[j][0].value)].value;
- }
- };
- Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
- :kernel_type(param.kernel_type), degree(param.degree),
- gamma(param.gamma), coef0(param.coef0)
- {
- switch(kernel_type)
- {
- case LINEAR:
- kernel_function = &Kernel::kernel_linear;
- break;
- case POLY:
- kernel_function = &Kernel::kernel_poly;
- break;
- case RBF:
- kernel_function = &Kernel::kernel_rbf;
- break;
- case SIGMOID:
- kernel_function = &Kernel::kernel_sigmoid;
- break;
- case PRECOMPUTED:
- kernel_function = &Kernel::kernel_precomputed;
- break;
- }
- clone(x,x_,l);
- if(kernel_type == RBF)
- {
- x_square = new double[l];
- for(int i=0;i<l;i++)
- x_square[i] = dot(x[i],x[i]);
- }
- else
- x_square = 0;
- }
- Kernel::~Kernel()
- {
- delete[] x;
- delete[] x_square;
- }
- double Kernel::dot(const svm_node *px, const svm_node *py)
- {
- double sum = 0;
- while(px->index != -1 && py->index != -1)
- {
- if(px->index == py->index)
- {
- sum += px->value * py->value;
- ++px;
- ++py;
- }
- else
- {
- if(px->index > py->index)
- ++py;
- else
- ++px;
- }
- }
- return sum;
- }
- double Kernel::k_function(const svm_node *x, const svm_node *y,
- const svm_parameter& param)
- {
- switch(param.kernel_type)
- {
- case LINEAR:
- return dot(x,y);
- case POLY:
- return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
- case RBF:
- {
- double sum = 0;
- while(x->index != -1 && y->index !=-1)
- {
- if(x->index == y->index)
- {
- double d = x->value - y->value;
- sum += d*d;
- ++x;
- ++y;
- }
- else
- {
- if(x->index > y->index)
- {
- sum += y->value * y->value;
- ++y;
- }
- else
- {
- sum += x->value * x->value;
- ++x;
- }
- }
- }
- while(x->index != -1)
- {
- sum += x->value * x->value;
- ++x;
- }
- while(y->index != -1)
- {
- sum += y->value * y->value;
- ++y;
- }
-
- return exp(-param.gamma*sum);
- }
- case SIGMOID:
- return tanh(param.gamma*dot(x,y)+param.coef0);
- case PRECOMPUTED: //x: test (validation), y: SV
- return x[(int)(y->value)].value;
- default:
- return 0; // Unreachable
- }
- }
- // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
- // Solves:
- //
- // min 0.5(\alpha^T Q \alpha) + p^T \alpha
- //
- // y^T \alpha = \delta
- // y_i = +1 or -1
- // 0 <= alpha_i <= Cp for y_i = 1
- // 0 <= alpha_i <= Cn for y_i = -1
- //
- // Given:
- //
- // Q, p, y, Cp, Cn, and an initial feasible point \alpha
- // l is the size of vectors and matrices
- // eps is the stopping tolerance
- //
- // solution will be put in \alpha, objective value will be put in obj
- //
- class Solver {
- public:
- Solver() {};
- virtual ~Solver() {};
- struct SolutionInfo {
- double obj;
- double rho;
- double upper_bound_p;
- double upper_bound_n;
- double r; // for Solver_NU
- };
- void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
- double *alpha_, double Cp, double Cn, double eps,
- SolutionInfo* si, int shrinking);
- protected:
- int active_size;
- schar *y;
- double *G; // gradient of objective function
- enum { LOWER_BOUND, UPPER_BOUND, FREE };
- char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE
- double *alpha;
- const QMatrix *Q;
- const Qfloat *QD;
- double eps;
- double Cp,Cn;
- double *p;
- int *active_set;
- double *G_bar; // gradient, if we treat free variables as 0
- int l;
- bool unshrinked; // XXX
- double get_C(int i)
- {
- return (y[i] > 0)? Cp : Cn;
- }
- void update_alpha_status(int i)
- {
- if(alpha[i] >= get_C(i))
- alpha_status[i] = UPPER_BOUND;
- else if(alpha[i] <= 0)
- alpha_status[i] = LOWER_BOUND;
- else alpha_status[i] = FREE;
- }
- bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
- bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
- bool is_free(int i) { return alpha_status[i] == FREE; }
- void swap_index(int i, int j);
- void reconstruct_gradient();
- virtual int select_working_set(int &i, int &j);
- virtual double calculate_rho();
- virtual void do_shrinking();
- private:
- bool be_shrunken(int i, double Gmax1, double Gmax2);
- };
- void Solver::swap_index(int i, int j)
- {
- Q->swap_index(i,j);
- swap(y[i],y[j]);
- swap(G[i],G[j]);
- swap(alpha_status[i],alpha_status[j]);
- swap(alpha[i],alpha[j]);
- swap(p[i],p[j]);
- swap(active_set[i],active_set[j]);
- swap(G_bar[i],G_bar[j]);
- }
- void Solver::reconstruct_gradient()
- {
- // reconstruct inactive elements of G from G_bar and free variables
- if(active_size == l) return;
- int i;
- for(i=active_size;i<l;i++)
- G[i] = G_bar[i] + p[i];
-
- for(i=0;i<active_size;i++)
- if(is_free(i))
- {
- const Qfloat *Q_i = Q->get_Q(i,l);
- double alpha_i = alpha[i];
- for(int j=active_size;j<l;j++)
- G[j] += alpha_i * Q_i[j];
- }
- }
- void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
- double *alpha_, double Cp, double Cn, double eps,
- SolutionInfo* si, int shrinking)
- {
- this->l = l;
- this->Q = &Q;
- QD=Q.get_QD();
- clone(p, p_,l);
- clone(y, y_,l);
- clone(alpha,alpha_,l);
- this->Cp = Cp;
- this->Cn = Cn;
- this->eps = eps;
- unshrinked = false;
- // initialize alpha_status
- {
- alpha_status = new char[l];
- for(int i=0;i<l;i++)
- update_alpha_status(i);
- }
- // initialize active set (for shrinking)
- {
- active_set = new int[l];
- for(int i=0;i<l;i++)
- active_set[i] = i;
- active_size = l;
- }
- // initialize gradient
- {
- G = new double[l];
- G_bar = new double[l];
- int i;
- for(i=0;i<l;i++)
- {
- G[i] = p[i];
- G_bar[i] = 0;
- }
- for(i=0;i<l;i++)
- if(!is_lower_bound(i))
- {
- const Qfloat *Q_i = Q.get_Q(i,l);
- double alpha_i = alpha[i];
- int j;
- for(j=0;j<l;j++)
- G[j] += alpha_i*Q_i[j];
- if(is_upper_bound(i))
- for(j=0;j<l;j++)
- G_bar[j] += get_C(i) * Q_i[j];
- }
- }
- // optimization step
- int iter = 0;
- int counter = min(l,1000)+1;
- while(1)
- {
- // show progress and do shrinking
- if(--counter == 0)
- {
- counter = min(l,1000);
- if(shrinking) do_shrinking();
- info("."); info_flush();
- }
- int i,j;
- if(select_working_set(i,j)!=0)
- {
- // reconstruct the whole gradient
- reconstruct_gradient();
- // reset active set size and check
- active_size = l;
- info("*"); info_flush();
- if(select_working_set(i,j)!=0)
- break;
- else
- counter = 1; // do shrinking next iteration
- }
-
- ++iter;
- // update alpha[i] and alpha[j], handle bounds carefully
-
- const Qfloat *Q_i = Q.get_Q(i,active_size);
- const Qfloat *Q_j = Q.get_Q(j,active_size);
- double C_i = get_C(i);
- double C_j = get_C(j);
- double old_alpha_i = alpha[i];
- double old_alpha_j = alpha[j];
- if(y[i]!=y[j])
- {
- double quad_coef = Q_i[i]+Q_j[j]+2*Q_i[j];
- if (quad_coef <= 0)
- quad_coef = TAU;
- double delta = (-G[i]-G[j])/quad_coef;
- double diff = alpha[i] - alpha[j];
- alpha[i] += delta;
- alpha[j] += delta;
-
- if(diff > 0)
- {
- if(alpha[j] < 0)
- {
- alpha[j] = 0;
- alpha[i] = diff;
- }
- }
- else
- {
- if(alpha[i] < 0)
- {
- alpha[i] = 0;
- alpha[j] = -diff;
- }
- }
- if(diff > C_i - C_j)
- {
- if(alpha[i] > C_i)
- {
- alpha[i] = C_i;
- alpha[j] = C_i - diff;
- }
- }
- else
- {
- if(alpha[j] > C_j)
- {
- alpha[j] = C_j;
- alpha[i] = C_j + diff;
- }
- }
- }
- else
- {
- double quad_coef = Q_i[i]+Q_j[j]-2*Q_i[j];
- if (quad_coef <= 0)
- quad_coef = TAU;
- double delta = (G[i]-G[j])/quad_coef;
- double sum = alpha[i] + alpha[j];
- alpha[i] -= delta;
- alpha[j] += delta;
- if(sum > C_i)
- {
- if(alpha[i] > C_i)
- {
- alpha[i] = C_i;
- alpha[j] = sum - C_i;
- }
- }
- else
- {
- if(alpha[j] < 0)
- {
- alpha[j] = 0;
- alpha[i] = sum;
- }
- }
- if(sum > C_j)
- {
- if(alpha[j] > C_j)
- {
- alpha[j] = C_j;
- alpha[i] = sum - C_j;
- }
- }
- else
- {
- if(alpha[i] < 0)
- {
- alpha[i] = 0;
- alpha[j] = sum;
- }
- }
- }
- // update G
- double delta_alpha_i = alpha[i] - old_alpha_i;
- double delta_alpha_j = alpha[j] - old_alpha_j;
-
- for(int k=0;k<active_size;k++)
- {
- G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
- }
- // update alpha_status and G_bar
- {
- bool ui = is_upper_bound(i);
- bool uj = is_upper_bound(j);
- update_alpha_status(i);
- update_alpha_status(j);
- int k;
- if(ui != is_upper_bound(i))
- {
- Q_i = Q.get_Q(i,l);
- if(ui)
- for(k=0;k<l;k++)
- G_bar[k] -= C_i * Q_i[k];
- else
- for(k=0;k<l;k++)
- G_bar[k] += C_i * Q_i[k];
- }
- if(uj != is_upper_bound(j))
- {
- Q_j = Q.get_Q(j,l);
- if(uj)
- for(k=0;k<l;k++)
- G_bar[k] -= C_j * Q_j[k];
- else
- for(k=0;k<l;k++)
- G_bar[k] += C_j * Q_j[k];
- }
- }
- }
- // calculate rho
- si->rho = calculate_rho();
- // calculate objective value
- {
- double v = 0;
- int i;
- for(i=0;i<l;i++)
- v += alpha[i] * (G[i] + p[i]);
- si->obj = v/2;
- }
- // put back the solution
- {
- for(int i=0;i<l;i++)
- alpha_[active_set[i]] = alpha[i];
- }
- // juggle everything back
- /*{
- for(int i=0;i<l;i++)
- while(active_set[i] != i)
- swap_index(i,active_set[i]);
- // or Q.swap_index(i,active_set[i]);
- }*/
- si->upper_bound_p = Cp;
- si->upper_bound_n = Cn;
- info("\noptimization finished, #iter = %d\n",iter);
- delete[] p;
- delete[] y;
- delete[] alpha;
- delete[] alpha_status;
- delete[] active_set;
- delete[] G;
- delete[] G_bar;
- }
- // return 1 if already optimal, return 0 otherwise
- int Solver::select_working_set(int &out_i, int &out_j)
- {
- // return i,j such that
- // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
- // j: minimizes the decrease of obj value
- // (if quadratic coefficeint <= 0, replace it with tau)
- // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
-
- double Gmax = -INF;
- double Gmax2 = -INF;
- int Gmax_idx = -1;
- int Gmin_idx = -1;
- double obj_diff_min = INF;
- for(int t=0;t<active_size;t++)
- if(y[t]==+1)
- {
- if(!is_upper_bound(t))
- if(-G[t] >= Gmax)
- {
- Gmax = -G[t];
- Gmax_idx = t;
- }
- }
- else
- {
- if(!is_lower_bound(t))
- if(G[t] >= Gmax)
- {
- Gmax = G[t];
- Gmax_idx = t;
- }
- }
- int i = Gmax_idx;
- const Qfloat *Q_i = NULL;
- if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
- Q_i = Q->get_Q(i,active_size);
- for(int j=0;j<active_size;j++)
- {
- if(y[j]==+1)
- {
- if (!is_lower_bound(j))
- {
- double grad_diff=Gmax+G[j];
- if (G[j] >= Gmax2)
- Gmax2 = G[j];
- if (grad_diff > 0)
- {
- double obj_diff;
- double quad_coef=Q_i[i]+QD[j]-2*y[i]*Q_i[j];
- if (quad_coef > 0)
- obj_diff = -(grad_diff*grad_diff)/quad_coef;
- else
- obj_diff = -(grad_diff*grad_diff)/TAU;
- if (obj_diff <= obj_diff_min)
- {
- Gmin_idx=j;
- obj_diff_min = obj_diff;
- }
- }
- }
- }
- else
- {
- if (!is_upper_bound(j))
- {
- double grad_diff= Gmax-G[j];
- if (-G[j] >= Gmax2)
- Gmax2 = -G[j];
- if (grad_diff > 0)
- {
- double obj_diff;
- double quad_coef=Q_i[i]+QD[j]+2*y[i]*Q_i[j];
- if (quad_coef > 0)
- obj_diff = -(grad_diff*grad_diff)/quad_coef;
- else
- obj_diff = -(grad_diff*grad_diff)/TAU;
- if (obj_diff <= obj_diff_min)
- {
- Gmin_idx=j;
- obj_diff_min = obj_diff;
- }
- }
- }
- }
- }
- if(Gmax+Gmax2 < eps)
- return 1;
- out_i = Gmax_idx;
- out_j = Gmin_idx;
- return 0;
- }
- bool Solver::be_shrunken(int i, double Gmax1, double Gmax2)
- {
- if(is_upper_bound(i))
- {
- if(y[i]==+1)
- return(-G[i] > Gmax1);
- else
- return(-G[i] > Gmax2);
- }
- else if(is_lower_bound(i))
- {
- if(y[i]==+1)
- return(G[i] > Gmax2);
- else
- return(G[i] > Gmax1);
- }
- else
- return(false);
- }
- void Solver::do_shrinking()
- {
- int i;
- double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) }
- double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) }
- // find maximal violating pair first
- for(i=0;i<active_size;i++)
- {
- if(y[i]==+1)
- {
- if(!is_upper_bound(i))
- {
- if(-G[i] >= Gmax1)
- Gmax1 = -G[i];
- }
- if(!is_lower_bound(i))
- {
- if(G[i] >= Gmax2)
- Gmax2 = G[i];
- }
- }
- else
- {
- if(!is_upper_bound(i))
- {
- if(-G[i] >= Gmax2)
- Gmax2 = -G[i];
- }
- if(!is_lower_bound(i))
- {
- if(G[i] >= Gmax1)
- Gmax1 = G[i];
- }
- }
- }
- // shrink
- for(i=0;i<active_size;i++)
- if (be_shrunken(i, Gmax1, Gmax2))
- {
- active_size--;
- while (active_size > i)
- {
- if (!be_shrunken(active_size, Gmax1, Gmax2))
- {
- swap_index(i,active_size);
- break;
- }
- active_size--;
- }
- }
- // unshrink, check all variables again before final iterations
- if(unshrinked || Gmax1 + Gmax2 > eps*10) return;
-
- unshrinked = true;
- reconstruct_gradient();
- for(i=l-1;i>=active_size;i--)
- if (!be_shrunken(i, Gmax1, Gmax2))
- {
- while (active_size < i)
- {
- if (be_shrunken(active_size, Gmax1, Gmax2))
- {
- swap_index(i,active_size);
- break;
- }
- active_size++;
- }
- active_size++;
- }
- }
- double Solver::calculate_rho()
- {
- double r;
- int nr_free = 0;
- double ub = INF, lb = -INF, sum_free = 0;
- for(int i=0;i<active_size;i++)
- {
- double yG = y[i]*G[i];
- if(is_upper_bound(i))
- {
- if(y[i]==-1)
- ub = min(ub,yG);
- else
- lb = max(lb,yG);
- }
- else if(is_lower_bound(i))
- {
- if(y[i]==+1)
- ub = min(ub,yG);
- else
- lb = max(lb,yG);
- }
- else
- {
- ++nr_free;
- sum_free += yG;
- }
- }
- if(nr_free>0)
- r = sum_free/nr_free;
- else
- r = (ub+lb)/2;
- return r;
- }
- //
- // Solver for nu-svm classification and regression
- //
- // additional constraint: e^T \alpha = constant
- //
- class Solver_NU : public Solver
- {
- public:
- Solver_NU() {}
- void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
- double *alpha, double Cp, double Cn, double eps,
- SolutionInfo* si, int shrinking)
- {
- this->si = si;
- Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
- }
- private:
- SolutionInfo *si;
- int select_working_set(int &i, int &j);
- double calculate_rho();
- bool be_shrunken(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
- void do_shrinking();
- };
- // return 1 if already optimal, return 0 otherwise
- int Solver_NU::select_working_set(int &out_i, int &out_j)
- {
- // return i,j such that y_i = y_j and
- // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
- // j: minimizes the decrease of obj value
- // (if quadratic coefficeint <= 0, replace it with tau)
- // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
- double Gmaxp = -INF;
- double Gmaxp2 = -INF;
- int Gmaxp_idx = -1;
- double Gmaxn = -INF;
- double Gmaxn2 = -INF;
- int Gmaxn_idx = -1;
- int Gmin_idx = -1;
- double obj_diff_min = INF;
- for(int t=0;t<active_size;t++)
- if(y[t]==+1)
- {
- if(!is_upper_bound(t))
- if(-G[t] >= Gmaxp)
- {
- Gmaxp = -G[t];
- Gmaxp_idx = t;
- }
- }
- else
- {
- if(!is_lower_bound(t))
- if(G[t] >= Gmaxn)
- {
- Gmaxn = G[t];
- Gmaxn_idx = t;
- }
- }
- int ip = Gmaxp_idx;
- int in = Gmaxn_idx;
- const Qfloat *Q_ip = NULL;
- const Qfloat *Q_in = NULL;
- if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
- Q_ip = Q->get_Q(ip,active_size);
- if(in != -1)
- Q_in = Q->get_Q(in,active_size);
- for(int j=0;j<active_size;j++)
- {
- if(y[j]==+1)
- {
- if (!is_lower_bound(j))
- {
- double grad_diff=Gmaxp+G[j];
- if (G[j] >= Gmaxp2)
- Gmaxp2 = G[j];
- if (grad_diff > 0)
- {
- double obj_diff;
- double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j];
- if (quad_coef > 0)
- obj_diff = -(grad_diff*grad_diff)/quad_coef;
- else
- obj_diff = -(grad_diff*grad_diff)/TAU;
- if (obj_diff <= obj_diff_min)
- {
- Gmin_idx=j;
- obj_diff_min = obj_diff;
- }
- }
- }
- }
- else
- {
- if (!is_upper_bound(j))
- {
- double grad_diff=Gmaxn-G[j];
- if (-G[j] >= Gmaxn2)
- Gmaxn2 = -G[j];
- if (grad_diff > 0)
- {
- double obj_diff;
- double quad_coef = Q_in[in]+QD[j]-2*Q_in[j];
- if (quad_coef > 0)
- obj_diff = -(grad_diff*grad_diff)/quad_coef;
- else
- obj_diff = -(grad_diff*grad_diff)/TAU;
- if (obj_diff <= obj_diff_min)
- {
- Gmin_idx=j;
- obj_diff_min = obj_diff;
- }
- }
- }
- }
- }
- if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
- return 1;
- if (y[Gmin_idx] == +1)
- out_i = Gmaxp_idx;
- else
- out_i = Gmaxn_idx;
- out_j = Gmin_idx;
- return 0;
- }
- bool Solver_NU::be_shrunken(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
- {
- if(is_upper_bound(i))
- {
- if(y[i]==+1)
- return(-G[i] > Gmax1);
- else
- return(-G[i] > Gmax4);
- }
- else if(is_lower_bound(i))
- {
- if(y[i]==+1)
- return(G[i] > Gmax2);
- else
- return(G[i] > Gmax3);
- }
- else
- return(false);
- }
- void Solver_NU::do_shrinking()
- {
- double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
- double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
- double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
- double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
- // find maximal violating pair first
- int i;
- for(i=0;i<active_size;i++)
- {
- if(!is_upper_bound(i))
- {
- if(y[i]==+1)
- {
- if(-G[i] > Gmax1) Gmax1 = -G[i];
- }
- else if(-G[i] > Gmax4) Gmax4 = -G[i];
- }
- if(!is_lower_bound(i))
- {
- if(y[i]==+1)
- {
- if(G[i] > Gmax2) Gmax2 = G[i];
- }
- else if(G[i] > Gmax3) Gmax3 = G[i];
- }
- }
- // shrinking
- for(i=0;i<active_size;i++)
- if (be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4))
- {
- active_size--;
- while (active_size > i)
- {
- if (!be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
- {
- swap_index(i,active_size);
- break;
- }
- active_size--;
- }
- }
- // unshrink, check all variables again before final iterations
- if(unshrinked || max(Gmax1+Gmax2,Gmax3+Gmax4) > eps*10) return;
-
- unshrinked = true;
- reconstruct_gradient();
- for(i=l-1;i>=active_size;i--)
- if (!be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4))
- {
- while (active_size < i)
- {
- if (be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
- {
- swap_index(i,active_size);
- break;
- }
- active_size++;
- }
- active_size++;
- }
- }
- double Solver_NU::calculate_rho()
- {
- int nr_free1 = 0,nr_free2 = 0;
- double ub1 = INF, ub2 = INF;
- double lb1 = -INF, lb2 = -INF;
- double sum_free1 = 0, sum_free2 = 0;
- for(int i=0;i<active_size;i++)
- {
- if(y[i]==+1)
- {
- if(is_upper_bound(i))
- lb1 = max(lb1,G[i]);
- else if(is_lower_bound(i))
- ub1 = min(ub1,G[i]);
- else
- {
- ++nr_free1;
- sum_free1 += G[i];
- }
- }
- else
- {
- if(is_upper_bound(i))
- lb2 = max(lb2,G[i]);
- else if(is_lower_bound(i))
- ub2 = min(ub2,G[i]);
- else
- {
- ++nr_free2;
- sum_free2 += G[i];
- }
- }
- }
- double r1,r2;
- if(nr_free1 > 0)
- r1 = sum_free1/nr_free1;
- else
- r1 = (ub1+lb1)/2;
-
- if(nr_free2 > 0)
- r2 = sum_free2/nr_free2;
- else
- r2 = (ub2+lb2)/2;
-
- si->r = (r1+r2)/2;
- return (r1-r2)/2;
- }
- //
- // Q matrices for various formulations
- //
- class SVC_Q: public Kernel
- {
- public:
- SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
- :Kernel(prob.l, prob.x, param)
- {
- clone(y,y_,prob.l);
- cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
- QD = new Qfloat[prob.l];
- for(int i=0;i<prob.l;i++)
- QD[i]= (Qfloat)(this->*kernel_function)(i,i);
- }
-
- Qfloat *get_Q(int i, int len) const
- {
- Qfloat *data;
- int start;
- if((start = cache->get_data(i,&data,len)) < len)
- {
- for(int j=start;j<len;j++)
- data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
- }
- return data;
- }
- Qfloat *get_QD() const
- {
- return QD;
- }
- void swap_index(int i, int j) const
- {
- cache->swap_index(i,j);
- Kernel::swap_index(i,j);
- swap(y[i],y[j]);
- swap(QD[i],QD[j]);
- }
- ~SVC_Q()
- {
- delete[] y;
- delete cache;
- delete[] QD;
- }
- private:
- schar *y;
- Cache *cache;
- Qfloat *QD;
- };
- class ONE_CLASS_Q: public Kernel
- {
- public:
- ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
- :Kernel(prob.l, prob.x, param)
- {
- cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
- QD = new Qfloat[prob.l];
- for(int i=0;i<prob.l;i++)
- QD[i]= (Qfloat)(this->*kernel_function)(i,i);
- }
-
- Qfloat *get_Q(int i, int len) const
- {
- Qfloat *data;
- int start;
- if((start = cache->get_data(i,&data,len)) < len)
- {
- for(int j=start;j<len;j++)
- data[j] = (Qfloat)(this->*kernel_function)(i,j);
- }
- return data;
- }
- Qfloat *get_QD() const
- {
- return QD;
- }
- void swap_index(int i, int j) const
- {
- cache->swap_index(i,j);
- Kernel::swap_index(i,j);
- swap(QD[i],QD[j]);
- }
- ~ONE_CLASS_Q()
- {
- delete cache;
- delete[] QD;
- }
- private:
- Cache *cache;
- Qfloat *QD;
- };
- class SVR_Q: public Kernel
- {
- public:
- SVR_Q(const svm_problem& prob, const svm_parameter& param)
- :Kernel(prob.l, prob.x, param)
- {
- l = prob.l;
- cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
- QD = new Qfloat[2*l];
- sign = new schar[2*l];
- index = new int[2*l];
- for(int k=0;k<l;k++)
- {
- sign[k] = 1;
- sign[k+l] = -1;
- index[k] = k;
- index[k+l] = k;
- QD[k]= (Qfloat)(this->*kernel_function)(k,k);
- QD[k+l]=QD[k];
- }
- buffer[0] = new Qfloat[2*l];
- buffer[1] = new Qfloat[2*l];
- next_buffer = 0;
- }
- void swap_index(int i, int j) const
- {
- swap(sign[i],sign[j]);
- swap(index[i],index[j]);
- swap(QD[i],QD[j]);
- }
-
- Qfloat *get_Q(int i, int len) const
- {
- Qfloat *data;
- int real_i = index[i];
- if(cache->get_data(real_i,&data,l) < l)
- {
- for(int j=0;j<l;j++)
- data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
- }
- // reorder and copy
- Qfloat *buf = buffer[next_buffer];
- next_buffer = 1 - next_buffer;
- schar si = sign[i];
- for(int j=0;j<len;j++)
- buf[j] = si * sign[j] * data[index[j]];
- return buf;
- }
- Qfloat *get_QD() const
- {
- return QD;
- }
- ~SVR_Q()
- {
- delete cache;
- delete[] sign;
- delete[] index;
- delete[] buffer[0];
- delete[] buffer[1];
- delete[] QD;
- }
- private:
- int l;
- Cache *cache;
- schar *sign;
- int *index;
- mutable int next_buffer;
- Qfloat *buffer[2];
- Qfloat *QD;
- };
- //
- // construct and solve various formulations
- //
- static void solve_c_svc(
- const svm_problem *prob, const svm_parameter* param,
- double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
- {
- int l = prob->l;
- double *minus_ones = new double[l];
- schar *y = new schar[l];
- int i;
- for(i=0;i<l;i++)
- {
- alpha[i] = 0;
- minus_ones[i] = -1;
- if(prob->y[i] > 0) y[i] = +1; else y[i]=-1;
- }
- Solver s;
- s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
- alpha, Cp, Cn, param->eps, si, param->shrinking);
- double sum_alpha=0;
- for(i=0;i<l;i++)
- sum_alpha += alpha[i];
- if (Cp==Cn)
- info("nu = %f\n", sum_alpha/(Cp*prob->l));
- for(i=0;i<l;i++)
- alpha[i] *= y[i];
- delete[] minus_ones;
- delete[] y;
- }
- static void solve_nu_svc(
- const svm_problem *prob, const svm_parameter *param,
- double *alpha, Solver::SolutionInfo* si)
- {
- int i;
- int l = prob->l;
- double nu = param->nu;
- schar *y = new schar[l];
- for(i=0;i<l;i++)
- if(prob->y[i]>0)
- y[i] = +1;
- else
- y[i] = -1;
- double sum_pos = nu*l/2;
- double sum_neg = nu*l/2;
- for(i=0;i<l;i++)
- if(y[i] == +1)
- {
- alpha[i] = min(1.0,sum_pos);
- sum_pos -= alpha[i];
- }
- else
- {
- alpha[i] = min(1.0,sum_neg);
- sum_neg -= alpha[i];
- }
- double *zeros = new double[l];
- for(i=0;i<l;i++)
- zeros[i] = 0;
- Solver_NU s;
- s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
- alpha, 1.0, 1.0, param->eps, si, param->shrinking);
- double r = si->r;
- info("C = %f\n",1/r);
- for(i=0;i<l;i++)
- alpha[i] *= y[i]/r;
- si->rho /= r;
- si->obj /= (r*r);
- si->upper_bound_p = 1/r;
- si->upper_bound_n = 1/r;
- delete[] y;
- delete[] zeros;
- }
- static void solve_one_class(
- const svm_problem *prob, const svm_parameter *param,
- double *alpha, Solver::SolutionInfo* si)
- {
- int l = prob->l;
- double *zeros = new double[l];
- schar *ones = new schar[l];
- int i;
- int n = (int)(param->nu*prob->l); // # of alpha's at upper bound
- for(i=0;i<n;i++)
- alpha[i] = 1;
- if(n<prob->l)
- alpha[n] = param->nu * prob->l - n;
- for(i=n+1;i<l;i++)
- alpha[i] = 0;
- for(i=0;i<l;i++)
- {
- zeros[i] = 0;
- ones[i] = 1;
- }
- Solver s;
- s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
- alpha, 1.0, 1.0, param->eps, si, param->shrinking);
- delete[] zeros;
- delete[] ones;
- }
- static void solve_epsilon_svr(
- const svm_problem *prob, const svm_parameter *param,
- double *alpha, Solver::SolutionInfo* si)
- {
- int l = prob->l;
- double *alpha2 = new double[2*l];
- double *linear_term = new double[2*l];
- schar *y = new schar[2*l];
- int i;
- for(i=0;i<l;i++)
- {
- alpha2[i] = 0;
- linear_term[i] = param->p - prob->y[i];
- y[i] = 1;
- alpha2[i+l] = 0;
- linear_term[i+l] = param->p + prob->y[i];
- y[i+l] = -1;
- }
- Solver s;
- s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
- alpha2, param->C, param->C, param->eps, si, param->shrinking);
- double sum_alpha = 0;
- for(i=0;i<l;i++)
- {
- alpha[i] = alpha2[i] - alpha2[i+l];
- sum_alpha += fabs(alpha[i]);
- }
- info("nu = %f\n",sum_alpha/(param->C*l));
- delete[] alpha2;
- delete[] linear_term;
- delete[] y;
- }
- static void solve_nu_svr(
- const svm_problem *prob, const svm_parameter *param,
- double *alpha, Solver::SolutionInfo* si)
- {
- int l = prob->l;
- double C = param->C;
- double *alpha2 = new double[2*l];
- double *linear_term = new double[2*l];
- schar *y = new schar[2*l];
- int i;
- double sum = C * param->nu * l / 2;
- for(i=0;i<l;i++)
- {
- alpha2[i] = alpha2[i+l] = min(sum,C);
- sum -= alpha2[i];
- linear_term[i] = - prob->y[i];
- y[i] = 1;
- linear_term[i+l] = prob->y[i];
- y[i+l] = -1;
- }
- Solver_NU s;
- s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
- alpha2, C, C, param->eps, si, param->shrinking);
- info("epsilon = %f\n",-si->r);
- for(i=0;i<l;i++)
- alpha[i] = alpha2[i] - alpha2[i+l];
- delete[] alpha2;
- delete[] linear_term;
- delete[] y;
- }
- //
- // decision_function
- //
- struct decision_function
- {
- double *alpha;
- double rho;
- };
- decision_function svm_train_one(
- const svm_problem *prob, const svm_parameter *param,
- double Cp, double Cn)
- {
- double *alpha = Malloc(double,prob->l);
- Solver::SolutionInfo si;
- switch(param->svm_type)
- {
- case C_SVC:
- solve_c_svc(prob,param,alpha,&si,Cp,Cn);
- break;
- case NU_SVC:
- solve_nu_svc(prob,param,alpha,&si);
- break;
- case ONE_CLASS:
- solve_one_class(prob,param,alpha,&si);
- break;
- case EPSILON_SVR:
- solve_epsilon_svr(prob,param,alpha,&si);
- break;
- case NU_SVR:
- solve_nu_svr(prob,param,alpha,&si);
- break;
- }
- info("obj = %f, rho = %f\n",si.obj,si.rho);
- // output SVs
- int nSV = 0;
- int nBSV = 0;
- for(int i=0;i<prob->l;i++)
- {
- if(fabs(alpha[i]) > 0)
- {
- ++nSV;
- if(prob->y[i] > 0)
- {
- if(fabs(alpha[i]) >= si.upper_bound_p)
- ++nBSV;
- }
- else
- {
- if(fabs(alpha[i]) >= si.upper_bound_n)
- ++nBSV;
- }
- }
- }
- info("nSV = %d, nBSV = %d\n",nSV,nBSV);
- decision_function f;
- f.alpha = alpha;
- f.rho = si.rho;
- return f;
- }
- // Platt's binary SVM Probablistic Output: an improvement from Lin et al.
- void sigmoid_train(
- int l, const double *dec_values, const double *labels,
- double& A, double& B)
- {
- double prior1=0, prior0 = 0;
- int i;
- for (i=0;i<l;i++)
- if (labels[i] > 0) prior1+=1;
- else prior0+=1;
-
- int max_iter=100; // Maximal number of iterations
- double min_step=1e-10; // Minimal step taken in line search
- double sigma=1e-12; // For numerically strict PD of Hessian
- double eps=1e-5;
- double hiTarget=(prior1+1.0)/(prior1+2.0);
- double loTarget=1/(prior0+2.0);
- double *t=Malloc(double,l);
- double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
- double newA,newB,newf,d1,d2;
- int iter;
-
- // Initial Point and Initial Fun Value
- A=0.0; B=log((prior0+1.0)/(prior1+1.0));
- double fval = 0.0;
- for (i=0;i<l;i++)
- {
- if (labels[i]>0) t[i]=hiTarget;
- else t[i]=loTarget;
- fApB = dec_values[i]*A+B;
- if (fApB>=0)
- fval += t[i]*fApB + log(1+exp(-fApB));
- else
- fval += (t[i] - 1)*fApB +log(1+exp(fApB));
- }
- for (iter=0;iter<max_iter;iter++)
- {
- // Update Gradient and Hessian (use H' = H + sigma I)
- h11=sigma; // numerically ensures strict PD
- h22=sigma;
- h21=0.0;g1=0.0;g2=0.0;
- for (i=0;i<l;i++)
- {
- fApB = dec_values[i]*A+B;
- if (fApB >= 0)
- {
- p=exp(-fApB)/(1.0+exp(-fApB));
- q=1.0/(1.0+exp(-fApB));
- }
- else
- {
- p=1.0/(1.0+exp(fApB));
- q=exp(fApB)/(1.0+exp(fApB));
- }
- d2=p*q;
- h11+=dec_values[i]*dec_values[i]*d2;
- h22+=d2;
- h21+=dec_values[i]*d2;
- d1=t[i]-p;
- g1+=dec_values[i]*d1;
- g2+=d1;
- }
- // Stopping Criteria
- if (fabs(g1)<eps && fabs(g2)<eps)
- break;
- // Finding Newton direction: -inv(H') * g
- det=h11*h22-h21*h21;
- dA=-(h22*g1 - h21 * g2) / det;
- dB=-(-h21*g1+ h11 * g2) / det;
- gd=g1*dA+g2*dB;
- stepsize = 1; // Line Search
- while (stepsize >= min_step)
- {
- newA = A + stepsize * dA;
- newB = B + stepsize * dB;
- // New function value
- newf = 0.0;
- for (i=0;i<l;i++)
- {
- fApB = dec_values[i]*newA+newB;
- if (fApB >= 0)
- newf += t[i]*fApB + log(1+exp(-fApB));
- else
- newf += (t[i] - 1)*fApB +log(1+exp(fApB));
- }
- // Check sufficient decrease
- if (newf<fval+0.0001*stepsize*gd)
- {
- A=newA;B=newB;fval=newf;
- break;
- }
- else
- stepsize = stepsize / 2.0;
- }
- if (stepsize < min_step)
- {
- info("Line search fails in two-class probability estimates\n");
- break;
- }
- }
- if (iter>=max_iter)
- info("Reaching maximal iterations in two-class probability estimates\n");
- free(t);
- }
- double sigmoid_predict(double decision_value, double A, double B)
- {
- double fApB = decision_value*A+B;
- if (fApB >= 0)
- return exp(-fApB)/(1.0+exp(-fApB));
- else
- return 1.0/(1+exp(fApB)) ;
- }
- // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
- void multiclass_probability(int k, double **r, double *p)
- {
- int t,j;
- int iter = 0, max_iter=max(100,k);
- double **Q=Malloc(double *,k);
- double *Qp=Malloc(double,k);
- double pQp, eps=0.005/k;
-
- for (t=0;t<k;t++)
- {
- p[t]=1.0/k; // Valid if k = 1
- Q[t]=Malloc(double,k);
- Q[t][t]=0;
- for (j=0;j<t;j++)
- {
- Q[t][t]+=r[j][t]*r[j][t];
- Q[t][j]=Q[j][t];
- }
- for (j=t+1;j<k;j++)
- {
- Q[t][t]+=r[j][t]*r[j][t];
- Q[t][j]=-r[j][t]*r[t][j];
- }
- }
- for (iter=0;iter<max_iter;iter++)
- {
- // stopping condition, recalculate QP,pQP for numerical accuracy
- pQp=0;
- for (t=0;t<k;t++)
- {
- Qp[t]=0;
- for (j=0;j<k;j++)
- Qp[t]+=Q[t][j]*p[j];
- pQp+=p[t]*Qp[t];
- }
- double max_error=0;
- for (t=0;t<k;t++)
- {
- double error=fabs(Qp[t]-pQp);
- if (error>max_error)
- max_error=error;
- }
- if (max_error<eps) break;
-
- for (t=0;t<k;t++)
- {
- double diff=(-Qp[t]+pQp)/Q[t][t];
- p[t]+=diff;
- pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
- for (j=0;j<k;j++)
- {
- Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
- p[j]/=(1+diff);
- }
- }
- }
- if (iter>=max_iter)
- info("Exceeds max_iter in multiclass_prob\n");
- for(t=0;t<k;t++) free(Q[t]);
- free(Q);
- free(Qp);
- }
- // Cross-validation decision values for probability estimates
- void svm_binary_svc_probability(
- const svm_problem *prob, const svm_parameter *param,
- double Cp, double Cn, double& probA, double& probB)
- {
- int i;
- int nr_fold = 5;
- int *perm = Malloc(int,prob->l);
- double *dec_values = Malloc(double,prob->l);
- // random shuffle
- for(i=0;i<prob->l;i++) perm[i]=i;
- for(i=0;i<prob->l;i++)
- {
- int j = i+rand()%(prob->l-i);
- swap(perm[i],perm[j]);
- }
- for(i=0;i<nr_fold;i++)
- {
- int begin = i*prob->l/nr_fold;
- int end = (i+1)*prob->l/nr_fold;
- int j,k;
- struct svm_problem subprob;
- subprob.l = prob->l-(end-begin);
- subprob.x = Malloc(struct svm_node*,subprob.l);
- subprob.y = Malloc(double,subprob.l);
-
- k=0;
- for(j=0;j<begin;j++)
- {
- subprob.x[k] = prob->x[perm[j]];
- subprob.y[k] = prob->y[perm[j]];
- ++k;
- }
- for(j=end;j<prob->l;j++)
- {
- subprob.x[k] = prob->x[perm[j]];
- subprob.y[k] = prob->y[perm[j]];
- ++k;
- }
- int p_count=0,n_count=0;
- for(j=0;j<k;j++)
- if(subprob.y[j]>0)
- p_count++;
- else
- n_count++;
- if(p_count==0 && n_count==0)
- for(j=begin;j<end;j++)
- dec_values[perm[j]] = 0;
- else if(p_count > 0 && n_count == 0)
- for(j=begin;j<end;j++)
- dec_values[perm[j]] = 1;
- else if(p_count == 0 && n_count > 0)
- for(j=begin;j<end;j++)
- dec_values[perm[j]] = -1;
- else
- {
- svm_parameter subparam = *param;
- subparam.probability=0;
- subparam.C=1.0;
- subparam.nr_weight=2;
- subparam.weight_label = Malloc(int,2);
- subparam.weight = Malloc(double,2);
- subparam.weight_label[0]=+1;
- subparam.weight_label[1]=-1;
- subparam.weight[0]=Cp;
- subparam.weight[1]=Cn;
- struct svm_model *submodel = svm_train(&subprob,&subparam);
- for(j=begin;j<end;j++)
- {
- svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]]));
- // ensure +1 -1 order; reason not using CV subroutine
- dec_values[perm[j]] *= submodel->label[0];
- }
- svm_destroy_model(submodel);
- svm_destroy_param(&subparam);
- }
- free(subprob.x);
- free(subprob.y);
- }
- sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
- free(dec_values);
- free(perm);
- }
- // Return parameter of a Laplace distribution
- double svm_svr_probability(
- const svm_problem *prob, const svm_parameter *param)
- {
- int i;
- int nr_fold = 5;
- double *ymv = Malloc(double,prob->l);
- double mae = 0;
- svm_parameter newparam = *param;
- newparam.probability = 0;
- svm_cross_validation(prob,&newparam,nr_fold,ymv);
- for(i=0;i<prob->l;i++)
- {
- ymv[i]=prob->y[i]-ymv[i];
- mae += fabs(ymv[i]);
- }
- mae /= prob->l;
- double std=sqrt(2*mae*mae);
- int count=0;
- mae=0;
- for(i=0;i<prob->l;i++)
- if (fabs(ymv[i]) > 5*std)
- count=count+1;
- else
- mae+=fabs(ymv[i]);
- mae /= (prob->l-count);
- info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
- free(ymv);
- return mae;
- }
- // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
- // perm, length l, must be allocated before calling this subroutine
- void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
- {
- int l = prob->l;
- int max_nr_class = 16;
- int nr_class = 0;
- int *label = Malloc(int,max_nr_class);
- int *count = Malloc(int,max_nr_class);
- int *data_label = Malloc(int,l);
- int i;
- for(i=0;i<l;i++)
- {
- int this_label = (int)prob->y[i];
- int j;
- for(j=0;j<nr_class;j++)
- {
- if(this_label == label[j])
- {
- ++count[j];
- break;
- }
- }
- data_label[i] = j;
- if(j == nr_class)
- {
- if(nr_class == max_nr_class)
- {
- max_nr_class *= 2;
- label = (int *)realloc(label,max_nr_class*sizeof(int));
- count = (int *)realloc(count,max_nr_class*sizeof(int));
- }
- label[nr_class] = this_label;
- count[nr_class] = 1;
- ++nr_class;
- }
- }
- int *start = Malloc(int,nr_class);
- start[0] = 0;
- for(i=1;i<nr_class;i++)
- start[i] = start[i-1]+count[i-1];
- for(i=0;i<l;i++)
- {
- perm[start[data_label[i]]] = i;
- ++start[data_label[i]];
- }
- start[0] = 0;
- for(i=1;i<nr_class;i++)
- start[i] = start[i-1]+count[i-1];
- *nr_class_ret = nr_class;
- *label_ret = label;
- *start_ret = start;
- *count_ret = count;
- free(data_label);
- }
- //
- // Interface functions
- //
- svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
- {
- svm_model *model = Malloc(svm_model,1);
- model->param = *param;
- model->free_sv = 0; // XXX
- if(param->svm_type == ONE_CLASS ||
- param->svm_type == EPSILON_SVR ||
- param->svm_type == NU_SVR)
- {
- // regression or one-class-svm
- model->nr_class = 2;
- model->label = NULL;
- model->nSV = NULL;
- model->probA = NULL; model->probB = NULL;
- model->sv_coef = Malloc(double *,1);
- if(param->probability &&
- (param->svm_type == EPSILON_SVR ||
- param->svm_type == NU_SVR))
- {
- model->probA = Malloc(double,1);
- model->probA[0] = svm_svr_probability(prob,param);
- }
- decision_function f = svm_train_one(prob,param,0,0);
- model->rho = Malloc(double,1);
- model->rho[0] = f.rho;
- int nSV = 0;
- int i;
- for(i=0;i<prob->l;i++)
- if(fabs(f.alpha[i]) > 0) ++nSV;
- model->l = nSV;
- model->SV = Malloc(svm_node *,nSV);
- model->sv_coef[0] = Malloc(double,nSV);
- int j = 0;
- for(i=0;i<prob->l;i++)
- if(fabs(f.alpha[i]) > 0)
- {
- model->SV[j] = prob->x[i];
- model->sv_coef[0][j] = f.alpha[i];
- ++j;
- }
- free(f.alpha);
- }
- else
- {
- // classification
- int l = prob->l;
- int nr_class;
- int *label = NULL;
- int *start = NULL;
- int *count = NULL;
- int *perm = Malloc(int,l);
- // group training data of the same class
- svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
- svm_node **x = Malloc(svm_node *,l);
- int i;
- for(i=0;i<l;i++)
- x[i] = prob->x[perm[i]];
- // calculate weighted C
- double *weighted_C = Malloc(double, nr_class);
- for(i=0;i<nr_class;i++)
- weighted_C[i] = param->C;
- for(i=0;i<param->nr_weight;i++)
- {
- int j;
- for(j=0;j<nr_class;j++)
- if(param->weight_label[i] == label[j])
- break;
- if(j == nr_class)
- fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);
- else
- weighted_C[j] *= param->weight[i];
- }
- // train k*(k-1)/2 models
-
- bool *nonzero = Malloc(bool,l);
- for(i=0;i<l;i++)
- nonzero[i] = false;
- decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
- double *probA=NULL,*probB=NULL;
- if (param->probability)
- {
- probA=Malloc(double,nr_class*(nr_class-1)/2);
- probB=Malloc(double,nr_class*(nr_class-1)/2);
- }
- int p = 0;
- for(i=0;i<nr_class;i++)
- for(int j=i+1;j<nr_class;j++)
- {
- svm_problem sub_prob;
- int si = start[i], sj = start[j];
- int ci = count[i], cj = count[j];
- sub_prob.l = ci+cj;
- sub_prob.x = Malloc(svm_node *,sub_prob.l);
- sub_prob.y = Malloc(double,sub_prob.l);
- int k;
- for(k=0;k<ci;k++)
- {
- sub_prob.x[k] = x[si+k];
- sub_prob.y[k] = +1;
- }
- for(k=0;k<cj;k++)
- {
- sub_prob.x[ci+k] = x[sj+k];
- sub_prob.y[ci+k] = -1;
- }
- if(param->probability)
- svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
- f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
- for(k=0;k<ci;k++)
- if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
- nonzero[si+k] = true;
- for(k=0;k<cj;k++)
- if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
- nonzero[sj+k] = true;
- free(sub_prob.x);
- free(sub_prob.y);
- ++p;
- }
- // build output
- model->nr_class = nr_class;
-
- model->label = Malloc(int,nr_class);
- for(i=0;i<nr_class;i++)
- model->label[i] = label[i];
-
- model->rho = Malloc(double,nr_class*(nr_class-1)/2);
- for(i=0;i<nr_class*(nr_class-1)/2;i++)
- model->rho[i] = f[i].rho;
- if(param->probability)
- {
- model->probA = Malloc(double,nr_class*(nr_class-1)/2);
- model->probB = Malloc(double,nr_class*(nr_class-1)/2);
- for(i=0;i<nr_class*(nr_class-1)/2;i++)
- {
- model->probA[i] = probA[i];
- model->probB[i] = probB[i];
- }
- }
- else
- {
- model->probA=NULL;
- model->probB=NULL;
- }
- int total_sv = 0;
- int *nz_count = Malloc(int,nr_class);
- model->nSV = Malloc(int,nr_class);
- for(i=0;i<nr_class;i++)
- {
- int nSV = 0;
- for(int j=0;j<count[i];j++)
- if(nonzero[start[i]+j])
- {
- ++nSV;
- ++total_sv;
- }
- model->nSV[i] = nSV;
- nz_count[i] = nSV;
- }
-
- info("Total nSV = %d\n",total_sv);
- model->l = total_sv;
- model->SV = Malloc(svm_node *,total_sv);
- p = 0;
- for(i=0;i<l;i++)
- if(nonzero[i]) model->SV[p++] = x[i];
- int *nz_start = Malloc(int,nr_class);
- nz_start[0] = 0;
- for(i=1;i<nr_class;i++)
- nz_start[i] = nz_start[i-1]+nz_count[i-1];
- model->sv_coef = Malloc(double *,nr_class-1);
- for(i=0;i<nr_class-1;i++)
- model->sv_coef[i] = Malloc(double,total_sv);
- p = 0;
- for(i=0;i<nr_class;i++)
- for(int j=i+1;j<nr_class;j++)
- {
- // classifier (i,j): coefficients with
- // i are in sv_coef[j-1][nz_start[i]...],
- // j are in sv_coef[i][nz_start[j]...]
- int si = start[i];
- int sj = start[j];
- int ci = count[i];
- int cj = count[j];
-
- int q = nz_start[i];
- int k;
- for(k=0;k<ci;k++)
- if(nonzero[si+k])
- model->sv_coef[j-1][q++] = f[p].alpha[k];
- q = nz_start[j];
- for(k=0;k<cj;k++)
- if(nonzero[sj+k])
- model->sv_coef[i][q++] = f[p].alpha[ci+k];
- ++p;
- }
-
- free(label);
- free(probA);
- free(probB);
- free(count);
- free(perm);
- free(start);
- free(x);
- free(weighted_C);
- free(nonzero);
- for(i=0;i<nr_class*(nr_class-1)/2;i++)
- free(f[i].alpha);
- free(f);
- free(nz_count);
- free(nz_start);
- }
- return model;
- }
- // Stratified cross validation
- void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
- {
- int i;
- int *fold_start = Malloc(int,nr_fold+1);
- int l = prob->l;
- int *perm = Malloc(int,l);
- int nr_class;
- // stratified cv may not give leave-one-out rate
- // Each class to l folds -> some folds may have zero elements
- if((param->svm_type == C_SVC ||
- param->svm_type == NU_SVC) && nr_fold < l)
- {
- int *start = NULL;
- int *label = NULL;
- int *count = NULL;
- svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
- // random shuffle and then data grouped by fold using the array perm
- int *fold_count = Malloc(int,nr_fold);
- int c;
- int *index = Malloc(int,l);
- for(i=0;i<l;i++)
- index[i]=perm[i];
- for (c=0; c<nr_class; c++)
- for(i=0;i<count[c];i++)
- {
- int j = i+rand()%(count[c]-i);
- swap(index[start[c]+j],index[start[c]+i]);
- }
- for(i=0;i<nr_fold;i++)
- {
- fold_count[i] = 0;
- for (c=0; c<nr_class;c++)
- fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
- }
- fold_start[0]=0;
- for (i=1;i<=nr_fold;i++)
- fold_start[i] = fold_start[i-1]+fold_count[i-1];
- for (c=0; c<nr_class;c++)
- for(i=0;i<nr_fold;i++)
- {
- int begin = start[c]+i*count[c]/nr_fold;
- int end = start[c]+(i+1)*count[c]/nr_fold;
- for(int j=begin;j<end;j++)
- {
- perm[fold_start[i]] = index[j];
- fold_start[i]++;
- }
- }
- fold_start[0]=0;
- for (i=1;i<=nr_fold;i++)
- fold_start[i] = fold_start[i-1]+fold_count[i-1];
- free(start);
- free(label);
- free(count);
- free(index);
- free(fold_count);
- }
- else
- {
- for(i=0;i<l;i++) perm[i]=i;
- for(i=0;i<l;i++)
- {
- int j = i+rand()%(l-i);
- swap(perm[i],perm[j]);
- }
- for(i=0;i<=nr_fold;i++)
- fold_start[i]=i*l/nr_fold;
- }
- for(i=0;i<nr_fold;i++)
- {
- int begin = fold_start[i];
- int end = fold_start[i+1];
- int j,k;
- struct svm_problem subprob;
- subprob.l = l-(end-begin);
- subprob.x = Malloc(struct svm_node*,subprob.l);
- subprob.y = Malloc(double,subprob.l);
-
- k=0;
- for(j=0;j<begin;j++)
- {
- subprob.x[k] = prob->x[perm[j]];
- subprob.y[k] = prob->y[perm[j]];
- ++k;
- }
- for(j=end;j<l;j++)
- {
- subprob.x[k] = prob->x[perm[j]];
- subprob.y[k] = prob->y[perm[j]];
- ++k;
- }
- struct svm_model *submodel = svm_train(&subprob,param);
- if(param->probability &&
- (param->svm_type == C_SVC || param->svm_type == NU_SVC))
- {
- double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
- for(j=begin;j<end;j++)
- target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
- free(prob_estimates);
- }
- else
- for(j=begin;j<end;j++)
- target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
- svm_destroy_model(submodel);
- free(subprob.x);
- free(subprob.y);
- }
- free(fold_start);
- free(perm);
- }
- int svm_get_svm_type(const svm_model *model)
- {
- return model->param.svm_type;
- }
- int svm_get_nr_class(const svm_model *model)
- {
- return model->nr_class;
- }
- void svm_get_labels(const svm_model *model, int* label)
- {
- if (model->label != NULL)
- for(int i=0;i<model->nr_class;i++)
- label[i] = model->label[i];
- }
- double svm_get_svr_probability(const svm_model *model)
- {
- if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
- model->probA!=NULL)
- return model->probA[0];
- else
- {
- info("Model doesn't contain information for SVR probability inference\n");
- return 0;
- }
- }
- void svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
- {
- if(model->param.svm_type == ONE_CLASS ||
- model->param.svm_type == EPSILON_SVR ||
- model->param.svm_type == NU_SVR)
- {
- double *sv_coef = model->sv_coef[0];
- double sum = 0;
- for(int i=0;i<model->l;i++)
- sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
- sum -= model->rho[0];
- *dec_values = sum;
- }
- else
- {
- int i;
- int nr_class = model->nr_class;
- int l = model->l;
-
- double *kvalue = Malloc(double,l);
- for(i=0;i<l;i++)
- kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
- int *start = Malloc(int,nr_class);
- start[0] = 0;
- for(i=1;i<nr_class;i++)
- start[i] = start[i-1]+model->nSV[i-1];
- int p=0;
- for(i=0;i<nr_class;i++)
- for(int j=i+1;j<nr_class;j++)
- {
- double sum = 0;
- int si = start[i];
- int sj = start[j];
- int ci = model->nSV[i];
- int cj = model->nSV[j];
-
- int k;
- double *coef1 = model->sv_coef[j-1];
- double *coef2 = model->sv_coef[i];
- for(k=0;k<ci;k++)
- sum += coef1[si+k] * kvalue[si+k];
- for(k=0;k<cj;k++)
- sum += coef2[sj+k] * kvalue[sj+k];
- sum -= model->rho[p];
- dec_values[p] = sum;
- p++;
- }
- free(kvalue);
- free(start);
- }
- }
- double svm_predict(const svm_model *model, const svm_node *x)
- {
- if(model->param.svm_type == ONE_CLASS ||
- model->param.svm_type == EPSILON_SVR ||
- model->param.svm_type == NU_SVR)
- {
- double res;
- svm_predict_values(model, x, &res);
-
- if(model->param.svm_type == ONE_CLASS)
- return (res>0)?1:-1;
- else
- return res;
- }
- else
- {
- int i;
- int nr_class = model->nr_class;
- double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
- svm_predict_values(model, x, dec_values);
- int *vote = Malloc(int,nr_class);
- for(i=0;i<nr_class;i++)
- vote[i] = 0;
- int pos=0;
- for(i=0;i<nr_class;i++)
- for(int j=i+1;j<nr_class;j++)
- {
- if(dec_values[pos++] > 0)
- ++vote[i];
- else
- ++vote[j];
- }
- int vote_max_idx = 0;
- for(i=1;i<nr_class;i++)
- if(vote[i] > vote[vote_max_idx])
- vote_max_idx = i;
- free(vote);
- free(dec_values);
- return model->label[vote_max_idx];
- }
- }
- double svm_predict_probability(
- const svm_model *model, const svm_node *x, double *prob_estimates)
- {
- if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
- model->probA!=NULL && model->probB!=NULL)
- {
- int i;
- int nr_class = model->nr_class;
- double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
- svm_predict_values(model, x, dec_values);
- double min_prob=1e-7;
- double **pairwise_prob=Malloc(double *,nr_class);
- for(i=0;i<nr_class;i++)
- pairwise_prob[i]=Malloc(double,nr_class);
- int k=0;
- for(i=0;i<nr_class;i++)
- for(int j=i+1;j<nr_class;j++)
- {
- pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
- pairwise_prob[j][i]=1-pairwise_prob[i][j];
- k++;
- }
- multiclass_probability(nr_class,pairwise_prob,prob_estimates);
- int prob_max_idx = 0;
- for(i=1;i<nr_class;i++)
- if(prob_estimates[i] > prob_estimates[prob_max_idx])
- prob_max_idx = i;
- for(i=0;i<nr_class;i++)
- free(pairwise_prob[i]);
- free(dec_values);
- free(pairwise_prob);
- return model->label[prob_max_idx];
- }
- else
- return svm_predict(model, x);
- }
- const char *svm_type_table[] =
- {
- "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
- };
- const char *kernel_type_table[]=
- {
- "linear","polynomial","rbf","sigmoid","precomputed",NULL
- };
- int svm_save_model(const char *model_file_name, const svm_model *model)
- {
- FILE *fp = fopen(model_file_name,"w");
- if(fp==NULL) return -1;
- const svm_parameter& param = model->param;
- fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
- fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
- if(param.kernel_type == POLY)
- fprintf(fp,"degree %d\n", param.degree);
- if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
- fprintf(fp,"gamma %g\n", param.gamma);
- if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
- fprintf(fp,"coef0 %g\n", param.coef0);
- int nr_class = model->nr_class;
- int l = model->l;
- fprintf(fp, "nr_class %d\n", nr_class);
- fprintf(fp, "total_sv %d\n",l);
-
- {
- fprintf(fp, "rho");
- for(int i=0;i<nr_class*(nr_class-1)/2;i++)
- fprintf(fp," %g",model->rho[i]);
- fprintf(fp, "\n");
- }
-
- if(model->label)
- {
- fprintf(fp, "label");
- for(int i=0;i<nr_class;i++)
- fprintf(fp," %d",model->label[i]);
- fprintf(fp, "\n");
- }
- if(model->probA) // regression has probA only
- {
- fprintf(fp, "probA");
- for(int i=0;i<nr_class*(nr_class-1)/2;i++)
- fprintf(fp," %g",model->probA[i]);
- fprintf(fp, "\n");
- }
- if(model->probB)
- {
- fprintf(fp, "probB");
- for(int i=0;i<nr_class*(nr_class-1)/2;i++)
- fprintf(fp," %g",model->probB[i]);
- fprintf(fp, "\n");
- }
- if(model->nSV)
- {
- fprintf(fp, "nr_sv");
- for(int i=0;i<nr_class;i++)
- fprintf(fp," %d",model->nSV[i]);
- fprintf(fp, "\n");
- }
- fprintf(fp, "SV\n");
- const double * const *sv_coef = model->sv_coef;
- const svm_node * const *SV = model->SV;
- for(int i=0;i<l;i++)
- {
- for(int j=0;j<nr_class-1;j++)
- fprintf(fp, "%.16g ",sv_coef[j][i]);
- const svm_node *p = SV[i];
- if(param.kernel_type == PRECOMPUTED)
- fprintf(fp,"0:%d ",(int)(p->value));
- else
- while(p->index != -1)
- {
- fprintf(fp,"%d:%.8g ",p->index,p->value);
- p++;
- }
- fprintf(fp, "\n");
- }
- if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
- else return 0;
- }
- svm_model *svm_load_model(const char *model_file_name)
- {
- FILE *fp = fopen(model_file_name,"r");
- if(fp==NULL) return NULL;
-
- // read parameters
- svm_model *model = Malloc(svm_model,1);
- svm_parameter& param = model->param;
- model->rho = NULL;
- model->probA = NULL;
- model->probB = NULL;
- model->label = NULL;
- model->nSV = NULL;
- char cmd[81];
- while(1)
- {
- fscanf(fp,"%80s",cmd);
- if(strcmp(cmd,"svm_type")==0)
- {
- fscanf(fp,"%80s",cmd);
- int i;
- for(i=0;svm_type_table[i];i++)
- {
- if(strcmp(svm_type_table[i],cmd)==0)
- {
- param.svm_type=i;
- break;
- }
- }
- if(svm_type_table[i] == NULL)
- {
- fprintf(stderr,"unknown svm type.\n");
- free(model->rho);
- free(model->label);
- free(model->nSV);
- free(model);
- return NULL;
- }
- }
- else if(strcmp(cmd,"kernel_type")==0)
- {
- fscanf(fp,"%80s",cmd);
- int i;
- for(i=0;kernel_type_table[i];i++)
- {
- if(strcmp(kernel_type_table[i],cmd)==0)
- {
- param.kernel_type=i;
- break;
- }
- }
- if(kernel_type_table[i] == NULL)
- {
- fprintf(stderr,"unknown kernel function.\n");
- free(model->rho);
- free(model->label);
- free(model->nSV);
- free(model);
- return NULL;
- }
- }
- else if(strcmp(cmd,"degree")==0)
- fscanf(fp,"%d",¶m.degree);
- else if(strcmp(cmd,"gamma")==0)
- fscanf(fp,"%lf",¶m.gamma);
- else if(strcmp(cmd,"coef0")==0)
- fscanf(fp,"%lf",¶m.coef0);
- else if(strcmp(cmd,"nr_class")==0)
- fscanf(fp,"%d",&model->nr_class);
- else if(strcmp(cmd,"total_sv")==0)
- fscanf(fp,"%d",&model->l);
- else if(strcmp(cmd,"rho")==0)
- {
- int n = model->nr_class * (model->nr_class-1)/2;
- model->rho = Malloc(double,n);
- for(int i=0;i<n;i++)
- fscanf(fp,"%lf",&model->rho[i]);
- }
- else if(strcmp(cmd,"label")==0)
- {
- int n = model->nr_class;
- model->label = Malloc(int,n);
- for(int i=0;i<n;i++)
- fscanf(fp,"%d",&model->label[i]);
- }
- else if(strcmp(cmd,"probA")==0)
- {
- int n = model->nr_class * (model->nr_class-1)/2;
- model->probA = Malloc(double,n);
- for(int i=0;i<n;i++)
- fscanf(fp,"%lf",&model->probA[i]);
- }
- else if(strcmp(cmd,"probB")==0)
- {
- int n = model->nr_class * (model->nr_class-1)/2;
- model->probB = Malloc(double,n);
- for(int i=0;i<n;i++)
- fscanf(fp,"%lf",&model->probB[i]);
- }
- else if(strcmp(cmd,"nr_sv")==0)
- {
- int n = model->nr_class;
- model->nSV = Malloc(int,n);
- for(int i=0;i<n;i++)
- fscanf(fp,"%d",&model->nSV[i]);
- }
- else if(strcmp(cmd,"SV")==0)
- {
- while(1)
- {
- int c = getc(fp);
- if(c==EOF || c=='\n') break;
- }
- break;
- }
- else
- {
- fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
- free(model->rho);
- free(model->label);
- free(model->nSV);
- free(model);
- return NULL;
- }
- }
- // read sv_coef and SV
- int elements = 0;
- long pos = ftell(fp);
- while(1)
- {
- int c = fgetc(fp);
- switch(c)
- {
- case '\n':
- // count the '-1' element
- case ':':
- ++elements;
- break;
- case EOF:
- goto out;
- default:
- ;
- }
- }
- out:
- fseek(fp,pos,SEEK_SET);
- int m = model->nr_class - 1;
- int l = model->l;
- model->sv_coef = Malloc(double *,m);
- int i;
- for(i=0;i<m;i++)
- model->sv_coef[i] = Malloc(double,l);
- model->SV = Malloc(svm_node*,l);
- svm_node *x_space=NULL;
- if(l>0) x_space = Malloc(svm_node,elements);
- int j=0;
- for(i=0;i<l;i++)
- {
- model->SV[i] = &x_space[j];
- for(int k=0;k<m;k++)
- fscanf(fp,"%lf",&model->sv_coef[k][i]);
- while(1)
- {
- int c;
- do {
- c = getc(fp);
- if(c=='\n') goto out2;
- } while(isspace(c));
- ungetc(c,fp);
- fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value));
- ++j;
- }
- out2:
- x_space[j++].index = -1;
- }
- if (ferror(fp) != 0 || fclose(fp) != 0) return NULL;
- model->free_sv = 1; // XXX
- return model;
- }
- void svm_destroy_model(svm_model* model)
- {
- if(model->free_sv && model->l > 0)
- free((void *)(model->SV[0]));
- for(int i=0;i<model->nr_class-1;i++)
- free(model->sv_coef[i]);
- free(model->SV);
- free(model->sv_coef);
- free(model->rho);
- free(model->label);
- free(model->probA);
- free(model->probB);
- free(model->nSV);
- free(model);
- }
- void svm_destroy_param(svm_parameter* param)
- {
- free(param->weight_label);
- free(param->weight);
- }
- const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
- {
- // svm_type
- int svm_type = param->svm_type;
- if(svm_type != C_SVC &&
- svm_type != NU_SVC &&
- svm_type != ONE_CLASS &&
- svm_type != EPSILON_SVR &&
- svm_type != NU_SVR)
- return "unknown svm type";
-
- // kernel_type, degree
-
- int kernel_type = param->kernel_type;
- if(kernel_type != LINEAR &&
- kernel_type != POLY &&
- kernel_type != RBF &&
- kernel_type != SIGMOID &&
- kernel_type != PRECOMPUTED)
- return "unknown kernel type";
- if(param->degree < 0)
- return "degree of polynomial kernel < 0";
- // cache_size,eps,C,nu,p,shrinking
- if(param->cache_size <= 0)
- return "cache_size <= 0";
- if(param->eps <= 0)
- return "eps <= 0";
- if(svm_type == C_SVC ||
- svm_type == EPSILON_SVR ||
- svm_type == NU_SVR)
- if(param->C <= 0)
- return "C <= 0";
- if(svm_type == NU_SVC ||
- svm_type == ONE_CLASS ||
- svm_type == NU_SVR)
- if(param->nu <= 0 || param->nu > 1)
- return "nu <= 0 or nu > 1";
- if(svm_type == EPSILON_SVR)
- if(param->p < 0)
- return "p < 0";
- if(param->shrinking != 0 &&
- param->shrinking != 1)
- return "shrinking != 0 and shrinking != 1";
- if(param->probability != 0 &&
- param->probability != 1)
- return "probability != 0 and probability != 1";
- if(param->probability == 1 &&
- svm_type == ONE_CLASS)
- return "one-class SVM probability output not supported yet";
- // check whether nu-svc is feasible
-
- if(svm_type == NU_SVC)
- {
- int l = prob->l;
- int max_nr_class = 16;
- int nr_class = 0;
- int *label = Malloc(int,max_nr_class);
- int *count = Malloc(int,max_nr_class);
- int i;
- for(i=0;i<l;i++)
- {
- int this_label = (int)prob->y[i];
- int j;
- for(j=0;j<nr_class;j++)
- if(this_label == label[j])
- {
- ++count[j];
- break;
- }
- if(j == nr_class)
- {
- if(nr_class == max_nr_class)
- {
- max_nr_class *= 2;
- label = (int *)realloc(label,max_nr_class*sizeof(int));
- count = (int *)realloc(count,max_nr_class*sizeof(int));
- }
- label[nr_class] = this_label;
- count[nr_class] = 1;
- ++nr_class;
- }
- }
-
- for(i=0;i<nr_class;i++)
- {
- int n1 = count[i];
- for(int j=i+1;j<nr_class;j++)
- {
- int n2 = count[j];
- if(param->nu*(n1+n2)/2 > min(n1,n2))
- {
- free(label);
- free(count);
- return "specified nu is infeasible";
- }
- }
- }
- free(label);
- free(count);
- }
- return NULL;
- }
- int svm_check_probability_model(const svm_model *model)
- {
- return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
- model->probA!=NULL && model->probB!=NULL) ||
- ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
- model->probA!=NULL);
- }
|