alloca.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. /* alloca.c -- allocate automatically reclaimed memory
  2. (Mostly) portable public-domain implementation -- D A Gwyn
  3. This implementation of the PWB library alloca function,
  4. which is used to allocate space off the run-time stack so
  5. that it is automatically reclaimed upon procedure exit,
  6. was inspired by discussions with J. Q. Johnson of Cornell.
  7. J.Otto Tennant <jot@cray.com> contributed the Cray support.
  8. There are some preprocessor constants that can
  9. be defined when compiling for your specific system, for
  10. improved efficiency; however, the defaults should be okay.
  11. The general concept of this implementation is to keep
  12. track of all alloca-allocated blocks, and reclaim any
  13. that are found to be deeper in the stack than the current
  14. invocation. This heuristic does not reclaim storage as
  15. soon as it becomes invalid, but it will do so eventually.
  16. As a special case, alloca(0) reclaims storage without
  17. allocating any. It is a good idea to use alloca(0) in
  18. your main control loop, etc. to force garbage collection. */
  19. #include "sys-defines.h"
  20. /* If compiling with GCC, this file's not needed. */
  21. #ifndef alloca
  22. #ifdef emacs
  23. #ifdef static
  24. /* actually, only want this if static is defined as ""
  25. -- this is for usg, in which emacs must undefine static
  26. in order to make unexec workable
  27. */
  28. #ifndef STACK_DIRECTION
  29. you
  30. lose
  31. -- must know STACK_DIRECTION at compile-time
  32. #endif /* STACK_DIRECTION undefined */
  33. #endif /* static */
  34. #endif /* emacs */
  35. #ifdef emacs
  36. #define free xfree
  37. #endif
  38. /* If your stack is a linked list of frames, you have to
  39. provide an "address metric" ADDRESS_FUNCTION macro. */
  40. #ifdef CRAY
  41. long i00afunc ();
  42. #define ADDRESS_FUNCTION(arg) (char *) i00afunc (&(arg))
  43. #else
  44. #define ADDRESS_FUNCTION(arg) &(arg)
  45. #endif
  46. /* Define STACK_DIRECTION if you know the direction of stack
  47. growth for your system; otherwise it will be automatically
  48. deduced at run-time.
  49. STACK_DIRECTION > 0 => grows toward higher addresses
  50. STACK_DIRECTION < 0 => grows toward lower addresses
  51. STACK_DIRECTION = 0 => direction of growth unknown */
  52. #ifndef STACK_DIRECTION
  53. #define STACK_DIRECTION 0 /* Direction unknown. */
  54. #endif
  55. #if STACK_DIRECTION != 0
  56. #define STACK_DIR STACK_DIRECTION /* Known at compile-time. */
  57. #else /* STACK_DIRECTION == 0; need run-time code. */
  58. static int stack_dir; /* 1 or -1 once known. */
  59. #define STACK_DIR stack_dir
  60. static void
  61. _x_retrieve_font (void)
  62. {
  63. static char *addr = NULL; /* Address of first `dummy', once known. */
  64. auto char dummy; /* To get stack address. */
  65. if (addr == NULL)
  66. { /* Initial entry. */
  67. addr = ADDRESS_FUNCTION (dummy);
  68. find_stack_direction (); /* Recurse once. */
  69. }
  70. else
  71. {
  72. /* Second entry. */
  73. if (ADDRESS_FUNCTION (dummy) > addr)
  74. stack_dir = 1; /* Stack grew upward. */
  75. else
  76. stack_dir = -1; /* Stack grew downward. */
  77. }
  78. }
  79. #endif /* STACK_DIRECTION == 0 */
  80. /* An "alloca header" is used to:
  81. (a) chain together all alloca'ed blocks;
  82. (b) keep track of stack depth.
  83. It is very important that sizeof(header) agree with malloc
  84. alignment chunk size. The following default should work okay. */
  85. #ifndef ALIGN_SIZE
  86. #define ALIGN_SIZE sizeof(double)
  87. #endif
  88. typedef union hdr
  89. {
  90. char align[ALIGN_SIZE]; /* To force sizeof(header). */
  91. struct
  92. {
  93. union hdr *next; /* For chaining headers. */
  94. char *deep; /* For stack depth measure. */
  95. } h;
  96. } header;
  97. static header *last_alloca_header = NULL; /* -> last alloca header. */
  98. /* Return a pointer to at least SIZE bytes of storage,
  99. which will be automatically reclaimed upon exit from
  100. the procedure that called alloca. Originally, this space
  101. was supposed to be taken from the current stack frame of the
  102. caller, but that method cannot be made to work for some
  103. implementations of C, for example under Gould's UTX/32. */
  104. void *
  105. alloca (unsigned size)
  106. {
  107. auto char probe; /* Probes stack depth: */
  108. register char *depth = ADDRESS_FUNCTION (probe);
  109. #if STACK_DIRECTION == 0
  110. if (STACK_DIR == 0) /* Unknown growth direction. */
  111. find_stack_direction ();
  112. #endif
  113. /* Reclaim garbage, defined as all alloca'd storage that
  114. was allocated from deeper in the stack than currently. */
  115. {
  116. register header *hp; /* Traverses linked list. */
  117. for (hp = last_alloca_header; hp != NULL;)
  118. if ((STACK_DIR > 0 && hp->h.deep > depth)
  119. || (STACK_DIR < 0 && hp->h.deep < depth))
  120. {
  121. register header *np = hp->h.next;
  122. free ((void *) hp); /* Collect garbage. */
  123. hp = np; /* -> next header. */
  124. }
  125. else
  126. break; /* Rest are not deeper. */
  127. last_alloca_header = hp; /* -> last valid storage. */
  128. }
  129. if (size == 0)
  130. return NULL; /* No allocation required. */
  131. /* Allocate combined header + user data storage. */
  132. {
  133. register void * newptr = malloc (sizeof (header) + size);
  134. /* Address of header. */
  135. ((header *) newptr)->h.next = last_alloca_header;
  136. ((header *) newptr)->h.deep = depth;
  137. last_alloca_header = (header *) newptr;
  138. /* User storage begins just after header. */
  139. return (void *) ((char *) newptr + sizeof (header));
  140. }
  141. }
  142. #ifdef CRAY
  143. #ifdef DEBUG_I00AFUNC
  144. #include <stdio.h>
  145. #endif
  146. #ifndef CRAY_STACK
  147. #define CRAY_STACK
  148. #ifndef CRAY2
  149. /* Stack structures for CRAY-1, CRAY X-MP, and CRAY Y-MP */
  150. struct stack_control_header
  151. {
  152. long shgrow:32; /* Number of times stack has grown. */
  153. long shaseg:32; /* Size of increments to stack. */
  154. long shhwm:32; /* High water mark of stack. */
  155. long shsize:32; /* Current size of stack (all segments). */
  156. };
  157. /* The stack segment linkage control information occurs at
  158. the high-address end of a stack segment. (The stack
  159. grows from low addresses to high addresses.) The initial
  160. part of the stack segment linkage control information is
  161. 0200 (octal) words. This provides for register storage
  162. for the routine which overflows the stack. */
  163. struct stack_segment_linkage
  164. {
  165. long ss[0200]; /* 0200 overflow words. */
  166. long sssize:32; /* Number of words in this segment. */
  167. long ssbase:32; /* Offset to stack base. */
  168. long:32;
  169. long sspseg:32; /* Offset to linkage control of previous
  170. segment of stack. */
  171. long:32;
  172. long sstcpt:32; /* Pointer to task common address block. */
  173. long sscsnm; /* Private control structure number for
  174. microtasking. */
  175. long ssusr1; /* Reserved for user. */
  176. long ssusr2; /* Reserved for user. */
  177. long sstpid; /* Process ID for pid based multi-tasking. */
  178. long ssgvup; /* Pointer to multitasking thread giveup. */
  179. long sscray[7]; /* Reserved for Cray Research. */
  180. long ssa0;
  181. long ssa1;
  182. long ssa2;
  183. long ssa3;
  184. long ssa4;
  185. long ssa5;
  186. long ssa6;
  187. long ssa7;
  188. long sss0;
  189. long sss1;
  190. long sss2;
  191. long sss3;
  192. long sss4;
  193. long sss5;
  194. long sss6;
  195. long sss7;
  196. };
  197. #else /* CRAY2 */
  198. /* The following structure defines the vector of words
  199. returned by the STKSTAT library routine. */
  200. struct stk_stat
  201. {
  202. long now; /* Current total stack size. */
  203. long maxc; /* Amount of contiguous space which would
  204. be required to satisfy the maximum
  205. stack demand to date. */
  206. long high_water; /* Stack high-water mark. */
  207. long overflows; /* Number of stack overflow ($STKOFEN) calls. */
  208. long hits; /* Number of internal buffer hits. */
  209. long extends; /* Number of block extensions. */
  210. long stko_mallocs; /* Block allocations by $STKOFEN. */
  211. long underflows; /* Number of stack underflow calls ($STKRETN). */
  212. long stko_free; /* Number of deallocations by $STKRETN. */
  213. long stkm_free; /* Number of deallocations by $STKMRET. */
  214. long segments; /* Current number of stack segments. */
  215. long maxs; /* Maximum number of stack segments so far. */
  216. long pad_size; /* Stack pad size. */
  217. long current_address; /* Current stack segment address. */
  218. long current_size; /* Current stack segment size. This
  219. number is actually corrupted by STKSTAT to
  220. include the fifteen word trailer area. */
  221. long initial_address; /* Address of initial segment. */
  222. long initial_size; /* Size of initial segment. */
  223. };
  224. /* The following structure describes the data structure which trails
  225. any stack segment. I think that the description in 'asdef' is
  226. out of date. I only describe the parts that I am sure about. */
  227. struct stk_trailer
  228. {
  229. long this_address; /* Address of this block. */
  230. long this_size; /* Size of this block (does not include
  231. this trailer). */
  232. long unknown2;
  233. long unknown3;
  234. long link; /* Address of trailer block of previous
  235. segment. */
  236. long unknown5;
  237. long unknown6;
  238. long unknown7;
  239. long unknown8;
  240. long unknown9;
  241. long unknown10;
  242. long unknown11;
  243. long unknown12;
  244. long unknown13;
  245. long unknown14;
  246. };
  247. #endif /* CRAY2 */
  248. #endif /* not CRAY_STACK */
  249. #ifdef CRAY2
  250. /* Determine a "stack measure" for an arbitrary ADDRESS.
  251. I doubt that "lint" will like this much. */
  252. static long
  253. i00afunc (long *address)
  254. {
  255. struct stk_stat status;
  256. struct stk_trailer *trailer;
  257. long *block, size;
  258. long result = 0;
  259. /* We want to iterate through all of the segments. The first
  260. step is to get the stack status structure. We could do this
  261. more quickly and more directly, perhaps, by referencing the
  262. $LM00 common block, but I know that this works. */
  263. STKSTAT (&status);
  264. /* Set up the iteration. */
  265. trailer = (struct stk_trailer *) (status.current_address
  266. + status.current_size
  267. - 15);
  268. /* There must be at least one stack segment. Therefore it is
  269. a fatal error if "trailer" is null. */
  270. if (trailer == 0)
  271. abort ();
  272. /* Discard segments that do not contain our argument address. */
  273. while (trailer != 0)
  274. {
  275. block = (long *) trailer->this_address;
  276. size = trailer->this_size;
  277. if (block == 0 || size == 0)
  278. abort ();
  279. trailer = (struct stk_trailer *) trailer->link;
  280. if ((block <= address) && (address < (block + size)))
  281. break;
  282. }
  283. /* Set the result to the offset in this segment and add the sizes
  284. of all predecessor segments. */
  285. result = address - block;
  286. if (trailer == 0)
  287. {
  288. return result;
  289. }
  290. do
  291. {
  292. if (trailer->this_size <= 0)
  293. abort ();
  294. result += trailer->this_size;
  295. trailer = (struct stk_trailer *) trailer->link;
  296. }
  297. while (trailer != 0);
  298. /* We are done. Note that if you present a bogus address (one
  299. not in any segment), you will get a different number back, formed
  300. from subtracting the address of the first block. This is probably
  301. not what you want. */
  302. return (result);
  303. }
  304. #else /* not CRAY2 */
  305. /* Stack address function for a CRAY-1, CRAY X-MP, or CRAY Y-MP.
  306. Determine the number of the cell within the stack,
  307. given the address of the cell. The purpose of this
  308. routine is to linearize, in some sense, stack addresses
  309. for alloca. */
  310. static long
  311. i00afunc (long address)
  312. {
  313. long stkl = 0;
  314. long size, pseg, this_segment, stack;
  315. long result = 0;
  316. struct stack_segment_linkage *ssptr;
  317. /* Register B67 contains the address of the end of the
  318. current stack segment. If you (as a subprogram) store
  319. your registers on the stack and find that you are past
  320. the contents of B67, you have overflowed the segment.
  321. B67 also points to the stack segment linkage control
  322. area, which is what we are really interested in. */
  323. stkl = CRAY_STACKSEG_END ();
  324. ssptr = (struct stack_segment_linkage *) stkl;
  325. /* If one subtracts 'size' from the end of the segment,
  326. one has the address of the first word of the segment.
  327. If this is not the first segment, 'pseg' will be
  328. nonzero. */
  329. pseg = ssptr->sspseg;
  330. size = ssptr->sssize;
  331. this_segment = stkl - size;
  332. /* It is possible that calling this routine itself caused
  333. a stack overflow. Discard stack segments which do not
  334. contain the target address. */
  335. while (!(this_segment <= address && address <= stkl))
  336. {
  337. #ifdef DEBUG_I00AFUNC
  338. fprintf (stderr, "%011o %011o %011o\n", this_segment, address, stkl);
  339. #endif
  340. if (pseg == 0)
  341. break;
  342. stkl = stkl - pseg;
  343. ssptr = (struct stack_segment_linkage *) stkl;
  344. size = ssptr->sssize;
  345. pseg = ssptr->sspseg;
  346. this_segment = stkl - size;
  347. }
  348. result = address - this_segment;
  349. /* If you subtract pseg from the current end of the stack,
  350. you get the address of the previous stack segment's end.
  351. This seems a little convoluted to me, but I'll bet you save
  352. a cycle somewhere. */
  353. while (pseg != 0)
  354. {
  355. #ifdef DEBUG_I00AFUNC
  356. fprintf (stderr, "%011o %011o\n", pseg, size);
  357. #endif
  358. stkl = stkl - pseg;
  359. ssptr = (struct stack_segment_linkage *) stkl;
  360. size = ssptr->sssize;
  361. pseg = ssptr->sspseg;
  362. result += size;
  363. }
  364. return (result);
  365. }
  366. #endif /* not CRAY2 */
  367. #endif /* CRAY */
  368. #endif /* no alloca */