test-operators.C 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. // (c) Daniel Llorens - 2014-2015
  2. // This library is free software; you can redistribute it and/or modify it under
  3. // the terms of the GNU Lesser General Public License as published by the Free
  4. // Software Foundation; either version 3 of the License, or (at your option) any
  5. // later version.
  6. /// @file test-operators.C
  7. /// @brief Tests for operators on ra:: expr templates.
  8. #include "ra/complex.H"
  9. #include "ra/test.H"
  10. #include "ra/mpdebug.H"
  11. #include "ra/operators.H"
  12. #include "ra/io.H"
  13. #include "ra/big.H"
  14. #include "ra/wedge.H"
  15. using std::cout; using std::endl;
  16. using real = double;
  17. using complex = std::complex<double>;
  18. int main()
  19. {
  20. TestRecorder tr;
  21. tr.section("unary ops");
  22. {
  23. #define DEF_TEST_UNARY_OP(OP) \
  24. auto test = [&tr](auto token, auto x, auto y, auto && vx, auto && vy, real err) \
  25. { \
  26. using T = decltype(token); \
  27. using TY = decltype(OP(std::declval<T>())); \
  28. tr.info("scalar-scalar").test_abs_error(OP(T(x)), TY(y), err); \
  29. tr.info("array(0)-scalar").test_abs_error(OP(ra::Unique<T, 0>(x)), TY(y), err); \
  30. tr.info("array(var)-scalar").test_abs_error(OP(ra::Unique<T>(x)), TY(y), err); \
  31. tr.info("array(1)-array(1)").test_abs_error(OP(vx), vy, err); \
  32. };
  33. {
  34. DEF_TEST_UNARY_OP(abs);
  35. test(int(), -3, 3, ra::Unique<int, 1>{1, -3, -2}, ra::Unique<int, 1>{1, 3, 2}, 0.);
  36. test(real(), -3, 3, ra::Unique<real, 1>{1, -3, -2}, ra::Unique<real, 1>{1, 3, 2}, 0.);
  37. test(float(), -3, 3, ra::Unique<float, 1>{1, -3, -2}, ra::Unique<float, 1>{1, 3, 2}, 0.);
  38. test(complex(), -3, 3, ra::Unique<complex, 1>{1, -3, -2}, ra::Unique<complex, 1>{1, 3, 2}, 0.);
  39. }
  40. #define TEST_UNARY_OP_CR(OP, ri, ro, ci, co, err) \
  41. { \
  42. DEF_TEST_UNARY_OP(OP); \
  43. test(real(), ri, ro, ra::Unique<real, 1>{ri, ri, ri}, ra::Unique<complex, 1>{ro, ro, ro}, err); \
  44. test(complex(), ci, co, ra::Unique<complex, 1>{ci, ci}, ra::Unique<complex, 1>{co, co}, err); \
  45. }
  46. TEST_UNARY_OP_CR(conj, 1., 1., complex(1., 2.), complex(1., -2), 0.);
  47. TEST_UNARY_OP_CR(cos, 0., 1., complex(0, 0), complex(1., 0.), 0.);
  48. TEST_UNARY_OP_CR(sin, 1.57079632679489661, 1., complex(1.57079632679489661, 0), complex(1., 0.), 0.);
  49. TEST_UNARY_OP_CR(exp, 0., 1., complex(0, 0), complex(1., 0.), 0.);
  50. TEST_UNARY_OP_CR(sqrt, 4., 2., complex(-1, 0), complex(0., 1.), 1e-16);
  51. TEST_UNARY_OP_CR(xI, 4., complex(0, 4.), complex(1., -2.), complex(2., 1.), 0.);
  52. #undef TEST_UNARY_OP_CR
  53. #undef DEF_TEST_UNARY_OP
  54. // TODO merge with DEF_TEST_UNARY_OP
  55. tr.info("odd").test_eq(ra::Unique<bool, 1> {true, false, true, true}, odd(ra::Unique<int, 1> {1, 2, 3, -1}));
  56. }
  57. tr.section("check decay of rank 0 Containers/Slices w/ operators");
  58. {
  59. {
  60. auto test = [&tr](auto && a)
  61. {
  62. tr.test_eq(12, a*4.);
  63. auto b = a();
  64. static_assert(std::is_same<int, decltype(b)>::value, "unexpected b non-decay to real");
  65. static_assert(std::is_same<decltype(b*4.), real>::value, "expected b decay to real");
  66. static_assert(std::is_same<decltype(4.*b), real>::value, "expected b decay to real");
  67. tr.test_eq(12., b*4.);
  68. tr.test_eq(12., 4.*b);
  69. static_assert(std::is_same<decltype(a*4.), real>::value, "expected a decay to real");
  70. static_assert(std::is_same<decltype(4.*a), real>::value, "expected a decay to real");
  71. tr.test_eq(12., a*4.);
  72. tr.test_eq(12., 4.*a);
  73. };
  74. test(ra::Small<int>(3));
  75. test(ra::Unique<int, 0>({}, 3));
  76. }
  77. {
  78. ra::Small<int, 3> a { 1, 2, 3 };
  79. ra::Small<int> b { 5 };
  80. a *= b;
  81. tr.test_eq(a[0], 5);
  82. tr.test_eq(a[1], 10);
  83. tr.test_eq(a[2], 15);
  84. }
  85. {
  86. ra::Small<int> a { 3 };
  87. ra::Small<int> b { 2 };
  88. auto c = a*b;
  89. static_assert(std::is_same<decltype(a*b), int>::value, "expected a, b decay to real"); \
  90. tr.test_eq(c, 6);
  91. }
  92. }
  93. tr.section("lvalue-rvalue operators");
  94. {
  95. ra::Unique<complex, 1> a({3}, 0.);
  96. imag_part(a) = ra::Unique<real, 1> { 7., 2., 3. }; // TODO operator=(initializer_list) ?
  97. real_part(a) = -imag_part(ra::Unique<complex, 1> { xI(7.), xI(2.), xI(3.) })+1;
  98. tr.test_eq(ra::Unique<complex, 1> {{-6., 7.}, {-1., 2.}, {-2., 3.}}, a);
  99. }
  100. tr.section("operators with Unique");
  101. {
  102. ra::Unique<int, 2> a({3, 2}, { 1, 2, 3, 20, 5, 6 });
  103. ra::Unique<int, 1> b({3}, { 10, 20, 30 });
  104. #define TESTSUM(expr) \
  105. tr.test_eq(expr, ra::Small<int, 3, 2> {11, 12, 23, 40, 35, 36});
  106. TESTSUM(ra::expr([](int a, int b) { return a + b; }, a.iter(), b.iter()));
  107. TESTSUM(a.iter() + b.iter());
  108. TESTSUM(a+b);
  109. #undef TESTSUM
  110. #define TESTEQ(expr) \
  111. tr.test_eq(expr, ra::Small<bool, 3, 2> {false, false, false, true, false, false});
  112. TESTEQ(a==b);
  113. TESTEQ(!(a!=b));
  114. #undef TESTEQ
  115. }
  116. tr.section("operators with View");
  117. {
  118. {
  119. ra::Unique<complex, 2> const a({2, 3}, {1, 2, 3, 4, 5, 6});
  120. {
  121. auto a0 = a(0);
  122. tr.test_eq(ra::Small<real, 3>{.5, 1., 1.5}, 0.5*a0);
  123. }
  124. {
  125. auto a0 = a.at(ra::Small<int, 1> { 0 }); // BUG Not sure this is what I want
  126. tr.test_eq(ra::Small<real, 3>{.5, 1., 1.5}, 0.5*a0);
  127. }
  128. }
  129. {
  130. ra::Unique<complex, 1> const a({3}, {1, 2, 3});
  131. {
  132. auto a0 = a(0);
  133. tr.test_eq(0.5, 0.5*a0);
  134. }
  135. {
  136. auto a0 = a.at(ra::Small<int, 1> { 0 }); // BUG Not sure this is what I want, see above
  137. tr.test_eq(2.1, 2.1*a0);
  138. tr.test_eq(0.5, 0.5*a0);
  139. tr.test_eq(0.5, complex(0.5)*a0);
  140. }
  141. }
  142. }
  143. tr.section("operators with Small");
  144. {
  145. ra::Small<int, 3> a { 1, 2, 3 };
  146. ra::Small<int, 3> b { 1, 2, 4 };
  147. tr.test_eq(ra::Small<int, 3> {2, 4, 7}, ra::expr([](int a, int b) { return a + b; }, a.iter(), b.iter()));
  148. tr.test_eq(ra::Small<int, 3> {2, 4, 7}, (a.iter() + b.iter()));
  149. tr.test_eq(ra::Small<int, 3> {2, 4, 7}, a+b);
  150. }
  151. tr.section("constructors from expr"); // TODO For all other Container types.
  152. {
  153. {
  154. // TODO Systematic init-from-expr tests (every expr type vs every container type) with operators.H included.
  155. ra::Unique<int, 1> a({3}, { 1, 2, 3 });
  156. ra::Unique<int, 1> b({3}, { 10, 20, 30 });
  157. ra::Unique<int, 1> c(a.iter() + b.iter());
  158. tr.test_eq(ra::Small<int, 3> {11, 22, 33}, c);
  159. }
  160. {
  161. ra::Unique<int, 2> a({3, 2}, 77);
  162. tr.test_eq(a, ra::Small<int, 3, 2> {77, 77, 77, 77, 77, 77});
  163. }
  164. {
  165. ra::Unique<int, 2> a({3, 2}, ra::cast<int>(ra::TensorIndex<0>()-ra::TensorIndex<1>()));
  166. tr.test_eq(ra::Small<int, 3, 2> {0, -1, 1, 0, 2, 1}, a);
  167. }
  168. }
  169. tr.section("mixed ra-type / foreign-scalar operations");
  170. {
  171. ra::Unique<int, 2> a({3, 2}, { 1, 2, 3, 20, 5, 6 });
  172. ra::Small<int, 3, 2> ref {4, 5, 6, 23, 8, 9};
  173. tr.test_eq(ref, ra::expr([](int a, int b) { return a + b; }, ra::start(a), ra::start(3)));
  174. tr.test_eq(ref, ra::start(a) + ra::start(3));
  175. tr.test_eq(ref, a+3);
  176. }
  177. // These are rather different because they have to be defined in-class.
  178. tr.section("constructors & assignment operators with expr rhs"); // TODO use TestRecorder::test_eq().
  179. {
  180. real check0[6] = { 0, -1, 1, 0, 2, 1 };
  181. real check1[6] = { 4, 3, 5, 4, 6, 5 };
  182. real check2[6] = { 8, 6, 10, 8, 12, 10 };
  183. auto test = [&](auto && a)
  184. {
  185. tr.test(std::equal(a.begin(), a.end(), check0));
  186. a += 4;
  187. tr.test(std::equal(a.begin(), a.end(), check1));
  188. a += a;
  189. tr.test(std::equal(a.begin(), a.end(), check2));
  190. };
  191. test(ra::Unique<int, 2>({3, 2}, ra::cast<int>(ra::TensorIndex<0>()-ra::TensorIndex<1>())));
  192. test(ra::Small<int, 3, 2>(ra::cast<int>(ra::TensorIndex<0>()-ra::TensorIndex<1>())));
  193. }
  194. tr.section("assignment ops with ra::scalar [ra21]");
  195. {
  196. ra::Small<real, 2> a { 0, 0 };
  197. ra::Big<ra::Small<real, 2>, 1> b { {1, 10}, {2, 20}, {3, 30} };
  198. // use scalar to match 1 (a) vs 3 (b) instead of 2 vs 3.
  199. ra::scalar(a) += b;
  200. tr.test_eq(ra::Small<real, 2> { 6, 60 }, a);
  201. }
  202. tr.section("pack operator");
  203. {
  204. ra::Small<real, 6> a = { 0, -1, 1, 0, 2, 1 };
  205. ra::Small<int, 6> b = { 4, 3, 5, 4, 6, 5 };
  206. ra::Big<std::tuple<real, int>, 1> x = ra::pack<std::tuple<real, int> >(a, b); // TODO kinda redundant...
  207. tr.test_eq(a, map([](auto && x) -> decltype(auto) { return std::get<0>(x); }, x));
  208. tr.test_eq(b, map([](auto && x) -> decltype(auto) { return std::get<1>(x); }, x));
  209. }
  210. tr.section("pack operator as ref");
  211. {
  212. using T = std::tuple<real, int>;
  213. ra::Big<T> x { T(0., 1), T(2., 3), T(4., 5) };
  214. ra::Small<real, 3> a = -99.;
  215. ra::Small<int, 3> b = -77;
  216. ra::pack<std::tuple<real &, int &> >(a, b) = x;
  217. tr.test_eq(ra::Small<real, 3> {0., 2., 4.}, a);
  218. tr.test_eq(ra::Small<int, 3> {1, 3, 5}, b);
  219. }
  220. tr.section("operator= for View, WithStorage. Also see test-ownership.C");
  221. {
  222. real check5[6] = { 5, 5, 5, 5, 5, 5 };
  223. real check9[6] = { 9, 9, 9, 9, 9, 9 };
  224. ra::Unique<int, 2> a({3, 2}, 7);
  225. ra::Unique<int, 2> b({3, 2}, 5);
  226. ra::View<int, 2> c = a();
  227. ra::View<int, 2> d = b();
  228. c = d;
  229. tr.test(std::equal(a.begin(), a.end(), check5));
  230. ra::Unique<int, 2> t({2, 3}, 9);
  231. c = transpose({1, 0}, t);
  232. tr.test(std::equal(a.begin(), a.end(), check9));
  233. a = d;
  234. tr.test(std::equal(a.begin(), a.end(), check5));
  235. ra::Unique<int, 2> e = d;
  236. tr.test(std::equal(e.begin(), e.end(), check5));
  237. }
  238. tr.section("operator= for Dynamic");
  239. {
  240. ra::Unique<int, 1> a({7}, 7);
  241. ra::Small<ra::dim_t, 3> i { 2, 3, 5 };
  242. ra::Small<int, 3> b { 22, 33, 55 };
  243. ra::expr([&a](ra::dim_t i) -> decltype(auto) { return a(i); }, ra::start(i)) = b;
  244. int checka[] = { 7, 7, 22, 33, 7, 55, 7 };
  245. tr.test(std::equal(checka, checka+7, a.begin()));
  246. }
  247. tr.section("wedge");
  248. {
  249. {
  250. ra::Small<real, 3> a {1, 2, 3};
  251. ra::Small<real, 3> b {4, 5, 7};
  252. ra::Small<real, 3> c;
  253. fun::Wedge<3, 1, 1>::product(a, b, c);
  254. tr.test_eq(ra::Small<real, 3> {-1, 5, -3}, c);
  255. }
  256. {
  257. ra::Small<real, 1> a {2};
  258. ra::Small<real, 1> b {3};
  259. ra::Small<real, 1> r;
  260. fun::Wedge<1, 0, 0>::product(a, b, r);
  261. tr.test_eq(6, r[0]);
  262. tr.test_eq(6, wedge<1, 0, 0>(ra::Small<real, 1>{2}, ra::Small<real, 1>{3}));
  263. tr.test_eq(6, wedge<1, 0, 0>(ra::Small<real, 1>{2}, 3.));
  264. tr.test_eq(6, wedge<1, 0, 0>(2., ra::Small<real, 1>{3}));
  265. tr.test_eq(6, wedge<1, 0, 0>(2., 3));
  266. }
  267. }
  268. tr.section("hodge / hodgex");
  269. {
  270. ra::Small<real, 3> a {1, 2, 3};
  271. ra::Small<real, 3> c;
  272. fun::hodgex<3, 1>(a, c);
  273. tr.test_eq(a, c);
  274. auto d = fun::hodge<3, 1>(a);
  275. tr.test_eq(a, d);
  276. }
  277. tr.section("index");
  278. {
  279. {
  280. ra::Big<real, 1> a {1, 2, 3, -4, 9, 9, 8};
  281. tr.test_eq(3, index(a<0));
  282. tr.test_eq(-1, index(a>100));
  283. }
  284. {
  285. ra::Big<real> a {1, 2, 3, -4, 9, 9, 8};
  286. tr.test_eq(4, index(abs(a)>4));
  287. }
  288. }
  289. tr.section("lexicographical_compare");
  290. {
  291. ra::Big<int, 3> a({10, 2, 2}, {0, 0, 1, 3, 0, 1, 3, 3, 0, 2, 3, 0, 3, 1, 2, 1, 1, 1, 3, 1, 0, 3, 2, 2, 2, 3, 1, 2, 2, 0, 0, 1, 0, 1, 1, 1, 3, 0, 2, 1});
  292. ra::Big<int, 1> i = ra::iota(a.size(0));
  293. std::sort(i.data(), i.data()+i.size(),
  294. [&a](int i, int j)
  295. {
  296. return lexicographical_compare(a(i), a(j));
  297. });
  298. tr.test_eq(ra::start({0, 8, 1, 2, 5, 4, 7, 6, 9, 3}), i);
  299. }
  300. return tr.summary();
  301. }