1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- // (c) Daniel Llorens - 2005, 2015
- // This library is free software; you can redistribute it and/or modify it under
- // the terms of the GNU Lesser General Public License as published by the Free
- // Software Foundation; either version 3 of the License, or (at your option) any
- // later version.
- /// @file complex.H
- /// @brief Defines the complex type and standard operations on it.
- #pragma once
- #include <complex>
- #include "ra/real.H"
- #include "ra/type.H"
- namespace ra {
- template <class T> constexpr bool is_scalar_def<std::complex<T>> = true;
- } // namespace ra
- #define RA_REAL double
- #define RA_CPLX std::complex<RA_REAL>
- #define FOR_FLOAT(R, C) \
- inline constexpr C xI(R const x) { return C(0, x); } \
- inline constexpr C xI(C const z) { return C(-z.imag(), z.real()); } \
- inline constexpr R real_part(C const & z) { return z.real(); } \
- inline constexpr R imag_part(C const & z) { return z.imag(); } \
- inline constexpr R & real_part(C & z) { return reinterpret_cast<R *>(&z)[0]; } \
- inline constexpr R & imag_part(C & z) { return reinterpret_cast<R *>(&z)[1]; } \
- inline constexpr R sqrm(C const x) { return sqrm(x.real())+sqrm(x.imag()); } \
- inline constexpr R sqrm(C const x, C const y) { return sqrm(x.real()-y.real())+sqrm(x.imag()-y.imag()); } \
- inline constexpr R norm2(C const x) { return std::hypot(x.real(), x.imag()); } \
- inline constexpr R norm2(C const x, C const y) { return std::sqrt(sqrm(x, y)); } \
- inline constexpr R abs(C const x, C const y) { return std::sqrt(sqrm(x, y)); } \
- inline C sqr(C const x) { return x*x; } \
- inline C dot(C const x, C const y) { return x*y; }
- FOR_FLOAT(double, std::complex<double>);
- FOR_FLOAT(float, std::complex<float>);
- #undef FOR_FLOAT
- inline RA_CPLX fma(RA_CPLX const & a, RA_CPLX const & b, RA_CPLX const & c)
- {
- return RA_CPLX(fma(a.real(), b.real(), fma(-a.imag(), b.imag(), c.real())),
- fma(a.real(), b.imag(), fma(a.imag(), b.real(), c.imag())));
- }
- // conj(a) * b + c
- inline RA_CPLX fma_conj(RA_CPLX const & a, RA_CPLX const & b, RA_CPLX const & c)
- {
- return RA_CPLX(fma(a.real(), b.real(), fma(a.imag(), b.imag(), c.real())),
- fma(a.real(), b.imag(), fma(-a.imag(), b.real(), c.imag())));
- }
- // conj(a) * b
- inline RA_CPLX mul_conj(RA_CPLX const & a, RA_CPLX const & b)
- {
- return RA_CPLX(+a.real()*b.real()+a.imag()*b.imag(),
- a.real()*b.imag()-a.imag()*b.real());
- }
- inline bool isfinite(RA_CPLX const z)
- {
- return std::isfinite(z.real()) && std::isfinite(z.imag());
- }
- inline bool isnan(RA_CPLX const z)
- {
- return std::isnan(z.real()) || std::isnan(z.imag());
- }
- inline bool isinf(RA_CPLX const z)
- {
- bool const a = std::isinf(z.real());
- bool const b = std::isinf(z.imag());
- return (a && b) || (a && std::isfinite(z.imag())) || (b && std::isfinite(z.real()));
- }
- inline void swap(RA_CPLX & a, RA_CPLX & b)
- {
- std::swap(a, b);
- }
- inline RA_CPLX tanh(RA_CPLX const z)
- {
- return (z.real()>300.) ? 1. : ((z.real()<-300.) ? -1. : sinh(z)/cosh(z));
- }
- inline RA_REAL rel_error(RA_CPLX const a, RA_CPLX const b)
- {
- return (a==0. && b==0.) ? 0. : 2.*abs(a, b)/(abs(a)+abs(b));
- }
- #undef RA_CPLX
- #undef RA_REAL
|