123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- // -*- mode: c++; coding: utf-8 -*-
- /// @file optimize.hh
- /// @brief Naive optimization pass over ETs.
- // (c) Daniel Llorens - 2015-2018
- // This library is free software; you can redistribute it and/or modify it under
- // the terms of the GNU Lesser General Public License as published by the Free
- // Software Foundation; either version 3 of the License, or (at your option) any
- // later version.
- #pragma once
- #include "ra/small.hh"
- // no real downside to this.
- #ifndef RA_DO_OPT_IOTA
- #define RA_DO_OPT_IOTA 1
- #endif
- // benchmark shows it's bad by default; probably requires optimizing also +=, etc.
- #ifndef RA_DO_OPT_SMALLVECTOR
- #define RA_DO_OPT_SMALLVECTOR 0
- #endif
- namespace ra {
- template <class E> inline decltype(auto) constexpr optimize(E && e) { return std::forward<E>(e); }
- // These are named to match & transform Expr<OPNAME, ...> later on, and used by operator+ etc.
- #define DEFINE_NAMED_BINARY_OP(OP, OPNAME) \
- struct OPNAME \
- { \
- template <class A, class B> \
- decltype(auto) operator()(A && a, B && b) { return std::forward<A>(a) OP std::forward<B>(b); } \
- };
- DEFINE_NAMED_BINARY_OP(+, plus)
- DEFINE_NAMED_BINARY_OP(-, minus)
- DEFINE_NAMED_BINARY_OP(*, times)
- DEFINE_NAMED_BINARY_OP(/, slash)
- #undef DEFINE_NAMED_BINARY_OP
- // TODO need something to handle the & variants...
- #define ITEM(i) std::get<(i)>(e.t)
- #if RA_DO_OPT_IOTA==1
- // TODO iota(int)*real is not opt to iota(real) since a+a+... != n*a.
- template <class X> constexpr bool iota_op = ra::is_zero_or_scalar<X> && std::numeric_limits<value_t<X>>::is_integer;
- // --------------
- // plus
- // --------------
- template <class I, class J>
- requires (is_iota<I> && iota_op<J>)
- inline constexpr auto optimize(Expr<ra::plus, std::tuple<I, J>> && e)
- {
- return iota(ITEM(0).size_, ITEM(0).i_+ITEM(1), ITEM(0).stride_);
- }
- template <class I, class J>
- requires (iota_op<I> && is_iota<J>)
- inline constexpr auto optimize(Expr<ra::plus, std::tuple<I, J>> && e)
- {
- return iota(ITEM(1).size_, ITEM(0)+ITEM(1).i_, ITEM(1).stride_);
- }
- template <class I, class J>
- requires (is_iota<I> && is_iota<J>)
- inline constexpr auto optimize(Expr<ra::plus, std::tuple<I, J>> && e)
- {
- RA_CHECK(ITEM(0).size_==ITEM(1).size_ && "size mismatch");
- return iota(ITEM(0).size_, ITEM(0).i_+ITEM(1).i_, ITEM(0).stride_+ITEM(1).stride_);
- }
- // --------------
- // minus
- // --------------
- template <class I, class J>
- requires (is_iota<I> && iota_op<J>)
- inline constexpr auto optimize(Expr<ra::minus, std::tuple<I, J>> && e)
- {
- return iota(ITEM(0).size_, ITEM(0).i_-ITEM(1), ITEM(0).stride_);
- }
- template <class I, class J>
- requires (iota_op<I> && is_iota<J>)
- inline constexpr auto optimize(Expr<ra::minus, std::tuple<I, J>> && e)
- {
- return iota(ITEM(1).size_, ITEM(0)-ITEM(1).i_, -ITEM(1).stride_);
- }
- template <class I, class J>
- requires (is_iota<I> && is_iota<J>)
- inline constexpr auto optimize(Expr<ra::minus, std::tuple<I, J>> && e)
- {
- RA_CHECK(ITEM(0).size_==ITEM(1).size_ && "size mismatch");
- return iota(ITEM(0).size_, ITEM(0).i_-ITEM(1).i_, ITEM(0).stride_-ITEM(1).stride_);
- }
- // --------------
- // times
- // --------------
- template <class I, class J>
- requires (is_iota<I> && iota_op<J>)
- inline constexpr auto optimize(Expr<ra::times, std::tuple<I, J>> && e)
- {
- return iota(ITEM(0).size_, ITEM(0).i_*ITEM(1), ITEM(0).stride_*ITEM(1));
- }
- template <class I, class J>
- requires (iota_op<I> && is_iota<J>)
- inline constexpr auto optimize(Expr<ra::times, std::tuple<I, J>> && e)
- {
- return iota(ITEM(1).size_, ITEM(0)*ITEM(1).i_, ITEM(0)*ITEM(1).stride_);
- }
- #endif // RA_DO_OPT_IOTA
- #if RA_DO_OPT_SMALLVECTOR==1
- namespace {
- #if defined (__clang__)
- template <class T, int N> using extvector __attribute__((ext_vector_type(N))) = T;
- #else
- template <class T, int N> using extvector __attribute__((vector_size(N*sizeof(T)))) = T;
- #endif
- // FIXME find a way to peel qualifiers from parameter type of start(), to ignore SmallBase<SmallArray> vs SmallBase<SmallView> or const vs nonconst.
- template <class A, class T, dim_t N> constexpr bool match_smallvector =
- std::is_same_v<std::decay_t<A>, typename ra::Small<T, N>::template iterator<0>>
- || std::is_same_v<std::decay_t<A>, typename ra::Small<T, N>::template const_iterator<0>>;
- static_assert(match_smallvector<ra::cell_iterator_small<ra::SmallBase<ra::SmallView, double, mp::int_list<4>, mp::int_list<1>>, 0>,
- double, 4>);
- }; //namespace
- #define RA_OPT_SMALLVECTOR_OP(OP, NAME, T, N) \
- template <class A, class B> \
- requires (match_smallvector<A, T, N> && match_smallvector<B, T, N>) \
- inline auto \
- optimize(ra::Expr<NAME, std::tuple<A, B>> && e) \
- { \
- alignas (alignof(extvector<T, N>)) ra::Small<T, N> val; \
- *(extvector<T, N> *)(&val) = *(extvector<T, N> *)((ITEM(0).c.p)) OP *(extvector<T, N> *)((ITEM(1).c.p)); \
- return val; \
- }
- #define RA_OPT_SMALLVECTOR_OP_FUNS(T, N) \
- RA_OPT_SMALLVECTOR_OP(+, ra::plus, T, N) \
- RA_OPT_SMALLVECTOR_OP(-, ra::minus, T, N) \
- RA_OPT_SMALLVECTOR_OP(/, ra::slash, T, N) \
- RA_OPT_SMALLVECTOR_OP(*, ra::times, T, N)
- #define RA_OPT_SMALLVECTOR_OP_SIZES(T) \
- RA_OPT_SMALLVECTOR_OP_FUNS(T, 2) \
- RA_OPT_SMALLVECTOR_OP_FUNS(T, 4) \
- RA_OPT_SMALLVECTOR_OP_FUNS(T, 8)
- RA_OPT_SMALLVECTOR_OP_SIZES(double)
- RA_OPT_SMALLVECTOR_OP_SIZES(float)
- #undef RA_OPT_SMALLVECTOR_OP_SIZES
- #undef RA_OPT_SMALLVECTOR_OP_FUNS
- #undef RA_OPT_SMALLVECTOR_OP_OP
- #endif // RA_DO_OPT_SMALLVECTOR
- #undef ITEM
- } // namespace ra
|