123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- // -*- mode: c++; coding: utf-8 -*-
- /// @file view-ops.H
- /// @brief Operations specific to Views
- // (c) Daniel Llorens - 2013-2014, 2017
- // This library is free software; you can redistribute it and/or modify it under
- // the terms of the GNU Lesser General Public License as published by the Free
- // Software Foundation; either version 3 of the License, or (at your option) any
- // later version.
- #pragma once
- #include "ra/concrete.H"
- #include <complex>
- #if defined(RA_CHECK_BOUNDS) && RA_CHECK_BOUNDS==0
- #define CHECK_BOUNDS( cond )
- #else
- #define CHECK_BOUNDS( cond ) RA_ASSERT( cond, 0 )
- #endif
- namespace ra {
- template <class T, rank_t RANK> inline
- View<T, RANK> reverse(View<T, RANK> const & view, int k)
- {
- View<T, RANK> r = view;
- auto & dim = r.dim[k];
- if (dim.size!=0) {
- r.p += dim.stride*(dim.size-1);
- dim.stride *= -1;
- }
- return r;
- }
- // dynamic transposed axes list.
- template <class T, rank_t RANK, class S> inline
- View<T, RANK_ANY> transpose_(S && s, View<T, RANK> const & view)
- {
- CHECK_BOUNDS(view.rank()==dim_t(ra::size(s)));
- auto rp = std::max_element(s.begin(), s.end());
- rank_t dstrank = (rp==s.end() ? 0 : *rp+1);
- View<T, RANK_ANY> r { decltype(r.dim)(dstrank, Dim { DIM_BAD, 0 }), view.data() };
- int k = 0;
- for (int sk: s) {
- Dim & dest = r.dim[sk];
- dest.stride += view.dim[k].stride;
- dest.size = dest.size>=0 ? std::min(dest.size, view.dim[k].size) : view.dim[k].size;
- ++k;
- }
- CHECK_BOUNDS(every(map([](auto && dest) { return dest.size!=DIM_BAD; }, r.dim)) && "bad transpose axes");
- return r;
- }
- template <class T, rank_t RANK, class S> inline
- View<T, RANK_ANY> transpose(S && s, View<T, RANK> const & view)
- {
- return transpose_(std::forward<S>(s), view);
- }
- // Note that we need the compile time values and not the sizes to deduce the rank of the output, so it would be useless to provide a builtin array shim as we do with reshape().
- template <class T, rank_t RANK> inline
- View<T, RANK_ANY> transpose(std::initializer_list<ra::rank_t> s, View<T, RANK> const & view)
- {
- return transpose_(s, view);
- }
- // static transposed axes list.
- template <int ... Iarg, class T, rank_t RANK> inline
- auto transpose(View<T, RANK> const & view)
- {
- static_assert(RANK==RANK_ANY || RANK==sizeof...(Iarg), "bad output rank");
- CHECK_BOUNDS((view.rank()==sizeof...(Iarg)) && "bad output rank");
- using dummy_s = mp::makelist<sizeof...(Iarg), mp::int_t<0>>;
- using ti = axes_list_indices<mp::int_list<Iarg ...>, dummy_s, dummy_s>;
- constexpr rank_t DSTRANK = mp::len<typename ti::dst>;
- View<T, DSTRANK> r { decltype(r.dim)(Dim { DIM_BAD, 0 }), view.data() };
- int k = 0;
- std::array<int, sizeof...(Iarg)> s {{ Iarg ... }};
- for (int sk: s) {
- Dim & dest = r.dim[sk];
- dest.stride += view.dim[k].stride;
- dest.size = dest.size>=0 ? std::min(dest.size, view.dim[k].size) : view.dim[k].size;
- ++k;
- }
- return r;
- }
- template <class T, rank_t RANK> inline
- auto diag(View<T, RANK> const & view)
- {
- return transpose<0, 0>(view);
- }
- template <class T, rank_t RANK> inline
- bool is_ravel_free(View<T, RANK> const & a)
- {
- if (a.rank()>1) {
- auto s = a.stride(a.rank()-1);
- for (int i=a.rank()-2; i>=0; --i) {
- s *= a.size(i+1);
- // on size=1 we don't care about the stride.
- if (a.stride(i)!=s || a.size(i)==1) {
- return false;
- }
- }
- }
- return true;
- }
- template <class T, rank_t RANK> inline
- View<T, 1> ravel_free(View<T, RANK> const & a)
- {
- CHECK_BOUNDS(is_ravel_free(a));
- return ra::View<T, 1>({{size(a), a.stride(a.rank()-1)}}, a.p);
- }
- template <class T, rank_t RANK, class S> inline
- auto reshape_(View<T, RANK> const & a, S && sb_)
- {
- auto sb = concrete(std::forward<S>(sb_));
- // FIXME when we need to copy, accept/return Shared
- dim_t la = ra::size(a);
- dim_t lb = 1;
- for (int i=0; i<ra::size(sb); ++i) {
- if (sb[i]==-1) {
- dim_t quot = lb;
- for (int j=i+1; j<ra::size(sb); ++j) {
- quot *= sb[j];
- CHECK_BOUNDS(quot>0 && "cannot deduce dimensions");
- }
- auto pv = la/quot;
- CHECK_BOUNDS((la%quot==0 && pv>=0) && "bad placeholder");
- sb[i] = pv;
- lb = la;
- break;
- } else {
- lb *= sb[i];
- }
- }
- auto sa = shape(a);
- // FIXME should be able to reshape Scalar etc.
- View<T, ra::size_s(sb)> b(map([](auto i) { return Dim { DIM_BAD, 0 }; }, ra::iota(ra::size(sb))), a.data());
- rank_t i = 0;
- for (; i<a.rank() && i<b.rank(); ++i) {
- if (sa[a.rank()-i-1]!=sb[b.rank()-i-1]) {
- assert(is_ravel_free(a) && "reshape w/copy not implemented");
- if (la>=lb) {
- // FIXME View(SS const & s, T * p). Cf [ra37].
- for_each([](auto & dim, auto && s) { dim.size = s; }, b.dim, sb);
- filldim(b.dim.size(), b.dim.end());
- for (int j=0; j!=b.rank(); ++j) {
- b.dim[j].stride *= a.stride(a.rank()-1);
- }
- return b;
- } else {
- assert(0 && "reshape case not implemented");
- }
- } else {
- // select
- b.dim[b.rank()-i-1] = a.dim[a.rank()-i-1];
- }
- }
- if (i==a.rank()) {
- // tile & return
- for (rank_t j=i; j<b.rank(); ++j) {
- b.dim[b.rank()-j-1] = { sb[b.rank()-j-1], 0 };
- }
- }
- return b;
- }
- template <class T, rank_t RANK, class S> inline
- auto reshape(View<T, RANK> const & a, S && sb_)
- {
- return reshape_(a, std::forward<S>(sb_));
- }
- // We need dimtype b/c {1, ...} deduces to int and that fails to match ra::dim_t.
- // We could use initializer_list to handle the general case, but that would produce a var rank result because its size cannot be deduced at compile time :-/. Unfortunately an initializer_list specialization would override this one, so we cannot provide it as a fallback.
- template <class T, rank_t RANK, class dimtype, int N> inline
- auto reshape(View<T, RANK> const & a, dimtype const (&sb_)[N])
- {
- return reshape_(a, sb_);
- }
- // lo = lower bounds, hi = upper bounds.
- // The stencil indices are in [0 lo+1+hi] = [-lo +hi].
- template <class LO, class HI, class T, rank_t N> inline
- View<T, rank_sum(N, N)>
- stencil(View<T, N> const & a, LO && lo, HI && hi)
- {
- View<T, rank_sum(N, N)> s;
- s.p = a.data();
- ra::resize(s.dim, 2*a.rank());
- CHECK_BOUNDS(every(lo>=0));
- CHECK_BOUNDS(every(hi>=0));
- for_each([](auto & dims, auto && dima, auto && lo, auto && hi)
- {
- CHECK_BOUNDS(dima.size>=lo+hi && "stencil is too large for array");
- dims = {dima.size-lo-hi, dima.stride};
- },
- ptr(s.dim.data()), a.dim, lo, hi);
- for_each([](auto & dims, auto && dima, auto && lo, auto && hi)
- { dims = {lo+hi+1, dima.stride}; },
- ptr(s.dim.data()+a.rank()), a.dim, lo, hi);
- return s;
- }
- // Make last sizes of View<> be compile-time constants.
- template <class super_t, rank_t SUPERR, class T, rank_t RANK> inline
- auto explode_(View<T, RANK> const & a)
- {
- // TODO Reduce to single check, either the first or the second.
- static_assert(RANK>=SUPERR || RANK==RANK_ANY, "rank of a is too low");
- CHECK_BOUNDS(a.rank()>=SUPERR && "rank of a is too low");
- View<super_t, rank_sum(RANK, -SUPERR)> b;
- ra::resize(b.dim, a.rank()-SUPERR);
- dim_t r = 1;
- for (int i=0; i<SUPERR; ++i) {
- r *= a.size(i+b.rank());
- }
- CHECK_BOUNDS(r*sizeof(T)==sizeof(super_t) && "size of SUPERR axes doesn't match super type");
- for (int i=0; i<b.rank(); ++i) {
- CHECK_BOUNDS(a.stride(i) % r==0 && "stride of SUPERR axes doesn't match super type");
- b.dim[i].stride = a.stride(i) / r;
- b.dim[i].size = a.size(i);
- }
- CHECK_BOUNDS((b.rank()==0 || a.stride(b.rank()-1)==r) && "super type is not compact in array");
- b.p = reinterpret_cast<super_t *>(a.data());
- return b;
- }
- template <class super_t, class T, rank_t RANK> inline
- auto explode(View<T, RANK> const & a)
- {
- return explode_<super_t, (std::is_same_v<super_t, std::complex<T>> ? 1 : ra_traits<super_t>::rank_s())>(a);
- }
- // TODO Consider these in ra_traits<>.
- template <class T, std::enable_if_t<is_scalar<T>, int> =0> inline int gstride(int i) { return 1; }
- template <class T, std::enable_if_t<!is_scalar<T>, int> =0> inline int gstride(int i) { return T::stride(i); }
- template <class T, std::enable_if_t<is_scalar<T>, int> =0> inline int gsize(int i) { return 1; }
- template <class T, std::enable_if_t<!is_scalar<T>, int> =0> inline int gsize(int i) { return T::size(i); }
- // TODO This routine is not totally safe; the ranks below SUBR must be compact, which is not checked.
- template <class sub_t, class super_t, rank_t RANK> inline
- auto collapse(View<super_t, RANK> const & a)
- {
- using super_v = typename ra_traits<super_t>::value_type;
- using sub_v = typename ra_traits<sub_t>::value_type;
- constexpr int subtype = sizeof(super_v)/sizeof(sub_t);
- constexpr int SUBR = ra_traits<super_t>::rank_s()-ra_traits<sub_t>::rank_s();
- View<sub_t, rank_sum(RANK, SUBR+int(subtype>1))> b;
- resize(b.dim, a.rank()+SUBR+int(subtype>1));
- constexpr dim_t r = sizeof(super_t)/sizeof(sub_t);
- static_assert(sizeof(super_t)==r*sizeof(sub_t), "cannot make axis of super_t from sub_t");
- for (int i=0; i<a.rank(); ++i) {
- b.dim[i].stride = a.stride(i) * r;
- b.dim[i].size = a.size(i);
- }
- constexpr int t = sizeof(super_v)/sizeof(sub_v);
- constexpr int s = sizeof(sub_t)/sizeof(sub_v);
- static_assert(t*sizeof(sub_v)>=1, "bad subtype");
- for (int i=0; i<SUBR; ++i) {
- CHECK_BOUNDS(((gstride<super_t>(i)/s)*s==gstride<super_t>(i)) && "bad strides"); // TODO is actually static
- b.dim[a.rank()+i].stride = gstride<super_t>(i) / s * t;
- b.dim[a.rank()+i].size = gsize<super_t>(i);
- }
- if (subtype>1) {
- b.dim[a.rank()+SUBR].stride = 1;
- b.dim[a.rank()+SUBR].size = t;
- }
- b.p = reinterpret_cast<sub_t *>(a.data());
- return b;
- }
- // For functions that require compact arrays (TODO they really shouldn't).
- template <class A> inline
- bool const crm(A const & a)
- {
- return ra::size(a)==0 || is_c_order(a);
- }
- } // namespace ra
- #undef CHECK_BOUNDS
|