1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- #ifndef _LIBSVM_H
- #define _LIBSVM_H
- #define LIBSVM_VERSION 286
- struct svm_node
- {
- int index;
- double value;
- };
- struct svm_problem
- {
- int l;
- double *y;
- struct svm_node **x;
- };
- enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */
- enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
- struct svm_parameter
- {
- int svm_type;
- int kernel_type;
- int degree; /* for poly */
- double gamma; /* for poly/rbf/sigmoid */
- double coef0; /* for poly/sigmoid */
- /* these are for training only */
- double cache_size; /* in MB */
- double eps; /* stopping criteria */
- double C; /* for C_SVC, EPSILON_SVR and NU_SVR */
- int nr_weight; /* for C_SVC */
- int *weight_label; /* for C_SVC */
- double* weight; /* for C_SVC */
- double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */
- double p; /* for EPSILON_SVR */
- int shrinking; /* use the shrinking heuristics */
- int probability; /* do probability estimates */
- };
- //
- // svm_model
- //
- struct svm_model
- {
- svm_parameter param; // parameter
- int nr_class; // number of classes, = 2 in regression/one class svm
- int l; // total #SV
- svm_node **SV; // SVs (SV[l])
- double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l])
- double *rho; // constants in decision functions (rho[k*(k-1)/2])
- double *probA; // pariwise probability information
- double *probB;
- // for classification only
- int *label; // label of each class (label[k])
- int *nSV; // number of SVs for each class (nSV[k])
- // nSV[0] + nSV[1] + ... + nSV[k-1] = l
- // XXX
- int free_sv; // 1 if svm_model is created by svm_load_model
- // 0 if svm_model is created by svm_train
- };
- struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
- void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
- int svm_save_model(const char *model_file_name, const struct svm_model *model);
- struct svm_model *svm_load_model(const char *model_file_name);
- int svm_get_svm_type(const struct svm_model *model);
- int svm_get_nr_class(const struct svm_model *model);
- void svm_get_labels(const struct svm_model *model, int *label);
- double svm_get_svr_probability(const struct svm_model *model);
- void svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
- double svm_predict(const struct svm_model *model, const struct svm_node *x);
- double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
- void svm_destroy_model(struct svm_model *model);
- void svm_destroy_param(struct svm_parameter *param);
- const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
- int svm_check_probability_model(const struct svm_model *model);
- #endif /* _LIBSVM_H */
|