123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861 |
- // -*- mode: c++; coding: utf-8 -*-
- // ra-ra - Operator overloads for expression templates, and root header.
- // (c) Daniel Llorens - 2014-2023
- // This library is free software; you can redistribute it and/or modify it under
- // the terms of the GNU General Public License as published by the Free
- // Software Foundation; either version 3 of the License, or (at your option) any
- // later version.
- #pragma once
- #include "big.hh"
- #include <cmath>
- #include <complex>
- #ifndef RA_DO_OPT
- #define RA_DO_OPT 1 // enabled by default
- #endif
- #if RA_DO_OPT==1
- #define RA_OPT optimize
- #else
- #define RA_OPT
- #endif
- #if defined(RA_DO_FMA)
- #elif defined(FP_FAST_FMA)
- #define RA_DO_FMA FP_FAST_FMA
- #else
- #define RA_DO_FMA 0
- #endif
- // Enable ADL with explicit template args. See http://stackoverflow.com/questions/9838862.
- template <class A> constexpr void transpose(ra::noarg);
- template <int A> constexpr void iter(ra::noarg);
- template <class T> constexpr void cast(ra::noarg);
- // ---------------------------
- // scalar overloads
- // ---------------------------
- // abs() needs no qualifying for ra:: types (ADL), shouldn't need it on pods either. FIXME maybe let user decide.
- // std::max/min are special, see DEF_NAME in ra.hh.
- using std::max, std::min, std::abs, std::fma, std::sqrt, std::pow, std::exp, std::swap,
- std::isfinite, std::isinf, std::isnan, std::clamp, std::lerp, std::conj, std::expm1;
- #define FOR_FLOAT(T) \
- constexpr T conj(T x) { return x; } \
- FOR_EACH(FOR_FLOAT, float, double)
- #undef FOR_FLOAT
- #define FOR_FLOAT(R) \
- constexpr std::complex<R> \
- fma(std::complex<R> const & a, std::complex<R> const & b, std::complex<R> const & c) \
- { \
- return std::complex<R>(fma(a.real(), b.real(), fma(-a.imag(), b.imag(), c.real())), \
- fma(a.real(), b.imag(), fma(a.imag(), b.real(), c.imag()))); \
- } \
- constexpr bool isfinite(std::complex<R> z) { return isfinite(z.real()) && isfinite(z.imag()); } \
- constexpr bool isnan(std::complex<R> z) { return isnan(z.real()) || isnan(z.imag()); } \
- constexpr bool isinf(std::complex<R> z) { return (isinf(z.real()) || isinf(z.imag())) && !isnan(z); }
- FOR_EACH(FOR_FLOAT, float, double)
- #undef FOR_FLOAT
- namespace ra {
- // As an array op; special definitions for rank 0.
- template <class T> constexpr bool ra_is_real = std::numeric_limits<T>::is_integer || std::is_floating_point_v<T>;
- template <class T> requires (ra_is_real<T>) constexpr T amax(T const & x) { return x; }
- template <class T> requires (ra_is_real<T>) constexpr T amin(T const & x) { return x; }
- template <class T> requires (ra_is_real<T>) constexpr T sqr(T const & x) { return x*x; }
- #define RA_FOR_TYPES(T) \
- constexpr T arg(T x) { return T(0); } \
- constexpr T conj(T x) { return x; } \
- constexpr T mul_conj(T x, T y) { return x*y; } \
- constexpr T sqrm(T x) { return sqr(x); } \
- constexpr T sqrm(T x, T y) { return sqr(x-y); } \
- constexpr T dot(T x, T y) { return x*y; } \
- constexpr T fma_conj(T a, T b, T c) { return fma(a, b, c); } \
- constexpr T norm2(T x) { return std::abs(x); } \
- constexpr T norm2(T x, T y) { return std::abs(x-y); } \
- constexpr T rel_error(T a, T b) { auto den = (abs(a)+abs(b)); return den==0 ? 0. : 2.*norm2(a, b)/den; } \
- constexpr T const & real_part(T const & x) { return x; } \
- constexpr T & real_part(T & x) { return x; } \
- constexpr T imag_part(T x) { return T(0); }
- FOR_EACH(RA_FOR_TYPES, float, double)
- #undef RA_FOR_TYPES
- // FIXME few still inline should eventually be constexpr.
- #define RA_FOR_TYPES(R, C) \
- inline R arg(C x) { return std::arg(x); } \
- constexpr C sqr(C x) { return x*x; } \
- constexpr C dot(C x, C y) { return x*y; } \
- constexpr C xi(R x) { return C(0, x); } \
- constexpr C xi(C z) { return C(-z.imag(), z.real()); } \
- constexpr R real_part(C const & z) { return z.real(); } \
- constexpr R imag_part(C const & z) { return z.imag(); } \
- inline R & real_part(C & z) { return reinterpret_cast<R *>(&z)[0]; } \
- inline R & imag_part(C & z) { return reinterpret_cast<R *>(&z)[1]; } \
- constexpr R sqrm(C x) { return sqr(x.real())+sqr(x.imag()); } \
- constexpr R sqrm(C x, C y) { return sqr(x.real()-y.real())+sqr(x.imag()-y.imag()); } \
- constexpr R norm2(C x) { return hypot(x.real(), x.imag()); } \
- constexpr R norm2(C x, C y) { return sqrt(sqrm(x, y)); } \
- inline R rel_error(C a, C b) { auto den = (abs(a)+abs(b)); return den==0 ? 0. : 2.*norm2(a, b)/den; } \
- /* conj(a) * b + c */ \
- constexpr C \
- fma_conj(C const & a, C const & b, C const & c) \
- { \
- return C(fma(a.real(), b.real(), fma(a.imag(), b.imag(), c.real())), \
- fma(a.real(), b.imag(), fma(-a.imag(), b.real(), c.imag()))); \
- } \
- /* conj(a) * b */ \
- constexpr C \
- mul_conj(C const & a, C const & b) \
- { \
- return C(a.real()*b.real()+a.imag()*b.imag(), \
- a.real()*b.imag()-a.imag()*b.real()); \
- }
- RA_FOR_TYPES(float, std::complex<float>)
- RA_FOR_TYPES(double, std::complex<double>)
- #undef RA_FOR_TYPES
- template <class T> constexpr bool is_scalar_def<std::complex<T>> = true;
- template <int ... Iarg, class A>
- constexpr decltype(auto)
- transpose(mp::int_list<Iarg ...>, A && a) { return transpose<Iarg ...>(RA_FWD(a)); }
- constexpr bool
- odd(unsigned int N) { return N & 1; }
- // --------------------------------
- // optimization pass over expression templates.
- // --------------------------------
- template <class E> constexpr decltype(auto) optimize(E && e) { return RA_FWD(e); }
- // FIXME only reduces iota exprs as operated on in ra.hh (operators), not a tree like WithLen does.
- #if RA_DO_OPT_IOTA==1
- // TODO maybe don't opt iota(int)*real -> iota(real) since a+a+... != n*a
- template <class X> concept iota_op = ra::is_zero_or_scalar<X> && std::is_arithmetic_v<ncvalue_t<X>>;
- // TODO something to handle the & variants...
- #define ITEM(i) std::get<(i)>(e.t)
- // FIXME gets() vs p2781r2
- // qualified ra::iota is necessary to avoid ADLing to std::iota (test/headers.cc).
- template <is_iota I, iota_op J>
- constexpr auto
- optimize(Expr<std::plus<>, std::tuple<I, J>> && e)
- { return ra::iota(ITEM(0).n, ITEM(0).i+ITEM(1), ITEM(0).s); }
- template <iota_op I, is_iota J>
- constexpr auto
- optimize(Expr<std::plus<>, std::tuple<I, J>> && e)
- { return ra::iota(ITEM(1).n, ITEM(0)+ITEM(1).i, ITEM(1).s); }
- template <is_iota I, is_iota J>
- constexpr auto
- optimize(Expr<std::plus<>, std::tuple<I, J>> && e)
- { return ra::iota(maybe_len(e), ITEM(0).i+ITEM(1).i, ITEM(0).s+ITEM(1).s); }
- template <is_iota I, iota_op J>
- constexpr auto
- optimize(Expr<std::minus<>, std::tuple<I, J>> && e)
- { return ra::iota(ITEM(0).n, ITEM(0).i-ITEM(1), ITEM(0).s); }
- template <iota_op I, is_iota J>
- constexpr auto
- optimize(Expr<std::minus<>, std::tuple<I, J>> && e)
- { return ra::iota(ITEM(1).n, ITEM(0)-ITEM(1).i, -ITEM(1).s); }
- template <is_iota I, is_iota J>
- constexpr auto
- optimize(Expr<std::minus<>, std::tuple<I, J>> && e)
- { return ra::iota(maybe_len(e), ITEM(0).i-ITEM(1).i, ITEM(0).s-ITEM(1).s); }
- template <is_iota I, iota_op J>
- constexpr auto
- optimize(Expr<std::multiplies<>, std::tuple<I, J>> && e)
- { return ra::iota(ITEM(0).n, ITEM(0).i*ITEM(1), ITEM(0).s*ITEM(1)); }
- template <iota_op I, is_iota J>
- constexpr auto
- optimize(Expr<std::multiplies<>, std::tuple<I, J>> && e)
- { return ra::iota(ITEM(1).n, ITEM(0)*ITEM(1).i, ITEM(0)*ITEM(1).s); }
- template <is_iota I>
- constexpr auto
- optimize(Expr<std::negate<>, std::tuple<I>> && e)
- { return ra::iota(ITEM(0).n, -ITEM(0).i, -ITEM(0).s); }
- #endif // RA_DO_OPT_IOTA
- #if RA_DO_OPT_SMALLVECTOR==1
- // FIXME can't match CellSmall directly, maybe bc N is in std::array { Dim { N, 1 } }.
- template <class T, dim_t N, class A> constexpr bool match_small =
- std::is_same_v<std::decay_t<A>, typename ra::Small<T, N>::View::iterator<0>>
- || std::is_same_v<std::decay_t<A>, typename ra::Small<T, N>::ViewConst::iterator<0>>;
- static_assert(match_small<double, 4, ra::Cell<double, ic_t<std::array { Dim { 4, 1 } }>, ic_t<0>>>);
- #define RA_OPT_SMALLVECTOR_OP(OP, NAME, T, N) \
- template <class A, class B> requires (match_small<T, N, A> && match_small<T, N, B>) \
- constexpr auto \
- optimize(ra::Expr<NAME, std::tuple<A, B>> && e) \
- { \
- alignas (alignof(extvector<T, N>)) ra::Small<T, N> val; \
- *(extvector<T, N> *)(&val) = *(extvector<T, N> *)((ITEM(0).c.cp)) OP *(extvector<T, N> *)((ITEM(1).c.cp)); \
- return val; \
- }
- #define RA_OPT_SMALLVECTOR_OP_FUNS(T, N) \
- static_assert(0==alignof(ra::Small<T, N>) % alignof(extvector<T, N>)); \
- RA_OPT_SMALLVECTOR_OP(+, std::plus<>, T, N) \
- RA_OPT_SMALLVECTOR_OP(-, std::minus<>, T, N) \
- RA_OPT_SMALLVECTOR_OP(/, std::divides<>, T, N) \
- RA_OPT_SMALLVECTOR_OP(*, std::multiplies<>, T, N)
- #define RA_OPT_SMALLVECTOR_OP_SIZES(T) \
- RA_OPT_SMALLVECTOR_OP_FUNS(T, 2) \
- RA_OPT_SMALLVECTOR_OP_FUNS(T, 4) \
- RA_OPT_SMALLVECTOR_OP_FUNS(T, 8)
- FOR_EACH(RA_OPT_SMALLVECTOR_OP_SIZES, float, double)
- #undef RA_OPT_SMALLVECTOR_OP_SIZES
- #undef RA_OPT_SMALLVECTOR_OP_FUNS
- #undef RA_OPT_SMALLVECTOR_OP_OP
- #endif // RA_DO_OPT_SMALLVECTOR
- #undef ITEM
- // --------------------------------
- // array versions of operators and functions
- // --------------------------------
- // We need zero/scalar specializations because the scalar/scalar operators maybe be templated (e.g. complex<>), so they won't be found when an implicit conversion to scalar is also needed, and e.g. ra::View<complex, 0> * complex would fail.
- // The function objects are matched in optimize.hh.
- #define DEF_NAMED_BINARY_OP(OP, OPNAME) \
- template <class A, class B> requires (tomap<A, B>) constexpr auto \
- operator OP(A && a, B && b) \
- { return RA_OPT(map(OPNAME(), RA_FWD(a), RA_FWD(b))); } \
- template <class A, class B> requires (toreduce<A, B>) constexpr auto \
- operator OP(A && a, B && b) \
- { return VALUE(RA_FWD(a)) OP VALUE(RA_FWD(b)); }
- DEF_NAMED_BINARY_OP(+, std::plus<>) DEF_NAMED_BINARY_OP(-, std::minus<>)
- DEF_NAMED_BINARY_OP(*, std::multiplies<>) DEF_NAMED_BINARY_OP(/, std::divides<>)
- DEF_NAMED_BINARY_OP(==, std::equal_to<>) DEF_NAMED_BINARY_OP(>, std::greater<>)
- DEF_NAMED_BINARY_OP(<, std::less<>) DEF_NAMED_BINARY_OP(>=, std::greater_equal<>)
- DEF_NAMED_BINARY_OP(<=, std::less_equal<>) DEF_NAMED_BINARY_OP(!=, std::not_equal_to<>)
- DEF_NAMED_BINARY_OP(|, std::bit_or<>) DEF_NAMED_BINARY_OP(&, std::bit_and<>)
- DEF_NAMED_BINARY_OP(^, std::bit_xor<>) DEF_NAMED_BINARY_OP(<=>, std::compare_three_way)
- #undef DEF_NAMED_BINARY_OP
- // FIXME address sanitizer complains in bench-optimize.cc if we use std::identity. Maybe false positive
- struct unaryplus
- {
- template <class T> constexpr /* static P1169 in gcc13 */ auto
- operator()(T && t) const noexcept { return RA_FWD(t); }
- };
- #define DEF_NAMED_UNARY_OP(OP, OPNAME) \
- template <class A> requires (tomap<A>) constexpr auto \
- operator OP(A && a) \
- { return map(OPNAME(), RA_FWD(a)); } \
- template <class A> requires (toreduce<A>) constexpr auto \
- operator OP(A && a) \
- { return OP VALUE(RA_FWD(a)); }
- DEF_NAMED_UNARY_OP(+, unaryplus)
- DEF_NAMED_UNARY_OP(-, std::negate<>)
- DEF_NAMED_UNARY_OP(!, std::logical_not<>)
- #undef DEF_NAMED_UNARY_OP
- // if OP(a) isn't found in ra::, deduction rank(0) -> scalar doesn't work. TODO Cf useret.cc, reexported.cc
- #define DEF_NAME(OP) \
- template <class ... A> requires (tomap<A ...>) constexpr auto \
- OP(A && ... a) \
- { return map([](auto && ... a) -> decltype(auto) { return OP(RA_FWD(a) ...); }, RA_FWD(a) ...); } \
- template <class ... A> requires (toreduce<A ...>) constexpr decltype(auto) \
- OP(A && ... a) \
- { return OP(VALUE(RA_FWD(a)) ...); }
- #define DEF_FWD(QUALIFIED_OP, OP) \
- template <class ... A> requires (!tomap<A ...> && !toreduce<A ...>) constexpr decltype(auto) \
- OP(A && ... a) \
- { return QUALIFIED_OP(RA_FWD(a) ...); } \
- DEF_NAME(OP)
- #define DEF_USING(QUALIFIED_OP, OP) \
- using QUALIFIED_OP; \
- DEF_NAME(OP)
- FOR_EACH(DEF_NAME, odd, arg, sqr, sqrm, real_part, imag_part, xi, rel_error)
- // can't DEF_USING bc std::max will gobble ra:: objects if passed by const & (!)
- // FIXME define own global max/min overloads for basic types. std::max seems too much of a special case to be usinged.
- #define DEF_GLOBAL(f) DEF_FWD(::f, f)
- FOR_EACH(DEF_GLOBAL, max, min)
- #undef DEF_GLOBAL
- // don't use DEF_FWD for these bc we want to allow ADL, e.g. for exp(dual).
- #define DEF_GLOBAL(f) DEF_USING(::f, f)
- FOR_EACH(DEF_GLOBAL, pow, conj, sqrt, exp, expm1, log, log1p, log10, isfinite, isnan, isinf, atan2)
- FOR_EACH(DEF_GLOBAL, abs, sin, cos, tan, sinh, cosh, tanh, asin, acos, atan, clamp, lerp)
- FOR_EACH(DEF_GLOBAL, fma)
- #undef DEF_GLOBAL
- #undef DEF_USING
- #undef DEF_FWD
- #undef DEF_NAME
- template <class T, class A>
- constexpr auto
- cast(A && a)
- {
- return map([](auto && b) -> decltype(auto) { return T(b); }, RA_FWD(a));
- }
- template <class T, class ... A>
- constexpr auto
- pack(A && ... a)
- {
- return map([](auto && ... a) { return T { a ... }; }, RA_FWD(a) ...);
- }
- // FIXME needs nested array for I, but iter<-1> should work
- template <class A, class I>
- constexpr auto
- at(A && a, I && i)
- {
- return map([a = std::tuple<A>(RA_FWD(a))] (auto && i) -> decltype(auto) { return std::get<0>(a).at(i); },
- RA_FWD(i));
- }
- // --------------------------------
- // selection / shortcutting
- // --------------------------------
- // ra::start are needed bc rank 0 converts to and from scalar, so ? can't pick the right (-> scalar) conversion.
- template <class T, class F> requires (toreduce<T, F>)
- constexpr decltype(auto)
- where(bool const w, T && t, F && f)
- {
- return w ? VALUE(t) : VALUE(f);
- }
- template <class W, class T, class F> requires (tomap<W, T, F>)
- constexpr auto
- where(W && w, T && t, F && f)
- {
- return pick(cast<bool>(RA_FWD(w)), RA_FWD(f), RA_FWD(t));
- }
- // catch all for non-ra types.
- template <class T, class F> requires (!(tomap<T, F>) && !(toreduce<T, F>))
- constexpr decltype(auto)
- where(bool const w, T && t, F && f)
- {
- return w ? t : f;
- }
- template <class A, class B> requires (tomap<A, B>)
- constexpr auto
- operator &&(A && a, B && b)
- {
- return where(RA_FWD(a), cast<bool>(RA_FWD(b)), false);
- }
- template <class A, class B> requires (tomap<A, B>)
- constexpr auto
- operator ||(A && a, B && b)
- {
- return where(RA_FWD(a), true, cast<bool>(RA_FWD(b)));
- }
- #define DEF_SHORTCIRCUIT_BINARY_OP(OP) \
- template <class A, class B> requires (toreduce<A, B>) \
- constexpr auto operator OP(A && a, B && b) \
- { \
- return VALUE(a) OP VALUE(b); \
- }
- FOR_EACH(DEF_SHORTCIRCUIT_BINARY_OP, &&, ||)
- #undef DEF_SHORTCIRCUIT_BINARY_OP
- // --------------------------------
- // whole-array ops. TODO First rank reductions? Variable rank reductions?
- // FIXME C++23 and_then/or_else/etc
- // --------------------------------
- constexpr bool
- any(auto && a)
- {
- return early(map([](bool x) { return x ? std::make_optional(true) : std::nullopt; }, RA_FWD(a)), false);
- }
- constexpr bool
- every(auto && a)
- {
- return early(map([](bool x) { return !x ? std::make_optional(false) : std::nullopt; }, RA_FWD(a)), true);
- }
- // FIXME variable rank? see J 'index of' (x i. y), etc.
- constexpr dim_t
- index(auto && a)
- {
- return early(map([](auto && a, auto && i) { return bool(a) ? std::make_optional(i) : std::nullopt; },
- RA_FWD(a), ra::iota(ra::start(a).len(0))),
- ra::dim_t(-1));
- }
- constexpr bool
- lexicographical_compare(auto && a, auto && b)
- {
- return early(map([](auto && a, auto && b) { return a==b ? std::nullopt : std::make_optional(a<b); },
- RA_FWD(a), RA_FWD(b)),
- false);
- }
- constexpr auto
- amin(auto && a)
- {
- using std::min, std::numeric_limits;
- using T = ncvalue_t<decltype(a)>;
- T c = numeric_limits<T>::has_infinity ? numeric_limits<T>::infinity() : numeric_limits<T>::max();
- for_each([&c](auto && a) { if (a<c) { c = a; } }, a);
- return c;
- }
- constexpr auto
- amax(auto && a)
- {
- using std::max, std::numeric_limits;
- using T = ncvalue_t<decltype(a)>;
- T c = numeric_limits<T>::has_infinity ? -numeric_limits<T>::infinity() : numeric_limits<T>::lowest();
- for_each([&c](auto && a) { if (c<a) { c = a; } }, a);
- return c;
- }
- // FIXME encapsulate this kind of reference-reduction.
- // FIXME expr/ply mechanism doesn't allow partial iteration (adv then continue).
- template <class A, class Less = std::less<ncvalue_t<A>>>
- constexpr decltype(auto)
- refmin(A && a, Less && less = {})
- {
- RA_CHECK(a.size()>0, "refmin requires nonempty argument.");
- decltype(auto) s = ra::start(a);
- auto p = &(*s);
- for_each([&less, &p](auto & a) { if (less(a, *p)) { p = &a; } }, s);
- return *p;
- }
- template <class A, class Less = std::less<ncvalue_t<A>>>
- constexpr decltype(auto)
- refmax(A && a, Less && less = {})
- {
- RA_CHECK(a.size()>0, "refmax requires nonempty argument.");
- decltype(auto) s = ra::start(a);
- auto p = &(*s);
- for_each([&less, &p](auto & a) { if (less(*p, a)) { p = &a; } }, s);
- return *p;
- }
- constexpr auto
- sum(auto && a)
- {
- auto c = concrete_type<ncvalue_t<decltype(a)>>(0);
- for_each([&c](auto && a) { c += a; }, a);
- return c;
- }
- constexpr auto
- prod(auto && a)
- {
- auto c = concrete_type<ncvalue_t<decltype(a)>>(1);
- for_each([&c](auto && a) { c *= a; }, a);
- return c;
- }
- constexpr auto reduce_sqrm(auto && a) { return sum(sqrm(a)); }
- constexpr auto norm2(auto && a) { return std::sqrt(reduce_sqrm(a)); }
- #if 1==RA_DO_FMA
- constexpr void maybe_fma(auto && a, auto && b, auto & c) { c = fma(a, b, c); };
- constexpr void maybe_fma_conj(auto && a, auto && b, auto & c) { c = fma_conj(a, b, c); };
- #else
- constexpr void maybe_fma(auto && a, auto && b, auto & c) { c += a*b; };
- constexpr void maybe_fma_conj(auto && a, auto && b, auto & c) { c += conj(a)*b; };
- #endif
- constexpr auto
- dot(auto && a, auto && b)
- {
- std::decay_t<decltype(VALUE(a) * VALUE(b))> c(0.);
- for_each([&c](auto && a, auto && b) { maybe_fma(a, b, c); }, RA_FWD(a), RA_FWD(b));
- return c;
- }
- constexpr auto
- cdot(auto && a, auto && b)
- {
- std::decay_t<decltype(conj(VALUE(a)) * VALUE(b))> c(0.);
- for_each([&c](auto && a, auto && b) { maybe_fma_conj(a, b, c); }, RA_FWD(a), RA_FWD(b));
- return c;
- }
- constexpr auto
- normv(auto const & a)
- {
- auto b = concrete(a);
- b /= norm2(b);
- return b;
- }
- // FIXME benchmark w/o allocation and do Small/Big versions if it's worth it (see bench-gemm.cc)
- constexpr void
- gemm(auto const & a, auto const & b, auto & c)
- {
- dim_t K=a.len(1);
- for (int k=0; k<K; ++k) {
- c += from(std::multiplies<>(), a(all, k), b(k)); // FIXME fma
- }
- }
- constexpr auto
- gemm(auto const & a, auto const & b)
- {
- dim_t M=a.len(0), N=b.len(1);
- using T = decltype(VALUE(a)*VALUE(b));
- using MMTYPE = decltype(from(std::multiplies<>(), a(all, 0), b(0)));
- auto c = with_shape<MMTYPE>({M, N}, T());
- gemm(a, b, c);
- return c;
- }
- constexpr auto
- gevm(auto const & a, auto const & b)
- {
- dim_t M=b.len(0), N=b.len(1);
- using T = decltype(VALUE(a)*VALUE(b));
- auto c = with_shape<decltype(a[0]*b(0))>({N}, T());
- for (int i=0; i<M; ++i) {
- maybe_fma(a[i], b(i), c);
- }
- return c;
- }
- // FIXME a must be a view, so it doesn't work with e.g. gemv(conj(a), b).
- constexpr auto
- gemv(auto const & a, auto const & b)
- {
- dim_t M=a.len(0), N=a.len(1);
- using T = decltype(VALUE(a)*VALUE(b));
- auto c = with_shape<decltype(a(all, 0)*b[0])>({M}, T());
- for (int j=0; j<N; ++j) {
- maybe_fma(a(all, j), b[j], c);
- }
- return c;
- }
- // --------------------
- // wedge product and cross product. FIXME seriously
- // --------------------
- namespace mp {
- template <class P, class Plist>
- struct FindCombination
- {
- template <class A> using match = bool_c<0 != PermutationSign<P, A>::value>;
- using type = IndexIf<Plist, match>;
- constexpr static int where = type::value;
- constexpr static int sign = (where>=0) ? PermutationSign<P, typename type::type>::value : 0;
- };
- // Combination antiC complementary to C wrt [0, 1, ... Dim-1], permuted so [C, antiC] has the sign of [0, 1, ... Dim-1].
- template <class C, int D>
- struct AntiCombination
- {
- using EC = complement<C, D>;
- static_assert((len<EC>)>=2, "can't correct this complement");
- constexpr static int sign = PermutationSign<append<C, EC>, iota<D>>::value;
- // Produce permutation of opposite sign if sign<0.
- using type = mp::cons<std::tuple_element_t<(sign<0) ? 1 : 0, EC>,
- mp::cons<std::tuple_element_t<(sign<0) ? 0 : 1, EC>,
- mp::drop<EC, 2>>>;
- };
- template <class C, int D> struct MapAntiCombination;
- template <int D, class ... C>
- struct MapAntiCombination<std::tuple<C ...>, D>
- {
- using type = std::tuple<typename AntiCombination<C, D>::type ...>;
- };
- template <int D, int O>
- struct ChooseComponents_
- {
- static_assert(D>=O, "Bad dimension or form order.");
- using type = mp::combinations<iota<D>, O>;
- };
- template <int D, int O> using ChooseComponents = typename ChooseComponents_<D, O>::type;
- template <int D, int O> requires ((D>1) && (2*O>D))
- struct ChooseComponents_<D, O>
- {
- static_assert(D>=O, "Bad dimension or form order.");
- using type = typename MapAntiCombination<ChooseComponents<D, D-O>, D>::type;
- };
- // Works almost to the range of std::size_t.
- constexpr std::size_t
- n_over_p(std::size_t const n, std::size_t p)
- {
- if (p>n) {
- return 0;
- } else if (p>(n-p)) {
- p = n-p;
- }
- std::size_t v = 1;
- for (std::size_t i=0; i!=p; ++i) {
- v = v*(n-i)/(i+1);
- }
- return v;
- }
- // We form the basis for the result (Cr) and split it in pieces for Oa and Ob; there are (D over Oa) ways. Then we see where and with which signs these pieces are in the bases for Oa (Ca) and Ob (Cb), and form the product.
- template <int D, int Oa, int Ob>
- struct Wedge
- {
- constexpr static int Or = Oa+Ob;
- static_assert(Oa<=D && Ob<=D && Or<=D, "bad orders");
- constexpr static int Na = n_over_p(D, Oa);
- constexpr static int Nb = n_over_p(D, Ob);
- constexpr static int Nr = n_over_p(D, Or);
- // in lexicographic order. Can be used to sort Ca below with FindPermutation.
- using LexOrCa = mp::combinations<mp::iota<D>, Oa>;
- // the actual components used, which are in lex. order only in some cases.
- using Ca = mp::ChooseComponents<D, Oa>;
- using Cb = mp::ChooseComponents<D, Ob>;
- using Cr = mp::ChooseComponents<D, Or>;
- // optimizations.
- constexpr static bool yields_expr = (Na>1) != (Nb>1);
- constexpr static bool yields_expr_a1 = yields_expr && Na==1;
- constexpr static bool yields_expr_b1 = yields_expr && Nb==1;
- constexpr static bool both_scalars = (Na==1 && Nb==1);
- constexpr static bool dot_plus = Na>1 && Nb>1 && Or==D && (Oa<Ob || (Oa>Ob && !ra::odd(Oa*Ob)));
- constexpr static bool dot_minus = Na>1 && Nb>1 && Or==D && (Oa>Ob && ra::odd(Oa*Ob));
- constexpr static bool general_case = (Na>1 && Nb>1) && ((Oa+Ob!=D) || (Oa==Ob));
- template <class Va, class Vb>
- using valtype = decltype(std::declval<Va>()[0] * std::declval<Vb>()[0]);
- template <class Xr, class Fa, class Va, class Vb>
- constexpr static valtype<Va, Vb>
- term(Va const & a, Vb const & b)
- {
- if constexpr (mp::len<Fa> > 0) {
- using Fa0 = mp::first<Fa>;
- using Fb = mp::complement_list<Fa0, Xr>;
- using Sa = mp::FindCombination<Fa0, Ca>;
- using Sb = mp::FindCombination<Fb, Cb>;
- constexpr int sign = Sa::sign * Sb::sign * mp::PermutationSign<mp::append<Fa0, Fb>, Xr>::value;
- static_assert(sign==+1 || sign==-1, "Bad sign in wedge term.");
- return valtype<Va, Vb>(sign)*a[Sa::where]*b[Sb::where] + term<Xr, mp::drop1<Fa>>(a, b);
- } else {
- return 0.;
- }
- }
- template <class Va, class Vb, class Vr, int wr>
- constexpr static void
- coeff(Va const & a, Vb const & b, Vr & r)
- {
- if constexpr (wr<Nr) {
- using Xr = mp::ref<Cr, wr>;
- using Fa = mp::combinations<Xr, Oa>;
- r[wr] = term<Xr, Fa>(a, b);
- coeff<Va, Vb, Vr, wr+1>(a, b, r);
- }
- }
- template <class Va, class Vb, class Vr>
- constexpr static void
- product(Va const & a, Vb const & b, Vr & r)
- {
- static_assert(Va::size()==Na, "Bad Va dim.");
- static_assert(Vb::size()==Nb, "Bad Vb dim.");
- static_assert(Vr::size()==Nr, "Bad Vr dim.");
- coeff<Va, Vb, Vr, 0>(a, b, r);
- }
- };
- // Euclidean space, only component shuffling.
- template <int D, int O>
- struct Hodge
- {
- using W = Wedge<D, O, D-O>;
- using Ca = typename W::Ca;
- using Cb = typename W::Cb;
- using Cr = typename W::Cr;
- using LexOrCa = typename W::LexOrCa;
- constexpr static int Na = W::Na;
- constexpr static int Nb = W::Nb;
- template <int i, class Va, class Vb>
- constexpr static void
- hodge_aux(Va const & a, Vb & b)
- {
- static_assert(i<=W::Na, "Bad argument to hodge_aux");
- if constexpr (i<W::Na) {
- using Cai = mp::ref<Ca, i>;
- static_assert(mp::len<Cai> == O, "Bad.");
- // sort Cai, because mp::complement only accepts sorted combinations.
- // ref<Cb, i> should be complementary to Cai, but I don't want to rely on that.
- using SCai = mp::ref<LexOrCa, mp::FindCombination<Cai, LexOrCa>::where>;
- using CompCai = mp::complement<SCai, D>;
- static_assert(mp::len<CompCai> == D-O, "Bad.");
- using fpw = mp::FindCombination<CompCai, Cb>;
- // for the sign see e.g. DoCarmo1991 I.Ex 10.
- using fps = mp::FindCombination<mp::append<Cai, mp::ref<Cb, fpw::where>>, Cr>;
- static_assert(fps::sign!=0, "Bad.");
- b[fpw::where] = decltype(a[i])(fps::sign)*a[i];
- hodge_aux<i+1>(a, b);
- }
- }
- };
- // The order of components is taken from Wedge<D, O, D-O>; this works for whatever order is defined there.
- // With lexicographic order, component order is reversed, but signs vary.
- // With the order given by ChooseComponents<>, fpw::where==i and fps::sign==+1 in hodge_aux(), always. Then hodge() becomes a free operation, (with one exception) and the next function hodge() can be used.
- template <int D, int O, class Va, class Vb>
- constexpr void
- hodgex(Va const & a, Vb & b)
- {
- static_assert(O<=D, "bad orders");
- static_assert(Va::size()==mp::Hodge<D, O>::Na, "error");
- static_assert(Vb::size()==mp::Hodge<D, O>::Nb, "error");
- mp::Hodge<D, O>::template hodge_aux<0>(a, b);
- }
- } // namespace ra::mp
- // This depends on Wedge<>::Ca, Cb, Cr coming from ChooseCombinations. hodgex() should always work, but this is cheaper.
- // However if 2*O=D, it is not possible to differentiate the bases by order and hodgex() must be used.
- // Likewise, when O(N-O) is odd, Hodge from (2*O>D) to (2*O<D) change sign, since **w= -w in that case, and the basis in the (2*O>D) case is selected to make Hodge(<)->Hodge(>) trivial; but can't do both!
- consteval bool trivial_hodge(int D, int O) { return 2*O!=D && ((2*O<D) || !ra::odd(O*(D-O))); }
- template <int D, int O, class Va, class Vb>
- constexpr void
- hodge(Va const & a, Vb & b)
- {
- if constexpr (trivial_hodge(D, O)) {
- static_assert(Va::size()==mp::Hodge<D, O>::Na, "error");
- static_assert(Vb::size()==mp::Hodge<D, O>::Nb, "error");
- b = a;
- } else {
- ra::mp::hodgex<D, O>(a, b);
- }
- }
- template <int D, int O, class Va> requires (trivial_hodge(D, O))
- constexpr Va const &
- hodge(Va const & a)
- {
- static_assert(Va::size()==mp::Hodge<D, O>::Na, "error");
- return a;
- }
- template <int D, int O, class Va> requires (!trivial_hodge(D, O))
- constexpr Va &
- hodge(Va & a)
- {
- Va b(a);
- ra::mp::hodgex<D, O>(b, a);
- return a;
- }
- template <int D, int Oa, int Ob, class A, class B> requires (is_scalar<A> && is_scalar<B>)
- constexpr auto
- wedge(A const & a, B const & b) { return a*b; }
- template <class A>
- using torank1 = std::conditional_t<is_scalar<A>, Small<std::decay_t<A>, 1>, A>;
- template <int D, int Oa, int Ob, class Va, class Vb> requires (!(is_scalar<Va> && is_scalar<Vb>))
- decltype(auto)
- wedge(Va const & a, Vb const & b)
- {
- Small<ncvalue_t<Va>, size_s<Va>()> aa = a;
- Small<ncvalue_t<Vb>, size_s<Vb>()> bb = b;
- using Ua = decltype(aa);
- using Ub = decltype(bb);
- using Wedge = mp::Wedge<D, Oa, Ob>;
- using valtype = typename Wedge::template valtype<Ua, Ub>;
- std::conditional_t<Wedge::Nr==1, valtype, Small<valtype, Wedge::Nr>> r;
- auto & a1 = reinterpret_cast<torank1<Ua> const &>(aa);
- auto & b1 = reinterpret_cast<torank1<Ub> const &>(bb);
- auto & r1 = reinterpret_cast<torank1<decltype(r)> &>(r);
- mp::Wedge<D, Oa, Ob>::product(a1, b1, r1);
- return r;
- }
- template <int D, int Oa, int Ob, class Va, class Vb, class Vr> requires (!(is_scalar<Va> && is_scalar<Vb>))
- void
- wedge(Va const & a, Vb const & b, Vr & r)
- {
- Small<ncvalue_t<Va>, size_s<Va>()> aa = a;
- Small<ncvalue_t<Vb>, size_s<Vb>()> bb = b;
- using Ua = decltype(aa);
- using Ub = decltype(bb);
- auto & r1 = reinterpret_cast<torank1<decltype(r)> &>(r);
- auto & a1 = reinterpret_cast<torank1<Ua> const &>(aa);
- auto & b1 = reinterpret_cast<torank1<Ub> const &>(bb);
- mp::Wedge<D, Oa, Ob>::product(a1, b1, r1);
- }
- template <class A, class B>
- constexpr auto
- cross(A const & a_, B const & b_)
- {
- constexpr int n = size_s<A>();
- static_assert(n==size_s<B>() && (2==n || 3==n));
- Small<std::decay_t<decltype(VALUE(a_))>, n> a = a_;
- Small<std::decay_t<decltype(VALUE(b_))>, n> b = b_;
- using W = mp::Wedge<n, 1, 1>;
- Small<std::decay_t<decltype(VALUE(a_) * VALUE(b_))>, W::Nr> r;
- W::product(a, b, r);
- if constexpr (1==W::Nr) {
- return r[0];
- } else {
- return r;
- }
- }
- template <class V>
- constexpr auto
- perp(V const & v)
- {
- static_assert(2==v.size(), "Dimension error.");
- return Small<std::decay_t<decltype(VALUE(v))>, 2> {v[1], -v[0]};
- }
- template <class V, class U>
- constexpr auto
- perp(V const & v, U const & n)
- {
- if constexpr (is_scalar<U>) {
- static_assert(2==v.size(), "Dimension error.");
- return Small<std::decay_t<decltype(VALUE(v) * n)>, 2> {v[1]*n, -v[0]*n};
- } else {
- static_assert(3==v.size(), "Dimension error.");
- return cross(v, n);
- }
- }
- } // namespace ra
- #undef RA_OPT
|