12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397 |
- <html>
- <head>
- <title>LIBSVM FAQ</title>
- </head>
- <body bgcolor="#ffffcc">
- <a name="_TOP"><b><h1><a
- href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a> FAQ </h1></b></a>
- <b>last modified : </b>
- Fri, 14 Mar 2008 23:36:32 GMT
- <class="categories">
- <li><a
- href="#_TOP">All Questions</a>(66)</li>
- <ul><b>
- <li><a
- href="#/Q1:_Some_sample_uses_of_libsvm">Q1:_Some_sample_uses_of_libsvm</a>(2)</li>
- <li><a
- href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
- <li><a
- href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(6)</li>
- <li><a
- href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(30)</li>
- <li><a
- href="#/Q5:_Probability_outputs">Q5:_Probability_outputs</a>(3)</li>
- <li><a
- href="#/Q6:_Graphic_interface">Q6:_Graphic_interface</a>(3)</li>
- <li><a
- href="#/Q7:_Java_version_of_libsvm">Q7:_Java_version_of_libsvm</a>(4)</li>
- <li><a
- href="#/Q8:_Python_interface">Q8:_Python_interface</a>(5)</li>
- <li><a
- href="#/Q9:_MATLAB_interface">Q9:_MATLAB_interface</a>(5)</li>
- </b></ul>
- </li>
- <ul><ul class="headlines">
- <li class="headlines_item"><a href="#faq101">Some courses which have used libsvm as a tool</a></li>
- <li class="headlines_item"><a href="#faq102">Some applications which have used libsvm </a></li>
- <li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
- <li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
- <li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ? </a></li>
- <li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
- <li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
- <li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
- <li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
- <li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ? </a></li>
- <li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
- <li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
- <li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
- <li class="headlines_item"><a href="#f304">Why sometimes the last line of my data is not read by svm-train?</a></li>
- <li class="headlines_item"><a href="#f305">Is there a program to check if my data are in the correct format?</a></li>
- <li class="headlines_item"><a href="#f306">May I put comments in data files?</a></li>
- <li class="headlines_item"><a href="#431">I don't know class labels of test data. What should I put in the first column of the test file?</a></li>
- <li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
- <li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
- <li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
- <li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
- <li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
- <li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
- <li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
- <li class="headlines_item"><a href="#f408">Does it make a big difference if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
- <li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
- <li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
- <li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
- <li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
- <li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
- <li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
- <li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
- <li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
- <li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
- <li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
- <li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
- <li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
- <li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
- <li class="headlines_item"><a href="#f4201">Why my cross-validation results are different from those in the Practical Guide?</a></li>
- <li class="headlines_item"><a href="#f421">But on some systems CV accuracy is the same in several runs. How could I use different data partitions?</a></li>
- <li class="headlines_item"><a href="#f422">I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
- <li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
- <li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
- <li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
- <li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
- <li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
- <li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
- <li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
- <li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
- <li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
- <li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
- <li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
- <li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
- <li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
- <li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
- <li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
- <li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the pyd file?</a></li>
- <li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the .pyd file ?</a></li>
- <li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
- <li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
- <li class="headlines_item"><a href="#f706">I typed "make" on a unix system, but it says "Python.h: No such file or directory?"</a></li>
- <li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
- <li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
- <li class="headlines_item"><a href="#f803">How could I use MATLAB interface for parameter selection?</a></li>
- <li class="headlines_item"><a href="#f804">How could I generate the primal variable w of linear SVM?</a></li>
- <li class="headlines_item"><a href="#f805">Is there an OCTAVE interface for libsvm?</a></li>
- </ul></ul>
- <hr size="5" noshade />
- <p/>
-
- <a name="/Q1:_Some_sample_uses_of_libsvm"></a>
- <a name="faq101"><b>Q: Some courses which have used libsvm as a tool</b></a>
- <br/>
- <ul>
- <li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,
- Faculty of Applied Science, University of Freiburg, Germany
- </a>
- <li> <a href=http://www.cs.vu.nl/~elena/ml.html>
- Division of Mathematics and Computer Science.
- Faculteit der Exacte Wetenschappen
- Vrije Universiteit, The Netherlands. </a>
- <li>
- <a href=http://www.cae.wisc.edu/~ece539/matlab/>
- Electrical and Computer Engineering Department,
- University of Wisconsin-Madison
- </a>
- <li>
- <a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
- Technion (Israel Institute of Technology), Israel.
- <li>
- <a href=http://www.cise.ufl.edu/~fu/learn.html>
- Computer and Information Sciences Dept., University of Florida</a>
- <li>
- <a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
- The Institute of Computer Science,
- University of Nairobi, Kenya.</a>
- <li>
- <a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
- Applied Mathematics and Computer Science, University of Iceland.
- <li>
- <a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
- SVM tutorial in machine learning
- summer school, University of Chicago, 2005.
- </a>
- </ul>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q1:_Some_sample_uses_of_libsvm"></a>
- <a name="faq102"><b>Q: Some applications which have used libsvm </b></a>
- <br/>
- <ul>
- <li><a href=http://johel.m.free.fr/demo_045.htm>
- Realtime object recognition</a>
- </ul>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q2:_Installation_and_running_the_program"></a>
- <a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
- <br/>
- <p>
- In the package there is a README file which
- details all options, data format, and library calls.
- The model selection tool and the python interface
- have a separate README under the directory python.
- The guide
- <A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
- A practical guide to support vector classification
- </A> shows beginners how to train/test their data.
- The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
- : a library for support vector machines</a> discusses the implementation of
- libsvm in detail.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q2:_Installation_and_running_the_program"></a>
- <a name="f202"><b>Q: What are changes in previous versions?</b></a>
- <br/>
- <p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.
- <p> You can download earlier versions
- <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q2:_Installation_and_running_the_program"></a>
- <a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ? </b></a>
- <br/>
- <p>
- Please cite the following document:
- <p>
- Chih-Chung Chang and Chih-Jen Lin, LIBSVM
- : a library for support vector machines, 2001.
- Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
- <p>
- The bibtex format is as follows
- <pre>
- @Manual{CC01a,
- author = {Chih-Chung Chang and Chih-Jen Lin},
- title = {{LIBSVM}: a library for support vector machines},
- year = {2001},
- note = {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
- }
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q2:_Installation_and_running_the_program"></a>
- <a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
- <br/>
- <p>
- The libsvm license ("the modified BSD license")
- is compatible with many
- free software licenses such as GPL. Hence, it is very easy to
- use libsvm in your software.
- It can also be used in commercial products.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q2:_Installation_and_running_the_program"></a>
- <a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
- <br/>
- <p>
- Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm
- tools</a>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q2:_Installation_and_running_the_program"></a>
- <a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
- <br/>
- <p>
- This usually happens if you compile the code
- on one machine and run it on another which has incompatible
- libraries.
- Try to recompile the program on that machine or use static linking.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q2:_Installation_and_running_the_program"></a>
- <a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
- <br/>
- <p>
- Build it as a project by choosing "Win32 Project."
- On the other hand, for "svm-train" and "svm-predict"
- you want to choose "Win32 Console Project."
- After libsvm 2.5, you can also use the file Makefile.win.
- See details in README.
- <p>
- If you are not using Makefile.win and see the following
- link error
- <pre>
- LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
- _wWinMain@16
- </pre>
- you may have selected a wrong project type.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q2:_Installation_and_running_the_program"></a>
- <a name="f208"><b>Q: I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ? </b></a>
- <br/>
- <p>
- You need to open a command window
- and type svmtrain.exe to see all options.
- Some examples are in README file.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q3:_Data_preparation"></a>
- <a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
- <br/>
- <p>
- libsvm uses the so called "sparse" format where zero
- values do not need to be stored. Hence a data with attributes
- <pre>
- 1 0 2 0
- </pre>
- is represented as
- <pre>
- 1:1 3:2
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q3:_Data_preparation"></a>
- <a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
- <br/>
- <p>
- Currently libsvm supports only numerical data.
- You may have to change non-numerical data to
- numerical. For example, you can use several
- binary attributes to represent a categorical
- attribute.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q3:_Data_preparation"></a>
- <a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
- <br/>
- <p>
- This is a controversial issue. The kernel
- evaluation (i.e. inner product) of sparse vectors is slower
- so the total training time can be at least twice or three times
- of that using the dense format.
- However, we cannot support only dense format as then we CANNOT
- handle extremely sparse cases. Simplicity of the code is another
- concern. Right now we decide to support
- the sparse format only.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q3:_Data_preparation"></a>
- <a name="f304"><b>Q: Why sometimes the last line of my data is not read by svm-train?</b></a>
- <br/>
- <p>
- We assume that you have '\n' in the end of
- each line. So please press enter in the end
- of your last line.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q3:_Data_preparation"></a>
- <a name="f305"><b>Q: Is there a program to check if my data are in the correct format?</b></a>
- <br/>
- <p>
- The svm-train program in libsvm conducts only a simple check of the input data. To do a
- detailed check, after libsvm 2.85, you can use the python script tools/checkdata.py. See tools/README for details.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q3:_Data_preparation"></a>
- <a name="f306"><b>Q: May I put comments in data files?</b></a>
- <br/>
- <p>
- No, for simplicity we don't support that.
- However, you can easily preprocess your data before
- using libsvm. For example,
- if you have the following data
- <pre>
- test.txt
- 1 1:2 2:1 # proten A
- </pre>
- then on unix machines you can do
- <pre>
- cut -d '#' -f 1 < test.txt > test.features
- cut -d '#' -f 2 < test.txt > test.comments
- svm-predict test.feature train.model test.predicts
- paste -d '#' test.predicts test.comments | sed 's/#/ #/' > test.results
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="431"><b>Q: I don't know class labels of test data. What should I put in the first column of the test file?</b></a>
- <br/>
- <p>Any value is ok. In this situation, what you will use is the output file of svm-predict, which gives predicted class labels.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
- <br/>
- <br>optimization finished, #iter = 219
- <br>nu = 0.431030
- <br>obj = -100.877286, rho = 0.424632
- <br>nSV = 132, nBSV = 107
- <br>Total nSV = 132
- <p>
- obj is the optimal objective value of the dual SVM problem.
- rho is the bias term in the decision function
- sgn(w^Tx - rho).
- nSV and nBSV are number of support vectors and bounded support
- vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
- form of C-SVM where C is replaced by nu. nu simply shows the
- corresponding parameter. More details are in
- <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">
- libsvm document</a>.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f402"><b>Q: Can you explain more about the model file?</b></a>
- <br/>
- <p>
- After the parameters, each line represents a support vector.
- Support vectors are listed in the order of "labels" listed earlier.
- (i.e., those from the first class in the "labels" list are
- grouped first, and so on.)
- If k is the total number of classes,
- in front of each support vector, there are
- k-1 coefficients
- y*alpha where alpha are dual solution of the
- following two class problems:
- <br>
- 1 vs j, 2 vs j, ..., j-1 vs j, j vs j+1, j vs j+2, ..., j vs k
- <br>
- and y=1 in first j-1 coefficients, y=-1 in the remaining
- k-j coefficients.
- For example, if there are 4 classes, the file looks like:
- <pre>
- +-+-+-+--------------------+
- |1|1|1| |
- |v|v|v| SVs from class 1 |
- |2|3|4| |
- +-+-+-+--------------------+
- |1|2|2| |
- |v|v|v| SVs from class 2 |
- |2|3|4| |
- +-+-+-+--------------------+
- |1|2|3| |
- |v|v|v| SVs from class 3 |
- |3|3|4| |
- +-+-+-+--------------------+
- |1|2|3| |
- |v|v|v| SVs from class 4 |
- |4|4|4| |
- +-+-+-+--------------------+
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f403"><b>Q: Should I use float or double to store numbers in the cache ?</b></a>
- <br/>
- <p>
- We have float as the default as you can store more numbers
- in the cache.
- In general this is good enough but for few difficult
- cases (e.g. C very very large) where solutions are huge
- numbers, it might be possible that the numerical precision is not
- enough using only float.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f404"><b>Q: How do I choose the kernel?</b></a>
- <br/>
- <p>
- In general we suggest you to try the RBF kernel first.
- A recent result by Keerthi and Lin
- (<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/limit.ps.gz>
- download paper here</a>)
- shows that if RBF is used with model selection,
- then there is no need to consider the linear kernel.
- The kernel matrix using sigmoid may not be positive definite
- and in general it's accuracy is not better than RBF.
- (see the paper by Lin and Lin
- (<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf>
- download paper here</a>).
- Polynomial kernels are ok but if a high degree is used,
- numerical difficulties tend to happen
- (thinking about dth power of (<1) goes to 0
- and (>1) goes to infinity).
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f405"><b>Q: Does libsvm have special treatments for linear SVM?</b></a>
- <br/>
- <p>
- No, libsvm solves linear/nonlinear SVMs by the
- same way.
- Some tricks may save training/testing time if the
- linear kernel is used,
- so libsvm is <b>NOT</b> particularly efficient for linear SVM,
- especially when
- C is large and
- the number of data is much larger
- than the number of attributes.
- You can either
- <ul>
- <li>
- Use small C only. We have shown in the following paper
- that after C is larger than a certain threshold,
- the decision function is the same.
- <p>
- <a href="http://guppy.mpe.nus.edu.sg/~mpessk/">S. S. Keerthi</a>
- and
- <B>C.-J. Lin</B>.
- <A HREF="papers/limit.ps.gz">
- Asymptotic behaviors of support vector machines with
- Gaussian kernel
- </A>
- .
- <I><A HREF="http://mitpress.mit.edu/journal-home.tcl?issn=08997667">Neural Computation</A></I>, 15(2003), 1667-1689.
- <li>
- Check <a href=http://www.csie.ntu.edu.tw/~cjlin/liblinear>liblinear</a>,
- which is designed for large-scale linear classification.
- More details can be found in the following study:
- <p>
- C.-J. Lin, R. C. Weng, and S. S. Keerthi.
- <a href=../papers/logistic.pdf>
- Trust region Newton method for large-scale logistic
- regression</a>.
- Technical report, 2007. A short version appears
- in <a href=http://oregonstate.edu/conferences/icml2007/>ICML 2007</a>.<br>
- </ul>
- <p> Please also see our <a href=../papers/guide/guide.pdf>SVM guide</a>
- on the discussion of using RBF and linear
- kernels.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f406"><b>Q: The number of free support vectors is large. What should I do?</b></a>
- <br/>
- <p>
- This usually happens when the data are overfitted.
- If attributes of your data are in large ranges,
- try to scale them. Then the region
- of appropriate parameters may be larger.
- Note that there is a scale program
- in libsvm.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f407"><b>Q: Should I scale training and testing data in a similar way?</b></a>
- <br/>
- <p>
- Yes, you can do the following:
- <br> svm-scale -s scaling_parameters train_data > scaled_train_data
- <br> svm-scale -r scaling_parameters test_data > scaled_test_data
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f408"><b>Q: Does it make a big difference if I scale each attribute to [0,1] instead of [-1,1]?</b></a>
- <br/>
- <p>
- For the linear scaling method, if the RBF kernel is
- used and parameter selection is conducted, there
- is no difference. Assume Mi and mi are
- respectively the maximal and minimal values of the
- ith attribute. Scaling to [0,1] means
- <pre>
- x'=(x-mi)/(Mi-mi)
- </pre>
- For [-1,1],
- <pre>
- x''=2(x-mi)/(Mi-mi)-1.
- </pre>
- In the RBF kernel,
- <pre>
- x'-y'=(x-y)/(Mi-mi), x''-y''=2(x-y)/(Mi-mi).
- </pre>
- Hence, using (C,g) on the [0,1]-scaled data is the
- same as (C,g/2) on the [-1,1]-scaled data.
- <p> Though the performance is the same, the computational
- time may be different. For data with many zero entries,
- [0,1]-scaling keeps the sparsity of input data and hence
- may save the time.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f409"><b>Q: The prediction rate is low. How could I improve it?</b></a>
- <br/>
- <p>
- Try to use the model selection tool grid.py in the python
- directory find
- out good parameters. To see the importance of model selection,
- please
- see my talk:
- <A HREF="http://www.csie.ntu.edu.tw/~cjlin/talks/freiburg.pdf">
- A practical guide to support vector
- classification
- </A>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f410"><b>Q: My data are unbalanced. Could libsvm handle such problems?</b></a>
- <br/>
- <p>
- Yes, there is a -wi options. For example, if you use
- <p>
- svm-train -s 0 -c 10 -w1 1 -w-1 5 data_file
- <p>
- the penalty for class "-1" is larger.
- Note that this -w option is for C-SVC only.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f411"><b>Q: What is the difference between nu-SVC and C-SVC?</b></a>
- <br/>
- <p>
- Basically they are the same thing but with different
- parameters. The range of C is from zero to infinity
- but nu is always between [0,1]. A nice property
- of nu is that it is related to the ratio of
- support vectors and the ratio of the training
- error.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f412"><b>Q: The program keeps running (without showing any output). What should I do?</b></a>
- <br/>
- <p>
- You may want to check your data. Each training/testing
- data must be in one line. It cannot be separated.
- In addition, you have to remove empty lines.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f413"><b>Q: The program keeps running (with output, i.e. many dots). What should I do?</b></a>
- <br/>
- <p>
- In theory libsvm guarantees to converge if the kernel
- matrix is positive semidefinite.
- After version 2.4 it can also handle non-PSD
- kernels such as the sigmoid (tanh).
- Therefore, this means you are
- handling ill-conditioned situations
- (e.g. too large/small parameters) so numerical
- difficulties occur.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f414"><b>Q: The training time is too long. What should I do?</b></a>
- <br/>
- <p>
- For large problems, please specify enough cache size (i.e.,
- -m).
- Slow convergence may happen for some difficult cases (e.g. -c is large).
- You can try to use a looser stopping tolerance with -e.
- If that still doesn't work, you may want to train only a subset of the data.
- You can use the program subset.py in the directory "tools"
- to obtain a random subset.
- <p>
- If you are using polynomial kernels, please check the question on the pow() function.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f415"><b>Q: How do I get the decision value(s)?</b></a>
- <br/>
- <p>
- We print out decision values for regression. For classification,
- we solve several binary SVMs for multi-class cases. You
- can obtain values by easily calling the subroutine
- svm_predict_values. Their corresponding labels
- can be obtained from svm_get_labels.
- Details are in
- README of libsvm package.
- <p>
- We do not recommend the following. But if you would
- like to get values for
- TWO-class classification with labels +1 and -1
- (note: +1 and -1 but not things like 5 and 10)
- in the easiest way, simply add
- <pre>
- printf("%f\n", dec_values[0]*model->label[0]);
- </pre>
- after the line
- <pre>
- svm_predict_values(model, x, dec_values);
- </pre>
- of the file svm.cpp.
- Positive (negative)
- decision values correspond to data predicted as +1 (-1).
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f4151"><b>Q: How do I get the distance between a point and the hyperplane?</b></a>
- <br/>
- <p>
- The distance is |decision_value| / |w|.
- We have |w|^2 = w^Tw = alpha^T Q alpha = 2*(dual_obj + sum alpha_i).
- Thus in svm.cpp please find the place
- where we calculate the dual objective value
- (i.e., the subroutine Solve())
- and add a statement to print w^Tw.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f416"><b>Q: On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</b></a>
- <br/>
- <p>
- On 32-bit machines, the maximum addressable
- memory is 4GB. The Linux kernel uses 3:1
- split which means user space is 3G and
- kernel space is 1G. Although there are
- 3G user space, the maximum dynamic allocation
- memory is 2G. So, if you specify -m near 2G,
- the memory will be exhausted. And svm-train
- will fail when it asks more memory.
- For more details, please read
- <a href=http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&selm=3BA164F6.BAFA4FB%40daimi.au.dk>
- this article</a>.
- <p>
- The easiest solution is to switch to a
- 64-bit machine.
- Otherwise, there are two ways to solve this. If your
- machine supports Intel's PAE (Physical Address
- Extension), you can turn on the option HIGHMEM64G
- in Linux kernel which uses 4G:4G split for
- kernel and user space. If you don't, you can
- try a software `tub' which can eliminate the 2G
- boundary for dynamic allocated memory. The `tub'
- is available at
- <a href=http://www.bitwagon.com/tub.html>http://www.bitwagon.com/tub.html</a>.
- <!--
- This may happen only when the cache is large, but each cached row is
- not large enough. <b>Note:</b> This problem is specific to
- gnu C library which is used in linux.
- The solution is as follows:
- <p>
- In our program we have malloc() which uses two methods
- to allocate memory from kernel. One is
- sbrk() and another is mmap(). sbrk is faster, but mmap
- has a larger address
- space. So malloc uses mmap only if the wanted memory size is larger
- than some threshold (default 128k).
- In the case where each row is not large enough (#elements < 128k/sizeof(float)) but we need a large cache ,
- the address space for sbrk can be exhausted. The solution is to
- lower the threshold to force malloc to use mmap
- and increase the maximum number of chunks to allocate
- with mmap.
- <p>
- Therefore, in the main program (i.e. svm-train.c) you want
- to have
- <pre>
- #include <malloc.h>
- </pre>
- and then in main():
- <pre>
- mallopt(M_MMAP_THRESHOLD, 32768);
- mallopt(M_MMAP_MAX,1000000);
- </pre>
- You can also set the environment variables instead
- of writing them in the program:
- <pre>
- $ M_MMAP_MAX=1000000 M_MMAP_THRESHOLD=32768 ./svm-train .....
- </pre>
- More information can be found by
- <pre>
- $ info libc "Malloc Tunable Parameters"
- </pre>
- -->
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f417"><b>Q: How do I disable screen output of svm-train and svm-predict ?</b></a>
- <br/>
- <p>
- Simply update svm.cpp:
- <pre>
- #if 1
- void info(char *fmt,...)
- </pre>
- to
- <pre>
- #if 0
- void info(char *fmt,...)
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f418"><b>Q: I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</b></a>
- <br/>
- <p>
- The reason why we have two functions is as follows:
- For the RBF kernel exp(-g |xi - xj|^2), if we calculate
- xi - xj first and then the norm square, there are 3n operations.
- Thus we consider exp(-g (|xi|^2 - 2dot(xi,xj) +|xj|^2))
- and by calculating all |xi|^2 in the beginning,
- the number of operations is reduced to 2n.
- This is for the training. For prediction we cannot
- do this so a regular subroutine using that 3n operations is
- needed.
- The easiest way to have your own kernel is
- to put the same code in these two
- subroutines by replacing any kernel.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f419"><b>Q: What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</b></a>
- <br/>
- <p>
- It is one-against-one. We chose it after doing the following
- comparison:
- C.-W. Hsu and C.-J. Lin.
- <A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf">
- A comparison of methods
- for multi-class support vector machines
- </A>,
- <I>IEEE Transactions on Neural Networks</A></I>, 13(2002), 415-425.
- <p>
- "1-against-the rest" is a good method whose performance
- is comparable to "1-against-1." We do the latter
- simply because its training time is shorter.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f420"><b>Q: After doing cross validation, why there is no model file outputted ?</b></a>
- <br/>
- <p>
- Cross validation is used for selecting good parameters.
- After finding them, you want to re-train the whole
- data without the -v option.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f4201"><b>Q: Why my cross-validation results are different from those in the Practical Guide?</b></a>
- <br/>
- <p>
- Due to random partitions of
- the data, on different systems CV accuracy values
- may be different.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f421"><b>Q: But on some systems CV accuracy is the same in several runs. How could I use different data partitions?</b></a>
- <br/>
- <p>
- If you use GNU C library,
- the default seed 1 is considered. Thus you always
- get the same result of running svm-train -v.
- To have different seeds, you can add the following code
- in svm-train.c:
- <pre>
- #include <time.h>
- </pre>
- and in the beginning of the subroutine do_cross_validation(),
- <pre>
- srand(time(0));
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f422"><b>Q: I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</b></a>
- <br/>
- <p>
- It is extremely easy. Taking c-svc for example, only two
- places of svm.cpp have to be changed.
- First, modify the following line of
- solve_c_svc from
- <pre>
- s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
- alpha, Cp, Cn, param->eps, si, param->shrinking);
- </pre>
- to
- <pre>
- s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
- alpha, INF, INF, param->eps, si, param->shrinking);
- </pre>
- Second, in the class of SVC_Q, declare C as
- a private variable:
- <pre>
- double C;
- </pre>
- In the constructor we assign it to param.C:
- <pre>
- this->C = param.C;
- </pre>
- Then in the subroutine get_Q, after the for loop, add
- <pre>
- if(i >= start && i < len)
- data[i] += 1/C;
- </pre>
- <p>
- For one-class svm, the modification is exactly the same. For SVR, you don't need an if statement like the above. Instead, you only need a simple assignment:
- <pre>
- data[real_i] += 1/C;
- </pre>
- <p>
- For large linear L2-loss SVM, please use
- <a href=../liblinear>LIBLINEAR</a>.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f424"><b>Q: How do I choose parameters for one-class svm as training data are in only one class?</b></a>
- <br/>
- <p>
- You have pre-specified true positive rate in mind and then search for
- parameters which achieve similar cross-validation accuracy.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f427"><b>Q: Why the code gives NaN (not a number) results?</b></a>
- <br/>
- <p>
- This rarely happens, but few users reported the problem.
- It seems that their
- computers for training libsvm have the VPN client
- running. The VPN software has some bugs and causes this
- problem. Please try to close or disconnect the VPN client.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f428"><b>Q: Why on windows sometimes grid.py fails?</b></a>
- <br/>
- <p>
- This problem shouldn't happen after version
- 2.85. If you are using earlier versions,
- please download the latest one.
- <!--
- <p>
- If you are using earlier
- versions, the error message is probably
- <pre>
- Traceback (most recent call last):
- File "grid.py", line 349, in ?
- main()
- File "grid.py", line 344, in main
- redraw(db)
- File "grid.py", line 132, in redraw
- gnuplot.write("set term windows\n")
- IOError: [Errno 22] Invalid argument
- </pre>
- <p>Please try to close gnuplot windows and rerun.
- If the problem still occurs, comment the following
- two lines in grid.py by inserting "#" in the beginning:
- <pre>
- redraw(db)
- redraw(db,1)
- </pre>
- Then you get accuracy only but not cross validation contours.
- -->
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f429"><b>Q: Why grid.py/easy.py sometimes generates the following warning message?</b></a>
- <br/>
- <pre>
- Warning: empty z range [62.5:62.5], adjusting to [61.875:63.125]
- Notice: cannot contour non grid data!
- </pre>
- <p>Nothing is wrong and please disregard the
- message. It is from gnuplot when drawing
- the contour.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q4:_Training_and_prediction"></a>
- <a name="f430"><b>Q: Why the sign of predicted labels and decision values are sometimes reversed?</b></a>
- <br/>
- <p>Nothing is wrong. Very likely you have two labels +1/-1 and the first instance in your data
- has -1.
- Think about the case of labels +5/+10. Since
- SVM needs to use +1/-1, internally
- we map +5/+10 to +1/-1 according to which
- label appears first.
- Hence a positive decision value implies
- that we should predict the "internal" +1,
- which may not be the +1 in the input file.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q5:_Probability_outputs"></a>
- <a name="f425"><b>Q: Why training a probability model (i.e., -b 1) takes longer time</b></a>
- <br/>
- <p>
- To construct this probability model, we internally conduct a
- cross validation, which is more time consuming than
- a regular training.
- Hence, in general you do parameter selection first without
- -b 1. You only use -b 1 when good parameters have been
- selected. In other words, you avoid using -b 1 and -v
- together.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q5:_Probability_outputs"></a>
- <a name="f426"><b>Q: Why using the -b option does not give me better accuracy?</b></a>
- <br/>
- <p>
- There is absolutely no reason the probability outputs guarantee
- you better accuracy. The main purpose of this option is
- to provide you the probability estimates, but not to boost
- prediction accuracy. From our experience,
- after proper parameter selections, in general with
- and without -b have similar accuracy. Occasionally there
- are some differences.
- It is not recommended to compare the two under
- just a fixed parameter
- set as more differences will be observed.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q5:_Probability_outputs"></a>
- <a name="f427"><b>Q: Why using svm-predict -b 0 and -b 1 gives different accuracy values?</b></a>
- <br/>
- <p>
- Let's just consider two-class classification here. After probability information is obtained in training,
- we do not have
- <p>
- prob > = 0.5 if and only if decision value >= 0.
- <p>
- So predictions may be different with -b 0 and 1.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q6:_Graphic_interface"></a>
- <a name="f501"><b>Q: How can I save images drawn by svm-toy?</b></a>
- <br/>
- <p>
- For Microsoft windows, first press the "print screen" key on the keyboard.
- Open "Microsoft Paint"
- (included in Windows)
- and press "ctrl-v." Then you can clip
- the part of picture which you want.
- For X windows, you can
- use the program "xv" or "import" to grab the picture of the svm-toy window.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q6:_Graphic_interface"></a>
- <a name="f502"><b>Q: I press the "load" button to load data points but why svm-toy does not draw them ?</b></a>
- <br/>
- <p>
- The program svm-toy assumes both attributes (i.e. x-axis and y-axis
- values) are in (0,1). Hence you want to scale your
- data to between a small positive number and
- a number less than but very close to 1.
- Moreover, class labels must be 1, 2, or 3
- (not 1.0, 2.0 or anything else).
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q6:_Graphic_interface"></a>
- <a name="f503"><b>Q: I would like svm-toy to handle more than three classes of data, what should I do ?</b></a>
- <br/>
- <p>
- Taking windows/svm-toy.cpp as an example, you need to
- modify it and the difference
- from the original file is as the following: (for five classes of
- data)
- <pre>
- 30,32c30
- < RGB(200,0,200),
- < RGB(0,160,0),
- < RGB(160,0,0)
- ---
- > RGB(200,0,200)
- 39c37
- < HBRUSH brush1, brush2, brush3, brush4, brush5;
- ---
- > HBRUSH brush1, brush2, brush3;
- 113,114d110
- < brush4 = CreateSolidBrush(colors[7]);
- < brush5 = CreateSolidBrush(colors[8]);
- 155,157c151
- < else if(v==3) return brush3;
- < else if(v==4) return brush4;
- < else return brush5;
- ---
- > else return brush3;
- 325d318
- < int colornum = 5;
- 327c320
- < svm_node *x_space = new svm_node[colornum * prob.l];
- ---
- > svm_node *x_space = new svm_node[3 * prob.l];
- 333,338c326,331
- < x_space[colornum * i].index = 1;
- < x_space[colornum * i].value = q->x;
- < x_space[colornum * i + 1].index = 2;
- < x_space[colornum * i + 1].value = q->y;
- < x_space[colornum * i + 2].index = -1;
- < prob.x[i] = &x_space[colornum * i];
- ---
- > x_space[3 * i].index = 1;
- > x_space[3 * i].value = q->x;
- > x_space[3 * i + 1].index = 2;
- > x_space[3 * i + 1].value = q->y;
- > x_space[3 * i + 2].index = -1;
- > prob.x[i] = &x_space[3 * i];
- 397c390
- < if(current_value > 5) current_value = 1;
- ---
- > if(current_value > 3) current_value = 1;
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q7:_Java_version_of_libsvm"></a>
- <a name="f601"><b>Q: What is the difference between Java version and C++ version of libsvm?</b></a>
- <br/>
- <p>
- They are the same thing. We just rewrote the C++ code
- in Java.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q7:_Java_version_of_libsvm"></a>
- <a name="f602"><b>Q: Is the Java version significantly slower than the C++ version?</b></a>
- <br/>
- <p>
- This depends on the VM you used. We have seen good
- VM which leads the Java version to be quite competitive with
- the C++ code. (though still slower)
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q7:_Java_version_of_libsvm"></a>
- <a name="f603"><b>Q: While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</b></a>
- <br/>
- <p>
- You should try to increase the maximum Java heap size.
- For example,
- <pre>
- java -Xmx2048m -classpath libsvm.jar svm_train ...
- </pre>
- sets the maximum heap size to 2048M.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q7:_Java_version_of_libsvm"></a>
- <a name="f604"><b>Q: Why you have the main source file svm.m4 and then transform it to svm.java?</b></a>
- <br/>
- <p>
- Unlike C, Java does not have a preprocessor built-in.
- However, we need some macros (see first 3 lines of svm.m4).
- </ul>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q8:_Python_interface"></a>
- <a name="f702"><b>Q: On MS windows, why does python fail to load the pyd file?</b></a>
- <br/>
- <p>
- It seems the pyd file is version dependent. So far we haven't
- found out a good solution. Please email us if you have any
- good suggestions.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q8:_Python_interface"></a>
- <a name="f703"><b>Q: How to modify the python interface on MS windows and rebuild the .pyd file ?</b></a>
- <br/>
- <p>
- To modify the interface, follow the instructions given in
- <a href=
- http://www.swig.org/Doc1.3/Python.html#Python>
- http://www.swig.org/Doc1.3/Python.html#Python
- </a>
- <p>
- If you just want to build .pyd for a different python version,
- after libsvm 2.5, you can easily use the file Makefile.win.
- See details in README.
- Alternatively, you can use Visual C++. Here is
- the example using Visual Studio .Net 2005:
- <ol>
- <li>Create a Win32 DLL project and set (in Project->$Project_Name
- Properties...->Configuration) to "Release."
- About how to create a new dynamic link library, please refer to
- <a href=http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx>http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx</a>
- <li> Add svm.cpp, svmc_wrap.c, pythonXX.lib to your project.
- <li> Add the directories containing Python.h and svm.h to the Additional
- Include Directories(in Project->$Project_Name
- Properties...->C/C++->General)
- <li> Add __WIN32__ to Preprocessor definitions (in
- Project->$Project_Name Properties...->C/C++->Preprocessor)
- <li> Set Create/Use Precompiled Header to Not Using Precompiled Headers
- (in Project->$Project_Name Properties...->C/C++->Precompiled Headers)
- <li> Build the DLL.
- <li> You may have to rename .dll to .pyd
- </ol>
- <!--
- There do exist work arounds, however. In
- http://aspn.activestate.com/ASPN/Mail/Message/python-list/983252
- they presented a solution: 1) find the version of python in the
- registry 2) perform LoadLibrary("pythonxx.dll") and 3) resolve the
- reference to functions through GetProcAddress. It is said that SWIG
- may help on this.
- http://mailman.cs.uchicago.edu/pipermail/swig/2001-July/002744.html
- presented a similar example.
- -->
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q8:_Python_interface"></a>
- <a name="f704"><b>Q: Except the python-C++ interface provided, could I use Jython to call libsvm ?</b></a>
- <br/>
- <p> Yes, here are some examples:
- <pre>
- $ export CLASSPATH=$CLASSPATH:~/libsvm-2.4/java/libsvm.jar
- $ ./jython
- Jython 2.1a3 on java1.3.0 (JIT: jitc)
- Type "copyright", "credits" or "license" for more information.
- >>> from libsvm import *
- >>> dir()
- ['__doc__', '__name__', 'svm', 'svm_model', 'svm_node', 'svm_parameter',
- 'svm_problem']
- >>> x1 = [svm_node(index=1,value=1)]
- >>> x2 = [svm_node(index=1,value=-1)]
- >>> param = svm_parameter(svm_type=0,kernel_type=2,gamma=1,cache_size=40,eps=0.001,C=1,nr_weight=0,shrinking=1)
- >>> prob = svm_problem(l=2,y=[1,-1],x=[x1,x2])
- >>> model = svm.svm_train(prob,param)
- *
- optimization finished, #iter = 1
- nu = 1.0
- obj = -1.018315639346838, rho = 0.0
- nSV = 2, nBSV = 2
- Total nSV = 2
- >>> svm.svm_predict(model,x1)
- 1.0
- >>> svm.svm_predict(model,x2)
- -1.0
- >>> svm.svm_save_model("test.model",model)
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q8:_Python_interface"></a>
- <a name="f705"><b>Q: How could I install the python interface on Mac OS? </b></a>
- <br/>
- <p> Instead of
- LDFLAGS = -shared
- in the Makefile, you need
- <pre>
- LDFLAGS = -framework Python -bundle
- </pre>
- <!--
- LDFLAGS = -bundle -flat_namespace -undefined suppress
- -->
- The problem is that under MacOs there is no "shared libraries."
- Instead they use "dynamic libraries."
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q8:_Python_interface"></a>
- <a name="f706"><b>Q: I typed "make" on a unix system, but it says "Python.h: No such file or directory?"</b></a>
- <br/>
- <p>
- Even though you may have python on your
- system, very likely
- python development tools
- are not installed. Please check with
- your system administrator.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q9:_MATLAB_interface"></a>
- <a name="f801"><b>Q: I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
- <br/>
- <p>
- Your compiler version may not be supported/compatible for MATLAB.
- Please check <a href=http://www.mathworks.com/support/compilers/current_release>this MATLAB page</a> first and then specify the version
- number. For example, if g++ 3.3 is supported, replace
- <pre>
- CXX = g++
- </pre>
- in the Makefile with
- <pre>
- CXX = g++-3.3
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q9:_MATLAB_interface"></a>
- <a name="f802"><b>Q: Does the MATLAB interface provide a function to do scaling?</b></a>
- <br/>
- <p>
- It is extremely easy to do scaling under MATLAB.
- The following one-line code scale each feature to the range
- of [0.1]:
- <pre>
- (data - repmat(min(data,[],1),size(data,1),1))./(repmat(max(data,[],1)-min(data,[],1),size(data,1),1))
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q9:_MATLAB_interface"></a>
- <a name="f803"><b>Q: How could I use MATLAB interface for parameter selection?</b></a>
- <br/>
- <p>
- One can do this by a simple loop.
- See the following example:
- <pre>
- bestcv = 0;
- for log2c = -1:3,
- for log2g = -4:1,
- cmd = ['-v 5 -c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];
- cv = svmtrain(heart_scale_label, heart_scale_inst, cmd);
- if (cv >= bestcv),
- bestcv = cv; bestc = 2^log2c; bestg = 2^log2g;
- end
- fprintf('%g %g %g (best c=%g, g=%g, rate=%g)\n', log2c, log2g, cv, bestc, bestg, bestcv);
- end
- end
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q9:_MATLAB_interface"></a>
- <a name="f804"><b>Q: How could I generate the primal variable w of linear SVM?</b></a>
- <br/>
- <p>
- Assume you have two labels -1 and +1.
- After obtaining the model from calling svmtrain,
- do the following to have w and b:
- <pre>
- w = model.SVs' * model.sv_coef;
- b = -model.rho;
- if model.Label(1) == -1
- w = -w;
- b = -b;
- end
- </pre>
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <a name="/Q9:_MATLAB_interface"></a>
- <a name="f805"><b>Q: Is there an OCTAVE interface for libsvm?</b></a>
- <br/>
- <p>
- Yes, after libsvm 2.86, the matlab interface
- works on OCTAVE as well. Please type
- <pre>
- make octave
- </pre>
- for installation.
- <p align="right">
- <a href="#_TOP">[Go Top]</a>
- <hr/>
- <p align="middle">
- <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">LIBSVM home page</a>
- </p>
- </body>
- </html>
|