12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- // -*- mode: c++; coding: utf-8 -*-
- // Numerical differentiation
- // Adapted from blitz++/examples/deriv.cpp
- // Daniel Llorens - 2015
- #include "ra/ra.H"
- #include <iostream>
- using std::cout, std::endl, std::flush;
- using Array1D = ra::Big<double, 1>;
- // "index placeholder" which represents the array index for the first axis in a multidimensional expression.
- ra::TensorIndex<0> i;
- int main()
- {
- // In this example, the function cos(x)^2 and its second derivative
- // 2 (sin(x)^2 - cos(x)^2) are sampled over the range [0,1).
- // The second derivative is approximated numerically using a
- // [ 1 -2 1 ] mask, and the approximation error is computed.
- const int numSamples = 100; // Number of samples
- double delta = 1. / numSamples; // Spacing of samples
- ra::Iota<int> R(numSamples); // Index set 0 .. (numSamples-1)
- cout << "R... " << R << endl;
- // Sample the function y = cos(x)^2 over [0,1)
- //
- // The initialization for y (below) will be translated via expression
- // templates into something of the flavour
- //
- // for (unsigned i=0; i < 99; ++i)
- // {
- // double _t1 = cos(i * delta);
- // y[i] = _t1 * _t1;
- // }
- // [ra] You need to give a size at construction because 'i' doesn't provide one; you could do instead
- // Array1D y = sqr(cos(R * delta));
- // since R does have a defined size.
- Array1D y({numSamples}, sqr(cos(i * delta)));
- // Sample the exact second derivative
- Array1D y2exact({numSamples}, 2.0 * (sqr(sin(i * delta)) - sqr(cos(i * delta))));
- // Approximate the 2nd derivative using a [ 1 -2 1 ] mask
- // We can only apply this mask to the elements 1 .. 98, since
- // we need one element on either side to apply the mask.
- // I-1 etc. are beatable if RA_OPTIMIZE is true.
- ra::Iota<int> I(numSamples-2, 1);
- Array1D y2({numSamples}, ra::none);
- y2(I) = (y(I-1) - 2 * y(I) + y(I+1)) / (delta*delta);
- // The above difference equation will be transformed into
- // something along the lines of
- //
- // double _t2 = delta*delta;
- // for (int i=1; i < 99; ++i)
- // y2[i] = (y[i-1] - 2 * y[i] + y[i+1]) / _t2;
- // Now calculate the root mean square approximation error:
- // [ra] TODO don't have mean() yet
- double error = sqrt(sum(sqr(y2(I) - y2exact(I)))/size(I));
- // Display a few elements from the vectors.
- // This range constructor means elements 1 to 91 in increments
- // of 15.
- ra::Iota<int> displayRange(7, 1, 15);
- cout << "Exact derivative:" << y2exact(displayRange) << endl
- << "Approximation: " << y2(displayRange) << endl
- << "RMS Error: " << error << endl;
- return 0;
- }
|