README.adoc 1.0 MB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447234482344923450234512345223453234542345523456234572345823459234602346123462234632346423465234662346723468234692347023471234722347323474234752347623477234782347923480234812348223483234842348523486234872348823489234902349123492234932349423495234962349723498234992350023501235022350323504235052350623507235082350923510235112351223513235142351523516235172351823519235202352123522235232352423525235262352723528235292353023531235322353323534235352353623537235382353923540235412354223543235442354523546235472354823549235502355123552235532355423555235562355723558235592356023561235622356323564235652356623567235682356923570235712357223573235742357523576235772357823579235802358123582235832358423585235862358723588235892359023591235922359323594235952359623597235982359923600236012360223603236042360523606236072360823609236102361123612236132361423615236162361723618236192362023621236222362323624236252362623627236282362923630236312363223633236342363523636236372363823639236402364123642236432364423645236462364723648236492365023651236522365323654236552365623657236582365923660236612366223663236642366523666236672366823669236702367123672236732367423675236762367723678236792368023681236822368323684236852368623687236882368923690236912369223693236942369523696236972369823699237002370123702237032370423705237062370723708237092371023711237122371323714237152371623717237182371923720237212372223723237242372523726237272372823729237302373123732237332373423735237362373723738237392374023741237422374323744237452374623747237482374923750237512375223753237542375523756237572375823759237602376123762237632376423765237662376723768237692377023771237722377323774237752377623777237782377923780237812378223783237842378523786237872378823789237902379123792237932379423795237962379723798237992380023801238022380323804238052380623807238082380923810238112381223813238142381523816238172381823819238202382123822238232382423825238262382723828238292383023831238322383323834238352383623837238382383923840238412384223843238442384523846238472384823849238502385123852238532385423855238562385723858238592386023861238622386323864238652386623867238682386923870238712387223873238742387523876238772387823879238802388123882238832388423885238862388723888238892389023891238922389323894238952389623897238982389923900239012390223903239042390523906239072390823909239102391123912239132391423915239162391723918239192392023921239222392323924239252392623927239282392923930239312393223933239342393523936239372393823939239402394123942239432394423945239462394723948239492395023951239522395323954239552395623957239582395923960239612396223963239642396523966239672396823969239702397123972239732397423975239762397723978239792398023981239822398323984239852398623987239882398923990239912399223993239942399523996239972399823999240002400124002240032400424005240062400724008240092401024011240122401324014240152401624017240182401924020240212402224023240242402524026240272402824029240302403124032240332403424035240362403724038240392404024041240422404324044240452404624047240482404924050240512405224053240542405524056240572405824059240602406124062240632406424065240662406724068240692407024071240722407324074240752407624077240782407924080240812408224083240842408524086240872408824089240902409124092240932409424095240962409724098240992410024101241022410324104241052410624107241082410924110241112411224113241142411524116241172411824119241202412124122241232412424125241262412724128241292413024131241322413324134241352413624137241382413924140241412414224143241442414524146241472414824149241502415124152241532415424155241562415724158241592416024161241622416324164241652416624167241682416924170241712417224173241742417524176241772417824179241802418124182241832418424185241862418724188241892419024191241922419324194241952419624197241982419924200242012420224203242042420524206242072420824209242102421124212242132421424215242162421724218242192422024221242222422324224242252422624227242282422924230242312423224233242342423524236242372423824239242402424124242242432424424245242462424724248242492425024251242522425324254242552425624257242582425924260242612426224263242642426524266242672426824269242702427124272242732427424275242762427724278242792428024281242822428324284242852428624287242882428924290242912429224293242942429524296242972429824299243002430124302243032430424305243062430724308243092431024311243122431324314243152431624317243182431924320243212432224323243242432524326243272432824329243302433124332243332433424335243362433724338243392434024341243422434324344243452434624347243482434924350243512435224353243542435524356243572435824359243602436124362243632436424365243662436724368243692437024371243722437324374243752437624377243782437924380243812438224383243842438524386243872438824389243902439124392243932439424395243962439724398243992440024401244022440324404244052440624407244082440924410244112441224413244142441524416244172441824419244202442124422244232442424425244262442724428244292443024431244322443324434244352443624437244382443924440244412444224443244442444524446244472444824449244502445124452244532445424455244562445724458244592446024461244622446324464244652446624467244682446924470244712447224473244742447524476244772447824479244802448124482244832448424485244862448724488244892449024491244922449324494244952449624497244982449924500245012450224503245042450524506245072450824509245102451124512245132451424515245162451724518245192452024521245222452324524245252452624527245282452924530245312453224533245342453524536245372453824539245402454124542245432454424545245462454724548245492455024551245522455324554245552455624557245582455924560245612456224563245642456524566245672456824569245702457124572245732457424575245762457724578245792458024581245822458324584245852458624587245882458924590245912459224593245942459524596245972459824599246002460124602246032460424605246062460724608246092461024611246122461324614246152461624617246182461924620246212462224623246242462524626246272462824629246302463124632246332463424635246362463724638246392464024641246422464324644246452464624647246482464924650246512465224653246542465524656246572465824659246602466124662246632466424665246662466724668246692467024671246722467324674246752467624677246782467924680246812468224683246842468524686246872468824689246902469124692246932469424695246962469724698246992470024701247022470324704247052470624707247082470924710247112471224713247142471524716247172471824719247202472124722247232472424725247262472724728247292473024731247322473324734247352473624737247382473924740247412474224743247442474524746247472474824749247502475124752247532475424755247562475724758247592476024761247622476324764247652476624767247682476924770247712477224773247742477524776247772477824779247802478124782247832478424785247862478724788247892479024791247922479324794247952479624797247982479924800248012480224803248042480524806248072480824809248102481124812248132481424815248162481724818248192482024821248222482324824248252482624827248282482924830248312483224833248342483524836248372483824839248402484124842248432484424845248462484724848248492485024851248522485324854248552485624857248582485924860248612486224863248642486524866248672486824869248702487124872248732487424875248762487724878248792488024881248822488324884248852488624887248882488924890248912489224893248942489524896248972489824899249002490124902249032490424905249062490724908249092491024911249122491324914249152491624917249182491924920249212492224923249242492524926249272492824929249302493124932249332493424935249362493724938249392494024941249422494324944249452494624947249482494924950249512495224953249542495524956249572495824959249602496124962249632496424965249662496724968249692497024971249722497324974249752497624977249782497924980249812498224983249842498524986249872498824989249902499124992249932499424995249962499724998249992500025001250022500325004250052500625007250082500925010250112501225013250142501525016250172501825019250202502125022250232502425025250262502725028250292503025031250322503325034250352503625037250382503925040250412504225043250442504525046250472504825049250502505125052250532505425055250562505725058250592506025061250622506325064250652506625067250682506925070250712507225073250742507525076250772507825079250802508125082250832508425085250862508725088250892509025091250922509325094250952509625097250982509925100251012510225103251042510525106251072510825109251102511125112251132511425115251162511725118251192512025121251222512325124251252512625127251282512925130251312513225133251342513525136251372513825139251402514125142251432514425145251462514725148251492515025151251522515325154251552515625157251582515925160251612516225163251642516525166251672516825169251702517125172251732517425175251762517725178251792518025181251822518325184251852518625187251882518925190251912519225193251942519525196251972519825199252002520125202252032520425205252062520725208252092521025211252122521325214252152521625217252182521925220252212522225223252242522525226252272522825229252302523125232252332523425235252362523725238252392524025241252422524325244252452524625247252482524925250252512525225253252542525525256252572525825259252602526125262252632526425265252662526725268252692527025271252722527325274252752527625277252782527925280252812528225283252842528525286252872528825289252902529125292252932529425295252962529725298252992530025301253022530325304253052530625307253082530925310253112531225313253142531525316253172531825319253202532125322253232532425325253262532725328253292533025331253322533325334253352533625337253382533925340253412534225343253442534525346253472534825349253502535125352253532535425355253562535725358253592536025361253622536325364253652536625367253682536925370253712537225373253742537525376253772537825379253802538125382253832538425385253862538725388253892539025391253922539325394253952539625397253982539925400254012540225403254042540525406254072540825409254102541125412254132541425415254162541725418254192542025421254222542325424254252542625427254282542925430254312543225433254342543525436254372543825439254402544125442254432544425445254462544725448254492545025451254522545325454254552545625457254582545925460254612546225463254642546525466254672546825469254702547125472254732547425475254762547725478254792548025481254822548325484254852548625487254882548925490254912549225493254942549525496254972549825499255002550125502255032550425505255062550725508255092551025511255122551325514255152551625517255182551925520255212552225523255242552525526255272552825529255302553125532255332553425535255362553725538255392554025541255422554325544255452554625547255482554925550255512555225553255542555525556255572555825559255602556125562255632556425565255662556725568255692557025571255722557325574255752557625577255782557925580255812558225583255842558525586255872558825589255902559125592255932559425595255962559725598255992560025601256022560325604256052560625607256082560925610256112561225613256142561525616256172561825619256202562125622256232562425625256262562725628256292563025631256322563325634256352563625637256382563925640256412564225643256442564525646256472564825649256502565125652256532565425655256562565725658256592566025661256622566325664256652566625667256682566925670256712567225673256742567525676256772567825679256802568125682256832568425685256862568725688256892569025691256922569325694256952569625697256982569925700257012570225703257042570525706257072570825709257102571125712257132571425715257162571725718257192572025721257222572325724257252572625727257282572925730257312573225733257342573525736257372573825739257402574125742257432574425745257462574725748257492575025751257522575325754257552575625757257582575925760257612576225763257642576525766257672576825769257702577125772257732577425775257762577725778257792578025781257822578325784257852578625787257882578925790257912579225793257942579525796257972579825799258002580125802258032580425805258062580725808258092581025811258122581325814258152581625817258182581925820258212582225823258242582525826258272582825829258302583125832258332583425835258362583725838258392584025841258422584325844258452584625847258482584925850258512585225853258542585525856258572585825859258602586125862258632586425865258662586725868258692587025871258722587325874258752587625877258782587925880258812588225883258842588525886258872588825889258902589125892258932589425895258962589725898258992590025901259022590325904259052590625907259082590925910259112591225913259142591525916259172591825919259202592125922259232592425925259262592725928259292593025931259322593325934259352593625937259382593925940259412594225943259442594525946259472594825949259502595125952259532595425955259562595725958259592596025961259622596325964259652596625967259682596925970259712597225973259742597525976259772597825979259802598125982259832598425985259862598725988259892599025991259922599325994259952599625997259982599926000260012600226003260042600526006260072600826009260102601126012260132601426015260162601726018260192602026021260222602326024260252602626027260282602926030260312603226033260342603526036260372603826039260402604126042260432604426045260462604726048260492605026051260522605326054260552605626057260582605926060260612606226063260642606526066260672606826069260702607126072260732607426075260762607726078260792608026081260822608326084260852608626087260882608926090260912609226093260942609526096260972609826099261002610126102261032610426105261062610726108261092611026111261122611326114261152611626117261182611926120261212612226123261242612526126261272612826129261302613126132261332613426135261362613726138261392614026141261422614326144261452614626147261482614926150261512615226153261542615526156261572615826159261602616126162261632616426165261662616726168261692617026171261722617326174261752617626177261782617926180261812618226183261842618526186261872618826189261902619126192261932619426195261962619726198261992620026201262022620326204262052620626207262082620926210262112621226213262142621526216262172621826219262202622126222262232622426225262262622726228262292623026231262322623326234262352623626237262382623926240262412624226243262442624526246262472624826249262502625126252262532625426255262562625726258262592626026261262622626326264262652626626267262682626926270262712627226273262742627526276262772627826279262802628126282262832628426285262862628726288262892629026291262922629326294262952629626297262982629926300263012630226303263042630526306263072630826309263102631126312263132631426315263162631726318263192632026321263222632326324263252632626327263282632926330263312633226333263342633526336263372633826339263402634126342263432634426345263462634726348263492635026351263522635326354263552635626357263582635926360263612636226363263642636526366263672636826369263702637126372263732637426375263762637726378263792638026381263822638326384263852638626387263882638926390263912639226393263942639526396263972639826399264002640126402264032640426405264062640726408264092641026411264122641326414264152641626417264182641926420264212642226423264242642526426264272642826429264302643126432264332643426435264362643726438264392644026441264422644326444264452644626447264482644926450264512645226453264542645526456264572645826459264602646126462264632646426465264662646726468264692647026471264722647326474264752647626477264782647926480264812648226483264842648526486264872648826489264902649126492264932649426495264962649726498264992650026501265022650326504265052650626507265082650926510265112651226513265142651526516265172651826519265202652126522265232652426525265262652726528265292653026531265322653326534265352653626537265382653926540265412654226543265442654526546265472654826549265502655126552265532655426555265562655726558265592656026561265622656326564265652656626567265682656926570265712657226573265742657526576265772657826579265802658126582265832658426585265862658726588265892659026591265922659326594265952659626597265982659926600266012660226603266042660526606266072660826609266102661126612266132661426615266162661726618266192662026621266222662326624266252662626627266282662926630266312663226633266342663526636266372663826639266402664126642266432664426645266462664726648266492665026651266522665326654266552665626657266582665926660266612666226663266642666526666266672666826669266702667126672266732667426675266762667726678266792668026681266822668326684266852668626687266882668926690266912669226693266942669526696266972669826699267002670126702267032670426705267062670726708267092671026711267122671326714267152671626717267182671926720267212672226723267242672526726267272672826729267302673126732267332673426735267362673726738267392674026741267422674326744267452674626747267482674926750267512675226753267542675526756267572675826759267602676126762267632676426765267662676726768267692677026771267722677326774267752677626777267782677926780267812678226783267842678526786267872678826789267902679126792267932679426795267962679726798267992680026801268022680326804268052680626807268082680926810268112681226813268142681526816268172681826819268202682126822268232682426825268262682726828268292683026831268322683326834268352683626837268382683926840268412684226843268442684526846268472684826849268502685126852268532685426855268562685726858268592686026861268622686326864268652686626867268682686926870268712687226873268742687526876268772687826879268802688126882268832688426885268862688726888268892689026891268922689326894268952689626897268982689926900269012690226903269042690526906269072690826909269102691126912269132691426915269162691726918269192692026921269222692326924269252692626927269282692926930269312693226933269342693526936269372693826939269402694126942269432694426945269462694726948269492695026951269522695326954269552695626957269582695926960269612696226963269642696526966269672696826969269702697126972269732697426975269762697726978269792698026981269822698326984269852698626987269882698926990269912699226993269942699526996269972699826999270002700127002270032700427005270062700727008270092701027011270122701327014270152701627017270182701927020270212702227023270242702527026270272702827029270302703127032270332703427035270362703727038270392704027041270422704327044270452704627047270482704927050270512705227053270542705527056270572705827059270602706127062270632706427065270662706727068270692707027071270722707327074270752707627077270782707927080270812708227083270842708527086270872708827089270902709127092270932709427095270962709727098270992710027101271022710327104271052710627107271082710927110271112711227113271142711527116271172711827119271202712127122271232712427125271262712727128271292713027131271322713327134271352713627137271382713927140271412714227143271442714527146271472714827149271502715127152271532715427155271562715727158271592716027161271622716327164271652716627167271682716927170271712717227173271742717527176271772717827179271802718127182271832718427185271862718727188271892719027191271922719327194271952719627197271982719927200272012720227203272042720527206272072720827209272102721127212272132721427215272162721727218272192722027221272222722327224272252722627227272282722927230272312723227233272342723527236272372723827239272402724127242272432724427245272462724727248272492725027251272522725327254272552725627257272582725927260272612726227263272642726527266272672726827269272702727127272272732727427275272762727727278272792728027281272822728327284272852728627287272882728927290272912729227293272942729527296272972729827299273002730127302273032730427305273062730727308273092731027311273122731327314273152731627317273182731927320273212732227323273242732527326273272732827329273302733127332273332733427335273362733727338273392734027341273422734327344273452734627347273482734927350273512735227353273542735527356273572735827359273602736127362273632736427365273662736727368273692737027371273722737327374273752737627377273782737927380273812738227383273842738527386273872738827389273902739127392273932739427395273962739727398273992740027401274022740327404274052740627407274082740927410274112741227413274142741527416274172741827419274202742127422274232742427425274262742727428274292743027431274322743327434274352743627437274382743927440274412744227443274442744527446274472744827449274502745127452274532745427455274562745727458274592746027461274622746327464274652746627467274682746927470274712747227473274742747527476274772747827479274802748127482274832748427485274862748727488274892749027491274922749327494274952749627497274982749927500275012750227503275042750527506275072750827509275102751127512275132751427515275162751727518275192752027521275222752327524275252752627527275282752927530275312753227533275342753527536275372753827539275402754127542275432754427545275462754727548275492755027551275522755327554275552755627557275582755927560275612756227563275642756527566275672756827569275702757127572275732757427575275762757727578275792758027581275822758327584275852758627587275882758927590275912759227593275942759527596275972759827599276002760127602276032760427605276062760727608276092761027611276122761327614276152761627617276182761927620276212762227623276242762527626276272762827629276302763127632276332763427635276362763727638276392764027641276422764327644276452764627647276482764927650276512765227653276542765527656276572765827659276602766127662276632766427665276662766727668276692767027671276722767327674276752767627677276782767927680276812768227683276842768527686276872768827689276902769127692276932769427695276962769727698276992770027701277022770327704277052770627707277082770927710277112771227713277142771527716277172771827719277202772127722277232772427725277262772727728277292773027731277322773327734277352773627737277382773927740277412774227743277442774527746277472774827749277502775127752277532775427755277562775727758277592776027761277622776327764277652776627767277682776927770277712777227773277742777527776277772777827779277802778127782277832778427785277862778727788277892779027791277922779327794277952779627797277982779927800278012780227803278042780527806278072780827809278102781127812278132781427815278162781727818278192782027821278222782327824278252782627827278282782927830278312783227833278342783527836278372783827839278402784127842278432784427845278462784727848278492785027851278522785327854278552785627857278582785927860278612786227863278642786527866278672786827869278702787127872278732787427875278762787727878278792788027881278822788327884278852788627887278882788927890278912789227893278942789527896278972789827899279002790127902279032790427905279062790727908279092791027911279122791327914279152791627917279182791927920279212792227923279242792527926279272792827929279302793127932279332793427935279362793727938279392794027941279422794327944279452794627947279482794927950279512795227953279542795527956279572795827959279602796127962279632796427965279662796727968279692797027971279722797327974279752797627977279782797927980279812798227983279842798527986279872798827989279902799127992279932799427995279962799727998279992800028001280022800328004280052800628007280082800928010280112801228013280142801528016280172801828019280202802128022280232802428025280262802728028280292803028031280322803328034280352803628037280382803928040280412804228043280442804528046280472804828049280502805128052280532805428055280562805728058280592806028061280622806328064280652806628067280682806928070280712807228073280742807528076280772807828079280802808128082280832808428085280862808728088280892809028091280922809328094280952809628097280982809928100281012810228103281042810528106281072810828109281102811128112281132811428115281162811728118281192812028121281222812328124281252812628127281282812928130281312813228133281342813528136281372813828139281402814128142281432814428145281462814728148281492815028151281522815328154281552815628157281582815928160281612816228163281642816528166281672816828169281702817128172281732817428175281762817728178281792818028181281822818328184281852818628187281882818928190281912819228193281942819528196281972819828199282002820128202282032820428205282062820728208282092821028211282122821328214282152821628217282182821928220282212822228223282242822528226282272822828229282302823128232282332823428235282362823728238282392824028241282422824328244282452824628247282482824928250282512825228253282542825528256282572825828259282602826128262282632826428265282662826728268282692827028271282722827328274282752827628277282782827928280282812828228283282842828528286282872828828289282902829128292282932829428295282962829728298282992830028301283022830328304283052830628307283082830928310283112831228313283142831528316283172831828319283202832128322283232832428325283262832728328283292833028331283322833328334283352833628337283382833928340283412834228343283442834528346283472834828349283502835128352283532835428355283562835728358283592836028361283622836328364283652836628367283682836928370283712837228373283742837528376283772837828379283802838128382283832838428385283862838728388283892839028391283922839328394283952839628397283982839928400284012840228403284042840528406284072840828409284102841128412284132841428415284162841728418284192842028421284222842328424284252842628427284282842928430284312843228433284342843528436284372843828439284402844128442284432844428445284462844728448284492845028451284522845328454284552845628457284582845928460284612846228463284642846528466284672846828469284702847128472284732847428475284762847728478284792848028481284822848328484284852848628487284882848928490284912849228493284942849528496284972849828499285002850128502285032850428505285062850728508285092851028511285122851328514285152851628517285182851928520285212852228523285242852528526285272852828529285302853128532285332853428535285362853728538285392854028541285422854328544285452854628547285482854928550285512855228553285542855528556285572855828559285602856128562285632856428565285662856728568285692857028571285722857328574285752857628577285782857928580285812858228583285842858528586285872858828589285902859128592285932859428595285962859728598285992860028601286022860328604286052860628607286082860928610286112861228613286142861528616286172861828619286202862128622286232862428625286262862728628286292863028631286322863328634286352863628637286382863928640286412864228643286442864528646286472864828649286502865128652286532865428655286562865728658286592866028661286622866328664286652866628667286682866928670286712867228673286742867528676286772867828679286802868128682286832868428685286862868728688286892869028691286922869328694286952869628697286982869928700287012870228703287042870528706287072870828709287102871128712287132871428715287162871728718287192872028721287222872328724287252872628727287282872928730287312873228733287342873528736287372873828739287402874128742287432874428745287462874728748287492875028751287522875328754287552875628757287582875928760287612876228763287642876528766287672876828769287702877128772287732877428775287762877728778287792878028781287822878328784287852878628787287882878928790287912879228793287942879528796287972879828799288002880128802288032880428805288062880728808288092881028811288122881328814288152881628817288182881928820288212882228823288242882528826288272882828829288302883128832288332883428835288362883728838288392884028841288422884328844288452884628847288482884928850288512885228853288542885528856288572885828859288602886128862288632886428865288662886728868288692887028871288722887328874288752887628877288782887928880288812888228883288842888528886288872888828889288902889128892288932889428895288962889728898288992890028901289022890328904289052890628907289082890928910289112891228913289142891528916289172891828919289202892128922289232892428925289262892728928289292893028931289322893328934289352893628937289382893928940289412894228943289442894528946289472894828949289502895128952289532895428955289562895728958289592896028961289622896328964289652896628967289682896928970289712897228973289742897528976289772897828979289802898128982289832898428985289862898728988289892899028991289922899328994289952899628997289982899929000290012900229003290042900529006290072900829009290102901129012290132901429015290162901729018290192902029021290222902329024290252902629027290282902929030290312903229033290342903529036290372903829039290402904129042290432904429045290462904729048290492905029051290522905329054290552905629057290582905929060290612906229063290642906529066290672906829069290702907129072290732907429075290762907729078290792908029081290822908329084290852908629087290882908929090290912909229093290942909529096290972909829099291002910129102291032910429105291062910729108291092911029111291122911329114291152911629117291182911929120
  1. = Linux Kernel Module Cheat
  2. :cirosantilli-media-base: https://raw.githubusercontent.com/cirosantilli/media/master/
  3. :description: The perfect emulation setup to study and develop the <<linux-kernel>> v5.9.2, kernel modules, <<qemu-buildroot-setup,QEMU>>, <<gem5-buildroot-setup,gem5>> and x86_64, ARMv7 and ARMv8 <<userland-assembly,userland>> and <<baremetal-setup,baremetal>> assembly, <<c,ANSI C>>, <<cpp,C++>> and <<posix,POSIX>>. <<gdb>> and <<kgdb>> just work. Powered by <<about-the-qemu-buildroot-setup,Buildroot>> and <<about-the-baremetal-setup,crosstool-NG>>. Highly automated. Thoroughly documented. Automated <<test-this-repo,tests>>. "Tested" in an Ubuntu 20.04 host.
  4. :idprefix:
  5. :idseparator: -
  6. :nofooter:
  7. :sectanchors:
  8. :sectlinks:
  9. :sectnumlevels: 6
  10. :sectnums:
  11. :toc-title:
  12. :toc: macro
  13. :toclevels: 6
  14. https://zenodo.org/badge/latestdoi/64534859[image:https://zenodo.org/badge/64534859.svg[]]
  15. {description}
  16. https://twitter.com/dakami/status/1344853681749934080[Dan Kaminski-approved]™ https://en.wikipedia.org/wiki/Dan_Kaminsky[RIP].
  17. TL;DR: xref:qemu-buildroot-setup-getting-started[xrefstyle=full]
  18. The source code for this page is located at: https://github.com/cirosantilli/linux-kernel-module-cheat[]. Due to https://github.com/isaacs/github/issues/1610[a GitHub limitation], this README is too long and not fully rendered on github.com, so either use:
  19. * https://cirosantilli.com/linux-kernel-module-cheat
  20. * https://cirosantilli.com/linux-kernel-module-cheat/index-split[]: split header version
  21. * <<build-the-documentation,build the docs yourself>>
  22. https://github.com/cirosantilli/china-dictatorship | https://cirosantilli.com/china-dictatorship/xinjiang
  23. image::https://raw.githubusercontent.com/cirosantilli/china-dictatorship-media/master/Xinjiang_prisoners_sitting_identified.jpeg[width=800]
  24. toc::[]
  25. == `--china`
  26. The most important functionality of this repository is the `--china` option, sample usage:
  27. ....
  28. ./setup
  29. ./run --china > index.html
  30. firefox index.html
  31. ....
  32. see also: https://cirosantilli.com/china-dictatorship/mirrors
  33. The secondary systems programming functionality is described on the sections below starting from <<getting-started>>.
  34. image::https://raw.githubusercontent.com/cirosantilli/china-dictatorship-media/master/Tiananmen_cute_girls.jpg[width=800]
  35. == Getting started
  36. Each child section describes a possible different setup for this repo.
  37. If you don't know which one to go for, start with <<qemu-buildroot-setup-getting-started>>.
  38. Design goals of this project are documented at: xref:design-goals[xrefstyle=full].
  39. === Should you waste your life with systems programming?
  40. Being the hardcore person who fully understands an important complex system such as a computer, it does have a nice ring to it doesn't it?
  41. But before you dedicate your life to this nonsense, do consider the following points:
  42. * almost all contributions to the kernel are done by large companies, and if you are not an employee in one of them, you are likely not going to be able to do much.
  43. +
  44. This can be inferred by the fact that the `devices/` directory is by far the largest in the kernel.
  45. +
  46. The kernel is of course just an interface to hardware, and the hardware developers start developing their kernel stuff even before specs are publicly released, both to help with hardware development and to have things working when the announcement is made.
  47. +
  48. Furthermore, I believe that there are in-tree devices which have never been properly publicly documented. Linus is of course fine with this, since code == documentation for him, but it is not as easy for mere mortals.
  49. +
  50. There are some less hardware bound higher level layers in the kernel which might not require being in a hardware company, and a few people must be living off it.
  51. +
  52. But of course, those are heavily motivated by the underlying hardware characteristics, and it is very likely that most of the people working there were previously at a hardware company.
  53. +
  54. In that sense, therefore, the kernel is not as open as one might want to believe.
  55. +
  56. Of course, if there is some https://stackoverflow.com/questions/1697842/do-graphic-cards-have-instruction-sets-of-their-own/1697883[super useful and undocumented hardware that is just waiting there to be reverse engineered], then that's a much juicier target :-)
  57. * it is impossible to become rich with this knowledge.
  58. +
  59. This is partly implied by the fact that you need to be in a big company to make useful low level things, and therefore you will only be a tiny cog in the engine.
  60. +
  61. The key problem is that the entry cost of hardware design is just too insanely high for startups in general.
  62. * Is learning this the most useful thing that you think can do for society?
  63. +
  64. Or are you just learning it for job security and having a nice sounding title?
  65. +
  66. I'm not a huge fan of the person, but I think Jobs said it right: https://www.youtube.com/watch?v=FF-tKLISfPE
  67. +
  68. First determine the useful goal, and then backtrack down to the most efficient thing you can do to reach it.
  69. * there are two things that sadden me compared to physics-based engineering:
  70. +
  71. --
  72. ** you will never become eternally famous. All tech disappears sooner or later, while laws of nature, at least as useful approximations, stay unchanged.
  73. ** every problem that you face is caused by imperfections introduced by other humans.
  74. +
  75. It is much easier to accept limitations of physics, and even natural selection in biology, which are not produced by a sentient being (?).
  76. --
  77. +
  78. Physics-based engineering, just like low level hardware, is of course completely closed source however, since wrestling against the laws of physics is about the most expensive thing humans can do, so there's also a downside to it.
  79. Are you fine with those points, and ready to continue wasting your life with this crap?
  80. Good. In that case, read on, and let's have some fun together ;-)
  81. Related: <<soft-topics>>.
  82. === QEMU Buildroot setup
  83. ==== QEMU Buildroot setup getting started
  84. This setup has been tested on Ubuntu 20.04.
  85. The Buildroot build is already broken on Ubuntu 21.04 onwards: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/155[], just use the <<docker>> setup in that case. We could fix it on Ubuntu 21.04, but it will break again inevitably later on.
  86. For other host operating systems see: xref:supported-hosts[xrefstyle=full].
  87. Reserve 12Gb of disk and run:
  88. ....
  89. git clone https://github.com/cirosantilli/linux-kernel-module-cheat
  90. cd linux-kernel-module-cheat
  91. ./setup
  92. ./build --download-dependencies qemu-buildroot
  93. ./run
  94. ....
  95. You don't need to clone recursively even though we have `.git` submodules: `download-dependencies` fetches just the submodules that you need for this build to save time.
  96. If something goes wrong, see: xref:common-build-issues[xrefstyle=full] and use our issue tracker: https://github.com/cirosantilli/linux-kernel-module-cheat/issues
  97. The initial build will take a while (30 minutes to 2 hours) to clone and build, see <<benchmark-builds>> for more details.
  98. If you don't want to wait, you could also try the following faster but much more limited methods:
  99. * <<prebuilt>>
  100. * <<host>>
  101. but you will soon find that they are simply not enough if you anywhere near serious about systems programming.
  102. After `./run`, QEMU opens up leaving you in the <<lkmc-home,`/lkmc/` directory>>, and you can start playing with the kernel modules inside the simulated system:
  103. ....
  104. insmod hello.ko
  105. insmod hello2.ko
  106. rmmod hello
  107. rmmod hello2
  108. ....
  109. This should print to the screen:
  110. ....
  111. hello init
  112. hello2 init
  113. hello cleanup
  114. hello2 cleanup
  115. ....
  116. which are `printk` messages from `init` and `cleanup` methods of those modules.
  117. Sources:
  118. * link:kernel_modules/hello.c[]
  119. * link:kernel_modules/hello2.c[]
  120. Quit QEMU with:
  121. ....
  122. Ctrl-A X
  123. ....
  124. See also: xref:quit-qemu-from-text-mode[xrefstyle=full].
  125. All available modules can be found in the link:kernel_modules[] directory.
  126. It is super easy to build for different <<cpu-architecture,CPU architectures>>, just use the `--arch` option:
  127. ....
  128. ./setup
  129. ./build --arch aarch64 --download-dependencies qemu-buildroot
  130. ./run --arch aarch64
  131. ....
  132. To avoid typing `--arch aarch64` many times, you can set the default arch as explained at: xref:default-command-line-arguments[xrefstyle=full]
  133. I now urge you to read the following sections which contain widely applicable information:
  134. * <<run-command-after-boot>>
  135. * <<clean-the-build>>
  136. * <<build-the-documentation>>
  137. * Linux kernel
  138. ** <<printk>>
  139. ** <<kernel-command-line-parameters>>
  140. Once you use <<gdb>> and <<tmux>>, your terminal will look a bit like this:
  141. ....
  142. [ 1.451857] input: AT Translated Set 2 keyboard as /devices/platform/i8042/s1│loading @0xffffffffc0000000: ../kernel_modules-1.0//timer.ko
  143. [ 1.454310] ledtrig-cpu: registered to indicate activity on CPUs │(gdb) b lkmc_timer_callback
  144. [ 1.455621] usbcore: registered new interface driver usbhid │Breakpoint 1 at 0xffffffffc0000000: file /home/ciro/bak/git/linux-kernel-module
  145. [ 1.455811] usbhid: USB HID core driver │-cheat/out/x86_64/buildroot/build/kernel_modules-1.0/./timer.c, line 28.
  146. [ 1.462044] NET: Registered protocol family 10 │(gdb) c
  147. [ 1.467911] Segment Routing with IPv6 │Continuing.
  148. [ 1.468407] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver │
  149. [ 1.470859] NET: Registered protocol family 17 │Breakpoint 1, lkmc_timer_callback (data=0xffffffffc0002000 <mytimer>)
  150. [ 1.472017] 9pnet: Installing 9P2000 support │ at /linux-kernel-module-cheat//out/x86_64/buildroot/build/
  151. [ 1.475461] sched_clock: Marking stable (1473574872, 0)->(1554017593, -80442)│kernel_modules-1.0/./timer.c:28
  152. [ 1.479419] ALSA device list: │28 {
  153. [ 1.479567] No soundcards found. │(gdb) c
  154. [ 1.619187] ata2.00: ATAPI: QEMU DVD-ROM, 2.5+, max UDMA/100 │Continuing.
  155. [ 1.622954] ata2.00: configured for MWDMA2 │
  156. [ 1.644048] scsi 1:0:0:0: CD-ROM QEMU QEMU DVD-ROM 2.5+ P5│Breakpoint 1, lkmc_timer_callback (data=0xffffffffc0002000 <mytimer>)
  157. [ 1.741966] tsc: Refined TSC clocksource calibration: 2904.010 MHz │ at /linux-kernel-module-cheat//out/x86_64/buildroot/build/
  158. [ 1.742796] clocksource: tsc: mask: 0xffffffffffffffff max_cycles: 0x29dc0f4s│kernel_modules-1.0/./timer.c:28
  159. [ 1.743648] clocksource: Switched to clocksource tsc │28 {
  160. [ 2.072945] input: ImExPS/2 Generic Explorer Mouse as /devices/platform/i8043│(gdb) bt
  161. [ 2.078641] EXT4-fs (vda): couldn't mount as ext3 due to feature incompatibis│#0 lkmc_timer_callback (data=0xffffffffc0002000 <mytimer>)
  162. [ 2.080350] EXT4-fs (vda): mounting ext2 file system using the ext4 subsystem│ at /linux-kernel-module-cheat//out/x86_64/buildroot/build/
  163. [ 2.088978] EXT4-fs (vda): mounted filesystem without journal. Opts: (null) │kernel_modules-1.0/./timer.c:28
  164. [ 2.089872] VFS: Mounted root (ext2 filesystem) readonly on device 254:0. │#1 0xffffffff810ab494 in call_timer_fn (timer=0xffffffffc0002000 <mytimer>,
  165. [ 2.097168] devtmpfs: mounted │ fn=0xffffffffc0000000 <lkmc_timer_callback>) at kernel/time/timer.c:1326
  166. [ 2.126472] Freeing unused kernel memory: 1264K │#2 0xffffffff810ab71f in expire_timers (head=<optimized out>,
  167. [ 2.126706] Write protecting the kernel read-only data: 16384k │ base=<optimized out>) at kernel/time/timer.c:1363
  168. [ 2.129388] Freeing unused kernel memory: 2024K │#3 __run_timers (base=<optimized out>) at kernel/time/timer.c:1666
  169. [ 2.139370] Freeing unused kernel memory: 1284K │#4 run_timer_softirq (h=<optimized out>) at kernel/time/timer.c:1692
  170. [ 2.246231] EXT4-fs (vda): warning: mounting unchecked fs, running e2fsck isd│#5 0xffffffff81a000cc in __do_softirq () at kernel/softirq.c:285
  171. [ 2.259574] EXT4-fs (vda): re-mounted. Opts: block_validity,barrier,user_xatr│#6 0xffffffff810577cc in invoke_softirq () at kernel/softirq.c:365
  172. hello S98 │#7 irq_exit () at kernel/softirq.c:405
  173. │#8 0xffffffff818021ba in exiting_irq () at ./arch/x86/include/asm/apic.h:541
  174. Apr 15 23:59:23 login[49]: root login on 'console' │#9 smp_apic_timer_interrupt (regs=<optimized out>)
  175. hello /root/.profile │ at arch/x86/kernel/apic/apic.c:1052
  176. # insmod /timer.ko │#10 0xffffffff8180190f in apic_timer_interrupt ()
  177. [ 6.791945] timer: loading out-of-tree module taints kernel. │ at arch/x86/entry/entry_64.S:857
  178. # [ 7.821621] 4294894248 │#11 0xffffffff82003df8 in init_thread_union ()
  179. [ 8.851385] 4294894504 │#12 0x0000000000000000 in ?? ()
  180. │(gdb)
  181. ....
  182. ==== How to hack stuff
  183. Besides a seamless <<qemu-buildroot-setup-getting-started,initial build>>, this project also aims to make it effortless to modify and rebuild several major components of the system, to serve as an awesome development setup.
  184. ===== Your first Linux kernel hack
  185. Let's hack up the <<linux-kernel-entry-point, Linux kernel entry point>>, which is an easy place to start.
  186. Open the file:
  187. ....
  188. vim submodules/linux/init/main.c
  189. ....
  190. and find the `start_kernel` function, then add there a:
  191. ....
  192. pr_info("I'VE HACKED THE LINUX KERNEL!!!");
  193. ....
  194. Then rebuild the Linux kernel, quit QEMU and reboot the modified kernel:
  195. ....
  196. ./build-linux
  197. ./run
  198. ....
  199. and, surely enough, your message has appeared at the beginning of the boot:
  200. ....
  201. <6>[ 0.000000] I'VE HACKED THE LINUX KERNEL!!!
  202. ....
  203. So you are now officially a Linux kernel hacker, way to go!
  204. We could have used just link:build[] to rebuild the kernel as in the <<qemu-buildroot-setup-getting-started,initial build>> instead of link:build-linux[], but building just the required individual components is preferred during development:
  205. * saves a few seconds from parsing Make scripts and reading timestamps
  206. * makes it easier to understand what is being done in more detail
  207. * allows passing more specific options to customize the build
  208. The link:build[] script is just a lightweight wrapper that calls the smaller build scripts, and you can see what `./build` does with:
  209. ....
  210. ./build --dry-run
  211. ....
  212. see also: <<dry-run>>.
  213. When you reach difficulties, QEMU makes it possible to easily GDB step debug the Linux kernel source code, see: xref:gdb[xrefstyle=full].
  214. ===== Your first kernel module hack
  215. Edit link:kernel_modules/hello.c[] to contain:
  216. ....
  217. pr_info("hello init hacked\n");
  218. ....
  219. and rebuild with:
  220. ....
  221. ./build-modules
  222. ....
  223. Now there are two ways to test it out: the fast way, and the safe way.
  224. The fast way is, without quitting or rebooting QEMU, just directly re-insert the module with:
  225. ....
  226. insmod /mnt/9p/out_rootfs_overlay/lkmc/hello.ko
  227. ....
  228. and the new `pr_info` message should now show on the terminal at the end of the boot.
  229. This works because we have a <<9p>> mount there setup by default, which mounts the host directory that contains the build outputs on the guest:
  230. ....
  231. ls "$(./getvar out_rootfs_overlay_dir)"
  232. ....
  233. The fast method is slightly risky because your previously insmodded buggy kernel module attempt might have corrupted the kernel memory, which could affect future runs.
  234. Such failures are however unlikely, and you should be fine if you don't see anything weird happening.
  235. The safe way, is to fist <<rebuild-buildroot-while-running,quit QEMU>>, rebuild the modules, put them in the root filesystem, and then reboot:
  236. ....
  237. ./build-modules
  238. ./build-buildroot
  239. ./run --eval-after 'insmod hello.ko'
  240. ....
  241. `./build-buildroot` is required after `./build-modules` because it re-generates the root filesystem with the modules that we compiled at `./build-modules`.
  242. You can see that `./build` does that as well, by running:
  243. ....
  244. ./build --dry-run
  245. ....
  246. See also: <<dry-run>>.
  247. `--eval-after` is optional: you could just type `insmod hello.ko` in the terminal, but this makes it run automatically at the end of boot, and then drops you into a shell.
  248. If the guest and host are the same arch, typically x86_64, you can speed up boot further with <<kvm>>:
  249. ....
  250. ./run --kvm
  251. ....
  252. All of this put together makes the safe procedure acceptably fast for regular development as well.
  253. It is also easy to GDB step debug kernel modules with our setup, see: xref:gdb-step-debug-kernel-module[xrefstyle=full].
  254. ===== Your first glibc hack
  255. We use <<libc-choice,glibc as our default libc now>>, and it is tracked as an unmodified submodule at link:submodules/glibc[], at the exact same version that Buildroot has it, which can be found at: https://github.com/buildroot/buildroot/blob/2018.05/package/glibc/glibc.mk#L13[package/glibc/glibc.mk]. Buildroot 2018.05 applies no patches.
  256. Let's hack up the `puts` function:
  257. ....
  258. ./build-buildroot -- glibc-reconfigure
  259. ....
  260. with the patch:
  261. ....
  262. diff --git a/libio/ioputs.c b/libio/ioputs.c
  263. index 706b20b492..23185948f3 100644
  264. --- a/libio/ioputs.c
  265. +++ b/libio/ioputs.c
  266. @@ -38,8 +38,9 @@ _IO_puts (const char *str)
  267. if ((_IO_vtable_offset (_IO_stdout) != 0
  268. || _IO_fwide (_IO_stdout, -1) == -1)
  269. && _IO_sputn (_IO_stdout, str, len) == len
  270. + && _IO_sputn (_IO_stdout, " hacked", 7) == 7
  271. && _IO_putc_unlocked ('\n', _IO_stdout) != EOF)
  272. - result = MIN (INT_MAX, len + 1);
  273. + result = MIN (INT_MAX, len + 1 + 7);
  274. _IO_release_lock (_IO_stdout);
  275. return result;
  276. ....
  277. And then:
  278. ....
  279. ./run --eval-after './c/hello.out'
  280. ....
  281. outputs:
  282. ....
  283. hello hacked
  284. ....
  285. Lol!
  286. We can also test our hacked glibc on <<user-mode-simulation>> with:
  287. ....
  288. ./run --userland userland/c/hello.c
  289. ....
  290. I just noticed that this is actually a good way to develop glibc for other archs.
  291. In this example, we got away without recompiling the userland program because we made a change that did not affect the glibc ABI, see this answer for an introduction to ABI stability: https://stackoverflow.com/questions/2171177/what-is-an-application-binary-interface-abi/54967743#54967743
  292. Note that for arch agnostic features that don't rely on bleeding kernel changes that you host doesn't yet have, you can develop glibc natively as explained at:
  293. * https://stackoverflow.com/questions/10412684/how-to-compile-my-own-glibc-c-standard-library-from-source-and-use-it/52454710#52454710
  294. * https://stackoverflow.com/questions/847179/multiple-glibc-libraries-on-a-single-host/52454603#52454603
  295. * https://stackoverflow.com/questions/2856438/how-can-i-link-to-a-specific-glibc-version/52550158#52550158 more focus on symbol versioning, but no one knows how to do it, so I answered
  296. Tested on a30ed0f047523ff2368d421ee2cce0800682c44e + 1.
  297. ===== Your first Binutils hack
  298. Have you ever felt that a single `inc` instruction was not enough? Really? Me too!
  299. So let's hack the <<gnu-gas-assembler>>, which is part of https://en.wikipedia.org/wiki/GNU_Binutils[GNU Binutils], to add a new shiny version of `inc` called... `myinc`!
  300. GCC uses GNU GAS as its backend, so we will test out new mnemonic with an <<gcc-inline-assembly>> test program: link:userland/arch/x86_64/binutils_hack.c[], which is just a copy of link:userland/arch/x86_64/binutils_nohack.c[] but with `myinc` instead of `inc`.
  301. The inline assembly is disabled with an `#ifdef`, so first modify the source to enable that.
  302. Then, try to build userland:
  303. ....
  304. ./build-userland
  305. ....
  306. and watch it fail with:
  307. ....
  308. binutils_hack.c:8: Error: no such instruction: `myinc %rax'
  309. ....
  310. Now, edit the file
  311. ....
  312. vim submodules/binutils-gdb/opcodes/i386-tbl.h
  313. ....
  314. and add a copy of the `"inc"` instruction just next to it, but with the new name `"myinc"`:
  315. ....
  316. diff --git a/opcodes/i386-tbl.h b/opcodes/i386-tbl.h
  317. index af583ce578..3cc341f303 100644
  318. --- a/opcodes/i386-tbl.h
  319. +++ b/opcodes/i386-tbl.h
  320. @@ -1502,6 +1502,19 @@ const insn_template i386_optab[] =
  321. { { { 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  322. 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
  323. 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 } } } },
  324. + { "myinc", 1, 0xfe, 0x0, 1,
  325. + { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  326. + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  327. + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  328. + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  329. + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
  330. + { 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  331. + 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
  332. + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  333. + 0, 0, 0, 0, 0, 0 },
  334. + { { { 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  335. + 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
  336. + 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 } } } },
  337. { "sub", 2, 0x28, None, 1,
  338. { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  339. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  340. ....
  341. Finally, rebuild Binutils, userland and test our program with <<user-mode-simulation>>:
  342. ....
  343. ./build-buildroot -- host-binutils-rebuild
  344. ./build-userland --static
  345. ./run --static --userland userland/arch/x86_64/binutils_hack.c
  346. ....
  347. and we se that `myinc` worked since the assert did not fail!
  348. Tested on b60784d59bee993bf0de5cde6c6380dd69420dda + 1.
  349. ===== Your first GCC hack
  350. OK, now time to hack GCC.
  351. For convenience, let's use the <<user-mode-simulation>>.
  352. If we run the program link:userland/c/gcc_hack.c[]:
  353. ....
  354. ./build-userland --static
  355. ./run --static --userland userland/c/gcc_hack.c
  356. ....
  357. it produces the normal boring output:
  358. ....
  359. i = 2
  360. j = 0
  361. ....
  362. So how about we swap `++` and `--` to make things more fun?
  363. Open the file:
  364. ....
  365. vim submodules/gcc/gcc/c/c-parser.c
  366. ....
  367. and find the function `c_parser_postfix_expression_after_primary`.
  368. In that function, swap `case CPP_PLUS_PLUS` and `case CPP_MINUS_MINUS`:
  369. ....
  370. diff --git a/gcc/c/c-parser.c b/gcc/c/c-parser.c
  371. index 101afb8e35f..89535d1759a 100644
  372. --- a/gcc/c/c-parser.c
  373. +++ b/gcc/c/c-parser.c
  374. @@ -8529,7 +8529,7 @@ c_parser_postfix_expression_after_primary (c_parser *parser,
  375. expr.original_type = DECL_BIT_FIELD_TYPE (field);
  376. }
  377. break;
  378. - case CPP_PLUS_PLUS:
  379. + case CPP_MINUS_MINUS:
  380. /* Postincrement. */
  381. start = expr.get_start ();
  382. finish = c_parser_peek_token (parser)->get_finish ();
  383. @@ -8548,7 +8548,7 @@ c_parser_postfix_expression_after_primary (c_parser *parser,
  384. expr.original_code = ERROR_MARK;
  385. expr.original_type = NULL;
  386. break;
  387. - case CPP_MINUS_MINUS:
  388. + case CPP_PLUS_PLUS:
  389. /* Postdecrement. */
  390. start = expr.get_start ();
  391. finish = c_parser_peek_token (parser)->get_finish ();
  392. ....
  393. Now rebuild GCC, the program and re-run it:
  394. ....
  395. ./build-buildroot -- host-gcc-final-rebuild
  396. ./build-userland --static
  397. ./run --static --userland userland/c/gcc_hack.c
  398. ....
  399. and the new ouptut is now:
  400. ....
  401. i = 2
  402. j = 0
  403. ....
  404. We need to use the ugly `-final` thing because GCC has to packages in Buildroot, `-initial` and `-final`: https://stackoverflow.com/questions/54992977/how-to-select-an-override-srcdir-source-for-gcc-when-building-buildroot No one is able to example precisely with a minimal example why this is required:
  405. * https://stackoverflow.com/questions/39883865/why-multiple-passes-for-building-linux-from-scratch-lfs
  406. * https://stackoverflow.com/questions/27457835/why-do-cross-compilers-have-a-two-stage-compilation
  407. ==== About the QEMU Buildroot setup
  408. What QEMU and Buildroot are:
  409. * <<introduction-to-buildroot>>
  410. * <<introduction-to-qemu>>
  411. This is our reference setup, and the best supported one, use it unless you have good reason not to.
  412. It was historically the first one we did, and all sections have been tested with this setup unless explicitly noted.
  413. Read the following sections for further introductory material:
  414. * <<introduction-to-qemu>>
  415. * <<introduction-to-buildroot>>
  416. [[dry-run]]
  417. === Dry run to get commands for your project
  418. One of the major features of this repository is that we try to support the `--dry-run` option really well for all scripts.
  419. This option, as the name suggests, outputs the external commands that would be run (or more precisely: equivalent commands), without actually running them.
  420. This allows you to just clone this repository and get full working commands to integrate into your project, without having to build or use this setup further!
  421. For example, we can obtain a QEMU run for the file link:userland/c/hello.c[] in <<user-mode-simulation>> by adding `--dry-run` to the normal command:
  422. ....
  423. ./run --dry-run --userland userland/c/hello.c
  424. ....
  425. which as of LKMC a18f28e263c91362519ef550150b5c9d75fa3679 + 1 outputs:
  426. ....
  427. + /path/to/linux-kernel-module-cheat/out/qemu/default/opt/x86_64-linux-user/qemu-x86_64 \
  428. -L /path/to/linux-kernel-module-cheat/out/buildroot/build/default/x86_64/target \
  429. -r 5.2.1 \
  430. -seed 0 \
  431. -trace enable=load_file,file=/path/to/linux-kernel-module-cheat/out/run/qemu/x86_64/0/trace.bin \
  432. -cpu max \
  433. /path/to/linux-kernel-module-cheat/out/userland/default/x86_64/c/hello.out \
  434. ;
  435. ....
  436. So observe that the command contains:
  437. * `+`: sign to differentiate it from program stdout, much like bash `-x` output. This is not a valid part of the generated Bash command however.
  438. * the actual command nicely, indented and with arguments broken one per line, but with continuing backslashes so you can just copy paste into a terminal
  439. +
  440. For setups that don't support the newline e.g. <<gem5-eclipse-configuration,Eclipse debugging>>, you can turn them off with `--print-cmd-oneline`
  441. * `;`: both a valid part of the Bash command, and a visual mark the end of the command
  442. For the specific case of running emulators such as QEMU, the last command is also automatically placed in a file for your convenience and later inspection:
  443. ....
  444. cat "$(./getvar run_dir)/run.sh"
  445. ....
  446. Since we need this so often, the last run command is also stored for convenience at:
  447. ....
  448. cat out/run.sh
  449. ....
  450. although this won't of course work well for <<simultaneous-runs>>.
  451. Furthermore, `--dry-run` also automatically specifies, in valid Bash shell syntax:
  452. * environment variables used to run the command with syntax `+ ENV_VAR_1=abc ENV_VAR_2=def ./some/command`
  453. * change in working directory with `+ cd /some/new/path && ./some/command`
  454. === gem5 Buildroot setup
  455. ==== About the gem5 Buildroot setup
  456. This setup is like the <<qemu-buildroot-setup>>, but it uses http://gem5.org/[gem5] instead of QEMU as a system simulator.
  457. QEMU tries to run as fast as possible and give correct results at the end, but it does not tell us how many CPU cycles it takes to do something, just the number of instructions it ran. This kind of simulation is known as functional simulation.
  458. The number of instructions executed is a very poor estimator of performance because in modern computers, a lot of time is spent waiting for memory requests rather than the instructions themselves.
  459. gem5 on the other hand, can simulate the system in more detail than QEMU, including:
  460. * simplified CPU pipeline
  461. * caches
  462. * DRAM timing
  463. and can therefore be used to estimate system performance, see: xref:gem5-run-benchmark[xrefstyle=full] for an example.
  464. The downside of gem5 much slower than QEMU because of the greater simulation detail.
  465. See <<gem5-vs-qemu>> for a more thorough comparison.
  466. ==== gem5 Buildroot setup getting started
  467. For the most part, if you just add the `--emulator gem5` option or `*-gem5` suffix to all commands and everything should magically work.
  468. If you haven't built Buildroot yet for <<qemu-buildroot-setup>>, you can build from the beginning with:
  469. ....
  470. ./setup
  471. ./build --download-dependencies gem5-buildroot
  472. ./run --emulator gem5
  473. ....
  474. If you have already built previously, don't be afraid: gem5 and QEMU use almost the same root filesystem and kernel, so `./build` will be fast.
  475. Remember that the gem5 boot is <<benchmark-linux-kernel-boot,considerably slower>> than QEMU since the simulation is more detailed.
  476. If you have a relatively new GCC version and the gem5 build fails on your machine, see: <<gem5-build-broken-on-recent-compiler-version>>.
  477. To get a terminal, either open a new shell and run:
  478. ....
  479. ./gem5-shell
  480. ....
  481. You can quit the shell without killing gem5 by typing tilde followed by a period:
  482. ....
  483. ~.
  484. ....
  485. If you are inside <<tmux>>, which I highly recommend, you can both run gem5 stdout and open the guest terminal on a split window with:
  486. ....
  487. ./run --emulator gem5 --tmux
  488. ....
  489. See also: xref:tmux-gem5[xrefstyle=full].
  490. At the end of boot, it might not be very clear that you have the shell since some <<printk>> messages may appear in front of the prompt like this:
  491. ....
  492. # <6>[ 1.215329] clocksource: tsc: mask: 0xffffffffffffffff max_cycles: 0x1cd486fa865, max_idle_ns: 440795259574 ns
  493. <6>[ 1.215351] clocksource: Switched to clocksource tsc
  494. ....
  495. but if you look closely, the `PS1` prompt marker `#` is there already, just hit enter and a clear prompt line will appear.
  496. If you forgot to open the shell and gem5 exit, you can inspect the terminal output post-mortem at:
  497. ....
  498. less "$(./getvar --emulator gem5 m5out_dir)/system.pc.com_1.device"
  499. ....
  500. More gem5 information is present at: xref:gem5[xrefstyle=full]
  501. Good next steps are:
  502. * <<gem5-run-benchmark>>: how to run a benchmark in gem5 full system, including how to boot Linux, checkpoint and restore to skip the boot on a fast CPU
  503. * <<m5out-directory>>: understand the output files that gem5 produces, which contain information about your run
  504. * <<m5ops>>: magic guest instructions used to control gem5
  505. * <<add-new-files-to-the-buildroot-image>>: how to add your own files to the image if you have a benchmark that we don't already support out of the box (also send a pull request!)
  506. [[docker]]
  507. === Docker host setup
  508. This repository has been tested inside clean https://en.wikipedia.org/wiki/Docker_(software)[Docker] containers.
  509. This is a good option if you are on a Linux host, but the native setup failed due to your weird host distribution, and you have better things to do with your life than to debug it. See also: xref:supported-hosts[xrefstyle=full].
  510. For example, to do a <<qemu-buildroot-setup>> inside Docker, run:
  511. ....
  512. sudo apt-get install docker
  513. ./setup
  514. ./run-docker create && \
  515. ./run-docker sh -- ./build --download-dependencies qemu-buildroot
  516. ./run-docker
  517. ....
  518. You are now left inside a shell in the Docker! From there, just run as usual:
  519. ....
  520. ./run
  521. ....
  522. The host git top level directory is mounted inside the guest with a https://stackoverflow.com/questions/23439126/how-to-mount-a-host-directory-in-a-docker-container[Docker volume], which means for example that you can use your host's GUI text editor directly on the files. Just don't forget that if you nuke that directory on the guest, then it gets nuked on the host as well!
  523. Command breakdown:
  524. * `./run-docker create`: create the image and container.
  525. +
  526. Needed only the very first time you use Docker, or if you run `./run-docker DESTROY` to restart for scratch, or save some disk space.
  527. +
  528. The image and container name is `lkmc`. The container shows under:
  529. +
  530. ....
  531. docker ps -a
  532. ....
  533. +
  534. and the image shows under:
  535. +
  536. ....
  537. docker images
  538. ....
  539. * `./run-docker`: open a shell on the container.
  540. +
  541. If it has not been started previously, start it. This can also be done explicitly with:
  542. +
  543. ....
  544. ./run-docker start
  545. ....
  546. +
  547. Quit the shell as usual with `Ctrl-D`
  548. +
  549. This can be called multiple times from different host terminals to open multiple shells.
  550. * `./run-docker stop`: stop the container.
  551. +
  552. This might save a bit of CPU and RAM once you stop working on this project, but it should not be a lot.
  553. * `./run-docker DESTROY`: delete the container and image.
  554. +
  555. This doesn't really clean the build, since we mount the guest's working directory on the host git top-level, so you basically just got rid of the `apt-get` installs.
  556. +
  557. To actually delete the Docker build, run on host:
  558. +
  559. ....
  560. # sudo rm -rf out.docker
  561. ....
  562. To use <<gdb>> from inside Docker, you need a second shell inside the container. You can either do that from another shell with:
  563. ....
  564. ./run-docker
  565. ....
  566. or even better, by starting a <<tmux>> session inside the container. We install `tmux` by default in the container.
  567. You can also start a second shell and run a command in it at the same time with:
  568. ....
  569. ./run-docker sh -- ./run-gdb start_kernel
  570. ....
  571. To use <<qemu-graphic-mode>> from Docker, run:
  572. ....
  573. ./run --graphic --vnc
  574. ....
  575. and then on host:
  576. ....
  577. sudo apt-get install vinagre
  578. ./vnc
  579. ....
  580. TODO make files created inside Docker be owned by the current user in host instead of `root`:
  581. * https://stackoverflow.com/questions/33681396/how-do-i-write-to-a-volume-container-as-non-root-in-docker
  582. * https://stackoverflow.com/questions/23544282/what-is-the-best-way-to-manage-permissions-for-docker-shared-volumes
  583. * https://stackoverflow.com/questions/31779802/shared-volume-file-permissions-ownership-docker
  584. [[prebuilt]]
  585. === Prebuilt setup
  586. ==== About the prebuilt setup
  587. This setup uses prebuilt binaries that we upload to GitHub from time to time.
  588. We don't currently provide a full prebuilt because it would be too big to host freely, notably because of the cross toolchain.
  589. Our prebuilts currently include:
  590. * <<qemu-buildroot-setup>> binaries
  591. ** Linux kernel
  592. ** root filesystem
  593. * <<baremetal-setup>> binaries for QEMU
  594. For more details, see our our <<release,release procedure>>.
  595. Advantage of this setup: saves time and disk space on the initial install, which is expensive in largely due to building the toolchain.
  596. The limitations are severe however:
  597. * can't <<gdb,GDB step debug the kernel>>, since the source and cross toolchain with GDB are not available. Buildroot cannot easily use a host toolchain: xref:prebuilt-toolchain[xrefstyle=full].
  598. +
  599. Maybe we could work around this by just downloading the kernel source somehow, and using a host prebuilt GDB, but we felt that it would be too messy and unreliable.
  600. * you won't get the latest version of this repository. Our <<travis>> attempt to automate builds failed, and storing a release for every commit would likely make GitHub mad at us anyway.
  601. * <<gem5>> is not currently supported. The major blocking point is how to avoid distributing the kernel images twice: once for gem5 which uses `vmlinux`, and once for QEMU which uses `arch/*` images, see also:
  602. ** https://github.com/cirosantilli/linux-kernel-module-cheat/issues/79
  603. ** <<vmlinux-vs-bzimage-vs-zimage-vs-image>>.
  604. This setup might be good enough for those developing simulators, as that requires less image modification. But once again, if you are serious about this, why not just let your computer build the <<qemu-buildroot-setup,full featured setup>> while you take a coffee or a nap? :-)
  605. ==== Prebuilt setup getting started
  606. Checkout to the latest tag and use the Ubuntu packaged QEMU to boot Linux:
  607. ....
  608. sudo apt-get install qemu-system-x86
  609. git clone https://github.com/cirosantilli/linux-kernel-module-cheat
  610. cd linux-kernel-module-cheat
  611. git checkout "$(git rev-list --tags --max-count=1)"
  612. ./release-download-latest
  613. unzip lkmc-*.zip
  614. ./run --qemu-which host
  615. ....
  616. You have to checkout to the latest tag to ensure that the scripts match the release format: https://stackoverflow.com/questions/1404796/how-to-get-the-latest-tag-name-in-current-branch-in-git
  617. This is known not to work for aarch64 on an Ubuntu 16.04 host with QEMU 2.5.0, presumably because QEMU is too old, the terminal does not show any output. I haven't investigated why.
  618. Or to run a baremetal example instead:
  619. ....
  620. ./run \
  621. --arch aarch64 \
  622. --baremetal userland/c/hello.c \
  623. --qemu-which host \
  624. ;
  625. ....
  626. Be saner and use our custom built QEMU instead:
  627. ....
  628. ./setup
  629. ./build --download-dependencies qemu
  630. ./run
  631. ....
  632. To build the kernel modules as in <<your-first-kernel-module-hack>> do:
  633. ....
  634. git submodule update --depth 1 --init --recursive "$(./getvar linux_source_dir)"
  635. ./build-linux --no-modules-install -- modules_prepare
  636. ./build-modules --gcc-which host
  637. ./run
  638. ....
  639. TODO: for now the only way to test those modules out without <<qemu-buildroot-setup-getting-started,building Buildroot>> is with 9p, since we currently rely on Buildroot to manipulate the root filesystem.
  640. Command explanation:
  641. * `modules_prepare` does the minimal build procedure required on the kernel for us to be able to compile the kernel modules, and is way faster than doing a full kernel build. A full kernel build would also work however.
  642. * `--gcc-which host` selects your host Ubuntu packaged GCC, since you don't have the Buildroot toolchain
  643. * `--no-modules-install` is required otherwise the `make modules_install` target we run by default fails, since the kernel wasn't built
  644. To modify the Linux kernel, build and use it as usual:
  645. ....
  646. git submodule update --depth 1 --init --recursive "$(./getvar linux_source_dir)"
  647. ./build-linux
  648. ./run
  649. ....
  650. ////
  651. For gem5, do:
  652. ....
  653. git submodule update --init --depth 1 "$(./getvar linux_source_dir)"
  654. sudo apt-get install qemu-utils
  655. ./build-gem5
  656. ./run --emulator gem5 --qemu-which host
  657. ....
  658. `qemu-utils` is required because we currently distribute `.qcow2` files which <<gem5-qcow2,gem5 can't handle>>, so we need `qemu-img` to extract them first.
  659. The Linux kernel is required for `extract-vmlinux` to convert the compressed kernel image which QEMU understands into the raw vmlinux that gem5 understands: https://superuser.com/questions/298826/how-do-i-uncompress-vmlinuz-to-vmlinux
  660. ////
  661. ////
  662. [[ubuntu]]
  663. === Ubuntu guest setup
  664. ==== About the Ubuntu guest setup
  665. This setup is similar to <<prebuilt>>, but instead of using Buildroot for the root filesystem, it downloads an Ubuntu image with Docker, and uses that as the root filesystem.
  666. The rationale for choice of Ubuntu as a second distribution in addition to Buildroot can be found at: xref:linux-distro-choice[xrefstyle=full]
  667. Advantages over Buildroot:
  668. * saves build time
  669. * you get to play with a huge selection of Debian packages out of the box
  670. * more representative of most non-embedded production systems than BusyBox
  671. Disadvantages:
  672. * less visibility: https://askubuntu.com/questions/82302/how-to-compile-ubuntu-from-source-code The fact that that question has no answer makes me cringe
  673. * less compatibility, e.g. no one knows what the officially supported cross compilers are: https://askubuntu.com/questions/1046294/what-are-the-officially-supported-cross-compilers-for-ubuntu-server-alternative
  674. Docker is used here just as an image download provider since it has a wide variety of images. Why we don't just download the regular Ubuntu disk image:
  675. * that image is not ready to boot, but rather goes into an interactive installer: https://askubuntu.com/questions/884534/how-to-run-ubuntu-16-04-desktop-on-qemu/1046792#1046792
  676. * the default Ubuntu image has a large collection of software, and is large. The docker version is much more minimal.
  677. One alternative would be to use https://wiki.ubuntu.com/Base[Ubuntu base] which can be downloaded from: http://cdimage.ubuntu.com/ubuntu-base That provides a `.tgz` and comes very close to what we obtain with Docker, but without the need for `sudo`.
  678. ==== Ubuntu guest setup getting started
  679. TODO
  680. ....
  681. sudo ./build-docker
  682. ./run --docker
  683. ....
  684. `sudo` is required for Docker operations: https://askubuntu.com/questions/477551/how-can-i-use-docker-without-sudo
  685. ////
  686. [[host]]
  687. === Host kernel module setup
  688. **THIS IS DANGEROUS (AND FUN), YOU HAVE BEEN WARNED**
  689. This method runs the kernel modules directly on your host computer without a VM, and saves you the compilation time and disk usage of the virtual machine method.
  690. It has however severe limitations:
  691. * can't control which kernel version and build options to use. So some of the modules will likely not compile because of kernel API changes, since https://stackoverflow.com/questions/37098482/how-to-build-a-linux-kernel-module-so-that-it-is-compatible-with-all-kernel-rele/45429681#45429681[the Linux kernel does not have a stable kernel module API].
  692. * bugs can easily break you system. E.g.:
  693. ** segfaults can trivially lead to a kernel crash, and require a reboot
  694. ** your disk could get erased. Yes, this can also happen with `sudo` from userland. But you should not use `sudo` when developing newbie programs. And for the kernel you don't have the choice not to use `sudo`.
  695. ** even more subtle system corruption such as https://unix.stackexchange.com/questions/78858/cannot-remove-or-reinsert-kernel-module-after-error-while-inserting-it-without-r[not being able to rmmod]
  696. * can't control which hardware is used, notably the CPU architecture
  697. * can't step debug it with <<gdb,GDB>> easily. The alternatives are https://en.wikipedia.org/wiki/JTAG[JTAG] or <<kgdb>>, but those are less reliable, and require extra hardware.
  698. Still interested?
  699. ....
  700. ./build-modules --host
  701. ....
  702. Compilation will likely fail for some modules because of kernel or toolchain differences that we can't control on the host.
  703. The best workaround is to compile just your modules with:
  704. ....
  705. ./build-modules --host -- hello hello2
  706. ....
  707. which is equivalent to:
  708. ....
  709. ./build-modules \
  710. --gcc-which host \
  711. --host \
  712. -- \
  713. kernel_modules/hello.c \
  714. kernel_modules/hello2.c \
  715. ;
  716. ....
  717. Or just remove the `.c` extension from the failing files and try again:
  718. ....
  719. cd "$(./getvar kernel_modules_source_dir)"
  720. mv broken.c broken.c~
  721. ....
  722. Once you manage to compile, and have come to terms with the fact that this may blow up your host, try it out with:
  723. ....
  724. cd "$(./getvar kernel_modules_build_host_subdir)"
  725. sudo insmod hello.ko
  726. # Our module is there.
  727. sudo lsmod | grep hello
  728. # Last message should be: hello init
  729. dmesg -T
  730. sudo rmmod hello
  731. # Last message should be: hello exit
  732. dmesg -T
  733. # Not present anymore
  734. sudo lsmod | grep hello
  735. ....
  736. ==== Hello host
  737. Minimal host build system example:
  738. ....
  739. cd hello_host_kernel_module
  740. make
  741. sudo insmod hello.ko
  742. dmesg
  743. sudo rmmod hello.ko
  744. dmesg
  745. ....
  746. === Userland setup
  747. ==== About the userland setup
  748. In order to test the kernel and emulators, userland content in the form of executables and scripts is of course required, and we store it mostly under:
  749. * link:userland/[]
  750. * <<rootfs-overlay>>
  751. * <<add-new-buildroot-packages>>
  752. When we started this repository, it only contained content that interacted very closely with the kernel, or that had required performance analysis.
  753. However, we soon started to notice that this had an increasing overlap with other userland test repositories: we were duplicating build and test infrastructure and even some examples.
  754. Therefore, we decided to consolidate other userland tutorials that we had scattered around into this repository.
  755. Notable userland content included / moving into this repository includes:
  756. * <<userland-assembly>>
  757. * <<c>>
  758. * <<cpp>>
  759. * <<posix>>
  760. * <<algorithms>>
  761. ==== Userland setup getting started
  762. There are several ways to run our <<userland-content>>, notably:
  763. * natively on the host as shown at: xref:userland-setup-getting-started-natively[xrefstyle=full]
  764. +
  765. Can only run examples compatible with your host CPU architecture and OS, but has the fastest setup and runtimes.
  766. * from user mode simulation with:
  767. +
  768. --
  769. ** the host prebuilt toolchain: xref:userland-setup-getting-started-with-prebuilt-toolchain-and-qemu-user-mode[xrefstyle=full]
  770. ** the Buildroot toolchain you built yourself: xref:qemu-user-mode-getting-started[xrefstyle=full]
  771. --
  772. +
  773. This setup:
  774. +
  775. --
  776. ** can run most examples, including those for other CPU architectures, with the notable exception of examples that rely on kernel modules
  777. ** can run reproducible approximate performance experiments with gem5, see e.g. <<bst-vs-heap-vs-hashmap>>
  778. --
  779. * from full system simulation as shown at: xref:qemu-buildroot-setup-getting-started[xrefstyle=full].
  780. +
  781. This is the most reproducible and controlled environment, and all examples work there. But also the slower one to setup.
  782. ===== Userland setup getting started natively
  783. With this setup, we will use the host toolchain and execute executables directly on the host.
  784. No toolchain build is required, so you can just download your distro toolchain and jump straight into it.
  785. Build, run and example, and clean it in-tree with:
  786. ....
  787. sudo apt-get install gcc
  788. cd userland
  789. ./build c/hello
  790. ./c/hello.out
  791. ./build --clean
  792. ....
  793. Source: link:userland/c/hello.c[].
  794. Build an entire directory and test it:
  795. ....
  796. cd userland
  797. ./build c
  798. ./test c
  799. ....
  800. Build the current directory and test it:
  801. ....
  802. cd userland/c
  803. ./build
  804. ./test
  805. ....
  806. As mentioned at <<userland-libs-directory>>, tests under link:userland/libs[] require certain optional libraries to be installed, and are not built or tested by default.
  807. You can install those libraries with:
  808. ....
  809. cd linux-kernel-module-cheat
  810. ./setup
  811. ./build --download-dependencies userland-host
  812. ....
  813. and then build the examples and test with:
  814. ....
  815. ./build --package-all
  816. ./test --package-all
  817. ....
  818. Pass custom compiler options:
  819. ....
  820. ./build --ccflags='-foptimize-sibling-calls -foptimize-strlen' --force-rebuild
  821. ....
  822. Here we used `--force-rebuild` to force rebuild since the sources weren't modified since the last build.
  823. Some CLI options have more specialized flags, e.g. `-O` for the <<optimization-level-of-a-build>>:
  824. ....
  825. ./build --optimization-level 3 --force-rebuild
  826. ....
  827. See also <<user-mode-static-executables>> for `--static`.
  828. The `build` scripts inside link:userland/[] are just symlinks to link:build-userland-in-tree[] which you can also use from toplevel as:
  829. ....
  830. ./build-userland-in-tree
  831. ./build-userland-in-tree userland/c
  832. ./build-userland-in-tree userland/c/hello.c
  833. ....
  834. `build-userland-in-tree` is in turn just a thin wrapper around link:build-userland[]:
  835. ....
  836. ./build-userland --gcc-which host --in-tree userland/c
  837. ....
  838. So you can use any option supported by `build-userland` script freely with `build-userland-in-tree` and `build`.
  839. The situation is analogous for link:userland/test[], link:test-executables-in-tree[] and link:test-executables[], which are further documented at: xref:user-mode-tests[xrefstyle=full].
  840. Do a more clean out-of-tree build instead and run the program:
  841. ....
  842. ./build-userland --gcc-which host --userland-build-id host
  843. ./run --emulator native --userland userland/c/hello.c --userland-build-id host
  844. ....
  845. Here we:
  846. * put the host executables in a separate <<build-variants,build variant>> to avoid conflict with Buildroot builds.
  847. * ran with the `--emulator native` option to run the program natively
  848. In this case you can debub the program with:
  849. ....
  850. ./run --debug-vm --emulator native --userland userland/c/hello.c --userland-build-id host
  851. ....
  852. as shown at: xref:debug-the-emulator[xrefstyle=full], although direct GDB host usage works as well of course.
  853. ===== Userland setup getting started with prebuilt toolchain and QEMU user mode
  854. If you are lazy to built the Buildroot toolchain and QEMU, but want to run e.g. ARM <<userland-assembly>> in <<user-mode-simulation>>, you can get away on Ubuntu 18.04 with just:
  855. ....
  856. sudo apt-get install gcc-aarch64-linux-gnu qemu-system-aarch64
  857. ./build-userland \
  858. --arch aarch64 \
  859. --gcc-which host \
  860. --userland-build-id host \
  861. ;
  862. ./run \
  863. --arch aarch64 \
  864. --qemu-which host \
  865. --userland-build-id host \
  866. --userland userland/c/command_line_arguments.c \
  867. --cli-args 'asdf "qw er"' \
  868. ;
  869. ....
  870. where:
  871. * `--gcc-which host`: use the host toolchain.
  872. +
  873. We must pass this to `./run` as well because QEMU must know which dynamic libraries to use. See also: xref:user-mode-static-executables[xrefstyle=full].
  874. * `--userland-build-id host`: put the host built into a <<build-variants>>
  875. This present the usual trade-offs of using prebuilts as mentioned at: xref:prebuilt[xrefstyle=full].
  876. Other functionality are analogous, e.g. testing:
  877. ....
  878. ./test-executables \
  879. --arch aarch64 \
  880. --gcc-which host \
  881. --qemu-which host \
  882. --userland-build-id host \
  883. ;
  884. ....
  885. and <<user-mode-gdb>>:
  886. ....
  887. ./run \
  888. --arch aarch64 \
  889. --gdb \
  890. --gcc-which host \
  891. --qemu-which host \
  892. --userland-build-id host \
  893. --userland userland/c/command_line_arguments.c \
  894. --cli-args 'asdf "qw er"' \
  895. ;
  896. ....
  897. ===== Userland setup getting started full system
  898. First ensure that <<qemu-buildroot-setup>> is working.
  899. After doing that setup, you can already execute your userland programs from inside QEMU: the only missing step is how to rebuild executables and run them.
  900. And the answer is exactly analogous to what is shown at: xref:your-first-kernel-module-hack[xrefstyle=full]
  901. For example, if we modify link:userland/c/hello.c[] to print out something different, we can just rebuild it with:
  902. ....
  903. ./build-userland
  904. ....
  905. Source: link:build-userland[]. `./build` calls that script automatically for us when doing the initial full build.
  906. Now, run the program either without rebooting use the <<9p>> mount:
  907. ....
  908. /mnt/9p/out_rootfs_overlay/c/hello.out
  909. ....
  910. or shutdown QEMU, add the executable to the root filesystem:
  911. ....
  912. ./build-buildroot
  913. ....
  914. reboot and use the root filesystem as usual:
  915. ....
  916. ./hello.out
  917. ....
  918. === Baremetal setup
  919. ==== About the baremetal setup
  920. This setup does not use the Linux kernel nor Buildroot at all: it just runs your very own minimal OS.
  921. `x86_64` is not currently supported, only `arm` and `aarch64`: I had made some x86 bare metal examples at: https://github.com/cirosantilli/x86-bare-metal-examples but I'm lazy to port them here now. Pull requests are welcome.
  922. The main reason this setup is included in this project, despite the word "Linux" being on the project name, is that a lot of the emulator boilerplate can be reused for both use cases.
  923. This setup allows you to make a tiny OS and that runs just a few instructions, use it to fully control the CPU to better understand the simulators for example, or develop your own OS if you are into that.
  924. You can also use C and a subset of the C standard library because we enable https://en.wikipedia.org/wiki/Newlib[Newlib] by default. See also:
  925. * https://electronics.stackexchange.com/questions/223929/c-standard-libraries-on-bare-metal/400077#400077
  926. * https://stackoverflow.com/questions/13063055/does-a-libc-os-exist/59771531#59771531
  927. Our C bare-metal compiler is built with https://github.com/crosstool-ng/crosstool-ng[crosstool-NG]. If you have already built <<qemu-buildroot-setup,Buildroot>> previously, you will end up with two GCCs installed. Unfortunately I don't see a solution for this, since we need separate toolchains for Newlib on baremetal and glibc on Linux: https://stackoverflow.com/questions/38956680/difference-between-arm-none-eabi-and-arm-linux-gnueabi/38989869#38989869
  928. ==== Baremetal setup getting started
  929. Every `.c` file inside link:baremetal/[] and `.S` file inside `baremetal/arch/<arch>/` generates a separate baremetal image.
  930. For example, to run link:baremetal/arch/aarch64/dump_regs.c[] in QEMU do:
  931. ....
  932. ./setup
  933. ./build --arch aarch64 --download-dependencies qemu-baremetal
  934. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/dump_regs.c
  935. ....
  936. And the terminal prints the values of certain system registers. This example prints registers that are only accessible from <<arm-exception-levels,EL1>> or higher, and thus could not be run in userland.
  937. In addition to the examples under link:baremetal/[], several of the <<userland-content,userland examples>> can also be run in baremetal! This is largely due to the <<about-the-baremetal-setup,awesomeness of Newlib>>.
  938. The examples that work include most <<c,C examples>> that don't rely on complicated syscalls such as threads, and almost all the <<userland-assembly>> examples.
  939. The exact list of userland programs that work in baremetal is specified in <<path-properties>> with the `baremetal` property, but you can also easily find it out with a <<baremetal-tests,baremetal test dry run>>:
  940. ....
  941. ./test-executables --arch aarch64 --dry-run --mode baremetal
  942. ....
  943. For example, we can run the C hello world link:userland/c/hello.c[] simply as:
  944. ....
  945. ./run --arch aarch64 --baremetal userland/c/hello.c
  946. ....
  947. and that outputs to the serial port the string:
  948. ....
  949. hello
  950. ....
  951. which QEMU shows on the host terminal.
  952. To modify a baremetal program, simply edit the file, e.g.
  953. ....
  954. vim userland/c/hello.c
  955. ....
  956. and rebuild:
  957. ....
  958. ./build-baremetal --arch aarch64
  959. ./run --arch aarch64 --baremetal userland/c/hello.c
  960. ....
  961. `./build qemu-baremetal` that we run previously is only needed for the initial build. That script calls link:build-baremetal[] for us, in addition to building prerequisites such as QEMU and crosstool-NG.
  962. `./build-baremetal` uses crosstool-NG, and so it must be preceded by link:build-crosstool-ng[], which `./build qemu-baremetal` also calls.
  963. Now let's run link:userland/arch/aarch64/add.S[]:
  964. ....
  965. ./run --arch aarch64 --baremetal userland/arch/aarch64/add.S
  966. ....
  967. This time, the terminal does not print anything, which indicates success: if you look into the source, you will see that we just have an assertion there.
  968. You can see a sample assertion fail in link:userland/c/assert_fail.c[]:
  969. ....
  970. ./run --arch aarch64 --baremetal userland/c/assert_fail.c
  971. ....
  972. and the terminal contains:
  973. ....
  974. lkmc_exit_status_134
  975. error: simulation error detected by parsing logs
  976. ....
  977. and the exit status of our script is 1:
  978. ....
  979. echo $?
  980. ....
  981. You can run all the baremetal examples in one go and check that all assertions passed with:
  982. ....
  983. ./test-executables --arch aarch64 --mode baremetal
  984. ....
  985. To use gem5 instead of QEMU do:
  986. ....
  987. ./setup
  988. ./build --download-dependencies gem5-baremetal
  989. ./run --arch aarch64 --baremetal userland/c/hello.c --emulator gem5
  990. ....
  991. and then <<qemu-buildroot-setup,as usual>> open a shell with:
  992. ....
  993. ./gem5-shell
  994. ....
  995. Or as usual, <<tmux>> users can do both in one go with:
  996. ....
  997. ./run --arch aarch64 --baremetal userland/c/hello.c --emulator gem5 --tmux
  998. ....
  999. TODO: the carriage returns are a bit different than in QEMU, see: xref:gem5-baremetal-carriage-return[xrefstyle=full].
  1000. Note that `./build-baremetal` requires the `--emulator gem5` option, and generates separate executable images for both, as can be seen from:
  1001. ....
  1002. echo "$(./getvar --arch aarch64 --baremetal userland/c/hello.c --emulator qemu image)"
  1003. echo "$(./getvar --arch aarch64 --baremetal userland/c/hello.c --emulator gem5 image)"
  1004. ....
  1005. This is unlike the Linux kernel that has a single image for both QEMU and gem5:
  1006. ....
  1007. echo "$(./getvar --arch aarch64 --emulator qemu image)"
  1008. echo "$(./getvar --arch aarch64 --emulator gem5 image)"
  1009. ....
  1010. The reason for that is that on baremetal we don't parse the <<device-tree,device tress>> from memory like the Linux kernel does, which tells the kernel for example the UART address, and many other system parameters.
  1011. `gem5` also supports the `RealViewPBX` machine, which represents an older hardware compared to the default `VExpress_GEM5_V1`:
  1012. ....
  1013. ./build-baremetal --arch aarch64 --emulator gem5 --machine RealViewPBX
  1014. ./run --arch aarch64 --baremetal userland/c/hello.c --emulator gem5 --machine RealViewPBX
  1015. ....
  1016. see also: xref:gem5-arm-platforms[xrefstyle=full].
  1017. This generates yet new separate images with new magic constants:
  1018. ....
  1019. echo "$(./getvar --arch aarch64 --baremetal userland/c/hello.c --emulator gem5 --machine VExpress_GEM5_V1 image)"
  1020. echo "$(./getvar --arch aarch64 --baremetal userland/c/hello.c --emulator gem5 --machine RealViewPBX image)"
  1021. ....
  1022. But just stick to newer and better `VExpress_GEM5_V1` unless you have a good reason to use `RealViewPBX`.
  1023. When doing baremetal programming, it is likely that you will want to learn userland assembly first, see: xref:userland-assembly[xrefstyle=full].
  1024. For more information on baremetal, see the section: xref:baremetal[xrefstyle=full].
  1025. The following subjects are particularly important:
  1026. * <<tracing>>
  1027. * <<baremetal-gdb-step-debug>>
  1028. === Build the documentation
  1029. You don't need to depend on GitHub.
  1030. For a quick and dirty build, install https://asciidoctor.org/[Asciidoctor] however you like and build:
  1031. ....
  1032. asciidoctor README.adoc
  1033. xdg-open README.html
  1034. ....
  1035. For development, you will want to do a more controlled build with extra error checking as follows.
  1036. For the initial build do:
  1037. ....
  1038. ./setup
  1039. ./build --download-dependencies docs
  1040. ....
  1041. which also downloads build dependencies.
  1042. Then the following times just to the faster:
  1043. ....
  1044. ./build-doc
  1045. ....
  1046. Source: link:build-doc[]
  1047. The HTML output is located at:
  1048. ....
  1049. xdg-open out/README.html
  1050. ....
  1051. More information about our documentation internals can be found at: xref:documentation[xrefstyle=full]
  1052. [[gdb]]
  1053. == GDB step debug
  1054. === GDB step debug kernel boot
  1055. `--gdb-wait` makes QEMU and gem5 wait for a GDB connection, otherwise we could accidentally go past the point we want to break at:
  1056. ....
  1057. ./run --gdb-wait
  1058. ....
  1059. Say you want to break at `start_kernel`. So on another shell:
  1060. ....
  1061. ./run-gdb start_kernel
  1062. ....
  1063. or at a given line:
  1064. ....
  1065. ./run-gdb init/main.c:1088
  1066. ....
  1067. Now QEMU will stop there, and you can use the normal GDB commands:
  1068. ....
  1069. list
  1070. next
  1071. continue
  1072. ....
  1073. See also:
  1074. * https://stackoverflow.com/questions/11408041/how-to-debug-the-linux-kernel-with-gdb-and-qemu/33203642#33203642
  1075. * https://stackoverflow.com/questions/4943857/linux-kernel-live-debugging-how-its-done-and-what-tools-are-used/42316607#42316607
  1076. ==== GDB step debug kernel boot other archs
  1077. Just don't forget to pass `--arch` to `./run-gdb`, e.g.:
  1078. ....
  1079. ./run --arch aarch64 --gdb-wait
  1080. ....
  1081. and:
  1082. ....
  1083. ./run-gdb --arch aarch64 start_kernel
  1084. ....
  1085. [[kernel-o0]]
  1086. ==== Disable kernel compiler optimizations
  1087. https://stackoverflow.com/questions/29151235/how-to-de-optimize-the-linux-kernel-to-and-compile-it-with-o0
  1088. `O=0` is an impossible dream, `O=2` being the default.
  1089. So get ready for some weird jumps, and `<value optimized out>` fun. Why, Linux, why.
  1090. The `-O` level of some other userland content can be controlled as explained at: <<optimization-level-of-a-build>>.
  1091. === GDB step debug kernel post-boot
  1092. Let's observe the kernel `write` system call as it reacts to some userland actions.
  1093. Start QEMU with just:
  1094. ....
  1095. ./run
  1096. ....
  1097. and after boot inside a shell run:
  1098. ....
  1099. ./count.sh
  1100. ....
  1101. which counts to infinity to stdout. Source: link:rootfs_overlay/lkmc/count.sh[].
  1102. Then in another shell, run:
  1103. ....
  1104. ./run-gdb
  1105. ....
  1106. and then hit:
  1107. ....
  1108. Ctrl-C
  1109. break __x64_sys_write
  1110. continue
  1111. continue
  1112. continue
  1113. ....
  1114. And you now control the counting on the first shell from GDB!
  1115. Before v4.17, the symbol name was just `sys_write`, the change happened at https://github.com/torvalds/linux/commit/d5a00528b58cdb2c71206e18bd021e34c4eab878[d5a00528b58cdb2c71206e18bd021e34c4eab878]. As of Linux v 4.19, the function is called `sys_write` in `arm`, and `__arm64_sys_write` in `aarch64`. One good way to find it if the name changes again is to try:
  1116. ....
  1117. rbreak .*sys_write
  1118. ....
  1119. or just have a quick look at the sources!
  1120. When you hit `Ctrl-C`, if we happen to be inside kernel code at that point, which is very likely if there are no heavy background tasks waiting, and we are just waiting on a `sleep` type system call of the command prompt, we can already see the source for the random place inside the kernel where we stopped.
  1121. === tmux
  1122. tmux just makes things even more fun by allowing us to see both the terminal for:
  1123. * emulator stdout
  1124. * <<gdb>>
  1125. at once without dragging windows around!
  1126. First start `tmux` with:
  1127. ....
  1128. tmux
  1129. ....
  1130. Now that you are inside a shell inside tmux, you can start GDB simply with:
  1131. ....
  1132. ./run --gdb
  1133. ....
  1134. which is just a convenient shortcut for:
  1135. ....
  1136. ./run --gdb-wait --tmux --tmux-args start_kernel
  1137. ....
  1138. This splits the terminal into two panes:
  1139. * left: usual QEMU with terminal
  1140. * right: GDB
  1141. and focuses on the GDB pane.
  1142. Now you can navigate with the usual tmux shortcuts:
  1143. * switch between the two panes with: `Ctrl-B O`
  1144. * close either pane by killing its terminal with `Ctrl-D` as usual
  1145. See the tmux manual for further details:
  1146. ....
  1147. man tmux
  1148. ....
  1149. To start again, switch back to the QEMU pane with `Ctrl-O`, kill the emulator, and re-run:
  1150. ....
  1151. ./run --gdb
  1152. ....
  1153. This automatically clears the GDB pane, and starts a new one.
  1154. The option `--tmux-args` determines which options will be passed to the program running on the second tmux pane, and is equivalent to:
  1155. This is equivalent to:
  1156. ....
  1157. ./run --gdb-wait
  1158. ./run-gdb start_kernel
  1159. ....
  1160. Due to Python's CLI parsing quicks, if the link:run-gdb[] arguments start with a dash `-`, you have to use the `=` sign, e.g. to <<gdb-step-debug-early-boot>>:
  1161. ....
  1162. ./run --gdb --tmux-args=--no-continue
  1163. ....
  1164. Bibliography: https://unix.stackexchange.com/questions/152738/how-to-split-a-new-window-and-run-a-command-in-this-new-window-using-tmux/432111#432111
  1165. ==== tmux gem5
  1166. If you are using gem5 instead of QEMU, `--tmux` has a different effect by default: it opens the gem5 terminal instead of the debugger:
  1167. ....
  1168. ./run --emulator gem5 --tmux
  1169. ....
  1170. To open a new pane with GDB instead of the terminal, use:
  1171. ....
  1172. ./run --gdb
  1173. ....
  1174. which is equivalent to:
  1175. ....
  1176. ./run --emulator gem5 --gdb-wait --tmux --tmux-args start_kernel --tmux-program gdb
  1177. ....
  1178. `--tmux-program` implies `--tmux`, so we can just write:
  1179. ....
  1180. ./run --emulator gem5 --gdb-wait --tmux-program gdb
  1181. ....
  1182. If you also want to see both GDB and the terminal with gem5, then you will need to open a separate shell manually as usual with `./gem5-shell`.
  1183. From inside tmux, you can create new terminals on a new window with `Ctrl-B C` split a pane yet again vertically with `Ctrl-B %` or horizontally with `Ctrl-B "`.
  1184. === GDB step debug kernel module
  1185. https://stackoverflow.com/questions/28607538/how-to-debug-linux-kernel-modules-with-qemu/44095831#44095831
  1186. Loadable kernel modules are a bit trickier since the kernel can place them at different memory locations depending on load order.
  1187. So we cannot set the breakpoints before `insmod`.
  1188. However, the Linux kernel GDB scripts offer the `lx-symbols` command, which takes care of that beautifully for us.
  1189. Shell 1:
  1190. ....
  1191. ./run
  1192. ....
  1193. Wait for the boot to end and run:
  1194. ....
  1195. insmod timer.ko
  1196. ....
  1197. Source: link:kernel_modules/timer.c[].
  1198. This prints a message to dmesg every second.
  1199. Shell 2:
  1200. ....
  1201. ./run-gdb
  1202. ....
  1203. In GDB, hit `Ctrl-C`, and note how it says:
  1204. ....
  1205. scanning for modules in /root/linux-kernel-module-cheat/out/kernel_modules/x86_64/kernel_modules
  1206. loading @0xffffffffc0000000: /root/linux-kernel-module-cheat/out/kernel_modules/x86_64/kernel_modules/timer.ko
  1207. ....
  1208. That's `lx-symbols` working! Now simply:
  1209. ....
  1210. break lkmc_timer_callback
  1211. continue
  1212. continue
  1213. continue
  1214. ....
  1215. and we now control the callback from GDB!
  1216. Just don't forget to remove your breakpoints after `rmmod`, or they will point to stale memory locations.
  1217. TODO: why does `break work_func` for `insmod kthread.ko` not very well? Sometimes it breaks but not others.
  1218. [[gdb-step-debug-kernel-module-arm]]
  1219. ==== GDB step debug kernel module insmodded by init on ARM
  1220. TODO on `arm` 51e31cdc2933a774c2a0dc62664ad8acec1d2dbe it does not always work, and `lx-symbols` fails with the message:
  1221. ....
  1222. loading vmlinux
  1223. Traceback (most recent call last):
  1224. File "/linux-kernel-module-cheat//out/arm/buildroot/build/linux-custom/scripts/gdb/linux/symbols.py", line 163, in invoke
  1225. self.load_all_symbols()
  1226. File "/linux-kernel-module-cheat//out/arm/buildroot/build/linux-custom/scripts/gdb/linux/symbols.py", line 150, in load_all_symbols
  1227. [self.load_module_symbols(module) for module in module_list]
  1228. File "/linux-kernel-module-cheat//out/arm/buildroot/build/linux-custom/scripts/gdb/linux/symbols.py", line 110, in load_module_symbols
  1229. module_name = module['name'].string()
  1230. gdb.MemoryError: Cannot access memory at address 0xbf0000cc
  1231. Error occurred in Python command: Cannot access memory at address 0xbf0000cc
  1232. ....
  1233. Can't reproduce on `x86_64` and `aarch64` are fine.
  1234. It is kind of random: if you just `insmod` manually and then immediately `./run-gdb --arch arm`, then it usually works.
  1235. But this fails most of the time: shell 1:
  1236. ....
  1237. ./run --arch arm --eval-after 'insmod hello.ko'
  1238. ....
  1239. shell 2:
  1240. ....
  1241. ./run-gdb --arch arm
  1242. ....
  1243. then hit `Ctrl-C` on shell 2, and voila.
  1244. Then:
  1245. ....
  1246. cat /proc/modules
  1247. ....
  1248. says that the load address is:
  1249. ....
  1250. 0xbf000000
  1251. ....
  1252. so it is close to the failing `0xbf0000cc`.
  1253. `readelf`:
  1254. ....
  1255. ./run-toolchain readelf -- -s "$(./getvar kernel_modules_build_subdir)/hello.ko"
  1256. ....
  1257. does not give any interesting hits at `cc`, no symbol was placed that far.
  1258. [[gdb-module-init]]
  1259. ==== GDB module_init
  1260. TODO find a more convenient method. We have working methods, but they are not ideal.
  1261. This is not very easy, since by the time the module finishes loading, and `lx-symbols` can work properly, `module_init` has already finished running!
  1262. Possibly asked at:
  1263. * https://stackoverflow.com/questions/37059320/debug-a-kernel-module-being-loaded
  1264. * https://stackoverflow.com/questions/11888412/debug-the-init-module-call-of-a-linux-kernel-module
  1265. [[gdb-module-init-step-into-it]]
  1266. ===== GDB module_init step into it
  1267. This is the best method we've found so far.
  1268. The kernel calls `module_init` synchronously, therefore it is not hard to step into that call.
  1269. As of 4.16, the call happens in `do_one_initcall`, so we can do in shell 1:
  1270. ....
  1271. ./run
  1272. ....
  1273. shell 2 after boot finishes (because there are other calls to `do_init_module` at boot, presumably for the built-in modules):
  1274. ....
  1275. ./run-gdb do_one_initcall
  1276. ....
  1277. then step until the line:
  1278. ....
  1279. 833 ret = fn();
  1280. ....
  1281. which does the actual call, and then step into it.
  1282. For the next time, you can also put a breakpoint there directly:
  1283. ....
  1284. ./run-gdb init/main.c:833
  1285. ....
  1286. How we found this out: first we got <<gdb-module-init-calculate-entry-address>> working, and then we did a `bt`. AKA cheating :-)
  1287. [[gdb-module-init-calculate-entry-address]]
  1288. ===== GDB module_init calculate entry address
  1289. This works, but is a bit annoying.
  1290. The key observation is that the load address of kernel modules is deterministic: there is a pre allocated memory region https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt "module mapping space" filled from bottom up.
  1291. So once we find the address the first time, we can just reuse it afterwards, as long as we don't modify the module.
  1292. Do a fresh boot and get the module:
  1293. ....
  1294. ./run --eval-after './pr_debug.sh;insmod fops.ko;./linux/poweroff.out'
  1295. ....
  1296. The boot must be fresh, because the load address changes every time we insert, even after removing previous modules.
  1297. The base address shows on terminal:
  1298. ....
  1299. 0xffffffffc0000000 .text
  1300. ....
  1301. Now let's find the offset of `myinit`:
  1302. ....
  1303. ./run-toolchain readelf -- \
  1304. -s "$(./getvar kernel_modules_build_subdir)/fops.ko" | \
  1305. grep myinit
  1306. ....
  1307. which gives:
  1308. ....
  1309. 30: 0000000000000240 43 FUNC LOCAL DEFAULT 2 myinit
  1310. ....
  1311. so the offset address is `0x240` and we deduce that the function will be placed at:
  1312. ....
  1313. 0xffffffffc0000000 + 0x240 = 0xffffffffc0000240
  1314. ....
  1315. Now we can just do a fresh boot on shell 1:
  1316. ....
  1317. ./run --eval 'insmod fops.ko;./linux/poweroff.out' --gdb-wait
  1318. ....
  1319. and on shell 2:
  1320. ....
  1321. ./run-gdb '*0xffffffffc0000240'
  1322. ....
  1323. GDB then breaks, and `lx-symbols` works.
  1324. [[gdb-module-init-break-at-the-end-of-sys-init-module]]
  1325. ===== GDB module_init break at the end of sys_init_module
  1326. TODO not working. This could be potentially very convenient.
  1327. The idea here is to break at a point late enough inside `sys_init_module`, at which point `lx-symbols` can be called and do its magic.
  1328. Beware that there are both `sys_init_module` and `sys_finit_module` syscalls, and `insmod` uses `fmodule_init` by default.
  1329. Both call `do_module_init` however, which is what `lx-symbols` hooks to.
  1330. If we try:
  1331. ....
  1332. b sys_finit_module
  1333. ....
  1334. then hitting:
  1335. ....
  1336. n
  1337. ....
  1338. does not break, and insertion happens, likely because of optimizations? <<kernel-o0>>
  1339. Then we try:
  1340. ....
  1341. b do_init_module
  1342. ....
  1343. A naive:
  1344. ....
  1345. fin
  1346. ....
  1347. also fails to break!
  1348. Finally, in despair we notice that <<pr-debug>> prints the kernel load address as explained at <<bypass-lx-symbols>>.
  1349. So, if we set a breakpoint just after that message is printed by searching where that happens on the Linux source code, we must be able to get the correct load address before `init_module` happens.
  1350. [[gdb-module-init-add-trap-instruction]]
  1351. ===== GDB module_init add trap instruction
  1352. This is another possibility: we could modify the module source by adding a trap instruction of some kind.
  1353. This appears to be described at: https://www.linuxjournal.com/article/4525
  1354. But it refers to a `gdbstart` script which is not in the tree anymore and beyond my `git log` capabilities.
  1355. And just adding:
  1356. ....
  1357. asm( " int $3");
  1358. ....
  1359. directly gives an <<oops,oops>> as I'd expect.
  1360. ==== Bypass lx-symbols
  1361. Useless, but a good way to show how hardcore you are. Disable `lx-symbols` with:
  1362. ....
  1363. ./run-gdb --no-lxsymbols
  1364. ....
  1365. From inside guest:
  1366. ....
  1367. insmod timer.ko
  1368. cat /proc/modules
  1369. ....
  1370. as mentioned at:
  1371. * https://stackoverflow.com/questions/6384605/how-to-get-address-of-a-kernel-module-loaded-using-insmod/6385818
  1372. * https://unix.stackexchange.com/questions/194405/get-base-address-and-size-of-a-loaded-kernel-module
  1373. This will give a line of form:
  1374. ....
  1375. fops 2327 0 - Live 0xfffffffa00000000
  1376. ....
  1377. And then tell GDB where the module was loaded with:
  1378. ....
  1379. Ctrl-C
  1380. add-symbol-file ../../../rootfs_overlay/x86_64/timer.ko 0xffffffffc0000000
  1381. 0xffffffffc0000000
  1382. ....
  1383. Alternatively, if the module panics before you can read `/proc/modules`, there is a <<pr-debug>> which shows the load address:
  1384. ....
  1385. echo 8 > /proc/sys/kernel/printk
  1386. echo 'file kernel/module.c +p' > /sys/kernel/debug/dynamic_debug/control
  1387. ./linux/myinsmod.out hello.ko
  1388. ....
  1389. And then search for a line of type:
  1390. ....
  1391. [ 84.877482] 0xfffffffa00000000 .text
  1392. ....
  1393. Tested on 4f4749148273c282e80b58c59db1b47049e190bf + 1.
  1394. === GDB step debug early boot
  1395. TODO successfully debug the very first instruction that the Linux kernel runs, before `start_kernel`!
  1396. Break at the very first instruction executed by QEMU:
  1397. ....
  1398. ./run-gdb --no-continue
  1399. ....
  1400. Note however that early boot parts appear to be relocated in memory somehow, and therefore:
  1401. * you won't see the source location in GDB, only assembly
  1402. * you won't be able to break by symbol in those early locations
  1403. Further discussion at: <<linux-kernel-entry-point>>.
  1404. In the specific case of gem5 aarch64 at least:
  1405. * gem5 relocates the kernel in memory to a fixed location, see e.g. https://gem5.atlassian.net/browse/GEM5-787
  1406. * `--param 'system.workload.early_kernel_symbols=True` should in theory duplicate the symbols to the correct physical location, but it was broken at one point: https://gem5.atlassian.net/browse/GEM5-785
  1407. * gem5 executes directly from vmlinux, so there is no decompression code involved, so you actually immediately start running the "true" first instruction from `head.S` as described at: https://stackoverflow.com/questions/18266063/does-linux-kernel-have-main-function/33422401#33422401
  1408. * once the MMU gets turned on at kernel symbol `__primary_switched`, the virtual address matches the ELF symbols, and you start seeing correct symbols without the need for `early_kernel_symbols`. This can be observed clearly with `function_trace = True`: https://stackoverflow.com/questions/64049487/how-to-trace-executed-guest-function-symbol-names-with-their-timestamp-in-gem5/64049488#64049488 which produces:
  1409. +
  1410. ....
  1411. 0: _kernel_flags_le_lo32 (12500)
  1412. 12500: __crc_tcp_add_backlog (1000)
  1413. 13500: __crc_crypto_alg_tested (6500)
  1414. 20000: __crc_tcp_add_backlog (10000)
  1415. 30000: __crc_crypto_alg_tested (500)
  1416. 30500: __crc_scsi_is_host_device (5000)
  1417. 35500: __crc_crypto_alg_tested (1500)
  1418. 37000: __crc_scsi_is_host_device (4000)
  1419. 41000: __crc_crypto_alg_tested (3000)
  1420. 44000: __crc_tcp_add_backlog (263500)
  1421. 307500: __crc_crypto_alg_tested (975500)
  1422. 1283000: __crc_tcp_add_backlog (77191500)
  1423. 78474500: __crc_crypto_alg_tested (1000)
  1424. 78475500: __crc_scsi_is_host_device (19500)
  1425. 78495000: __crc_crypto_alg_tested (500)
  1426. 78495500: __crc_scsi_is_host_device (13500)
  1427. 78509000: __primary_switched (14000)
  1428. 78523000: memset (21118000)
  1429. 99641000: __primary_switched (2500)
  1430. 99643500: start_kernel (11000)
  1431. ....
  1432. +
  1433. so we see that `__primary_switched` is the first non-trash symbol (non-`__crc_*` and non-`_kernel_flags_*`, which are just informative symbols, not actual executable code)
  1434. ==== Linux kernel entry point
  1435. TODO https://stackoverflow.com/questions/2589845/what-are-the-first-operations-that-the-linux-kernel-executes-on-boot
  1436. As mentioned at: <<gdb-step-debug-early-boot>>, the very first kernel instructions executed appear to be placed into memory at a different location than that of the kernel ELF section.
  1437. As a result, we are unable to break on early symbols such as:
  1438. ....
  1439. ./run-gdb extract_kernel
  1440. ./run-gdb main
  1441. ....
  1442. <<gem5-execall-trace-format>>>> however does show the right symbols however! This could be because <<vmlinux-vs-bzimage-vs-zimage-vs-image,gem5 uses vmlinux to boot>>, which QEMU uses the compressed version, and as mentioned on the Stack Overflow answer, the entry point is actually a tiny decompresser routine.
  1443. I also tried to hack `run-gdb` with:
  1444. ....
  1445. @@ -81,7 +81,7 @@ else
  1446. ${gdb} \
  1447. -q \\
  1448. -ex 'add-auto-load-safe-path $(pwd)' \\
  1449. --ex 'file vmlinux' \\
  1450. +-ex 'file arch/arm/boot/compressed/vmlinux' \\
  1451. -ex 'target remote localhost:${port}' \\
  1452. ${brk} \
  1453. -ex 'continue' \\
  1454. ....
  1455. and no I do have the symbols from `arch/arm/boot/compressed/vmlinux'`, but the breaks still don't work.
  1456. v4.19 also added a `CONFIG_HAVE_KERNEL_UNCOMPRESSED=y` option for having the kernel uncompressed which could make following the startup easier, but it is only available on s390. `aarch64` however is already uncompressed by default, so might be the easiest one. See also: xref:vmlinux-vs-bzimage-vs-zimage-vs-image[xrefstyle=full].
  1457. You then need the associated `KERNEL_UNCOMPRESSED` to enable it if available:
  1458. ....
  1459. config KERNEL_UNCOMPRESSED
  1460. bool "None"
  1461. depends on HAVE_KERNEL_UNCOMPRESSED
  1462. ....
  1463. ===== arm64 secondary CPU entry point
  1464. In gem5 aarch64 Linux v4.18, experimentally the entry point of secondary CPUs seems to be `secondary_holding_pen` as shown at https://gist.github.com/cirosantilli2/34a7bc450fcb6c1c1a910369be1fdd90
  1465. What happens is that:
  1466. * the bootloader goes in in WFE
  1467. * the kernel writes the entry point to the secondary CPU (the address of `secondary_holding_pen`) with CPU0 at the address given to the kernel in the `cpu-release-addr` of the DTB
  1468. * the kernel wakes up the bootloader with a SEV, and the bootloader boots to the address the kernel told it
  1469. The CPU0 action happens at: https://github.com/cirosantilli/linux/blob/v5.7/arch/arm64/kernel/smp_spin_table.c[]:
  1470. Here's the code that writes the address and does SEV:
  1471. ....
  1472. static int smp_spin_table_cpu_prepare(unsigned int cpu)
  1473. {
  1474. __le64 __iomem *release_addr;
  1475. if (!cpu_release_addr[cpu])
  1476. return -ENODEV;
  1477. /*
  1478. * The cpu-release-addr may or may not be inside the linear mapping.
  1479. * As ioremap_cache will either give us a new mapping or reuse the
  1480. * existing linear mapping, we can use it to cover both cases. In
  1481. * either case the memory will be MT_NORMAL.
  1482. */
  1483. release_addr = ioremap_cache(cpu_release_addr[cpu],
  1484. sizeof(*release_addr));
  1485. if (!release_addr)
  1486. return -ENOMEM;
  1487. /*
  1488. * We write the release address as LE regardless of the native
  1489. * endianess of the kernel. Therefore, any boot-loaders that
  1490. * read this address need to convert this address to the
  1491. * boot-loader's endianess before jumping. This is mandated by
  1492. * the boot protocol.
  1493. */
  1494. writeq_relaxed(__pa_symbol(secondary_holding_pen), release_addr);
  1495. __flush_dcache_area((__force void *)release_addr,
  1496. sizeof(*release_addr));
  1497. /*
  1498. * Send an event to wake up the secondary CPU.
  1499. */
  1500. sev();
  1501. ....
  1502. and here's the code that reads the value from the DTB:
  1503. ....
  1504. static int smp_spin_table_cpu_init(unsigned int cpu)
  1505. {
  1506. struct device_node *dn;
  1507. int ret;
  1508. dn = of_get_cpu_node(cpu, NULL);
  1509. if (!dn)
  1510. return -ENODEV;
  1511. /*
  1512. * Determine the address from which the CPU is polling.
  1513. */
  1514. ret = of_property_read_u64(dn, "cpu-release-addr",
  1515. &cpu_release_addr[cpu]);
  1516. ....
  1517. ==== Linux kernel arch-agnostic entry point
  1518. `start_kernel` is the first C function to be executed basically: https://stackoverflow.com/questions/18266063/does-kernel-have-main-function/33422401#33422401
  1519. For the earlier arch-specific entry point, see: <<linux-kernel-entry-point>>.
  1520. ==== Linux kernel early boot messages
  1521. When booting Linux on a slow emulator like <<gem5>>, what you observe is that:
  1522. * first nothing shows for a while
  1523. * then at once, a bunch of message lines show at once followed on aarch64 Linux 5.4.3 by:
  1524. +
  1525. ....
  1526. [ 0.081311] printk: console [ttyAMA0] enabled
  1527. ....
  1528. This means of course that all the previous messages had been generated earlier and stored, but were only printed to the terminal once the terminal itself was enabled.
  1529. Notably for example the very first message:
  1530. ....
  1531. [ 0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd070]
  1532. ....
  1533. happens very early in the boot process.
  1534. If you get a failure before that, it will be hard to see the print messages.
  1535. One possible solution is to parse the dmesg buffer, gem5 actually implements that: <<gem5-m5out-system-dmesg-file>>.
  1536. === GDB step debug userland processes
  1537. QEMU's `-gdb` GDB breakpoints are set on virtual addresses, so you can in theory debug userland processes as well.
  1538. * https://stackoverflow.com/questions/26271901/is-it-possible-to-use-gdb-and-qemu-to-debug-linux-user-space-programs-and-kernel
  1539. * https://stackoverflow.com/questions/16273614/debug-init-on-qemu-using-gdb
  1540. You will generally want to use <<gdbserver>> for this as it is more reliable, but this method can overcome the following limitations of `gdbserver`:
  1541. * the emulator does not support host to guest networking. This seems to be the case for gem5 as explained at: xref:gem5-host-to-guest-networking[xrefstyle=full]
  1542. * cannot see the start of the `init` process easily
  1543. * `gdbserver` alters the working of the kernel, and makes your run less representative
  1544. Known limitations of direct userland debugging:
  1545. * the kernel might switch context to another process or to the kernel itself e.g. on a system call, and then TODO confirm the PIC would go to weird places and source code would be missing.
  1546. +
  1547. Solutions to this are being researched at: xref:lx-ps[xrefstyle=full].
  1548. * TODO step into shared libraries. If I attempt to load them explicitly:
  1549. +
  1550. ....
  1551. (gdb) sharedlibrary ../../staging/lib/libc.so.0
  1552. No loaded shared libraries match the pattern `../../staging/lib/libc.so.0'.
  1553. ....
  1554. +
  1555. since GDB does not know that libc is loaded.
  1556. ==== GDB step debug userland custom init
  1557. This is the userland debug setup most likely to work, since at init time there is only one userland executable running.
  1558. For executables from the link:userland/[] directory such as link:userland/posix/count.c[]:
  1559. * Shell 1:
  1560. +
  1561. ....
  1562. ./run --gdb-wait --kernel-cli 'init=/lkmc/posix/count.out'
  1563. ....
  1564. * Shell 2:
  1565. +
  1566. ....
  1567. ./run-gdb --userland userland/posix/count.c main
  1568. ....
  1569. +
  1570. Alternatively, we could also pass the full path to the executable:
  1571. +
  1572. ....
  1573. ./run-gdb --userland "$(./getvar userland_build_dir)/posix/count.out" main
  1574. ....
  1575. +
  1576. Path resolution is analogous to <<baremetal-setup-getting-started,that of `./run --baremetal`>>.
  1577. Then, as soon as boot ends, we are left inside a debug session that looks just like what `gdbserver` would produce.
  1578. ==== GDB step debug userland BusyBox init
  1579. BusyBox custom init process:
  1580. * Shell 1:
  1581. +
  1582. ....
  1583. ./run --gdb-wait --kernel-cli 'init=/bin/ls'
  1584. ....
  1585. * Shell 2:
  1586. +
  1587. ....
  1588. ./run-gdb --userland "$(./getvar buildroot_build_build_dir)"/busybox-*/busybox ls_main
  1589. ....
  1590. This follows BusyBox' convention of calling the main for each executable as `<exec>_main` since the `busybox` executable has many "mains".
  1591. BusyBox default init process:
  1592. * Shell 1:
  1593. +
  1594. ....
  1595. ./run --gdb-wait
  1596. ....
  1597. * Shell 2:
  1598. +
  1599. ....
  1600. ./run-gdb --userland "$(./getvar buildroot_build_build_dir)"/busybox-*/busybox init_main
  1601. ....
  1602. `init` cannot be debugged with <<gdbserver>> without modifying the source, or else `/sbin/init` exits early with:
  1603. ....
  1604. "must be run as PID 1"
  1605. ....
  1606. ==== GDB step debug userland non-init
  1607. Non-init process:
  1608. * Shell 1:
  1609. +
  1610. ....
  1611. ./run --gdb-wait
  1612. ....
  1613. * Shell 2:
  1614. +
  1615. ....
  1616. ./run-gdb --userland userland/linux/rand_check.c main
  1617. ....
  1618. * Shell 1 after the boot finishes:
  1619. +
  1620. ....
  1621. ./linux/rand_check.out
  1622. ....
  1623. This is the least reliable setup as there might be other processes that use the given virtual address.
  1624. [[gdb-step-debug-userland-non-init-without-gdb-wait]]
  1625. ===== GDB step debug userland non-init without --gdb-wait
  1626. TODO: if I try <<gdb-step-debug-userland-non-init>> without `--gdb-wait` and the `break main` that we do inside `./run-gdb` says:
  1627. ....
  1628. Cannot access memory at address 0x10604
  1629. ....
  1630. and then GDB never breaks. Tested at ac8663a44a450c3eadafe14031186813f90c21e4 + 1.
  1631. The exact behaviour seems to depend on the architecture:
  1632. * `arm`: happens always
  1633. * `x86_64`: appears to happen only if you try to connect GDB as fast as possible, before init has been reached.
  1634. * `aarch64`: could not observe the problem
  1635. We have also double checked the address with:
  1636. ....
  1637. ./run-toolchain --arch arm readelf -- \
  1638. -s "$(./getvar --arch arm userland_build_dir)/linux/myinsmod.out" | \
  1639. grep main
  1640. ....
  1641. and from GDB:
  1642. ....
  1643. info line main
  1644. ....
  1645. and both give:
  1646. ....
  1647. 000105fc
  1648. ....
  1649. which is just 8 bytes before `0x10604`.
  1650. `gdbserver` also says `0x10604`.
  1651. However, if do a `Ctrl-C` in GDB, and then a direct:
  1652. ....
  1653. b *0x000105fc
  1654. ....
  1655. it works. Why?!
  1656. On GEM5, x86 can also give the `Cannot access memory at address`, so maybe it is also unreliable on QEMU, and works just by coincidence.
  1657. === GDB call
  1658. GDB can call functions as explained at: https://stackoverflow.com/questions/1354731/how-to-evaluate-functions-in-gdb
  1659. However this is failing for us:
  1660. * some symbols are not visible to `call` even though `b` sees them
  1661. * for those that are, `call` fails with an E14 error
  1662. E.g.: if we break on `__x64_sys_write` on `count.sh`:
  1663. ....
  1664. >>> call printk(0, "asdf")
  1665. Could not fetch register "orig_rax"; remote failure reply 'E14'
  1666. >>> b printk
  1667. Breakpoint 2 at 0xffffffff81091bca: file kernel/printk/printk.c, line 1824.
  1668. >>> call fdget_pos(fd)
  1669. No symbol "fdget_pos" in current context.
  1670. >>> b fdget_pos
  1671. Breakpoint 3 at 0xffffffff811615e3: fdget_pos. (9 locations)
  1672. >>>
  1673. ....
  1674. even though `fdget_pos` is the first thing `__x64_sys_write` does:
  1675. ....
  1676. 581 SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf,
  1677. 582 size_t, count)
  1678. 583 {
  1679. 584 struct fd f = fdget_pos(fd);
  1680. ....
  1681. I also noticed that I get the same error:
  1682. ....
  1683. Could not fetch register "orig_rax"; remote failure reply 'E14'
  1684. ....
  1685. when trying to use:
  1686. ....
  1687. fin
  1688. ....
  1689. on many (all?) functions.
  1690. See also: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/19
  1691. === GDB view ARM system registers
  1692. `info all-registers` shows some of them.
  1693. The implementation is described at: https://stackoverflow.com/questions/46415059/how-to-observe-aarch64-system-registers-in-qemu/53043044#53043044
  1694. === GDB step debug multicore userland
  1695. For a more minimal baremetal multicore setup, see: xref:arm-baremetal-multicore[xrefstyle=full].
  1696. We can set and get which cores the Linux kernel allows a program to run on with `sched_getaffinity` and `sched_setaffinity`:
  1697. ....
  1698. ./run --cpus 2 --eval-after './linux/sched_getaffinity.out'
  1699. ....
  1700. Source: link:userland/linux/sched_getaffinity.c[]
  1701. Sample output:
  1702. ....
  1703. sched_getaffinity = 1 1
  1704. sched_getcpu = 1
  1705. sched_getaffinity = 1 0
  1706. sched_getcpu = 0
  1707. ....
  1708. Which shows us that:
  1709. * initially:
  1710. ** all 2 cores were enabled as shown by `sched_getaffinity = 1 1`
  1711. ** the process was randomly assigned to run on core 1 (the second one) as shown by `sched_getcpu = 1`. If we run this several times, it will also run on core 0 sometimes.
  1712. * then we restrict the affinity to just core 0, and we see that the program was actually moved to core 0
  1713. The number of cores is modified as explained at: xref:number-of-cores[xrefstyle=full]
  1714. `taskset` from the util-linux package sets the initial core affinity of a program:
  1715. ....
  1716. ./build-buildroot \
  1717. --config 'BR2_PACKAGE_UTIL_LINUX=y' \
  1718. --config 'BR2_PACKAGE_UTIL_LINUX_SCHEDUTILS=y' \
  1719. ;
  1720. ./run --eval-after 'taskset -c 1,1 ./linux/sched_getaffinity.out'
  1721. ....
  1722. output:
  1723. ....
  1724. sched_getaffinity = 0 1
  1725. sched_getcpu = 1
  1726. sched_getaffinity = 1 0
  1727. sched_getcpu = 0
  1728. ....
  1729. so we see that the affinity was restricted to the second core from the start.
  1730. Let's do a QEMU observation to justify this example being in the repository with <<gdb-step-debug-userland-non-init,userland breakpoints>>.
  1731. We will run our `./linux/sched_getaffinity.out` infinitely many times, on core 0 and core 1 alternatively:
  1732. ....
  1733. ./run \
  1734. --cpus 2 \
  1735. --eval-after 'i=0; while true; do taskset -c $i,$i ./linux/sched_getaffinity.out; i=$((! $i)); done' \
  1736. --gdb-wait \
  1737. ;
  1738. ....
  1739. on another shell:
  1740. ....
  1741. ./run-gdb --userland "$(./getvar userland_build_dir)/linux/sched_getaffinity.out" main
  1742. ....
  1743. Then, inside GDB:
  1744. ....
  1745. (gdb) info threads
  1746. Id Target Id Frame
  1747. * 1 Thread 1 (CPU#0 [running]) main () at sched_getaffinity.c:30
  1748. 2 Thread 2 (CPU#1 [halted ]) native_safe_halt () at ./arch/x86/include/asm/irqflags.h:55
  1749. (gdb) c
  1750. (gdb) info threads
  1751. Id Target Id Frame
  1752. 1 Thread 1 (CPU#0 [halted ]) native_safe_halt () at ./arch/x86/include/asm/irqflags.h:55
  1753. * 2 Thread 2 (CPU#1 [running]) main () at sched_getaffinity.c:30
  1754. (gdb) c
  1755. ....
  1756. and we observe that `info threads` shows the actual correct core on which the process was restricted to run by `taskset`!
  1757. We should also try it out with kernel modules: https://stackoverflow.com/questions/28347876/set-cpu-affinity-on-a-loadable-linux-kernel-module
  1758. TODO we then tried:
  1759. ....
  1760. ./run --cpus 2 --eval-after './linux/sched_getaffinity_threads.out'
  1761. ....
  1762. and:
  1763. ....
  1764. ./run-gdb --userland "$(./getvar userland_build_dir)/linux/sched_getaffinity_threads.out"
  1765. ....
  1766. to switch between two simultaneous live threads with different affinities, it just didn't break on our threads:
  1767. ....
  1768. b main_thread_0
  1769. ....
  1770. Note that secondary cores in gem5 are kind of broken however: <<gem5-gdb-step-debug-secondary-cores>>.
  1771. Bibliography:
  1772. * https://stackoverflow.com/questions/10490756/how-to-use-sched-getaffinity-and-sched-setaffinity-in-linux-from-c/50117787#50117787
  1773. ** https://stackoverflow.com/questions/663958/how-to-control-which-core-a-process-runs-on/50210009#50210009
  1774. ** https://stackoverflow.com/questions/280909/cpu-affinity/54478296#54478296
  1775. ** https://unix.stackexchange.com/questions/73/how-can-i-set-the-processor-affinity-of-a-process-on-linux/441098#441098 (summary only)
  1776. * https://stackoverflow.com/questions/42800801/how-to-use-gdb-to-debug-qemu-with-smp-symmetric-multiple-processors
  1777. === Linux kernel GDB scripts
  1778. We source the Linux kernel GDB scripts by default for `lx-symbols`, but they also contains some other goodies worth looking into.
  1779. Those scripts basically parse some in-kernel data structures to offer greater visibility with GDB.
  1780. All defined commands are prefixed by `lx-`, so to get a full list just try to tab complete that.
  1781. There aren't as many as I'd like, and the ones that do exist are pretty self explanatory, but let's give a few examples.
  1782. Show dmesg:
  1783. ....
  1784. lx-dmesg
  1785. ....
  1786. Show the <<kernel-command-line-parameters>>:
  1787. ....
  1788. lx-cmdline
  1789. ....
  1790. Dump the device tree to a `fdtdump.dtb` file in the current directory:
  1791. ....
  1792. lx-fdtdump
  1793. pwd
  1794. ....
  1795. List inserted kernel modules:
  1796. ....
  1797. lx-lsmod
  1798. ....
  1799. Sample output:
  1800. ....
  1801. Address Module Size Used by
  1802. 0xffffff80006d0000 hello 16384 0
  1803. ....
  1804. Bibliography:
  1805. * https://events.static.linuxfound.org/sites/events/files/slides/Debugging%20the%20Linux%20Kernel%20with%20GDB.pdf
  1806. * https://wiki.linaro.org/LandingTeams/ST/GDB
  1807. ==== lx-ps
  1808. List all processes:
  1809. ....
  1810. lx-ps
  1811. ....
  1812. Sample output:
  1813. ....
  1814. 0xffff88000ed08000 1 init
  1815. 0xffff88000ed08ac0 2 kthreadd
  1816. ....
  1817. The second and third fields are obviously PID and process name.
  1818. The first one is more interesting, and contains the address of the `task_struct` in memory.
  1819. This can be confirmed with:
  1820. ....
  1821. p ((struct task_struct)*0xffff88000ed08000
  1822. ....
  1823. which contains the correct PID for all threads I've tried:
  1824. ....
  1825. pid = 1,
  1826. ....
  1827. TODO get the PC of the kthreads: https://stackoverflow.com/questions/26030910/find-program-counter-of-process-in-kernel Then we would be able to see where the threads are stopped in the code!
  1828. On ARM, I tried:
  1829. ....
  1830. task_pt_regs((struct thread_info *)((struct task_struct)*0xffffffc00e8f8000))->uregs[ARM_pc]
  1831. ....
  1832. but `task_pt_regs` is a `#define` and GDB cannot see defines without `-ggdb3`: https://stackoverflow.com/questions/2934006/how-do-i-print-a-defined-constant-in-gdb which are apparently not set?
  1833. Bibliography:
  1834. * https://stackoverflow.com/questions/9561546/thread-aware-gdb-for-kernel
  1835. * https://wiki.linaro.org/LandingTeams/ST/GDB
  1836. * https://events.static.linuxfound.org/sites/events/files/slides/Debugging%20the%20Linux%20Kernel%20with%20GDB.pdf presentation: https://www.youtube.com/watch?v=pqn5hIrz3A8
  1837. [[config-pid-in-contextidr]]
  1838. ===== CONFIG_PID_IN_CONTEXTIDR
  1839. https://stackoverflow.com/questions/54133479/accessing-logical-software-thread-id-in-gem5 on ARM the kernel can store an indication of PID in the CONTEXTIDR_EL1 register, making that much easier to observe from simulators.
  1840. In particular, gem5 prints that number out by default on `ExecAll` messages!
  1841. Let's test it out with <<linux-kernel-build-variants>> + <<gem5-restore-new-script>>:
  1842. ....
  1843. ./build-linux --arch aarch64 --linux-build-id CONFIG_PID_IN_CONTEXTIDR --config 'CONFIG_PID_IN_CONTEXTIDR=y'
  1844. # Checkpoint run.
  1845. ./run --arch aarch64 --emulator gem5 --linux-build-id CONFIG_PID_IN_CONTEXTIDR --eval './gem5.sh'
  1846. # Trace run.
  1847. ./run \
  1848. --arch aarch64 \
  1849. --emulator gem5 \
  1850. --gem5-readfile 'posix/getpid.out; posix/getpid.out' \
  1851. --gem5-restore 1 \
  1852. --linux-build-id CONFIG_PID_IN_CONTEXTIDR \
  1853. --trace FmtFlag,ExecAll,-ExecSymbol \
  1854. ;
  1855. ....
  1856. The terminal runs both programs which output their PID to stdout:
  1857. ....
  1858. pid=44
  1859. pid=45
  1860. ....
  1861. By quickly inspecting the `trace.txt` file, we immediately notice that the `system.cpu: A<n>` part of the logs, which used to always be `system.cpu: A0`, now has a few different values! Nice!
  1862. We can briefly summarize those values by removing repetitions:
  1863. ....
  1864. cut -d' ' -f4 "$(./getvar --arch aarch64 --emulator gem5 trace_txt_file)" | uniq -c
  1865. ....
  1866. gives:
  1867. ....
  1868. 97227 A39
  1869. 147476 A38
  1870. 222052 A40
  1871. 1 terminal
  1872. 1117724 A40
  1873. 27529 A31
  1874. 43868 A40
  1875. 27487 A31
  1876. 138349 A40
  1877. 13781 A38
  1878. 231246 A40
  1879. 25536 A38
  1880. 28337 A40
  1881. 214799 A38
  1882. 963561 A41
  1883. 92603 A38
  1884. 27511 A31
  1885. 224384 A38
  1886. 564949 A42
  1887. 182360 A38
  1888. 729009 A43
  1889. 8398 A23
  1890. 20200 A10
  1891. 636848 A43
  1892. 187995 A44
  1893. 27529 A31
  1894. 70071 A44
  1895. 16981 A0
  1896. 623806 A44
  1897. 16981 A0
  1898. 139319 A44
  1899. 24487 A0
  1900. 174986 A44
  1901. 25420 A0
  1902. 89611 A44
  1903. 16981 A0
  1904. 183184 A44
  1905. 24728 A0
  1906. 89608 A44
  1907. 17226 A0
  1908. 899075 A44
  1909. 24974 A0
  1910. 250608 A44
  1911. 137700 A43
  1912. 1497997 A45
  1913. 227485 A43
  1914. 138147 A38
  1915. 482646 A46
  1916. ....
  1917. I'm not smart enough to be able to deduce all of those IDs, but we can at least see that:
  1918. * A44 and A45 are there as expected from stdout!
  1919. * A39 must be the end of the execution of `m5 checkpoint`
  1920. * so we guess that A38 is the shell as it comes next
  1921. * the weird "terminal" line is `336969745500: system.terminal: attach terminal 0`
  1922. * which is the shell PID? I should have printed that as well :-)
  1923. * why are there so many other PIDs? This was supposed to be a silent system without daemons!
  1924. * A0 is presumably the kernel. However we see process switches without going into A0, so I'm not sure how, it appears to count kernel instructions as part of processes
  1925. * A46 has to be the `m5 exit` call
  1926. Or if you want to have some real fun, try: link:baremetal/arch/aarch64/contextidr_el1.c[]:
  1927. ....
  1928. ./run --arch aarch64 --emulator gem5 --baremetal baremetal/arch/aarch64/contextidr_el1.c --trace-insts-stdout
  1929. ....
  1930. in which we directly set the register ourselves! Output excerpt:
  1931. ....
  1932. 31500: system.cpu: A0 T0 : @main+12 : ldr x0, [sp, #12] : MemRead : D=0x0000000000000001 A=0x82fffffc flags=(IsInteger|IsMemRef|IsLoad)
  1933. 32000: system.cpu: A1 T0 : @main+16 : msr contextidr_el1, x0 : IntAlu : D=0x0000000000000001 flags=(IsInteger|IsSerializeAfter|IsNonSpeculative)
  1934. 32500: system.cpu: A1 T0 : @main+20 : ldr x0, [sp, #12] : MemRead : D=0x0000000000000001 A=0x82fffffc flags=(IsInteger|IsMemRef|IsLoad)
  1935. 33000: system.cpu: A1 T0 : @main+24 : add w0, w0, #1 : IntAlu : D=0x0000000000000002 flags=(IsInteger)
  1936. 33500: system.cpu: A1 T0 : @main+28 : str x0, [sp, #12] : MemWrite : D=0x0000000000000002 A=0x82fffffc flags=(IsInteger|IsMemRef|IsStore)
  1937. 34000: system.cpu: A1 T0 : @main+32 : ldr x0, [sp, #12] : MemRead : D=0x0000000000000002 A=0x82fffffc flags=(IsInteger|IsMemRef|IsLoad)
  1938. 34500: system.cpu: A1 T0 : @main+36 : subs w0, #9 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  1939. 35000: system.cpu: A1 T0 : @main+40 : b.le <main+12> : IntAlu : flags=(IsControl|IsDirectControl|IsCondControl)
  1940. 35500: system.cpu: A1 T0 : @main+12 : ldr x0, [sp, #12] : MemRead : D=0x0000000000000002 A=0x82fffffc flags=(IsInteger|IsMemRef|IsLoad)
  1941. 36000: system.cpu: A2 T0 : @main+16 : msr contextidr_el1, x0 : IntAlu : D=0x0000000000000002 flags=(IsInteger|IsSerializeAfter|IsNonSpeculative)
  1942. 36500: system.cpu: A2 T0 : @main+20 : ldr x0, [sp, #12] : MemRead : D=0x0000000000000002 A=0x82fffffc flags=(IsInteger|IsMemRef|IsLoad)
  1943. 37000: system.cpu: A2 T0 : @main+24 : add w0, w0, #1 : IntAlu : D=0x0000000000000003 flags=(IsInteger)
  1944. 37500: system.cpu: A2 T0 : @main+28 : str x0, [sp, #12] : MemWrite : D=0x0000000000000003 A=0x82fffffc flags=(IsInteger|IsMemRef|IsStore)
  1945. 38000: system.cpu: A2 T0 : @main+32 : ldr x0, [sp, #12] : MemRead : D=0x0000000000000003 A=0x82fffffc flags=(IsInteger|IsMemRef|IsLoad)
  1946. 38500: system.cpu: A2 T0 : @main+36 : subs w0, #9 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  1947. 39000: system.cpu: A2 T0 : @main+40 : b.le <main+12> : IntAlu : flags=(IsControl|IsDirectControl|IsCondControl)
  1948. 39500: system.cpu: A2 T0 : @main+12 : ldr x0, [sp, #12] : MemRead : D=0x0000000000000003 A=0x82fffffc flags=(IsInteger|IsMemRef|IsLoad)
  1949. 40000: system.cpu: A3 T0 : @main+16 : msr contextidr_el1, x0 : IntAlu : D=0x0000000000000003 flags=(IsInteger|IsSerializeAfter|IsNonSpeculative)
  1950. ....
  1951. <<armarm8-fa>> D13.2.27 "CONTEXTIDR_EL1, Context ID Register (EL1)" documents `CONTEXTIDR_EL1` as:
  1952. ____
  1953. Identifies the current Process Identifier.
  1954. The value of the whole of this register is called the Context ID and is used by:
  1955. * The debug logic, for Linked and Unlinked Context ID matching.
  1956. * The trace logic, to identify the current process.
  1957. The significance of this register is for debug and trace use only.
  1958. ____
  1959. Tested on 145769fc387dc5ee63ec82e55e6b131d9c968538 + 1.
  1960. === Debug the GDB remote protocol
  1961. For when it breaks again, or you want to add a new feature!
  1962. ....
  1963. ./run --debug
  1964. ./run-gdb --before '-ex "set remotetimeout 99999" -ex "set debug remote 1"' start_kernel
  1965. ....
  1966. See also: https://stackoverflow.com/questions/13496389/gdb-remote-protocol-how-to-analyse-packets
  1967. [[remote-g-packet]]
  1968. ==== Remote 'g' packet reply is too long
  1969. This error means that the GDB server, e.g. in QEMU, sent more registers than the GDB client expected.
  1970. This can happen for the following reasons:
  1971. * you set the architecture of the client wrong, often 32 vs 64 bit as mentioned at: https://stackoverflow.com/questions/4896316/gdb-remote-cross-debugging-fails-with-remote-g-packet-reply-is-too-long
  1972. * there is a bug in the GDB server and the XML description does not match the number of registers actually sent
  1973. * the GDB server does not send XML target descriptions and your GDB expects a different number of registers by default. E.g., gem5 d4b3e064adeeace3c3e7d106801f95c14637c12f does not send the XML files
  1974. The XML target description format is described a bit further at: https://stackoverflow.com/questions/46415059/how-to-observe-aarch64-system-registers-in-qemu/53043044#53043044
  1975. == KGDB
  1976. KGDB is kernel dark magic that allows you to GDB the kernel on real hardware without any extra hardware support.
  1977. It is useless with QEMU since we already have full system visibility with `-gdb`. So the goal of this setup is just to prepare you for what to expect when you will be in the treches of real hardware.
  1978. KGDB is cheaper than JTAG (free) and easier to setup (all you need is serial), but with less visibility as it depends on the kernel working, so e.g.: dies on panic, does not see boot sequence.
  1979. First run the kernel with:
  1980. ....
  1981. ./run --kgdb
  1982. ....
  1983. this passes the following options on the kernel CLI:
  1984. ....
  1985. kgdbwait kgdboc=ttyS1,115200
  1986. ....
  1987. `kgdbwait` tells the kernel to wait for KGDB to connect.
  1988. So the kernel sets things up enough for KGDB to start working, and then boot pauses waiting for connection:
  1989. ....
  1990. <6>[ 4.866050] Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
  1991. <6>[ 4.893205] 00:05: ttyS0 at I/O 0x3f8 (irq = 4, base_baud = 115200) is a 16550A
  1992. <6>[ 4.916271] 00:06: ttyS1 at I/O 0x2f8 (irq = 3, base_baud = 115200) is a 16550A
  1993. <6>[ 4.987771] KGDB: Registered I/O driver kgdboc
  1994. <2>[ 4.996053] KGDB: Waiting for connection from remote gdb...
  1995. Entering kdb (current=0x(____ptrval____), pid 1) on processor 0 due to Keyboard Entry
  1996. [0]kdb>
  1997. ....
  1998. KGDB expects the connection at `ttyS1`, our second serial port after `ttyS0` which contains the terminal.
  1999. The last line is the KDB prompt, and is covered at: xref:kdb[xrefstyle=full]. Typing now shows nothing because that prompt is expecting input from `ttyS1`.
  2000. Instead, we connect to the serial port `ttyS1` with GDB:
  2001. ....
  2002. ./run-gdb --kgdb --no-continue
  2003. ....
  2004. Once GDB connects, it is left inside the function `kgdb_breakpoint`.
  2005. So now we can set breakpoints and continue as usual.
  2006. For example, in GDB:
  2007. ....
  2008. continue
  2009. ....
  2010. Then in QEMU:
  2011. ....
  2012. ./count.sh &
  2013. ./kgdb.sh
  2014. ....
  2015. link:rootfs_overlay/lkmc/kgdb.sh[] pauses the kernel for KGDB, and gives control back to GDB.
  2016. And now in GDB we do the usual:
  2017. ....
  2018. break __x64_sys_write
  2019. continue
  2020. continue
  2021. continue
  2022. continue
  2023. ....
  2024. And now you can count from KGDB!
  2025. If you do: `break __x64_sys_write` immediately after `./run-gdb --kgdb`, it fails with `KGDB: BP remove failed: <address>`. I think this is because it would break too early on the boot sequence, and KGDB is not yet ready.
  2026. See also:
  2027. * https://github.com/torvalds/linux/blob/v4.9/Documentation/DocBook/kgdb.tmpl
  2028. * https://stackoverflow.com/questions/22004616/qemu-kernel-debugging-with-kgdb/44197715#44197715
  2029. === KGDB ARM
  2030. TODO: we would need a second serial for KGDB to work, but it is not currently supported on `arm` and `aarch64` with `-M virt` that we use: https://unix.stackexchange.com/questions/479085/can-qemu-m-virt-on-arm-aarch64-have-multiple-serial-ttys-like-such-as-pl011-t/479340#479340
  2031. One possible workaround for this would be to use <<kdb-arm>>.
  2032. Main more generic question: https://stackoverflow.com/questions/14155577/how-to-use-kgdb-on-arm
  2033. === KGDB kernel modules
  2034. Just works as you would expect:
  2035. ....
  2036. insmod timer.ko
  2037. ./kgdb.sh
  2038. ....
  2039. In GDB:
  2040. ....
  2041. break lkmc_timer_callback
  2042. continue
  2043. continue
  2044. continue
  2045. ....
  2046. and you now control the count.
  2047. === KDB
  2048. KDB is a way to use KDB directly in your main console, without GDB.
  2049. Advantage over KGDB: you can do everything in one serial. This can actually be important if you only have one serial for both shell and .
  2050. Disadvantage: not as much functionality as GDB, especially when you use Python scripts. Notably, TODO confirm you can't see the the kernel source code and line step as from GDB, since the kernel source is not available on guest (ah, if only debugging information supported full source, or if the kernel had a crazy mechanism to embed it).
  2051. Run QEMU as:
  2052. ....
  2053. ./run --kdb
  2054. ....
  2055. This passes `kgdboc=ttyS0` to the Linux CLI, therefore using our main console. Then QEMU:
  2056. ....
  2057. [0]kdb> go
  2058. ....
  2059. And now the `kdb>` prompt is responsive because it is listening to the main console.
  2060. After boot finishes, run the usual:
  2061. ....
  2062. ./count.sh &
  2063. ./kgdb.sh
  2064. ....
  2065. And you are back in KDB. Now you can count with:
  2066. ....
  2067. [0]kdb> bp __x64_sys_write
  2068. [0]kdb> go
  2069. [0]kdb> go
  2070. [0]kdb> go
  2071. [0]kdb> go
  2072. ....
  2073. And you will break whenever `__x64_sys_write` is hit.
  2074. You can get see further commands with:
  2075. ....
  2076. [0]kdb> help
  2077. ....
  2078. The other KDB commands allow you to step instructions, view memory, registers and some higher level kernel runtime data similar to the superior GDB Python scripts.
  2079. ==== KDB graphic
  2080. You can also use KDB directly from the <<graphics,graphic>> window with:
  2081. ....
  2082. ./run --graphic --kdb
  2083. ....
  2084. This setup could be used to debug the kernel on machines without serial, such as modern desktops.
  2085. This works because `--graphics` adds `kbd` (which stands for `KeyBoarD`!) to `kgdboc`.
  2086. ==== KDB ARM
  2087. TODO neither `arm` and `aarch64` are working as of 1cd1e58b023791606498ca509256cc48e95e4f5b + 1.
  2088. `arm` seems to place and hit the breakpoint correctly, but no matter how many `go` commands I do, the `count.sh` stdout simply does not show.
  2089. `aarch64` seems to place the breakpoint correctly, but after the first `go` the kernel oopses with warning:
  2090. ....
  2091. WARNING: CPU: 0 PID: 46 at /root/linux-kernel-module-cheat/submodules/linux/kernel/smp.c:416 smp_call_function_many+0xdc/0x358
  2092. ....
  2093. and stack trace:
  2094. ....
  2095. smp_call_function_many+0xdc/0x358
  2096. kick_all_cpus_sync+0x30/0x38
  2097. kgdb_flush_swbreak_addr+0x3c/0x48
  2098. dbg_deactivate_sw_breakpoints+0x7c/0xb8
  2099. kgdb_cpu_enter+0x284/0x6a8
  2100. kgdb_handle_exception+0x138/0x240
  2101. kgdb_brk_fn+0x2c/0x40
  2102. brk_handler+0x7c/0xc8
  2103. do_debug_exception+0xa4/0x1c0
  2104. el1_dbg+0x18/0x78
  2105. __arm64_sys_write+0x0/0x30
  2106. el0_svc_handler+0x74/0x90
  2107. el0_svc+0x8/0xc
  2108. ....
  2109. My theory is that every serious ARM developer has JTAG, and no one ever tests this, and the kernel code is just broken.
  2110. == gdbserver
  2111. Step debug userland processes to understand how they are talking to the kernel.
  2112. First build `gdbserver` into the root filesystem:
  2113. ....
  2114. ./build-buildroot --config 'BR2_PACKAGE_GDB=y'
  2115. ....
  2116. Then on guest, to debug link:userland/linux/rand_check.c[]:
  2117. ....
  2118. ./gdbserver.sh ./c/command_line_arguments.out asdf qwer
  2119. ....
  2120. Source: link:rootfs_overlay/lkmc/gdbserver.sh[].
  2121. And on host:
  2122. ....
  2123. ./run-gdb --gdbserver --userland userland/c/command_line_arguments.c main
  2124. ....
  2125. or alternatively with the path to the executable itself:
  2126. ....
  2127. ./run --gdbserver --userland "$(./getvar userland_build_dir)/c/command_line_arguments.out"
  2128. ....
  2129. Bibliography: https://reverseengineering.stackexchange.com/questions/8829/cross-debugging-for-arm-mips-elf-with-qemu-toolchain/16214#16214
  2130. === gdbserver BusyBox
  2131. Analogous to <<gdb-step-debug-userland-processes>>:
  2132. ....
  2133. ./gdbserver.sh ls
  2134. ....
  2135. on host you need:
  2136. ....
  2137. ./run-gdb --gdbserver --userland "$(./getvar buildroot_build_build_dir)"/busybox-*/busybox ls_main
  2138. ....
  2139. === gdbserver libc
  2140. Our setup gives you the rare opportunity to step debug libc and other system libraries.
  2141. For example in the guest:
  2142. ....
  2143. ./gdbserver.sh ./posix/count.out
  2144. ....
  2145. Then on host:
  2146. ....
  2147. ./run-gdb --gdbserver --userland userland/posix/count.c main
  2148. ....
  2149. and inside GDB:
  2150. ....
  2151. break sleep
  2152. continue
  2153. ....
  2154. And you are now left inside the `sleep` function of our default libc implementation uclibc https://cgit.uclibc-ng.org/cgi/cgit/uclibc-ng.git/tree/libc/unistd/sleep.c?h=v1.0.30#n91[`libc/unistd/sleep.c`]!
  2155. You can also step into the `sleep` call:
  2156. ....
  2157. step
  2158. ....
  2159. This is made possible by the GDB command that we use by default:
  2160. ....
  2161. set sysroot ${common_buildroot_build_dir}/staging
  2162. ....
  2163. which automatically finds unstripped shared libraries on the host for us.
  2164. See also: https://stackoverflow.com/questions/8611194/debugging-shared-libraries-with-gdbserver/45252113#45252113
  2165. === gdbserver dynamic loader
  2166. TODO: try to step debug the dynamic loader. Would be even easier if `starti` is available: https://stackoverflow.com/questions/10483544/stopping-at-the-first-machine-code-instruction-in-gdb
  2167. Bibliography: https://stackoverflow.com/questions/20114565/gdb-step-into-dynamic-linkerld-so-code
  2168. == CPU architecture
  2169. The portability of the kernel and toolchains is amazing: change an option and most things magically work on completely different hardware.
  2170. To use `arm` instead of x86 for example:
  2171. ....
  2172. ./build-buildroot --arch arm
  2173. ./run --arch arm
  2174. ....
  2175. Debug:
  2176. ....
  2177. ./run --arch arm --gdb-wait
  2178. # On another terminal.
  2179. ./run-gdb --arch arm
  2180. ....
  2181. We also have one letter shorthand names for the architectures and `--arch` option:
  2182. ....
  2183. # aarch64
  2184. ./run -a A
  2185. # arm
  2186. ./run -a a
  2187. # x86_64
  2188. ./run -a x
  2189. ....
  2190. Known quirks of the supported architectures are documented in this section.
  2191. [[x86-64]]
  2192. === x86_64
  2193. ==== ring0
  2194. This example illustrates how reading from the x86 control registers with `mov crX, rax` can only be done from kernel land on ring0.
  2195. From kernel land:
  2196. ....
  2197. insmod ring0.ko
  2198. ....
  2199. works and output the registers, for example:
  2200. ....
  2201. cr0 = 0xFFFF880080050033
  2202. cr2 = 0xFFFFFFFF006A0008
  2203. cr3 = 0xFFFFF0DCDC000
  2204. ....
  2205. However if we try to do it from userland:
  2206. ....
  2207. ./ring0.out
  2208. ....
  2209. stdout gives:
  2210. ....
  2211. Segmentation fault
  2212. ....
  2213. and dmesg outputs:
  2214. ....
  2215. traps: ring0.out[55] general protection ip:40054c sp:7fffffffec20 error:0 in ring0.out[400000+1000]
  2216. ....
  2217. Sources:
  2218. * link:kernel_modules/ring0.c[]
  2219. * link:lkmc/ring0.h[]
  2220. * link:userland/arch/x86_64/ring0.c[]
  2221. In both cases, we attempt to run the exact same code which is shared on the `ring0.h` header file.
  2222. Bibliography:
  2223. * https://stackoverflow.com/questions/7415515/how-to-access-the-control-registers-cr0-cr2-cr3-from-a-program-getting-segmenta/7419306#7419306
  2224. * https://stackoverflow.com/questions/18717016/what-are-ring-0-and-ring-3-in-the-context-of-operating-systems/44483439#44483439
  2225. === arm
  2226. ==== Run arm executable in aarch64
  2227. TODO Can you run arm executables in the aarch64 guest? https://stackoverflow.com/questions/22460589/armv8-running-legacy-32-bit-applications-on-64-bit-os/51466709#51466709
  2228. I've tried:
  2229. ....
  2230. ./run-toolchain --arch aarch64 gcc -- -static ~/test/hello_world.c -o "$(./getvar p9_dir)/a.out"
  2231. ./run --arch aarch64 --eval-after '/mnt/9p/data/a.out'
  2232. ....
  2233. but it fails with:
  2234. ....
  2235. a.out: line 1: syntax error: unexpected word (expecting ")")
  2236. ....
  2237. === MIPS
  2238. We used to "support" it until f8c0502bb2680f2dbe7c1f3d7958f60265347005 (it booted) but dropped since one was testing it often.
  2239. If you want to revive and maintain it, send a pull request.
  2240. === Other architectures
  2241. It should not be too hard to port this repository to any architecture that Buildroot supports. Pull requests are welcome.
  2242. == init
  2243. When the Linux kernel finishes booting, it runs an executable as the first and only userland process. This executable is called the `init` program.
  2244. The init process is then responsible for setting up the entire userland (or destroying everything when you want to have fun).
  2245. This typically means reading some configuration files (e.g. `/etc/initrc`) and forking a bunch of userland executables based on those files, including the very interactive shell that we end up on.
  2246. systemd provides a "popular" init implementation for desktop distros as of 2017.
  2247. BusyBox provides its own minimalistic init implementation which Buildroot, and therefore this repo, uses by default.
  2248. The `init` program can be either an executable shell text file, or a compiled ELF file. It becomes easy to accept this once you see that the `exec` system call handles both cases equally: https://unix.stackexchange.com/questions/174062/can-the-init-process-be-a-shell-script-in-linux/395375#395375
  2249. The `init` executable is searched for in a list of paths in the root filesystem, including `/init`, `/sbin/init` and a few others. For more details see: xref:path-to-init[xrefstyle=full]
  2250. === Replace init
  2251. To have more control over the system, you can replace BusyBox's init with your own.
  2252. The most direct way to replace `init` with our own is to just use the `init=` <<kernel-command-line-parameters,command line parameter>> directly:
  2253. ....
  2254. ./run --kernel-cli 'init=/lkmc/count.sh'
  2255. ....
  2256. This just counts every second forever and does not give you a shell.
  2257. This method is not very flexible however, as it is hard to reliably pass multiple commands and command line arguments to the init with it, as explained at: xref:init-environment[xrefstyle=full].
  2258. For this reason, we have created a more robust helper method with the `--eval` option:
  2259. ....
  2260. ./run --eval 'echo "asdf qwer";insmod hello.ko;./linux/poweroff.out'
  2261. ....
  2262. It is basically a shortcut for:
  2263. ....
  2264. ./run --kernel-cli 'init=/lkmc/eval_base64.sh - lkmc_eval="insmod hello.ko;./linux/poweroff.out"'
  2265. ....
  2266. Source: link:rootfs_overlay/lkmc/eval_base64.sh[].
  2267. This allows quoting and newlines by base64 encoding on host, and decoding on guest, see: xref:kernel-command-line-parameters-escaping[xrefstyle=full].
  2268. It also automatically chooses between `init=` and `rcinit=` for you, see: xref:path-to-init[xrefstyle=full]
  2269. `--eval` replaces BusyBox' init completely, which makes things more minimal, but also has has the following consequences:
  2270. * `/etc/fstab` mounts are not done, notably `/proc` and `/sys`, test it out with:
  2271. +
  2272. ....
  2273. ./run --eval 'echo asdf;ls /proc;ls /sys;echo qwer'
  2274. ....
  2275. * no shell is launched at the end of boot for you to interact with the system. You could explicitly add a `sh` at the end of your commands however:
  2276. +
  2277. ....
  2278. ./run --eval 'echo hello;sh'
  2279. ....
  2280. The best way to overcome those limitations is to use: xref:init-busybox[xrefstyle=full]
  2281. If the script is large, you can add it to a gitignored file and pass that to `--eval` as in:
  2282. ....
  2283. echo '
  2284. cd /lkmc
  2285. insmod hello.ko
  2286. ./linux/poweroff.out
  2287. ' > data/gitignore.sh
  2288. ./run --eval "$(cat data/gitignore.sh)"
  2289. ....
  2290. or add it to a file to the root filesystem guest and rebuild:
  2291. ....
  2292. echo '#!/bin/sh
  2293. cd /lkmc
  2294. insmod hello.ko
  2295. ./linux/poweroff.out
  2296. ' > rootfs_overlay/lkmc/gitignore.sh
  2297. chmod +x rootfs_overlay/lkmc/gitignore.sh
  2298. ./build-buildroot
  2299. ./run --kernel-cli 'init=/lkmc/gitignore.sh'
  2300. ....
  2301. Remember that if your init returns, the kernel will panic, there are just two non-panic possibilities:
  2302. * run forever in a loop or long sleep
  2303. * `poweroff` the machine
  2304. ==== poweroff.out
  2305. Just using BusyBox' `poweroff` at the end of the `init` does not work and the kernel panics:
  2306. ....
  2307. ./run --eval poweroff
  2308. ....
  2309. because BusyBox' `poweroff` tries to do some fancy stuff like killing init, likely to allow userland to shutdown nicely.
  2310. But this fails when we are `init` itself!
  2311. BusyBox' `poweroff` works more brutally and effectively if you add `-f`:
  2312. ....
  2313. ./run --eval 'poweroff -f'
  2314. ....
  2315. but why not just use our minimal `./linux/poweroff.out` and be done with it?
  2316. ....
  2317. ./run --eval './linux/poweroff.out'
  2318. ....
  2319. Source: link:userland/linux/poweroff.c[]
  2320. This also illustrates how to shutdown the computer from C: https://stackoverflow.com/questions/28812514/how-to-shutdown-linux-using-c-or-qt-without-call-to-system
  2321. [[sleep-forever-out]]
  2322. ==== sleep_forever.out
  2323. I dare you to guess what this does:
  2324. ....
  2325. ./run --eval './posix/sleep_forever.out'
  2326. ....
  2327. Source: link:userland/posix/sleep_forever.c[]
  2328. This executable is a convenient simple init that does not panic and sleeps instead.
  2329. [[time-boot-out]]
  2330. ==== time_boot.out
  2331. Get a reasonable answer to "how long does boot take in guest time?":
  2332. ....
  2333. ./run --eval-after './linux/time_boot.c'
  2334. ....
  2335. Source: link:userland/linux/time_boot.c[]
  2336. That executable writes to `dmesg` directly through `/dev/kmsg` a message of type:
  2337. ....
  2338. [ 2.188242] /path/to/linux-kernel-module-cheat/userland/linux/time_boot.c
  2339. ....
  2340. which tells us that boot took `2.188242` seconds based on the dmesg timestamp.
  2341. Bibliography: https://stackoverflow.com/questions/12683169/measure-time-taken-for-linux-kernel-from-bootup-to-userpace/46517014#46517014
  2342. [[init-busybox]]
  2343. === Run command at the end of BusyBox init
  2344. Use the `--eval-after` option is for you rely on something that BusyBox' init set up for you like `/etc/fstab`:
  2345. ....
  2346. ./run --eval-after 'echo asdf;ls /proc;ls /sys;echo qwer'
  2347. ....
  2348. After the commands run, you are left on an interactive shell.
  2349. The above command is basically equivalent to:
  2350. ....
  2351. ./run --kernel-cli-after-dash 'lkmc_eval="insmod hello.ko;./linux/poweroff.out;"'
  2352. ....
  2353. where the `lkmc_eval` option gets evaled by our default link:rootfs_overlay/etc/init.d/S98[] startup script.
  2354. Except that `--eval-after` is smarter and uses `base64` encoding.
  2355. Alternatively, you can also add the comamdns to run to a new `init.d` entry to run at the end o the BusyBox init:
  2356. ....
  2357. cp rootfs_overlay/etc/init.d/S98 rootfs_overlay/etc/init.d/S99.gitignore
  2358. vim rootfs_overlay/etc/init.d/S99.gitignore
  2359. ./build-buildroot
  2360. ./run
  2361. ....
  2362. and they will be run automatically before the login prompt.
  2363. Scripts under `/etc/init.d` are run by `/etc/init.d/rcS`, which gets called by the line `::sysinit:/etc/init.d/rcS` in link:rootfs_overlay/etc/inittab[`/etc/inittab`].
  2364. === Path to init
  2365. The init is selected at:
  2366. * initrd or initramfs system: `/init`, a custom one can be set with the `rdinit=` <<kernel-command-line-parameters,kernel command line parameter>>
  2367. * otherwise: default is `/sbin/init`, followed by some other paths, a custom one can be set with `init=`
  2368. More details: https://unix.stackexchange.com/questions/30414/what-can-make-passing-init-path-to-program-to-the-kernel-not-start-program-as-i/430614#430614
  2369. The final init that actually got selected is shown on Linux v5.9.2 a line of type:
  2370. ```
  2371. <6>[ 0.309984] Run /sbin/init as init process
  2372. ```
  2373. at the very end of the boot logs.
  2374. === Init environment
  2375. Documented at https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html[]:
  2376. ____
  2377. The kernel parses parameters from the kernel command line up to "-"; if it doesn't recognize a parameter and it doesn't contain a '.', the parameter gets passed to init: parameters with '=' go into init's environment, others are passed as command line arguments to init. Everything after "-" is passed as an argument to init.
  2378. ____
  2379. And you can try it out with:
  2380. ....
  2381. ./run --kernel-cli 'init=/lkmc/linux/init_env_poweroff.out' --kernel-cli-after-dash 'asdf=qwer zxcv'
  2382. ....
  2383. From the <<dry-run,generated QEMU command>>, we see that the kernel CLI at LKMC 69f5745d3df11d5c741551009df86ea6c61a09cf now contains:
  2384. ....
  2385. init=/lkmc/linux/init_env_poweroff.out console=ttyS0 - lkmc_home=/lkmc asdf=qwer zxcv
  2386. ....
  2387. and the init program outputs:
  2388. ....
  2389. args:
  2390. /lkmc/linux/init_env_poweroff.out
  2391. -
  2392. zxcv
  2393. env:
  2394. HOME=/
  2395. TERM=linux
  2396. lkmc_home=/lkmc
  2397. asdf=qwer
  2398. ....
  2399. Source: link:userland/linux/init_env_poweroff.c[].
  2400. As of the Linux kernel v5.7 (possibly earlier, I've skipped a few releases), boot also shows the init arguments and environment very clearly, which is a great addition:
  2401. ....
  2402. <6>[ 0.309984] Run /sbin/init as init process
  2403. <7>[ 0.309991] with arguments:
  2404. <7>[ 0.309997] /sbin/init
  2405. <7>[ 0.310004] nokaslr
  2406. <7>[ 0.310010] -
  2407. <7>[ 0.310016] with environment:
  2408. <7>[ 0.310022] HOME=/
  2409. <7>[ 0.310028] TERM=linux
  2410. <7>[ 0.310035] earlyprintk=pl011,0x1c090000
  2411. <7>[ 0.310041] lkmc_home=/lkmc
  2412. ....
  2413. ==== init arguments
  2414. The annoying dash `-` gets passed as a parameter to `init`, which makes it impossible to use this method for most non custom executables.
  2415. Arguments with dots that come after `-` are still treated specially (of the form `subsystem.somevalue`) and disappear, from args, e.g.:
  2416. ....
  2417. ./run --kernel-cli 'init=/lkmc/linux/init_env_poweroff.out' --kernel-cli-after-dash '/lkmc/linux/poweroff.out'
  2418. ....
  2419. outputs:
  2420. ....
  2421. args
  2422. /lkmc/linux/init_env_poweroff.out
  2423. -
  2424. ab
  2425. ....
  2426. so see how `a.b` is gone.
  2427. The simple workaround is to just create a shell script that does it, e.g. as we've done at: link:rootfs_overlay/lkmc/gem5_exit.sh[].
  2428. ==== init environment env
  2429. Wait, where do `HOME` and `TERM` come from? (greps the kernel). Ah, OK, the kernel sets those by default: https://github.com/torvalds/linux/blob/94710cac0ef4ee177a63b5227664b38c95bbf703/init/main.c#L173
  2430. ....
  2431. const char *envp_init[MAX_INIT_ENVS+2] = { "HOME=/", "TERM=linux", NULL, };
  2432. ....
  2433. ==== BusyBox shell init environment
  2434. On top of the Linux kernel, the BusyBox `/bin/sh` shell will also define other variables.
  2435. We can explore the shenanigans that the shell adds on top of the Linux kernel with:
  2436. ....
  2437. ./run --kernel-cli 'init=/bin/sh'
  2438. ....
  2439. From there we observe that:
  2440. ....
  2441. env
  2442. ....
  2443. gives:
  2444. ....
  2445. SHLVL=1
  2446. HOME=/
  2447. TERM=linux
  2448. PWD=/
  2449. ....
  2450. therefore adding `SHLVL` and `PWD` to the default kernel exported variables.
  2451. Furthermore, to increase confusion, if you list all non-exported shell variables https://askubuntu.com/questions/275965/how-to-list-all-variables-names-and-their-current-values with:
  2452. ....
  2453. set
  2454. ....
  2455. then it shows more variables, notably:
  2456. ....
  2457. PATH='/sbin:/usr/sbin:/bin:/usr/bin'
  2458. ....
  2459. ===== BusyBox shell initrc files
  2460. Login shells source some default files, notably:
  2461. ....
  2462. /etc/profile
  2463. $HOME/.profile
  2464. ....
  2465. In our case, `HOME` is set to `/` presumably by `init` at: https://git.busybox.net/busybox/tree/init/init.c?id=5059653882dbd86e3bbf48389f9f81b0fac8cd0a#n1114
  2466. We provide `/.profile` from link:rootfs_overlay/.profile[], and use the default BusyBox `/etc/profile`.
  2467. The shell knows that it is a login shell if the first character of `argv[0]` is `-`, see also: https://stackoverflow.com/questions/2050961/is-argv0-name-of-executable-an-accepted-standard-or-just-a-common-conventi/42291142#42291142
  2468. When we use just `init=/bin/sh`, the Linux kernel sets `argv[0]` to `/bin/sh`, which does not start with `-`.
  2469. However, if you use `::respawn:-/bin/sh` on inttab described at <<tty>>, BusyBox' init sets `argv[0][0]` to `-`, and so does `getty`. This can be observed with:
  2470. ....
  2471. cat /proc/$$/cmdline
  2472. ....
  2473. where `$$` is the PID of the shell itself: https://stackoverflow.com/questions/21063765/get-pid-in-shell-bash
  2474. Bibliography: https://unix.stackexchange.com/questions/176027/ash-profile-configuration-file
  2475. == initrd
  2476. The kernel can boot from an CPIO file, which is a directory serialization format much like tar: https://superuser.com/questions/343915/tar-vs-cpio-what-is-the-difference
  2477. The bootloader, which for us is provided by QEMU itself, is then configured to put that CPIO into memory, and tell the kernel that it is there.
  2478. This is very similar to the kernel image itself, which already gets put into memory by the QEMU `-kernel` option.
  2479. With this setup, you don't even need to give a root filesystem to the kernel: it just does everything in memory in a ramfs.
  2480. To enable initrd instead of the default ext2 disk image, do:
  2481. ....
  2482. ./build-buildroot --initrd
  2483. ./run --initrd
  2484. ....
  2485. By looking at the QEMU run command generated, you can see that we didn't give the `-drive` option at all:
  2486. ....
  2487. cat "$(./getvar run_dir)/run.sh"
  2488. ....
  2489. Instead, we used the QEMU `-initrd` option to point to the `.cpio` filesystem that Buildroot generated for us.
  2490. Try removing that `-initrd` option to watch the kernel panic without rootfs at the end of boot.
  2491. When using `.cpio`, there can be no <<disk-persistency,filesystem persistency>> across boots, since all file operations happen in memory in a tmpfs:
  2492. ....
  2493. date >f
  2494. poweroff
  2495. cat f
  2496. # can't open 'f': No such file or directory
  2497. ....
  2498. which can be good for automated tests, as it ensures that you are using a pristine unmodified system image every time.
  2499. Not however that we already disable disk persistency by default on ext2 filesystems even without `--initrd`: xref:disk-persistency[xrefstyle=full].
  2500. One downside of this method is that it has to put the entire filesystem into memory, and could lead to a panic:
  2501. ....
  2502. end Kernel panic - not syncing: Out of memory and no killable processes...
  2503. ....
  2504. This can be solved by increasing the memory as explained at <<memory-size>>:
  2505. ....
  2506. ./run --initrd --memory 256M
  2507. ....
  2508. The main ingredients to get initrd working are:
  2509. * `BR2_TARGET_ROOTFS_CPIO=y`: make Buildroot generate `images/rootfs.cpio` in addition to the other images.
  2510. +
  2511. It is also possible to compress that image with other options.
  2512. * `qemu -initrd`: make QEMU put the image into memory and tell the kernel about it.
  2513. * `CONFIG_BLK_DEV_INITRD=y`: Compile the kernel with initrd support, see also: https://unix.stackexchange.com/questions/67462/linux-kernel-is-not-finding-the-initrd-correctly/424496#424496
  2514. +
  2515. Buildroot forces that option when `BR2_TARGET_ROOTFS_CPIO=y` is given
  2516. TODO: how does the bootloader inform the kernel where to find initrd? https://unix.stackexchange.com/questions/89923/how-does-linux-load-the-initrd-image
  2517. === initrd in desktop distros
  2518. Most modern desktop distributions have an initrd in their root disk to do early setup.
  2519. The rationale for this is described at: https://en.wikipedia.org/wiki/Initial_ramdisk
  2520. One obvious use case is having an encrypted root filesystem: you keep the initrd in an unencrypted partition, and then setup decryption from there.
  2521. I think GRUB then knows read common disk formats, and then loads that initrd to memory with a `/boot/grub/grub.cfg` directive of type:
  2522. ....
  2523. initrd /initrd.img-4.4.0-108-generic
  2524. ....
  2525. Related: https://stackoverflow.com/questions/6405083/initrd-and-booting-the-linux-kernel
  2526. === initramfs
  2527. initramfs is just like <<initrd>>, but you also glue the image directly to the kernel image itself using the kernel's build system.
  2528. Try it out with:
  2529. ....
  2530. ./build-buildroot --initramfs
  2531. ./build-linux --initramfs
  2532. ./run --initramfs
  2533. ....
  2534. Notice how we had to rebuild the Linux kernel this time around as well after Buildroot, since in that build we will be gluing the CPIO to the kernel image.
  2535. Now, once again, if we look at the QEMU run command generated, we see all that QEMU needs is the `-kernel` option, no `-drive` not even `-initrd`! Pretty cool:
  2536. ....
  2537. cat "$(./getvar run_dir)/run.sh"
  2538. ....
  2539. It is also interesting to observe how this increases the size of the kernel image if you do a:
  2540. ....
  2541. ls -lh "$(./getvar linux_image)"
  2542. ....
  2543. before and after using initramfs, since the `.cpio` is now glued to the kernel image.
  2544. Don't forget that to stop using initramfs, you must rebuild the kernel without `--initramfs` to get rid of the attached CPIO image:
  2545. ....
  2546. ./build-linux
  2547. ./run
  2548. ....
  2549. Alternatively, consider using <<linux-kernel-build-variants>> if you need to switch between initramfs and non initramfs often:
  2550. ....
  2551. ./build-buildroot --initramfs
  2552. ./build-linux --initramfs --linux-build-id initramfs
  2553. ./run --initramfs --linux-build-id
  2554. ....
  2555. Setting up initramfs is very easy: our scripts just set `CONFIG_INITRAMFS_SOURCE` to point to the CPIO path.
  2556. http://nairobi-embedded.org/initramfs_tutorial.html shows a full manual setup.
  2557. === rootfs
  2558. This is how `/proc/mounts` shows the root filesystem:
  2559. * hard disk: `/dev/root on / type ext2 (rw,relatime,block_validity,barrier,user_xattr)`. That file does not exist however.
  2560. * initrd: `rootfs on / type rootfs (rw)`
  2561. * initramfs: `rootfs on / type rootfs (rw)`
  2562. TODO: understand `/dev/root` better:
  2563. * https://unix.stackexchange.com/questions/295060/why-on-some-linux-systems-does-the-root-filesystem-appear-as-dev-root-instead
  2564. * https://superuser.com/questions/1213770/how-do-you-determine-the-root-device-if-dev-root-is-missing
  2565. ==== /dev/root
  2566. See: xref:rootfs[xrefstyle=full]
  2567. === gem5 initrd
  2568. TODO we were not able to get it working yet: https://stackoverflow.com/questions/49261801/how-to-boot-the-linux-kernel-with-initrd-or-initramfs-with-gem5
  2569. This would require gem5 to load the CPIO into memory, just like QEMU. Grepping `initrd` shows some ARM hits under:
  2570. ....
  2571. src/arch/arm/linux/atag.hh
  2572. ....
  2573. but they are commented out.
  2574. === gem5 initramfs
  2575. This could in theory be easier to make work than initrd since the emulator does not have to do anything special.
  2576. However, it didn't: boot fails at the end because it does not see the initramfs, but rather tries to open our dummy root filesystem, which unsurprisingly does not have a format in a way that the kernel understands:
  2577. ....
  2578. VFS: Cannot open root device "sda" or unknown-block(8,0): error -5
  2579. ....
  2580. We think that this might be because gem5 boots directly `vmlinux`, and not from the final compressed images that contain the attached rootfs such as `bzImage`, which is what QEMU does, see also: xref:vmlinux-vs-bzimage-vs-zimage-vs-image[xrefstyle=full].
  2581. To do this failed test, we automatically pass a dummy disk image as of gem5 7fa4c946386e7207ad5859e8ade0bbfc14000d91 since the scripts don't handle a missing `--disk-image` well, much like is currently done for <<baremetal>>.
  2582. Interestingly, using initramfs significantly slows down the gem5 boot, even though it did not work. For example, we've observed a 4x slowdown of as 17062a2e8b6e7888a14c3506e9415989362c58bf for aarch64. This must be because expanding the large attached CPIO must be expensive. We can clearly see from the kernel logs that the kernel just hangs at a point after the message `PCI: CLS 0 bytes, default 64` for a long time before proceeding further.
  2583. == Device tree
  2584. The device tree is a Linux kernel defined data structure that serves to inform the kernel how the hardware is setup.
  2585. Device trees serve to reduce the need for hardware vendors to patch the kernel: they just provide a device tree file instead, which is much simpler.
  2586. x86 does not use it device trees, but many other archs to, notably ARM.
  2587. This is notably because ARM boards:
  2588. * typically don't have discoverable hardware extensions like PCI, but rather just put everything on an SoC with magic register addresses
  2589. * are made by a wide variety of vendors due to ARM's licensing business model, which increases variability
  2590. The Linux kernel itself has several device trees under `./arch/<arch>/boot/dts`, see also: https://stackoverflow.com/questions/21670967/how-to-compile-dts-linux-device-tree-source-files-to-dtb/42839737#42839737
  2591. === DTB files
  2592. Files that contain device trees have the `.dtb` extension when compiled, and `.dts` when in text form.
  2593. You can convert between those formats with:
  2594. ....
  2595. "$(./getvar buildroot_host_dir)"/bin/dtc -I dtb -O dts -o a.dts a.dtb
  2596. "$(./getvar buildroot_host_dir)"/bin/dtc -I dts -O dtb -o a.dtb a.dts
  2597. ....
  2598. Buildroot builds the tool due to `BR2_PACKAGE_HOST_DTC=y`.
  2599. On Ubuntu 18.04, the package is named:
  2600. ....
  2601. sudo apt-get install device-tree-compiler
  2602. ....
  2603. See also: https://stackoverflow.com/questions/14000736/tool-to-visualize-the-device-tree-file-dtb-used-by-the-linux-kernel/39931834#39931834
  2604. Device tree files are provided to the emulator just like the root filesystem and the Linux kernel image.
  2605. In real hardware, those components are also often provided separately. For example, on the Raspberry Pi 2, the SD card must contain two partitions:
  2606. * the first contains all magic files, including the Linux kernel and the device tree
  2607. * the second contains the root filesystem
  2608. See also: https://stackoverflow.com/questions/29837892/how-to-run-a-c-program-with-no-os-on-the-raspberry-pi/40063032#40063032
  2609. === Device tree syntax
  2610. Good format descriptions:
  2611. * https://www.raspberrypi.org/documentation/configuration/device-tree.md
  2612. Minimal example
  2613. ....
  2614. /dts-v1/;
  2615. / {
  2616. a;
  2617. };
  2618. ....
  2619. Check correctness with:
  2620. ....
  2621. dtc a.dts
  2622. ....
  2623. Separate nodes are simply merged by node path, e.g.:
  2624. ....
  2625. /dts-v1/;
  2626. / {
  2627. a;
  2628. };
  2629. / {
  2630. b;
  2631. };
  2632. ....
  2633. then `dtc a.dts` gives:
  2634. ....
  2635. /dts-v1/;
  2636. / {
  2637. a;
  2638. b;
  2639. };
  2640. ....
  2641. === Get device tree from a running kernel
  2642. https://unix.stackexchange.com/questions/265890/is-it-possible-to-get-the-information-for-a-device-tree-using-sys-of-a-running/330926#330926
  2643. This is specially interesting because QEMU and gem5 are capable of generating DTBs that match the selected machine depending on dynamic command line parameters for some types of machines.
  2644. So observing the device tree from the guest allows to easily see what the emulator has generated.
  2645. Compile the `dtc` tool into the root filesystem:
  2646. ....
  2647. ./build-buildroot \
  2648. --arch aarch64 \
  2649. --config 'BR2_PACKAGE_DTC=y' \
  2650. --config 'BR2_PACKAGE_DTC_PROGRAMS=y' \
  2651. ;
  2652. ....
  2653. `-M virt` for example, which we use by default for `aarch64`, boots just fine without the `-dtb` option:
  2654. ....
  2655. ./run --arch aarch64
  2656. ....
  2657. Then, from inside the guest:
  2658. ....
  2659. dtc -I fs -O dts /sys/firmware/devicetree/base
  2660. ....
  2661. contains:
  2662. ....
  2663. cpus {
  2664. #address-cells = <0x1>;
  2665. #size-cells = <0x0>;
  2666. cpu@0 {
  2667. compatible = "arm,cortex-a57";
  2668. device_type = "cpu";
  2669. reg = <0x0>;
  2670. };
  2671. };
  2672. ....
  2673. === Device tree emulator generation
  2674. Since emulators know everything about the hardware, they can automatically generate device trees for us, which is very convenient.
  2675. This is the case for both QEMU and gem5.
  2676. For example, if we increase the <<number-of-cores,number of cores>> to 2:
  2677. ....
  2678. ./run --arch aarch64 --cpus 2
  2679. ....
  2680. QEMU automatically adds a second CPU to the DTB!
  2681. ....
  2682. cpu@0 {
  2683. cpu@1 {
  2684. ....
  2685. The action seems to be happening at: `hw/arm/virt.c`.
  2686. You can dump the DTB QEMU generated with:
  2687. ....
  2688. ./run --arch aarch64 -- -machine dumpdtb=dtb.dtb
  2689. ....
  2690. as mentioned at: https://lists.gnu.org/archive/html/qemu-discuss/2017-02/msg00051.html
  2691. <<gem5-fs-biglittle>> 2a9573f5942b5416fb0570cf5cb6cdecba733392 can also generate its own DTB.
  2692. gem5 can generate DTBs on ARM with `--generate-dtb`. The generated DTB is placed in the <<m5out-directory>> named as `system.dtb`.
  2693. == KVM
  2694. https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine[KVM] is Linux kernel interface that <<benchmark-linux-kernel-boot,greatly speeds up>> execution of virtual machines.
  2695. You can make QEMU or <<gem5-kvm,gem5>> by passing enabling KVM with:
  2696. ....
  2697. ./run --kvm
  2698. ....
  2699. KVM works by running userland instructions natively directly on the real hardware instead of running a software simulation of those instructions.
  2700. Therefore, KVM only works if you the host architecture is the same as the guest architecture. This means that this will likely only work for x86 guests since almost all development machines are x86 nowadays. Unless you are https://www.youtube.com/watch?v=8ItXpmLsINs[running an ARM desktop for some weird reason] :-)
  2701. We don't enable KVM by default because:
  2702. * it limits visibility, since more things are running natively:
  2703. ** can't use <<gdb,GDB>>
  2704. ** can't do <<tracing,instruction tracing>>
  2705. ** on gem5, you lose <<gem5-run-benchmark,cycle counts>> and therefor any notion of performance
  2706. * QEMU kernel boots are already <<benchmark-linux-kernel-boot,fast enough>> for most purposes without it
  2707. One important use case for KVM is to fast forward gem5 execution, often to skip boot, take a <<gem5-checkpoint>>, and then move on to a more detailed and slow simulation
  2708. === KVM arm
  2709. TODO: we haven't gotten it to work yet, but it should be doable, and this is an outline of how to do it. Just don't expect this to tested very often for now.
  2710. We can test KVM on arm by running this repository inside an Ubuntu arm QEMU VM.
  2711. This produces no speedup of course, since the VM is already slow since it cannot use KVM on the x86 host.
  2712. First, obtain an Ubuntu arm64 virtual machine as explained at: https://askubuntu.com/questions/281763/is-there-any-prebuilt-qemu-ubuntu-image32bit-online/1081171#1081171
  2713. Then, from inside that image:
  2714. ....
  2715. sudo apt-get install git
  2716. git clone https://github.com/cirosantilli/linux-kernel-module-cheat
  2717. cd linux-kernel-module-cheat
  2718. ./setup -y
  2719. ....
  2720. and then proceed exactly as in <<prebuilt>>.
  2721. We don't want to build the full Buildroot image inside the VM as that would be way too slow, thus the recommendation for the prebuilt setup.
  2722. TODO: do the right thing and cross compile QEMU and gem5. gem5's Python parts might be a pain. QEMU should be easy: https://stackoverflow.com/questions/26514252/cross-compile-qemu-for-arm
  2723. === gem5 KVM
  2724. While gem5 does have KVM, as of 2019 its support has not been very good, because debugging it is harder and people haven't focused intensively on it.
  2725. X86 was broken with pending patches: https://www.mail-archive.com/gem5-users@gem5.org/msg15046.html It failed immediately on:
  2726. ....
  2727. panic: KVM: Failed to enter virtualized mode (hw reason: 0x80000021)
  2728. ....
  2729. also mentioned at:
  2730. * https://stackoverflow.com/questions/62687463/gem5-kvm-doesnt-work-with-error-0x80000021
  2731. * https://gem5-users.gem5.narkive.com/8DBihuUx/running-fs-py-with-x86kvmcpu-failed
  2732. Bibliography:
  2733. * ARM thread: https://stackoverflow.com/questions/53523087/how-to-run-gem5-on-kvm-on-arm-with-multiple-cores
  2734. == User mode simulation
  2735. Both QEMU and gem5 have an user mode simulation mode in addition to full system simulation that we consider elsewhere in this project.
  2736. In QEMU, it is called just <<qemu-user-mode-getting-started,"user mode">>, and in gem5 it is called <<gem5-syscall-emulation-mode,syscall emulation mode>>.
  2737. In both, the basic idea is the same.
  2738. User mode simulation takes regular userland executables of any arch as input and executes them directly, without booting a kernel.
  2739. Instead of simulating the full system, it translates normal instructions like in full system mode, but magically forwards system calls to the host OS.
  2740. Advantages over full system simulation:
  2741. * the simulation may <<user-mode-vs-full-system-benchmark,run faster>> since you don't have to simulate the Linux kernel and several device models
  2742. * you don't need to build your own kernel or root filesystem, which saves time. You still need a toolchain however, but the pre-packaged ones may work fine.
  2743. Disadvantages:
  2744. * lower guest to host portability:
  2745. ** TODO confirm: host OS == guest OS?
  2746. ** TODO confirm: the host Linux kernel should be newer than the kernel the executable was built for.
  2747. +
  2748. It may still work even if that is not the case, but could fail is a missing system call is reached.
  2749. +
  2750. The target Linux kernel of the executable is a GCC toolchain build-time configuration.
  2751. ** emulator implementers have to keep up with libc changes, some of which break even a C hello world due setup code executed before main.
  2752. +
  2753. See also: xref:user-mode-simulation-with-glibc[xrefstyle=full]
  2754. * cannot be used to test the Linux kernel or any devices, and results are less representative of a real system since we are faking more
  2755. === QEMU user mode getting started
  2756. Let's run link:userland/c/command_line_arguments.c[] built with the Buildroot toolchain on QEMU user mode:
  2757. ....
  2758. ./build user-mode-qemu
  2759. ./run \
  2760. --userland userland/c/command_line_arguments.c \
  2761. --cli-args='asdf "qw er"' \
  2762. ;
  2763. ....
  2764. Output:
  2765. ....
  2766. /path/to/linux-kernel-module-cheat/out/userland/default/x86_64/c/command_line_arguments.out
  2767. asdf
  2768. qw er
  2769. ....
  2770. `./run --userland` path resolution is analogous to <<baremetal-setup-getting-started,that of `./run --baremetal`>>.
  2771. `./build user-mode-qemu` first builds Buildroot, and then runs `./build-userland`, which is further documented at: xref:userland-setup[xrefstyle=full]. It also builds QEMU. If you ahve already done a <<qemu-buildroot-setup>> previously, this will be very fast.
  2772. If you modify the userland programs, rebuild simply with:
  2773. ....
  2774. ./build-userland
  2775. ....
  2776. To rebuild just QEMU userland if you hack it, use:
  2777. ....
  2778. ./build-qemu --mode userland
  2779. ....
  2780. The:
  2781. ....
  2782. --mode userland
  2783. ....
  2784. is needed because QEMU has two separate executables:
  2785. * `qemu-x86_64` for userland
  2786. * `qemu-system-x86_64` for full system
  2787. ==== User mode GDB
  2788. It's nice when <<gdb,the obvious>> just works, right?
  2789. ....
  2790. ./run \
  2791. --arch aarch64 \
  2792. --gdb-wait \
  2793. --userland userland/c/command_line_arguments.c \
  2794. --cli-args 'asdf "qw er"' \
  2795. ;
  2796. ....
  2797. and on another shell:
  2798. ....
  2799. ./run-gdb \
  2800. --arch aarch64 \
  2801. --userland userland/c/command_line_arguments.c \
  2802. main \
  2803. ;
  2804. ....
  2805. Or alternatively, if you are using <<tmux>>, do everything in one go with:
  2806. ....
  2807. ./run \
  2808. --arch aarch64 \
  2809. --gdb \
  2810. --userland userland/c/command_line_arguments.c \
  2811. --cli-args 'asdf "qw er"' \
  2812. ;
  2813. ....
  2814. To stop at the very first instruction of a freestanding program, just use `--no-continue`. A good example of this is shown at: xref:freestanding-programs[xrefstyle=full].
  2815. === User mode tests
  2816. Automatically run all userland tests that can be run in user mode simulation, and check that they exit with status 0:
  2817. ....
  2818. ./build --all-archs test-executables-userland
  2819. ./test-executables --all-archs --all-emulators
  2820. ....
  2821. Or just for QEMU:
  2822. ....
  2823. ./build --all-archs test-executables-userland-qemu
  2824. ./test-executables --all-archs --emulator qemu
  2825. ....
  2826. Source: link:test-executables[]
  2827. This script skips a manually configured list of tests, notably:
  2828. * tests that depend on a full running kernel and cannot be run in user mode simulation, e.g. those that rely on kernel modules
  2829. * tests that require user interaction
  2830. * tests that take perceptible amounts of time
  2831. * known bugs we didn't have time to fix ;-)
  2832. Tests under link:userland/libs/[] are only run if `--package` or `--package-all` are given as described at <<userland-libs-directory>>.
  2833. The gem5 tests require building statically with build id `static`, see also: xref:gem5-syscall-emulation-mode[xrefstyle=full]. TODO automate this better.
  2834. See: xref:test-this-repo[xrefstyle=full] for more useful testing tips.
  2835. === User mode Buildroot executables
  2836. If you followed <<qemu-buildroot-setup>>, you can now run the executables created by Buildroot directly as:
  2837. ....
  2838. ./run \
  2839. --userland "$(./getvar buildroot_target_dir)/bin/echo" \
  2840. --cli-args='asdf' \
  2841. ;
  2842. ....
  2843. To easily explore the userland executable environment interactively, you can do:
  2844. ....
  2845. ./run \
  2846. --arch aarch64 \
  2847. --userland "$(./getvar --arch aarch64 buildroot_target_dir)/bin/sh" \
  2848. --terminal \
  2849. ;
  2850. ....
  2851. or:
  2852. ....
  2853. ./run \
  2854. --arch aarch64 \
  2855. --userland "$(./getvar --arch aarch64 buildroot_target_dir)/bin/sh" \
  2856. --cli-args='-c "uname -a && pwd"' \
  2857. ;
  2858. ....
  2859. Here is an interesting examples of this: xref:linux-test-project[xrefstyle=full]
  2860. === User mode simulation with glibc
  2861. At 125d14805f769104f93c510bedaa685a52ec025d we <<libc-choice,moved Buildroot from uClibc to glibc>>, and caused some user mode pain, which we document here.
  2862. ==== FATAL: kernel too old failure in userland simulation
  2863. glibc has a check for kernel version, likely obtained from the `uname` syscall, and if the kernel is not new enough, it quits.
  2864. Both gem5 and QEMU however allow setting the reported `uname` version from the command line, which we do to always match our toolchain.
  2865. QEMU by default copies the host `uname` value, but we always override it in our scripts.
  2866. Determining the right number to use for the kernel version is of course highly non-trivial and would require an extensive userland test suite, which most emulators don't have.
  2867. ....
  2868. ./run --arch aarch64 --kernel-version 4.18 --userland userland/posix/uname.c
  2869. ....
  2870. Source: link:userland/posix/uname.c[].
  2871. The QEMU source that does this is at: https://github.com/qemu/qemu/blob/v3.1.0/linux-user/syscall.c#L8931
  2872. Bibliography:
  2873. * https://stackoverflow.com/questions/48959349/how-to-solve-fatal-kernel-too-old-when-running-gem5-in-syscall-emulation-se-m
  2874. * https://stackoverflow.com/questions/53085048/how-to-compile-and-run-an-executable-in-gem5-syscall-emulation-mode-with-se-py/53085049#53085049
  2875. * https://gem5-review.googlesource.com/c/public/gem5/+/15855
  2876. The ID is just hardcoded on the source:
  2877. ==== stack smashing detected when using glibc
  2878. For some reason QEMU / glibc x86_64 picks up the host libc, which breaks things.
  2879. Other archs work as they different host libc is skipped. <<user-mode-static-executables>> also work.
  2880. We have worked around this with with https://bugs.launchpad.net/qemu/+bug/1701798/comments/12 from the thread: https://bugs.launchpad.net/qemu/+bug/1701798 by creating the file: link:rootfs_overlay/etc/ld.so.cache[] which is a symlink to a file that cannot exist: `/dev/null/nonexistent`.
  2881. Reproduction:
  2882. ....
  2883. rm -f "$(./getvar buildroot_target_dir)/etc/ld.so.cache"
  2884. ./run --userland userland/c/hello.c
  2885. ./run --userland userland/c/hello.c --qemu-which host
  2886. ....
  2887. Outcome:
  2888. ....
  2889. *** stack smashing detected ***: <unknown> terminated
  2890. qemu: uncaught target signal 6 (Aborted) - core dumped
  2891. ....
  2892. To get things working again, restore `ld.so.cache` with:
  2893. ....
  2894. ./build-buildroot
  2895. ....
  2896. I've also tested on an Ubuntu 16.04 guest and the failure is different one:
  2897. ....
  2898. qemu: uncaught target signal 4 (Illegal instruction) - core dumped
  2899. ....
  2900. A non-QEMU-specific example of stack smashing is shown at: https://stackoverflow.com/questions/1345670/stack-smashing-detected/51897264#51897264
  2901. Tested at: 2e32389ebf1bedd89c682aa7b8fe42c3c0cf96e5 + 1.
  2902. === User mode static executables
  2903. Example:
  2904. ....
  2905. ./build-userland \
  2906. --arch aarch64 \
  2907. --static \
  2908. ;
  2909. ./run \
  2910. --arch aarch64 \
  2911. --static \
  2912. --userland userland/c/command_line_arguments.c \
  2913. --cli-args 'asdf "qw er"' \
  2914. ;
  2915. ....
  2916. Running dynamically linked executables in QEMU requires pointing it to the root filesystem with the `-L` option so that it can find the dynamic linker and shared libraries, see also:
  2917. * https://stackoverflow.com/questions/54802670/using-dynamic-linker-with-qemu-arm/64551293#64551293
  2918. * https://stackoverflow.com/questions/khow-to-gdb-step-debug-a-dynamically-linked-executable-in-qemu-user-mode
  2919. We pass `-L` by default, so everything just works.
  2920. However, in case something goes wrong, you can also try statically linked executables, since this mechanism tends to be a bit more stable, for example:
  2921. * QEMU x86_64 guest on x86_64 host was failing with <<stack-smashing-detected-when-using-glibc>>, but we found a workaround
  2922. * gem5 user only supported static executables in the past, as mentioned at: xref:gem5-syscall-emulation-mode[xrefstyle=full]
  2923. Running statically linked executables sometimes makes things break:
  2924. * <<user-mode-static-executables-with-dynamic-libraries>>
  2925. * TODO understand why:
  2926. +
  2927. ....
  2928. ./run --static --userland userland/c/file_write_read.c
  2929. ....
  2930. +
  2931. fails our assertion that the data was read back correctly:
  2932. +
  2933. ....
  2934. Assertion `strcmp(data, output) == 0' faile
  2935. ....
  2936. ==== User mode static executables with dynamic libraries
  2937. One limitation of static executables is that Buildroot mostly only builds dynamic versions of libraries (the libc is an exception).
  2938. So programs that rely on those libraries might not compile as GCC can't find the `.a` version of the library.
  2939. For example, if we try to build <<blas>> statically:
  2940. ....
  2941. ./build-userland --package openblas --static -- userland/libs/openblas/hello.c
  2942. ....
  2943. it fails with:
  2944. ....
  2945. ld: cannot find -lopenblas
  2946. ....
  2947. [[cpp-static-and-pthreads]]
  2948. ===== C++ static and pthreads
  2949. `g++` and pthreads also causes issues:
  2950. * https://stackoverflow.com/questions/35116327/when-g-static-link-pthread-cause-segmentation-fault-why
  2951. * https://stackoverflow.com/questions/58848694/gcc-whole-archive-recipe-for-static-linking-to-pthread-stopped-working-in-rec
  2952. As a consequence, the following just hangs as of LKMC ca0403849e03844a328029d70c08556155dc1cd0 + 1 the example link:userland/cpp/atomic/std_atomic.cpp[]:
  2953. ....
  2954. ./run --userland userland/cpp/atomic/std_atomic.cpp --static
  2955. ....
  2956. And before that, it used to fail with other randomly different errors, e.g.:
  2957. ....
  2958. qemu-x86_64: /path/to/linux-kernel-module-cheat/submodules/qemu/accel/tcg/cpu-exec.c:700: cpu_exec: Assertion `!have_mmap_lock()' failed.
  2959. qemu-x86_64: /path/to/linux-kernel-module-cheat/submodules/qemu/accel/tcg/cpu-exec.c:700: cpu_exec: Assertion `!have_mmap_lock()' failed.
  2960. ....
  2961. And a native Ubuntu 18.04 AMD64 run with static compilation segfaults.
  2962. As of LKMC f5d4998ff51a548ed3f5153aacb0411d22022058 the aarch64 error:
  2963. ....
  2964. ./run --arch aarch64 --userland userland/cpp/atomic/fail.cpp --static
  2965. ....
  2966. is:
  2967. ....
  2968. terminate called after throwing an instance of 'std::system_error'
  2969. what(): Unknown error 16781344
  2970. qemu: uncaught target signal 6 (Aborted) - core dumped
  2971. ....
  2972. The workaround:
  2973. ....
  2974. -pthread -Wl,--whole-archive -lpthread -Wl,--no-whole-archive
  2975. ....
  2976. fixes some of the problems, but not all TODO which were missing?, so we are just skipping those tests for now.
  2977. === syscall emulation mode program stdin
  2978. The following work on both QEMU and gem5 as of LKMC 99d6bc6bc19d4c7f62b172643be95d9c43c26145 + 1. Interactive input:
  2979. ....
  2980. ./run --userland userland/c/getchar.c
  2981. ....
  2982. Source: link:userland/c/getchar.c[]
  2983. A line of type should show:
  2984. ....
  2985. enter a character:
  2986. ....
  2987. and after pressing say `a` and Enter, we get:
  2988. ....
  2989. you entered: a
  2990. ....
  2991. Note however that due to <<qemu-user-mode-does-not-show-stdout-immediately>> we don't really see the initial `enter a character` line.
  2992. Non-interactive input from a file by forwarding emulators stdin implicitly through our Python scripts:
  2993. ....
  2994. printf a > f.tmp
  2995. ./run --userland userland/c/getchar.c < f.tmp
  2996. ....
  2997. Input from a file by explicitly requesting our scripts to use it via the Python API:
  2998. ....
  2999. printf a > f.tmp
  3000. ./run --emulator gem5 --userland userland/c/getchar.c --stdin-file f.tmp
  3001. ....
  3002. This is especially useful when running tests that require stdin input.
  3003. === gem5 syscall emulation mode
  3004. Less robust than QEMU's, but still usable:
  3005. * https://stackoverflow.com/questions/48986597/when-should-you-use-full-system-fs-vs-syscall-emulation-se-with-userland-program
  3006. There are much more unimplemented syscalls in gem5 than in QEMU. Many of those are trivial to implement however.
  3007. So let's just play with some static ones:
  3008. ....
  3009. ./build-userland --arch aarch64
  3010. ./run \
  3011. --arch aarch64 \
  3012. --emulator gem5 \
  3013. --userland userland/c/command_line_arguments.c \
  3014. --cli-args 'asdf "qw er"' \
  3015. ;
  3016. ....
  3017. TODO: how to escape spaces on the command line arguments?
  3018. <<user-mode-gdb,GDB step debug>> also works normally on gem5:
  3019. ....
  3020. ./run \
  3021. --arch aarch64 \
  3022. --emulator gem5 \
  3023. --gdb-wait \
  3024. --userland userland/c/command_line_arguments.c \
  3025. --cli-args 'asdf "qw er"' \
  3026. ;
  3027. ./run-gdb \
  3028. --arch aarch64 \
  3029. --emulator gem5 \
  3030. --userland userland/c/command_line_arguments.c \
  3031. main \
  3032. ;
  3033. ....
  3034. ==== gem5 dynamic linked executables in syscall emulation
  3035. Support for dynamic linking was added in November 2019:
  3036. * https://stackoverflow.com/questions/50542222/how-to-run-a-dynamically-linked-executable-syscall-emulation-mode-se-py-in-gem5/50696098#50696098
  3037. * https://stackoverflow.com/questions/64547306/cannot-open-lib-ld-linux-aarch64-so-1-in-qemu-or-gem5/64551313#64551313
  3038. Note that as shown at xref:benchmark-emulators-on-userland-executables[xrefstyle=full], the dynamic version runs 200x more instructions, which might have an impact on smaller simulations in detailed CPUs.
  3039. ==== gem5 syscall emulation exit status
  3040. As of gem5 7fa4c946386e7207ad5859e8ade0bbfc14000d91, the crappy `se.py` script does not forward the exit status of syscall emulation mode, you can test it with:
  3041. ....
  3042. ./run --dry-run --emulator gem5 --userland userland/c/false.c
  3043. ....
  3044. Source: link:userland/c/false.c[].
  3045. Then manually run the generated gem5 CLI, and do:
  3046. ....
  3047. echo $?
  3048. ....
  3049. and the output is always `0`.
  3050. Instead, it just outputs a message to stdout just like for <<m5-fail>>:
  3051. ....
  3052. Simulated exit code not 0! Exit code is 1
  3053. ....
  3054. which we parse in link:run[] and then exit with the correct result ourselves...
  3055. Related thread: https://stackoverflow.com/questions/56032347/is-there-a-way-to-identify-if-gem5-run-got-over-successfully
  3056. ==== gem5 syscall emulation mode syscall tracing
  3057. Since gem5 has to implement syscalls itself in syscall emulation mode, it can of course clearly see which syscalls are being made, and we can log them for debug purposes with <<gem5-tracing>>, e.g.:
  3058. ....
  3059. ./run \
  3060. --emulator gem5 \
  3061. --userland userland/arch/x86_64/freestanding/linux/hello.S \
  3062. --trace-stdout \
  3063. --trace ExecAll,SyscallBase,SyscallVerbose \
  3064. ;
  3065. ....
  3066. the trace as of f2eeceb1cde13a5ff740727526bf916b356cee38 + 1 contains:
  3067. ....
  3068. 0: system.cpu A0 T0 : @asm_main_after_prologue : mov rdi, 0x1
  3069. 0: system.cpu A0 T0 : @asm_main_after_prologue.0 : MOV_R_I : limm rax, 0x1 : IntAlu : D=0x0000000000000001 flags=(IsInteger|IsMicroop|IsLastMicroop|IsFirstMicroop)
  3070. 1000: system.cpu A0 T0 : @asm_main_after_prologue+7 : mov rdi, 0x1
  3071. 1000: system.cpu A0 T0 : @asm_main_after_prologue+7.0 : MOV_R_I : limm rdi, 0x1 : IntAlu : D=0x0000000000000001 flags=(IsInteger|IsMicroop|IsLastMicroop|IsFirstMicroop)
  3072. 2000: system.cpu A0 T0 : @asm_main_after_prologue+14 : lea rsi, DS:[rip + 0x19]
  3073. 2000: system.cpu A0 T0 : @asm_main_after_prologue+14.0 : LEA_R_P : rdip t7, %ctrl153, : IntAlu : D=0x000000000040008d flags=(IsInteger|IsMicroop|IsDelayedCommit|IsFirstMicroop)
  3074. 2500: system.cpu A0 T0 : @asm_main_after_prologue+14.1 : LEA_R_P : lea rsi, DS:[t7 + 0x19] : IntAlu : D=0x00000000004000a6 flags=(IsInteger|IsMicroop|IsLastMicroop)
  3075. 3500: system.cpu A0 T0 : @asm_main_after_prologue+21 : mov rdi, 0x6
  3076. 3500: system.cpu A0 T0 : @asm_main_after_prologue+21.0 : MOV_R_I : limm rdx, 0x6 : IntAlu : D=0x0000000000000006 flags=(IsInteger|IsMicroop|IsLastMicroop|IsFirstMicroop)
  3077. 4000: system.cpu: T0 : syscall write called w/arguments 1, 4194470, 6, 0, 0, 0
  3078. hello
  3079. 4000: system.cpu: T0 : syscall write returns 6
  3080. 4000: system.cpu A0 T0 : @asm_main_after_prologue+28 : syscall eax : IntAlu : flags=(IsInteger|IsSerializeAfter|IsNonSpeculative|IsSyscall)
  3081. 5000: system.cpu A0 T0 : @asm_main_after_prologue+30 : mov rdi, 0x3c
  3082. 5000: system.cpu A0 T0 : @asm_main_after_prologue+30.0 : MOV_R_I : limm rax, 0x3c : IntAlu : D=0x000000000000003c flags=(IsInteger|IsMicroop|IsLastMicroop|IsFirstMicroop)
  3083. 6000: system.cpu A0 T0 : @asm_main_after_prologue+37 : mov rdi, 0
  3084. 6000: system.cpu A0 T0 : @asm_main_after_prologue+37.0 : MOV_R_I : limm rdi, 0 : IntAlu : D=0x0000000000000000 flags=(IsInteger|IsMicroop|IsLastMicroop|IsFirstMicroop)
  3085. 6500: system.cpu: T0 : syscall exit called w/arguments 0, 4194470, 6, 0, 0, 0
  3086. 6500: system.cpu: T0 : syscall exit returns 0
  3087. 6500: system.cpu A0 T0 : @asm_main_after_prologue+44 : syscall eax : IntAlu : flags=(IsInteger|IsSerializeAfter|IsNonSpeculative|IsSyscall)
  3088. ....
  3089. so we see that two syscall lines were added for each syscall, showing the syscall inputs and exit status, just like a mini `strace`!
  3090. ==== gem5 syscall emulation multithreading
  3091. gem5 user mode multithreading has been particularly flaky compared <<qemu-user-mode-multithreading,to QEMU's>>, but work is being put into improving it.
  3092. In gem5 syscall simulation, the `fork` syscall checks if there is a free CPU, and if there is a free one, the new threads runs on that CPU.
  3093. Otherwise, the `fork` call, and therefore higher level interfaces to `fork` such as `pthread_create` also fail and return a failure return status in the guest.
  3094. For example, if we use just one CPU for link:userland/posix/pthread_self.c[] which spawns one thread besides `main`:
  3095. ....
  3096. ./run --cpus 1 --emulator gem5 --userland userland/posix/pthread_self.c --cli-args 1
  3097. ....
  3098. fails with this error message coming from the guest stderr:
  3099. ....
  3100. pthread_create: Resource temporarily unavailable
  3101. ....
  3102. It works however if we add on extra CPU:
  3103. ....
  3104. ./run --cpus 2 --emulator gem5 --userland userland/posix/pthread_self.c --cli-args 1
  3105. ....
  3106. Once threads exit, their CPU is freed and becomes available for new `fork` calls: For example, the following run spawns a thread, joins it, and then spawns again, and 2 CPUs are enough:
  3107. ....
  3108. ./run --cpus 2 --emulator gem5 --userland userland/posix/pthread_self.c --cli-args '1 2'
  3109. ....
  3110. because at each point in time, only up to two threads are running.
  3111. gem5 syscall emulation does show the expected number of cores when queried, e.g.:
  3112. ....
  3113. ./run --cpus 1 --userland userland/cpp/thread_hardware_concurrency.cpp --emulator gem5
  3114. ./run --cpus 2 --userland userland/cpp/thread_hardware_concurrency.cpp --emulator gem5
  3115. ....
  3116. outputs `1` and `2` respectively.
  3117. This can also be clearly by running `sched_getcpu`:
  3118. ....
  3119. ./run \
  3120. --arch aarch64 \
  3121. --cli-args 4 \
  3122. --cpus 8 \
  3123. --emulator gem5 \
  3124. --userland userland/linux/sched_getcpu.c \
  3125. ;
  3126. ....
  3127. which necessarily produces an output containing the CPU numbers from 1 to 4 and no higher:
  3128. ....
  3129. 1
  3130. 3
  3131. 4
  3132. 2
  3133. ....
  3134. TODO why does the `2` come at the end here? Would be good to do a detailed assembly run analysis.
  3135. ==== gem5 syscall emulation multiple executables
  3136. gem5 syscall emulation has the nice feature of allowing you to run multiple executables "at once".
  3137. Each executable starts running on the next free core much as if it had been forked right at the start of simulation: <<gem5-syscall-emulation-multithreading>>.
  3138. This can be useful to quickly create deterministic multi-CPU workload.
  3139. `se.py --cmd` takes a semicolon separated list, so we could do which LKMC exposes this by taking `--userland` multiple times as in:
  3140. ....
  3141. ./run \
  3142. --arch aarch64 \
  3143. --cpus 2 \
  3144. --emulator gem5 \
  3145. --userland userland/posix/getpid.c \
  3146. --userland userland/posix/getpid.c \
  3147. ;
  3148. ....
  3149. We need at least one CPU per executable, just like when forking new processes.
  3150. The outcome of this is that we see two different `pid` messages printed to stdout:
  3151. ....
  3152. pid=101
  3153. pid=100
  3154. ....
  3155. since from <<gem5-process>> we can see that se.py sets up one different PID per executable starting at 100:
  3156. ....
  3157. workloads = options.cmd.split(';')
  3158. idx = 0
  3159. for wrkld in workloads:
  3160. process = Process(pid = 100 + idx)
  3161. ....
  3162. We can also see that these processes are running concurrently with <<gem5-tracing>> by hacking:
  3163. ....
  3164. --debug-flags ExecAll \
  3165. --debug-file cout \
  3166. ....
  3167. which starts with:
  3168. ....
  3169. 0: system.cpu1: A0 T0 : @__end__+274873647040 : add x0, sp, #0 : IntAlu : D=0x0000007ffffefde0 flags=(IsInteger)
  3170. 0: system.cpu0: A0 T0 : @__end__+274873647040 : add x0, sp, #0 : IntAlu : D=0x0000007ffffefde0 flags=(IsInteger)
  3171. 500: system.cpu0: A0 T0 : @__end__+274873647044 : bl <__end__+274873649648> : IntAlu : D=0x0000004000001008 flags=(IsInteger|IsControl|IsDirectControl|IsUncondControl|IsCall)
  3172. 500: system.cpu1: A0 T0 : @__end__+274873647044 : bl <__end__+274873649648> : IntAlu : D=0x0000004000001008 flags=(IsInteger|IsControl|IsDirectControl|IsUncondControl|IsCall)
  3173. ....
  3174. and therefore shows one instruction running on each CPU for each process at the same time.
  3175. ===== gem5 syscall emulation --smt
  3176. gem5 b1623cb2087873f64197e503ab8894b5e4d4c7b4 syscall emulation has an `--smt` option presumably for <<hardware-threads>> but it has been neglected forever it seems: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/104
  3177. If we start from the manually hacked working command from <<gem5-syscall-emulation-multiple-executables>> and try to add:
  3178. ....
  3179. --cpu 1 --cpu-type Derivo3CPU --caches
  3180. ....
  3181. We choose <<gem5-derivo3cpu,`DerivO3CPU`>> because of the se.py assert:
  3182. ....
  3183. example/se.py:115: assert(options.cpu_type == "DerivO3CPU")
  3184. ....
  3185. But then that fails with:
  3186. ....
  3187. gem5.opt: /path/to/linux-kernel-module-cheat/out/gem5/master3/build/ARM/cpu/o3/cpu.cc:205: FullO3CPU<Impl>::FullO3CPU(DerivO3CPUParams*) [with Impl = O3CPUImpl]: Assertion `params->numPhysVecPredRegs >= numThreads * TheISA::NumVecPredRegs' failed.
  3188. Program aborted at tick 0
  3189. ....
  3190. === QEMU user mode quirks
  3191. ==== QEMU user mode does not show stdout immediately
  3192. At 8d8307ac0710164701f6e14c99a69ee172ccbb70 + 1, I noticed that if you run link:userland/posix/count.c[]:
  3193. ....
  3194. ./run --userland userland/posix/count_to.c --cli-args 3
  3195. ....
  3196. it first waits for 3 seconds, then the program exits, and then it dumps all the stdout at once, instead of counting once every second as expected.
  3197. The same can be reproduced by copying the raw QEMU command and piping it through `tee`, so I don't think it is a bug in our setup:
  3198. ....
  3199. /path/to/linux-kernel-module-cheat/out/qemu/default/x86_64-linux-user/qemu-x86_64 \
  3200. -L /path/to/linux-kernel-module-cheat/out/buildroot/build/default/x86_64/target \
  3201. /path/to/linux-kernel-module-cheat/out/userland/default/x86_64/posix/count.out \
  3202. 3 \
  3203. | tee
  3204. ....
  3205. TODO: investigate further and then possibly post on QEMU mailing list.
  3206. ===== QEMU user mode does not show errors
  3207. Similarly to <<qemu-user-mode-does-not-show-stdout-immediately>>, QEMU error messages do not show at all through pipes.
  3208. In particular, it does not say anything if you pass it a non-existing executable:
  3209. ....
  3210. qemu-x86_64 asdf | cat
  3211. ....
  3212. So we just check ourselves manually
  3213. == Kernel module utilities
  3214. === insmod
  3215. https://git.busybox.net/busybox/tree/modutils/insmod.c?h=1_29_3[Provided by BusyBox]:
  3216. ....
  3217. ./run --eval-after 'insmod hello.ko'
  3218. ....
  3219. === myinsmod
  3220. If you are feeling raw, you can insert and remove modules with our own minimal module inserter and remover!
  3221. ....
  3222. # init_module
  3223. ./linux/myinsmod.out hello.ko
  3224. # finit_module
  3225. ./linux/myinsmod.out hello.ko "" 1
  3226. ./linux/myrmmod.out hello
  3227. ....
  3228. which teaches you how it is done from C code.
  3229. Source:
  3230. * link:userland/linux/myinsmod.c[]
  3231. * link:userland/linux/myrmmod.c[]
  3232. The Linux kernel offers two system calls for module insertion:
  3233. * `init_module`
  3234. * `finit_module`
  3235. and:
  3236. ....
  3237. man init_module
  3238. ....
  3239. documents that:
  3240. ____
  3241. The finit_module() system call is like init_module(), but reads the module to be loaded from the file descriptor fd. It is useful when the authenticity of a kernel module can be determined from its location in the filesystem; in cases where that is possible, the overhead of using cryptographically signed modules to determine the authenticity of a module can be avoided. The param_values argument is as for init_module().
  3242. ____
  3243. `finit` is newer and was added only in v3.8. More rationale: https://lwn.net/Articles/519010/
  3244. Bibliography: https://stackoverflow.com/questions/5947286/how-to-load-linux-kernel-modules-from-c-code
  3245. === modprobe
  3246. Implemented as a BusyBox applet by default: https://git.busybox.net/busybox/tree/modutils/modprobe.c?h=1_29_stable
  3247. `modprobe` searches for modules installed under:
  3248. ....
  3249. ls /lib/modules/<kernel_version>
  3250. ....
  3251. and specified in the `modules.order` file.
  3252. This is the default install path for `CONFIG_SOME_MOD=m` modules built with `make modules_install` in the Linux kernel tree, with root path given by `INSTALL_MOD_PATH`, and therefore canonical in that sense.
  3253. Currently, there are only two kinds of kernel modules that you can try out with `modprobe`:
  3254. * modules built with Buildroot, see: xref:kernel-modules-buildroot-package[xrefstyle=full]
  3255. * modules built from the kernel tree itself, see: xref:dummy-irq[xrefstyle=full]
  3256. We are not installing out custom `./build-modules` modules there, because:
  3257. * we don't know the right way. Why is there no `install` or `install_modules` target for kernel modules?
  3258. +
  3259. This can of course be solved by running Buildroot in verbose mode, and copying whatever it is doing, initial exploration at: https://stackoverflow.com/questions/22783793/how-to-install-kernel-modules-from-source-code-error-while-make-process/53169078#53169078
  3260. * we would have to think how to not have to include the kernel modules twice in the root filesystem, but still have <<9p>> working for fast development as described at: xref:your-first-kernel-module-hack[xrefstyle=full]
  3261. === kmod
  3262. The more "reference" kernel.org implementation of `lsmod`, `insmod`, `rmmod`, etc.: https://git.kernel.org/pub/scm/utils/kernel/kmod/kmod.git
  3263. Default implementation on desktop distros such as Ubuntu 16.04, where e.g.:
  3264. ....
  3265. ls -l /bin/lsmod
  3266. ....
  3267. gives:
  3268. ....
  3269. lrwxrwxrwx 1 root root 4 Jul 25 15:35 /bin/lsmod -> kmod
  3270. ....
  3271. and:
  3272. ....
  3273. dpkg -l | grep -Ei
  3274. ....
  3275. contains:
  3276. ....
  3277. ii kmod 22-1ubuntu5 amd64 tools for managing Linux kernel modules
  3278. ....
  3279. BusyBox also implements its own version of those executables, see e.g. <<modprobe>>. Here we will only describe features that differ from kmod to the BusyBox implementation.
  3280. ==== module-init-tools
  3281. Name of a predecessor set of tools.
  3282. ==== kmod modprobe
  3283. kmod's `modprobe` can also load modules under different names to avoid conflicts, e.g.:
  3284. ....
  3285. sudo modprobe vmhgfs -o vm_hgfs
  3286. ....
  3287. == Filesystems
  3288. === OverlayFS
  3289. https://en.wikipedia.org/wiki/OverlayFS[OverlayFS] is a filesystem merged in the Linux kernel in 3.18.
  3290. As the name suggests, OverlayFS allows you to merge multiple directories into one. The following minimal runnable examples should give you an intuition on how it works:
  3291. * https://askubuntu.com/questions/109413/how-do-i-use-overlayfs/1075564#1075564
  3292. * https://stackoverflow.com/questions/31044982/how-to-use-multiple-lower-layers-in-overlayfs/52792397#52792397
  3293. We are very interested in this filesystem because we are looking for a way to make host cross compiled executables appear on the guest root `/` without reboot.
  3294. This would have several advantages:
  3295. * makes it faster to test modified guest programs
  3296. ** not rebooting is fundamental for <<gem5>>, where the reboot is very costly.
  3297. ** no need to regenerate the root filesystem at all and reboot
  3298. ** overcomes the `check_bin_arch` problem as shown at: xref:rpath[xrefstyle=full]
  3299. * we could keep the base root filesystem very small, which implies:
  3300. ** less host disk usage, no need to copy the entire `./getvar out_rootfs_overlay_dir` to the image again
  3301. ** no need to worry about <<br2-target-rootfs-ext2-size>>
  3302. We can already make host files appear on the guest with <<9p>>, but they appear on a subdirectory instead of the root.
  3303. If they would appear on the root instead, that would be even more awesome, because you would just use the exact same paths relative to the root transparently.
  3304. For example, we wouldn't have to mess around with variables such as `PATH` and `LD_LIBRARY_PATH`.
  3305. The idea is to:
  3306. * 9P mount our overlay directory `./getvar out_rootfs_overlay_dir` on the guest, which we already do at `/mnt/9p/out_rootfs_overlay`
  3307. * then create an overlay with that directory and the root, and `chroot` into it.
  3308. +
  3309. I was unable to mount directly to `/` avoid the `chroot`:
  3310. ** https://stackoverflow.com/questions/41119656/how-can-i-overlayfs-the-root-filesystem-on-linux
  3311. ** https://unix.stackexchange.com/questions/316018/how-to-use-overlayfs-to-protect-the-root-filesystem
  3312. ** https://unix.stackexchange.com/questions/420646/mount-root-as-overlayfs
  3313. We already have a prototype of this running from `fstab` on guest at `/mnt/overlay`, but it has the following shortcomings:
  3314. * changes to underlying filesystems are not visible on the overlay unless you remount with `mount -r remount /mnt/overlay`, as mentioned https://github.com/torvalds/linux/blob/v4.18/Documentation/filesystems/overlayfs.txt#L332[on the kernel docs]:
  3315. +
  3316. ....
  3317. Changes to the underlying filesystems while part of a mounted overlay
  3318. filesystem are not allowed. If the underlying filesystem is changed,
  3319. the behavior of the overlay is undefined, though it will not result in
  3320. a crash or deadlock.
  3321. ....
  3322. +
  3323. This makes everything very inconvenient if you are inside `chroot` action. You would have to leave `chroot`, remount, then come back.
  3324. * the overlay does not contain sub-filesystems, e.g. `/proc`. We would have to re-mount them. But should be doable with some automation.
  3325. Even more awesome than `chroot` would be to `pivot_root`, but I couldn't get that working either:
  3326. * https://stackoverflow.com/questions/28015688/pivot-root-device-or-resource-busy
  3327. * https://unix.stackexchange.com/questions/179788/pivot-root-device-or-resource-busy
  3328. === Secondary disk
  3329. A simpler and possibly less overhead alternative to <<9P>> would be to generate a secondary disk image with the benchmark you want to rebuild.
  3330. Then you can `umount` and re-mount on guest without reboot.
  3331. To build the secondary disk image run link:build-disk2[]:
  3332. ....
  3333. ./build-disk2
  3334. ....
  3335. This will put the entire <<out-rootfs-overlay-dir>> into a squashfs filesystem.
  3336. Then, if that filesystem is present, `./run` will automatically pass it as the second disk on the command line.
  3337. For example, from inside QEMU, you can mount that disk with:
  3338. ....
  3339. mkdir /mnt/vdb
  3340. mount /dev/vdb /mnt/vdb
  3341. /mnt/vdb/lkmc/c/hello.out
  3342. ....
  3343. To update the secondary disk while a simulation is running to avoid rebooting, first unmount in the guest:
  3344. ....
  3345. umount /mnt/vdb
  3346. ....
  3347. and then on the host:
  3348. ....
  3349. # Edit the file.
  3350. vim userland/c/hello.c
  3351. ./build-userland
  3352. ./build-disk2
  3353. ....
  3354. and now you can re-run the updated version of the executable on the guest after remounting it.
  3355. gem5 fs.py support for multiple disks is discussed at: https://stackoverflow.com/questions/50862906/how-to-attach-multiple-disk-images-in-a-simulation-with-gem5-fs-py/51037661#51037661
  3356. == Graphics
  3357. Both QEMU and gem5 are capable of outputting graphics to the screen, and taking mouse and keyboard input.
  3358. https://unix.stackexchange.com/questions/307390/what-is-the-difference-between-ttys0-ttyusb0-and-ttyama0-in-linux
  3359. === QEMU text mode
  3360. Text mode is the default mode for QEMU.
  3361. The opposite of text mode is <<qemu-graphic-mode>>
  3362. In text mode, we just show the serial console directly on the current terminal, without opening a QEMU GUI window.
  3363. You cannot see any graphics from text mode, but text operations in this mode, including:
  3364. * scrolling up: xref:scroll-up-in-graphic-mode[xrefstyle=full]
  3365. * copy paste to and from the terminal
  3366. making this a good default, unless you really need to use with graphics.
  3367. Text mode works by sending the terminal character by character to a serial device.
  3368. This is different from a display screen, where each character is a bunch of pixels, and it would be much harder to convert that into actual terminal text.
  3369. For more details, see:
  3370. * https://unix.stackexchange.com/questions/307390/what-is-the-difference-between-ttys0-ttyusb0-and-ttyama0-in-linux
  3371. * <<tty>>
  3372. Note that you can still see an image even in text mode with the VNC:
  3373. ....
  3374. ./run --vnc
  3375. ....
  3376. and on another terminal:
  3377. ....
  3378. ./vnc
  3379. ....
  3380. but there is not terminal on the VNC window, just the <<config-logo>> penguin.
  3381. ==== Quit QEMU from text mode
  3382. https://superuser.com/questions/1087859/how-to-quit-the-qemu-monitor-when-not-using-a-gui
  3383. However, our QEMU setup captures Ctrl + C and other common signals and sends them to the guest, which makes it hard to quit QEMU for the first time since there is no GUI either.
  3384. The simplest way to quit QEMU, is to do:
  3385. ....
  3386. Ctrl-A X
  3387. ....
  3388. Alternative methods include:
  3389. * `quit` command on the <<qemu-monitor>>
  3390. * `pkill qemu`
  3391. === QEMU graphic mode
  3392. Enable graphic mode with:
  3393. ....
  3394. ./run --graphic
  3395. ....
  3396. Outcome: you see a penguin due to <<config-logo>>.
  3397. For a more exciting GUI experience, see: xref:x11[xrefstyle=full]
  3398. Text mode is the default due to the following considerable advantages:
  3399. * copy and paste commands and stdout output to / from host
  3400. * get full panic traces when you start making the kernel crash :-) See also: https://unix.stackexchange.com/questions/208260/how-to-scroll-up-after-a-kernel-panic
  3401. * have a large scroll buffer, and be able to search it, e.g. by using tmux on host
  3402. * one less window floating around to think about in addition to your shell :-)
  3403. * graphics mode has only been properly tested on `x86_64`.
  3404. Text mode has the following limitations over graphics mode:
  3405. * you can't see graphics such as those produced by <<x11>>
  3406. * very early kernel messages such as `early console in extract_kernel` only show on the GUI, since at such early stages, not even the serial has been setup.
  3407. `x86_64` has a VGA device enabled by default, as can be seen as:
  3408. ....
  3409. ./qemu-monitor info qtree
  3410. ....
  3411. and the Linux kernel picks it up through the https://en.wikipedia.org/wiki/Linux_framebuffer[fbdev] graphics system as can be seen from:
  3412. ....
  3413. cat /dev/urandom > /dev/fb0
  3414. ....
  3415. flooding the screen with colors. See also: https://superuser.com/questions/223094/how-do-i-know-if-i-have-kms-enabled
  3416. ==== Scroll up in graphic mode
  3417. Scroll up in <<qemu-graphic-mode>>:
  3418. ....
  3419. Shift-PgUp
  3420. ....
  3421. but I never managed to increase that buffer:
  3422. * https://askubuntu.com/questions/709697/how-to-increase-scrollback-lines-in-ubuntu14-04-2-server-edition
  3423. * https://unix.stackexchange.com/questions/346018/how-to-increase-the-scrollback-buffer-size-for-tty
  3424. The superior alternative is to use text mode and GNU screen or <<tmux>>.
  3425. ==== QEMU Graphic mode arm
  3426. ===== QEMU graphic mode arm terminal
  3427. TODO: on arm, we see the penguin and some boot messages, but don't get a shell at then end:
  3428. ....
  3429. ./run --arch aarch64 --graphic
  3430. ....
  3431. I think it does not work because the graphic window is <<drm>> only, i.e.:
  3432. ....
  3433. cat /dev/urandom > /dev/fb0
  3434. ....
  3435. fails with:
  3436. ....
  3437. cat: write error: No space left on device
  3438. ....
  3439. and has no effect, and the Linux kernel does not appear to have a built-in DRM console as it does for fbdev with <<fbcon,fbcon>>.
  3440. There is however one out-of-tree implementation: <<kmscon>>.
  3441. ===== QEMU graphic mode arm terminal implementation
  3442. `arm` and `aarch64` rely on the QEMU CLI option:
  3443. ....
  3444. -device virtio-gpu-pci
  3445. ....
  3446. and the kernel config options:
  3447. ....
  3448. CONFIG_DRM=y
  3449. CONFIG_DRM_VIRTIO_GPU=y
  3450. ....
  3451. Unlike x86, `arm` and `aarch64` don't have a display device attached by default, thus the need for `virtio-gpu-pci`.
  3452. See also https://wiki.qemu.org/Documentation/Platforms/ARM (recently edited and corrected by yours truly... :-)).
  3453. ===== QEMU graphic mode arm VGA
  3454. TODO: how to use VGA on ARM? https://stackoverflow.com/questions/20811203/how-can-i-output-to-vga-through-qemu-arm Tried:
  3455. ....
  3456. -device VGA
  3457. ....
  3458. But https://github.com/qemu/qemu/blob/v2.12.0/docs/config/mach-virt-graphical.cfg#L264 says:
  3459. ....
  3460. # We use virtio-gpu because the legacy VGA framebuffer is
  3461. # very troublesome on aarch64, and virtio-gpu is the only
  3462. # video device that doesn't implement it.
  3463. ....
  3464. so maybe it is not possible?
  3465. === gem5 graphic mode
  3466. gem5 does not have a "text mode", since it cannot redirect the Linux terminal to same host terminal where the executable is running: you are always forced to connect to the terminal with `gem-shell`.
  3467. TODO could not get it working on `x86_64`, only ARM.
  3468. Overview: https://stackoverflow.com/questions/50364863/how-to-get-graphical-gui-output-and-user-touch-keyboard-mouse-input-in-a-ful/50364864#50364864
  3469. More concretely, first build the kernel with the <<gem5-arm-linux-kernel-patches>>, and then run:
  3470. ....
  3471. ./build-linux \
  3472. --arch arm \
  3473. --custom-config-file-gem5 \
  3474. --linux-build-id gem5-v4.15 \
  3475. ;
  3476. ./run --arch arm --emulator gem5 --linux-build-id gem5-v4.15
  3477. ....
  3478. and then on another shell:
  3479. ....
  3480. vinagre localhost:5900
  3481. ....
  3482. The <<config-logo>> penguin only appears after several seconds, together with kernel messages of type:
  3483. ....
  3484. [ 0.152755] [drm] found ARM HDLCD version r0p0
  3485. [ 0.152790] hdlcd 2b000000.hdlcd: bound virt-encoder (ops 0x80935f94)
  3486. [ 0.152795] [drm] Supports vblank timestamp caching Rev 2 (21.10.2013).
  3487. [ 0.152799] [drm] No driver support for vblank timestamp query.
  3488. [ 0.215179] Console: switching to colour frame buffer device 240x67
  3489. [ 0.230389] hdlcd 2b000000.hdlcd: fb0: frame buffer device
  3490. [ 0.230509] [drm] Initialized hdlcd 1.0.0 20151021 for 2b000000.hdlcd on minor 0
  3491. ....
  3492. The port `5900` is incremented by one if you already have something running on that port, `gem5` stdout tells us the right port on stdout as:
  3493. ....
  3494. system.vncserver: Listening for connections on port 5900
  3495. ....
  3496. and when we connect it shows a message:
  3497. ....
  3498. info: VNC client attached
  3499. ....
  3500. Alternatively, you can also dump each new frame to an image file with `--frame-capture`:
  3501. ....
  3502. ./run \
  3503. --arch arm \
  3504. --emulator gem5 \
  3505. --linux-build-id gem5-v4.15 \
  3506. -- --frame-capture \
  3507. ;
  3508. ....
  3509. This creates on compressed PNG whenever the screen image changes inside the <<m5out-directory>> with filename of type:
  3510. ....
  3511. frames_system.vncserver/fb.<frame-index>.<timestamp>.png.gz
  3512. ....
  3513. It is fun to see how we get one new frame whenever the white underscore cursor appears and reappears under the penguin!
  3514. The last frame is always available uncompressed at: `system.framebuffer.png`.
  3515. TODO <<kmscube>> failed on `aarch64` with:
  3516. ....
  3517. kmscube[706]: unhandled level 2 translation fault (11) at 0x00000000, esr 0x92000006, in libgbm.so.1.0.0[7fbf6a6000+e000]
  3518. ....
  3519. Tested on: https://github.com/cirosantilli/linux-kernel-module-cheat/commit/38fd6153d965ba20145f53dc1bb3ba34b336bde9[38fd6153d965ba20145f53dc1bb3ba34b336bde9]
  3520. ==== Graphic mode gem5 aarch64
  3521. For `aarch64` we also need to configure the kernel with link:linux_config/display[]:
  3522. ....
  3523. git -C "$(./getvar linux_source_dir)" fetch https://gem5.googlesource.com/arm/linux gem5/v4.15:gem5/v4.15
  3524. git -C "$(./getvar linux_source_dir)" checkout gem5/v4.15
  3525. ./build-linux \
  3526. --arch aarch64 \
  3527. --config-fragment linux_config/display \
  3528. --custom-config-file-gem5 \
  3529. --linux-build-id gem5-v4.15 \
  3530. ;
  3531. git -C "$(./getvar linux_source_dir)" checkout -
  3532. ./run --arch aarch64 --emulator gem5 --linux-build-id gem5-v4.15
  3533. ....
  3534. This is because the gem5 `aarch64` defconfig does not enable HDLCD like the 32 bit one `arm` one for some reason.
  3535. ==== gem5 graphic mode DP650
  3536. TODO get working. There is an unmerged patchset at: https://gem5-review.googlesource.com/c/public/gem5/+/11036/1
  3537. The DP650 is a newer display hardware than HDLCD. TODO is its interface publicly documented anywhere? Since it has a gem5 model and https://github.com/torvalds/linux/blob/v4.19/drivers/gpu/drm/arm/Kconfig#L39[in-tree Linux kernel support], that information cannot be secret?
  3538. The key option to enable support in Linux is `DRM_MALI_DISPLAY=y` which we enable at link:linux_config/display[].
  3539. Build the kernel exactly as for <<graphic-mode-gem5-aarch64>> and then run with:
  3540. ....
  3541. ./run --arch aarch64 --dp650 --emulator gem5 --linux-build-id gem5-v4.15
  3542. ....
  3543. ==== gem5 graphic mode internals
  3544. We cannot use mainline Linux because the <<gem5-arm-linux-kernel-patches>> are required at least to provide the `CONFIG_DRM_VIRT_ENCODER` option.
  3545. gem5 emulates the http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0541c/CHDBAIDI.html[HDLCD] ARM Holdings hardware for `arm` and `aarch64`.
  3546. The kernel uses HDLCD to implement the <<drm>> interface, the required kernel config options are present at: link:linux_config/display[].
  3547. TODO: minimize out the `--custom-config-file`. If we just remove it on `arm`: it does not work with a failing dmesg:
  3548. ....
  3549. [ 0.066208] [drm] found ARM HDLCD version r0p0
  3550. [ 0.066241] hdlcd 2b000000.hdlcd: bound virt-encoder (ops drm_vencoder_ops)
  3551. [ 0.066247] [drm] Supports vblank timestamp caching Rev 2 (21.10.2013).
  3552. [ 0.066252] [drm] No driver support for vblank timestamp query.
  3553. [ 0.066276] hdlcd 2b000000.hdlcd: Cannot do DMA to address 0x0000000000000000
  3554. [ 0.066281] swiotlb: coherent allocation failed for device 2b000000.hdlcd size=8294400
  3555. [ 0.066288] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.15.0 #1
  3556. [ 0.066293] Hardware name: V2P-AARCH64 (DT)
  3557. [ 0.066296] Call trace:
  3558. [ 0.066301] dump_backtrace+0x0/0x1b0
  3559. [ 0.066306] show_stack+0x24/0x30
  3560. [ 0.066311] dump_stack+0xb8/0xf0
  3561. [ 0.066316] swiotlb_alloc_coherent+0x17c/0x190
  3562. [ 0.066321] __dma_alloc+0x68/0x160
  3563. [ 0.066325] drm_gem_cma_create+0x98/0x120
  3564. [ 0.066330] drm_fbdev_cma_create+0x74/0x2e0
  3565. [ 0.066335] __drm_fb_helper_initial_config_and_unlock+0x1d8/0x3a0
  3566. [ 0.066341] drm_fb_helper_initial_config+0x4c/0x58
  3567. [ 0.066347] drm_fbdev_cma_init_with_funcs+0x98/0x148
  3568. [ 0.066352] drm_fbdev_cma_init+0x40/0x50
  3569. [ 0.066357] hdlcd_drm_bind+0x220/0x428
  3570. [ 0.066362] try_to_bring_up_master+0x21c/0x2b8
  3571. [ 0.066367] component_master_add_with_match+0xa8/0xf0
  3572. [ 0.066372] hdlcd_probe+0x60/0x78
  3573. [ 0.066377] platform_drv_probe+0x60/0xc8
  3574. [ 0.066382] driver_probe_device+0x30c/0x478
  3575. [ 0.066388] __driver_attach+0x10c/0x128
  3576. [ 0.066393] bus_for_each_dev+0x70/0xb0
  3577. [ 0.066398] driver_attach+0x30/0x40
  3578. [ 0.066402] bus_add_driver+0x1d0/0x298
  3579. [ 0.066408] driver_register+0x68/0x100
  3580. [ 0.066413] __platform_driver_register+0x54/0x60
  3581. [ 0.066418] hdlcd_platform_driver_init+0x20/0x28
  3582. [ 0.066424] do_one_initcall+0x44/0x130
  3583. [ 0.066428] kernel_init_freeable+0x13c/0x1d8
  3584. [ 0.066433] kernel_init+0x18/0x108
  3585. [ 0.066438] ret_from_fork+0x10/0x1c
  3586. [ 0.066444] hdlcd 2b000000.hdlcd: Failed to set initial hw configuration.
  3587. [ 0.066470] hdlcd 2b000000.hdlcd: master bind failed: -12
  3588. [ 0.066477] hdlcd: probe of 2b000000.hdlcd failed with error -12
  3589. ....
  3590. So what other options are missing from `gem5_defconfig`? It would be cool to minimize it out to better understand the options.
  3591. [[x11]]
  3592. === X11 Buildroot
  3593. Once you've seen the `CONFIG_LOGO` penguin as a sanity check, you can try to go for a cooler X11 Buildroot setup.
  3594. Build and run:
  3595. ....
  3596. ./build-buildroot --config-fragment buildroot_config/x11
  3597. ./run --graphic
  3598. ....
  3599. Inside QEMU:
  3600. ....
  3601. startx
  3602. ....
  3603. And then from the GUI you can start exciting graphical programs such as:
  3604. ....
  3605. xcalc
  3606. xeyes
  3607. ....
  3608. Outcome: xref:image-x11[xrefstyle=full]
  3609. [[image-x11]]
  3610. .X11 Buildroot graphical user interface screenshot
  3611. [link=x11.png]
  3612. image::x11.png[]
  3613. We don't build X11 by default because it takes a considerable amount of time (about 20%), and is not expected to be used by most users: you need to pass the `-x` flag to enable it.
  3614. More details: https://unix.stackexchange.com/questions/70931/how-to-install-x11-on-my-own-linux-buildroot-system/306116#306116
  3615. Not sure how well that graphics stack represents real systems, but if it does it would be a good way to understand how it works.
  3616. To x11 packages have an `xserver` prefix as in:
  3617. ....
  3618. ./build-buildroot --config-fragment buildroot_config/x11 -- xserver_xorg-server-reconfigure
  3619. ....
  3620. the easiest way to find them out is to just list `"$(./getvar buildroot_build_build_dir)/x*`.
  3621. TODO as of: c2696c978d6ca88e8b8599c92b1beeda80eb62b2 I noticed that `startx` leads to a <<bug-on>>:
  3622. ....
  3623. [ 2.809104] WARNING: CPU: 0 PID: 51 at drivers/gpu/drm/ttm/ttm_bo_vm.c:304 ttm_bo_vm_open+0x37/0x40
  3624. ....
  3625. ==== X11 Buildroot mouse not moving
  3626. TODO 9076c1d9bcc13b6efdb8ef502274f846d8d4e6a1 I'm 100% sure that it was working before, but I didn't run it forever, and it stopped working at some point. Needs bisection, on whatever commit last touched x11 stuff.
  3627. * https://askubuntu.com/questions/730891/how-can-i-get-a-mouse-cursor-in-qemu
  3628. * https://stackoverflow.com/questions/19665412/mouse-and-keyboard-not-working-in-qemu-emulator
  3629. `-show-cursor` did not help, I just get to see the host cursor, but the guest cursor still does not move.
  3630. Doing:
  3631. ....
  3632. watch -n 1 grep i8042 /proc/interrupts
  3633. ....
  3634. shows that interrupts do happen when mouse and keyboard presses are done, so I expect that it is some wrong either with:
  3635. * QEMU. Same behaviour if I try the host's QEMU 2.10.1 however.
  3636. * X11 configuration. We do have `BR2_PACKAGE_XDRIVER_XF86_INPUT_MOUSE=y`.
  3637. `/var/log/Xorg.0.log` contains the following interesting lines:
  3638. ....
  3639. [ 27.549] (II) LoadModule: "mouse"
  3640. [ 27.549] (II) Loading /usr/lib/xorg/modules/input/mouse_drv.so
  3641. [ 27.590] (EE) <default pointer>: Cannot find which device to use.
  3642. [ 27.590] (EE) <default pointer>: cannot open input device
  3643. [ 27.590] (EE) PreInit returned 2 for "<default pointer>"
  3644. [ 27.590] (II) UnloadModule: "mouse"
  3645. ....
  3646. The file `/dev/inputs/mice` does not exist.
  3647. Note that our current link:kernel_confi_fragment sets:
  3648. ....
  3649. # CONFIG_INPUT_MOUSE is not set
  3650. # CONFIG_INPUT_MOUSEDEV_PSAUX is not set
  3651. ....
  3652. for gem5, so you might want to remove those lines to debug this.
  3653. ==== X11 Buildroot ARM
  3654. On ARM, `startx` hangs at a message:
  3655. ....
  3656. vgaarb: this pci device is not a vga device
  3657. ....
  3658. and nothing shows on the screen, and:
  3659. ....
  3660. grep EE /var/log/Xorg.0.log
  3661. ....
  3662. says:
  3663. ....
  3664. (EE) Failed to load module "modesetting" (module does not exist, 0)
  3665. ....
  3666. A friend told me this but I haven't tried it yet:
  3667. * `xf86-video-modesetting` is likely the missing ingredient, but it does not seem possible to activate it from Buildroot currently without patching things.
  3668. * `xf86-video-fbdev` should work as well, but we need to make sure fbdev is enabled, and maybe add some line to the `Xorg.conf`
  3669. == Networking
  3670. === Enable networking
  3671. We disable networking by default because it starts an userland process, and we want to keep the number of userland processes to a minimum to make the system more understandable as explained at: xref:resource-tradeoff-guidelines[xrefstyle=full]
  3672. To enable networking on Buildroot, simply run:
  3673. ....
  3674. ifup -a
  3675. ....
  3676. That command goes over all (`-a`) the interfaces in `/etc/network/interfaces` and brings them up.
  3677. Then test it with:
  3678. ....
  3679. wget google.com
  3680. cat index.html
  3681. ....
  3682. Disable networking with:
  3683. ....
  3684. ifdown -a
  3685. ....
  3686. To enable networking by default after boot, use the methods documented at <<init-busybox>>.
  3687. === ping
  3688. `ping` does not work within QEMU by default, e.g.:
  3689. ....
  3690. ping google.com
  3691. ....
  3692. hangs after printing the header:
  3693. ....
  3694. PING google.com (216.58.204.46): 56 data bytes
  3695. ....
  3696. Here Ciro describes how to get it working: https://unix.stackexchange.com/questions/473448/how-to-ping-from-the-qemu-guest-to-an-external-url
  3697. Further bibliography: https://superuser.com/questions/787400/qemu-user-mode-networking-doesnt-work
  3698. === Guest host networking
  3699. In this section we discuss how to interact between the guest and the host through networking.
  3700. First ensure that you can access the external network since that is easier to get working, see: xref:networking[xrefstyle=full].
  3701. ==== Host to guest networking
  3702. ===== nc host to guest
  3703. With `nc` we can create the most minimal example possible as a sanity check.
  3704. On guest run:
  3705. ....
  3706. nc -l -p 45455
  3707. ....
  3708. Then on host run:
  3709. ....
  3710. echo asdf | nc localhost 45455
  3711. ....
  3712. `asdf` appears on the guest.
  3713. This uses:
  3714. * BusyBox' `nc` utility, which is enabled with `CONFIG_NC=y`
  3715. * `nc` from the `netcat-openbsd` package on an Ubuntu 18.04 host
  3716. Only this specific port works by default since we have forwarded it on the QEMU command line.
  3717. We us this exact procedure to connect to <<gdbserver>>.
  3718. ===== ssh into guest
  3719. Not enabled by default due to the build / runtime overhead. To enable, build with:
  3720. ....
  3721. ./build-buildroot --config 'BR2_PACKAGE_OPENSSH=y'
  3722. ....
  3723. Then inside the guest turn on sshd:
  3724. ....
  3725. ./sshd.sh
  3726. ....
  3727. Source: link:rootfs_overlay/lkmc/sshd.sh[]
  3728. And finally on host:
  3729. ....
  3730. ssh root@localhost -p 45456
  3731. ....
  3732. Bibliography: https://unix.stackexchange.com/questions/124681/how-to-ssh-from-host-to-guest-using-qemu/307557#307557
  3733. ===== gem5 host to guest networking
  3734. Could not do port forwarding from host to guest, and therefore could not use `gdbserver`: https://stackoverflow.com/questions/48941494/how-to-do-port-forwarding-from-guest-to-host-in-gem5
  3735. ==== Guest to host networking
  3736. First <<enable-networking>>.
  3737. Then in the host, start a server:
  3738. ....
  3739. python -m SimpleHTTPServer 8000
  3740. ....
  3741. And then in the guest, find the IP we need to hit with:
  3742. ....
  3743. ip rounte
  3744. ....
  3745. which gives:
  3746. .....
  3747. default via 10.0.2.2 dev eth0
  3748. 10.0.2.0/24 dev eth0 scope link src 10.0.2.15
  3749. .....
  3750. so we use in the guest:
  3751. ....
  3752. wget 10.0.2.2:8000
  3753. ....
  3754. Bibliography:
  3755. * https://serverfault.com/questions/769874/how-to-forward-a-port-from-guest-to-host-in-qemu-kvm/951835#951835
  3756. * https://unix.stackexchange.com/questions/78953/qemu-how-to-ping-host-network/547698#547698
  3757. === 9P
  3758. The https://en.wikipedia.org/wiki/9P_(protocol)[9p protocol] allows the guest to mount a host directory.
  3759. Both QEMU and <<gem5-9p>> support 9P.
  3760. ==== 9P vs NFS
  3761. All of 9P and NFS (and sshfs) allow sharing directories between guest and host.
  3762. Advantages of 9P
  3763. * requires `sudo` on the host to mount
  3764. * we could share a guest directory to the host, but this would require running a server on the guest, which adds <<resource-tradeoff-guidelines,simulation overhead>>
  3765. +
  3766. Furthermore, this would be inconvenient, since what we usually want to do is to share host cross built files with the guest, and to do that we would have to copy the files over after the guest starts the server.
  3767. * QEMU implements 9P natively, which makes it very stable and convenient, and must mean it is a simpler protocol than NFS as one would expect.
  3768. +
  3769. This is not the case for gem5 7bfb7f3a43f382eb49853f47b140bfd6caad0fb8 unfortunately, which relies on the https://github.com/chaos/diod[diod] host daemon, although it is not unfeasible that future versions could implement it natively as well.
  3770. Advantages of NFS:
  3771. * way more widely used and therefore stable and available, not to mention that it also works on real hardware.
  3772. * the name does not start with a digit, which is an invalid identifier in all programming languages known to man. Who in their right mind would call a software project as such? It does not even match the natural order of Plan 9; Plan then 9: P9!
  3773. ==== 9P getting started
  3774. As usual, we have already set everything up for you. On host:
  3775. ....
  3776. cd "$(./getvar p9_dir)"
  3777. uname -a > host
  3778. ....
  3779. Guest:
  3780. ....
  3781. cd /mnt/9p/data
  3782. cat host
  3783. uname -a > guest
  3784. ....
  3785. Host:
  3786. ....
  3787. cat guest
  3788. ....
  3789. The main ingredients for this are:
  3790. * `9P` settings in our <<kernel-configs-about,kernel configs>>
  3791. * `9p` entry on our link:rootfs_overlay/etc/fstab[]
  3792. +
  3793. Alternatively, you could also mount your own with:
  3794. +
  3795. ....
  3796. mkdir /mnt/my9p
  3797. mount -t 9p -o trans=virtio,version=9p2000.L host0 /mnt/my9p
  3798. ....
  3799. +
  3800. where mount tag `host0` is set by the emulator (`mount_tag` flag on QEMU CLI), and can be found in the guest with: `cat /sys/bus/virtio/drivers/9pnet_virtio/virtio0/mount_tag` as documented at: https://www.kernel.org/doc/Documentation/filesystems/9p.txt[].
  3801. * Launch QEMU with `-virtfs` as in your link:run[] script
  3802. +
  3803. When we tried:
  3804. +
  3805. ....
  3806. security_model=mapped
  3807. ....
  3808. +
  3809. writes from guest failed due to user mismatch problems: https://serverfault.com/questions/342801/read-write-access-for-passthrough-9p-filesystems-with-libvirt-qemu
  3810. Bibliography:
  3811. * https://superuser.com/questions/628169/how-to-share-a-directory-with-the-host-without-networking-in-qemu
  3812. * https://wiki.qemu.org/Documentation/9psetup
  3813. ==== gem5 9P
  3814. Is possible on aarch64 as shown at: https://gem5-review.googlesource.com/c/public/gem5/+/22831[], and it is just a matter of exposing to X86 for those that want it.
  3815. Enable it by passing the `--vio-9p` option on the fs.py gem5 command line:
  3816. ....
  3817. ./run --arch aarch64 --emulator gem5 -- --vio-9p
  3818. ....
  3819. Then on the guest:
  3820. ....
  3821. mkdir -p /mnt/9p/gem5
  3822. mount -t 9p -o trans=virtio,version=9p2000.L,aname=/path/to/linux-kernel-module-cheat/out/run/gem5/aarch64/0/m5out/9p/share gem5 /mnt/9p/gem5
  3823. echo asdf > /mnt/9p/gem5/qwer
  3824. ....
  3825. Yes, you have to pass the full path to the directory on the host. Yes, this is horrible.
  3826. The shared directory is:
  3827. ....
  3828. out/run/gem5/aarch64/0/m5out/9p/share
  3829. ....
  3830. so we can observe the file the guest wrote from the host with:
  3831. ....
  3832. out/run/gem5/aarch64/0/m5out/9p/share/qwer
  3833. ....
  3834. and vice versa:
  3835. ....
  3836. echo zxvc > out/run/gem5/aarch64/0/m5out/9p/share/qwer
  3837. ....
  3838. is now visible from the guest:
  3839. ....
  3840. cat /mnt/9p/gem5/qwer
  3841. ....
  3842. Checkpoint restore with an open mount will likely fail because gem5 uses an ugly external executable to implement diod. The protocol is not very complex, and QEMU implements it in-tree, which is what gem5 should do as well at some point.
  3843. Also checkpoint without `--vio-9p` and restore with `--vio-9p` did not work either, the mount fails.
  3844. However, this did work, on guest:
  3845. ....
  3846. unmount /mnt/9p/gem5
  3847. m5 checkpoint
  3848. ....
  3849. then restore with the detalied CPU of interest e.g.
  3850. ....
  3851. ./run --arch aarch64 --emulator gem5 -- --vio-9p --cpu-type DerivO3CPU --caches
  3852. ....
  3853. Tested on gem5 b2847f43c91e27f43bd4ac08abd528efcf00f2fd, LKMC 52a5fdd7c1d6eadc5900fc76e128995d4849aada.
  3854. ==== NFS
  3855. TODO: get working.
  3856. <<9p>> is better with emulation, but let's just get this working for fun.
  3857. First make sure that this works: xref:guest-to-host-networking[xrefstyle=full].
  3858. Then, build the kernel with NFS support:
  3859. ....
  3860. ./build-linux --config-fragment linux_config/nfs
  3861. ....
  3862. Now on host:
  3863. ....
  3864. sudo apt-get install nfs-kernel-server
  3865. ....
  3866. Now edit `/etc/exports` to contain:
  3867. ....
  3868. /tmp *(rw,sync,no_root_squash,no_subtree_check)
  3869. ....
  3870. and restart the server:
  3871. ....
  3872. sudo systemctl restart nfs-kernel-server
  3873. ....
  3874. Now on guest:
  3875. ....
  3876. mkdir /mnt/nfs
  3877. mount -t nfs 10.0.2.2:/tmp /mnt/nfs
  3878. ....
  3879. TODO: failing with:
  3880. ....
  3881. mount: mounting 10.0.2.2:/tmp on /mnt/nfs failed: No such device
  3882. ....
  3883. And now the `/tmp` directory from host is not mounted on guest!
  3884. If you don't want to start the NFS server after the next boot automatically so save resources, https://askubuntu.com/questions/19320/how-to-enable-or-disable-services[do]:
  3885. ....
  3886. systemctl disable nfs-kernel-server
  3887. ....
  3888. == Operating systems
  3889. https://en.wikipedia.org/wiki/Operating_system
  3890. * <<linux-kernel>>
  3891. * <<freebsd>>
  3892. * <<rtos>>
  3893. * <<xen>>
  3894. * <<u-boot>>
  3895. == Linux kernel
  3896. https://en.wikipedia.org/wiki/Linux_kernel
  3897. === Linux kernel configuration
  3898. ==== Modify kernel config
  3899. To modify a single option on top of our <<kernel-configs-about,default kernel configs>>, do:
  3900. ....
  3901. ./build-linux --config 'CONFIG_FORTIFY_SOURCE=y'
  3902. ....
  3903. Kernel modules depend on certain kernel configs, and therefore in general you might have to clean and rebuild the kernel modules after changing the kernel config:
  3904. ....
  3905. ./build-modules --clean
  3906. ./build-modules
  3907. ....
  3908. and then proceed as in <<your-first-kernel-module-hack>>.
  3909. You might often get way without rebuilding the kernel modules however.
  3910. To use an extra kernel config fragment file on top of our defaults, do:
  3911. ....
  3912. printf '
  3913. CONFIG_IKCONFIG=y
  3914. CONFIG_IKCONFIG_PROC=y
  3915. ' > data/myconfig
  3916. ./build-linux --config-fragment 'data/myconfig'
  3917. ....
  3918. To use just your own exact `.config` instead of our defaults ones, use:
  3919. ....
  3920. ./build-linux --custom-config-file data/myconfig
  3921. ....
  3922. There is also a shortcut `--custom-config-file-gem5` to use the <<gem5-arm-linux-kernel-patches>>.
  3923. The following options can all be used together, sorted by decreasing config setting power precedence:
  3924. * `--config`
  3925. * `--config-fragment`
  3926. * `--custom-config-file`
  3927. To do a clean menu config yourself and use that for the build, do:
  3928. ....
  3929. ./build-linux --clean
  3930. ./build-linux --custom-config-target menuconfig
  3931. ....
  3932. But remember that every new build re-configures the kernel by default, so to keep your configs you will need to use on further builds:
  3933. ....
  3934. ./build-linux --no-configure
  3935. ....
  3936. So what you likely want to do instead is to save that as a new `defconfig` and use it later as:
  3937. ....
  3938. ./build-linux --no-configure --no-modules-install savedefconfig
  3939. cp "$(./getvar linux_build_dir)/defconfig" data/myconfig
  3940. ./build-linux --custom-config-file data/myconfig
  3941. ....
  3942. You can also use other config generating targets such as `defconfig` with the same method as shown at: xref:linux-kernel-defconfig[xrefstyle=full].
  3943. ==== Find the kernel config
  3944. Get the build config in guest:
  3945. ....
  3946. zcat /proc/config.gz
  3947. ....
  3948. or with our shortcut:
  3949. ....
  3950. ./conf.sh
  3951. ....
  3952. or to conveniently grep for a specific option case insensitively:
  3953. ....
  3954. ./conf.sh ikconfig
  3955. ....
  3956. Source: link:rootfs_overlay/lkmc/conf.sh[].
  3957. This is enabled by:
  3958. ....
  3959. CONFIG_IKCONFIG=y
  3960. CONFIG_IKCONFIG_PROC=y
  3961. ....
  3962. From host:
  3963. ....
  3964. cat "$(./getvar linux_config)"
  3965. ....
  3966. Just for fun https://stackoverflow.com/questions/14958192/how-to-get-the-config-from-a-linux-kernel-image/14958263#14958263[]:
  3967. ....
  3968. ./linux/scripts/extract-ikconfig "$(./getvar vmlinux)"
  3969. ....
  3970. although this can be useful when someone gives you a random image.
  3971. [[kernel-configs-about]]
  3972. ==== About our Linux kernel configs
  3973. By default, link:build-linux[] generates a `.config` that is a mixture of:
  3974. * a base config extracted from Buildroot's minimal per machine `.config`, which has the minimal options needed to boot as explained at: xref:buildroot-kernel-config[xrefstyle=full].
  3975. * small overlays put top of that
  3976. To find out which kernel configs are being used exactly, simply run:
  3977. ....
  3978. ./build-linux --dry-run
  3979. ....
  3980. and look for the `merge_config.sh` call. This script from the Linux kernel tree, as the name suggests, merges multiple configuration files into one as explained at: https://unix.stackexchange.com/questions/224887/how-to-script-make-menuconfig-to-automate-linux-kernel-build-configuration/450407#450407
  3981. For each arch, the base of our configs are named as:
  3982. ....
  3983. linux_config/buildroot-<arch>
  3984. ....
  3985. e.g.: link:linux_config/buildroot-x86_64[].
  3986. These configs are extracted directly from a Buildroot build with link:update-buildroot-kernel-configs[].
  3987. Note that Buildroot can `sed` override some of the configurations, e.g. it forces `CONFIG_BLK_DEV_INITRD=y` when `BR2_TARGET_ROOTFS_CPIO` is on. For this reason, those configs are not simply copy pasted from Buildroot files, but rather from a Buildroot kernel build, and then minimized with `make savedefconfig`: https://stackoverflow.com/questions/27899104/how-to-create-a-defconfig-file-from-a-config
  3988. On top of those, we add the following by default:
  3989. * link:linux_config/min[]: see: xref:linux-kernel-min-config[xrefstyle=full]
  3990. * link:linux_config/default[]: other optional configs that we enable by default because they increase visibility, or expose some cool feature, and don't significantly increase build time nor add significant runtime overhead
  3991. +
  3992. We have since observed that the kernel size itself is very bloated compared to `defconfig` as shown at: xref:linux-kernel-defconfig[xrefstyle=full].
  3993. [[buildroot-kernel-config]]
  3994. ===== About Buildroot's kernel configs
  3995. To see Buildroot's base configs, start from https://github.com/buildroot/buildroot/blob/2018.05/configs/qemu_x86_64_defconfig[`buildroot/configs/qemu_x86_64_defconfig`].
  3996. That file contains `BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="board/qemu/x86_64/linux-4.15.config"`, which points to the base config file used: https://github.com/buildroot/buildroot/blob/2018.05/board/qemu/x86_64/linux-4.15.config[board/qemu/x86_64/linux-4.15.config].
  3997. `arm`, on the other hand, uses https://github.com/buildroot/buildroot/blob/2018.05/configs/qemu_arm_vexpress_defconfig[`buildroot/configs/qemu_arm_vexpress_defconfig`], which contains `BR2_LINUX_KERNEL_DEFCONFIG="vexpress"`, and therefore just does a `make vexpress_defconfig`, and gets its config from the Linux kernel tree itself.
  3998. ====== Linux kernel defconfig
  3999. To boot https://stackoverflow.com/questions/41885015/what-exactly-does-linux-kernels-make-defconfig-do[defconfig] from disk on Linux and see a shell, all we need is these missing virtio options:
  4000. ....
  4001. ./build-linux \
  4002. --linux-build-id defconfig \
  4003. --custom-config-target defconfig \
  4004. --config CONFIG_VIRTIO_PCI=y \
  4005. --config CONFIG_VIRTIO_BLK=y \
  4006. ;
  4007. ./run --linux-build-id defconfig
  4008. ....
  4009. Oh, and check this out:
  4010. ....
  4011. du -h \
  4012. "$(./getvar vmlinux)" \
  4013. "$(./getvar --linux-build-id defconfig vmlinux)" \
  4014. ;
  4015. ....
  4016. Output:
  4017. ....
  4018. 360M /path/to/linux-kernel-module-cheat/out/linux/default/x86_64/vmlinux
  4019. 47M /path/to/linux-kernel-module-cheat/out/linux/defconfig/x86_64/vmlinux
  4020. ....
  4021. Brutal. Where did we go wrong?
  4022. The extra virtio options are not needed if we use <<initrd>>:
  4023. ....
  4024. ./build-linux \
  4025. --linux-build-id defconfig \
  4026. --custom-config-target defconfig \
  4027. ;
  4028. ./run --initrd --linux-build-id defconfig
  4029. ....
  4030. On aarch64, we can boot from initrd with:
  4031. ....
  4032. ./build-linux \
  4033. --arch aarch64 \
  4034. --linux-build-id defconfig \
  4035. --custom-config-target defconfig \
  4036. ;
  4037. ./run \
  4038. --arch aarch64 \
  4039. --initrd \
  4040. --linux-build-id defconfig \
  4041. --memory 2G \
  4042. ;
  4043. ....
  4044. We need the 2G of memory because the CPIO is 600MiB due to a humongous amount of loadable kernel modules!
  4045. In aarch64, the size situation is inverted from x86_64, and this can be seen on the vmlinux size as well:
  4046. ....
  4047. 118M /path/to/linux-kernel-module-cheat/out/linux/default/aarch64/vmlinux
  4048. 240M /path/to/linux-kernel-module-cheat/out/linux/defconfig/aarch64/vmlinux
  4049. ....
  4050. So it seems that the ARM devs decided rather than creating a minimal config that boots QEMU, to try and make a single config that boots every board in existence. Terrible!
  4051. Bibliography: https://unix.stackexchange.com/questions/29439/compiling-the-kernel-with-default-configurations/204512#204512
  4052. Tested on 1e2b7f1e5e9e3073863dc17e25b2455c8ebdeadd + 1.
  4053. ====== Linux kernel min config
  4054. link:linux_config/min[] contains minimal tweaks required to boot gem5 or for using our slightly different QEMU command line options than Buildroot on all archs.
  4055. It is one of the default config fragments we use, as explained at: xref:kernel-configs-about[xrefstyle=full]>.
  4056. Having the same config working for both QEMU and gem5 (oh, the hours of bisection) means that you can deal with functional matters in QEMU, which runs much faster, and switch to gem5 only for performance issues.
  4057. We can build just with `min` on top of the base config with:
  4058. ....
  4059. ./build-linux \
  4060. --arch aarch64 \
  4061. --config-fragment linux_config/min \
  4062. --custom-config-file linux_config/buildroot-aarch64 \
  4063. --linux-build-id min \
  4064. ;
  4065. ....
  4066. vmlinux had a very similar size to the default. It seems that link:linux_config/buildroot-aarch64[] contains or implies most link:linux_config/default[] options already? TODO: that seems odd, really?
  4067. Tested on 649d06d6758cefd080d04dc47fd6a5a26a620874 + 1.
  4068. ===== Notable alternate gem5 kernel configs
  4069. Other configs which we had previously tested at 4e0d9af81fcce2ce4e777cb82a1990d7c2ca7c1e are:
  4070. * `arm` and `aarch64` configs present in the official ARM gem5 Linux kernel fork as described at: xref:gem5-arm-linux-kernel-patches[xrefstyle=full]. Some of the configs present there are added by the patches.
  4071. * Jason's magic `x86_64` config: http://web.archive.org/web/20171229121642/http://www.lowepower.com/jason/files/config which is referenced at: http://web.archive.org/web/20171229121525/http://www.lowepower.com/jason/setting-up-gem5-full-system.html[]. QEMU boots with that by removing `# CONFIG_VIRTIO_PCI is not set`.
  4072. === Kernel version
  4073. ==== Find the kernel version
  4074. We try to use the latest possible kernel major release version.
  4075. In QEMU:
  4076. ....
  4077. cat /proc/version
  4078. ....
  4079. or in the source:
  4080. ....
  4081. cd "$(./getvar linux_source_dir)"
  4082. git log | grep -E ' Linux [0-9]+\.' | head
  4083. ....
  4084. ==== Update the Linux kernel
  4085. During update all you kernel modules may break since the kernel API is not stable.
  4086. They are usually trivial breaks of things moving around headers or to sub-structs.
  4087. The userland, however, should simply not break, as Linus enforces strict backwards compatibility of userland interfaces.
  4088. This backwards compatibility is just awesome, it makes getting and running the latest master painless.
  4089. This also makes this repo the perfect setup to develop the Linux kernel.
  4090. In case something breaks while updating the Linux kernel, you can try to bisect it to understand the root cause, see: xref:bisection[xrefstyle=full].
  4091. ===== Update the Linux kernel LKMC procedure
  4092. First, use use the branching procedure described at: xref:update-a-forked-submodule[xrefstyle=full]
  4093. Because the kernel is so central to this repository, almost all tests must be re-run, so basically just follow the full testing procedure described at: xref:test-this-repo[xrefstyle=full]. The only tests that can be skipped are essentially the <<baremetal>> tests.
  4094. Before comitting, don't forget to update:
  4095. * the `linux_kernel_version` constant in link:common.py[]
  4096. * the tagline of this repository on:
  4097. ** this README
  4098. ** the GitHub project description
  4099. ==== Downgrade the Linux kernel
  4100. The kernel is not forward compatible, however, so downgrading the Linux kernel requires downgrading the userland too to the latest Buildroot branch that supports it.
  4101. The default Linux kernel version is bumped in Buildroot with commit messages of type:
  4102. ....
  4103. linux: bump default to version 4.9.6
  4104. ....
  4105. So you can try:
  4106. ....
  4107. git log --grep 'linux: bump default to version'
  4108. ....
  4109. Those commits change `BR2_LINUX_KERNEL_LATEST_VERSION` in `/linux/Config.in`.
  4110. You should then look up if there is a branch that supports that kernel. Staying on branches is a good idea as they will get backports, in particular ones that fix the build as newer host versions come out.
  4111. Finally, after downgrading Buildroot, if something does not work, you might also have to make some changes to how this repo uses Buildroot, as the Buildroot configuration options might have changed.
  4112. We don't expect those changes to be very difficult. A good way to approach the task is to:
  4113. * do a dry run build to get the equivalent Bash commands used:
  4114. +
  4115. ....
  4116. ./build-buildroot --dry-run
  4117. ....
  4118. * build the Buildroot documentation for the version you are going to use, and check if all Buildroot build commands make sense there
  4119. Then, if you spot an option that is wrong, some grepping in this repo should quickly point you to the code you need to modify.
  4120. It also possible that you will need to apply some patches from newer Buildroot versions for it to build, due to incompatibilities with the host Ubuntu packages and that Buildroot version. Just read the error message, and try:
  4121. * `git log master -- packages/<pkg>`
  4122. * Google the error message for mailing list hits
  4123. Successful port reports:
  4124. * v3.18: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/39#issuecomment-438525481
  4125. === Kernel command line parameters
  4126. Bootloaders can pass a string as input to the Linux kernel when it is booting to control its behaviour, much like the `execve` system call does to userland processes.
  4127. This allows us to control the behaviour of the kernel without rebuilding anything.
  4128. With QEMU, QEMU itself acts as the bootloader, and provides the `-append` option and we expose it through `./run --kernel-cli`, e.g.:
  4129. ....
  4130. ./run --kernel-cli 'foo bar'
  4131. ....
  4132. Then inside the host, you can check which options were given with:
  4133. ....
  4134. cat /proc/cmdline
  4135. ....
  4136. They are also printed at the beginning of the boot message:
  4137. ....
  4138. dmesg | grep "Command line"
  4139. ....
  4140. See also:
  4141. * https://unix.stackexchange.com/questions/48601/how-to-display-the-linux-kernel-command-line-parameters-given-for-the-current-bo
  4142. * https://askubuntu.com/questions/32654/how-do-i-find-the-boot-parameters-used-by-the-running-kernel
  4143. The arguments are documented in the kernel documentation: https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html
  4144. When dealing with real boards, extra command line options are provided on some magic bootloader configuration file, e.g.:
  4145. * GRUB configuration files: https://askubuntu.com/questions/19486/how-do-i-add-a-kernel-boot-parameter
  4146. * Raspberry pi `/boot/cmdline.txt` on a magic partition: https://raspberrypi.stackexchange.com/questions/14839/how-to-change-the-kernel-commandline-for-archlinuxarm-on-raspberry-pi-effectly
  4147. ==== Kernel command line parameters escaping
  4148. Double quotes can be used to escape spaces as in `opt="a b"`, but double quotes themselves cannot be escaped, e.g. `opt"a\"b"`
  4149. This even lead us to use base64 encoding with `--eval`!
  4150. ==== Kernel command line parameters definition points
  4151. There are two methods:
  4152. * `__setup` as in:
  4153. +
  4154. ....
  4155. __setup("console=", console_setup);
  4156. ....
  4157. * `core_param` as in:
  4158. +
  4159. ....
  4160. core_param(panic, panic_timeout, int, 0644);
  4161. ....
  4162. `core_param` suggests how they are different:
  4163. ....
  4164. /**
  4165. * core_param - define a historical core kernel parameter.
  4166. ...
  4167. * core_param is just like module_param(), but cannot be modular and
  4168. * doesn't add a prefix (such as "printk."). This is for compatibility
  4169. * with __setup(), and it makes sense as truly core parameters aren't
  4170. * tied to the particular file they're in.
  4171. */
  4172. ....
  4173. ==== rw
  4174. By default, the Linux kernel mounts the root filesystem as readonly. TODO rationale?
  4175. This cannot be observed in the default BusyBox init, because by default our link:rootfs_overlay/etc/inittab[] does:
  4176. ....
  4177. /bin/mount -o remount,rw /
  4178. ....
  4179. Analogously, Ubuntu 18.04 does in its fstab something like:
  4180. ....
  4181. UUID=/dev/sda1 / ext4 errors=remount-ro 0 1
  4182. ....
  4183. which uses default mount `rw` flags.
  4184. We have however removed those setups init setups to keep things more minimal, and replaced them with the `rw` kernel boot parameter makes the root mounted as writable.
  4185. To observe the default readonly behaviour, hack the link:run[] script to remove <<replace-init,replace init>>, and then run on a raw shell:
  4186. ....
  4187. ./run --kernel-cli 'init=/bin/sh'
  4188. ....
  4189. Now try to do:
  4190. ....
  4191. touch a
  4192. ....
  4193. which fails with:
  4194. ....
  4195. touch: a: Read-only file system
  4196. ....
  4197. We can also observe the read-onlyness with:
  4198. ....
  4199. mount -t proc /proc
  4200. mount
  4201. ....
  4202. which contains:
  4203. ....
  4204. /dev/root on / type ext2 (ro,relatime,block_validity,barrier,user_xattr)
  4205. ....
  4206. and so it is Read Only as shown by `ro`.
  4207. ==== norandmaps
  4208. Disable userland address space randomization. Test it out by running <<rand-check-out>> twice:
  4209. ....
  4210. ./run --eval-after './linux/rand_check.out;./linux/poweroff.out'
  4211. ./run --eval-after './linux/rand_check.out;./linux/poweroff.out'
  4212. ....
  4213. If we remove it from our link:run[] script by hacking it up, the addresses shown by `linux/rand_check.out` vary across boots.
  4214. Equivalent to:
  4215. ....
  4216. echo 0 > /proc/sys/kernel/randomize_va_space
  4217. ....
  4218. === printk
  4219. `printk` is the most simple and widely used way of getting information from the kernel, so you should familiarize yourself with its basic configuration.
  4220. We use `printk` a lot in our kernel modules, and it shows on the terminal by default, along with stdout and what you type.
  4221. Hide all `printk` messages:
  4222. ....
  4223. dmesg -n 1
  4224. ....
  4225. or equivalently:
  4226. ....
  4227. echo 1 > /proc/sys/kernel/printk
  4228. ....
  4229. See also: https://superuser.com/questions/351387/how-to-stop-kernel-messages-from-flooding-my-console
  4230. Do it with a <<kernel-command-line-parameters>> to affect the boot itself:
  4231. ....
  4232. ./run --kernel-cli 'loglevel=5'
  4233. ....
  4234. and now only boot warning messages or worse show, which is useful to identify problems.
  4235. Our default `printk` format is:
  4236. ....
  4237. <LEVEL>[TIMESTAMP] MESSAGE
  4238. ....
  4239. e.g.:
  4240. ....
  4241. <6>[ 2.979121] Freeing unused kernel memory: 2024K
  4242. ....
  4243. where:
  4244. * `LEVEL`: higher means less serious
  4245. * `TIMESTAMP`: seconds since boot
  4246. This format is selected by the following boot options:
  4247. * `console_msg_format=syslog`: add the `<LEVEL>` part. Added in v4.16.
  4248. * `printk.time=y`: add the `[TIMESTAMP]` part
  4249. The debug highest level is a bit more magic, see: xref:pr-debug[xrefstyle=full] for more info.
  4250. ==== /proc/sys/kernel/printk
  4251. The current printk level can be obtained with:
  4252. ....
  4253. cat /proc/sys/kernel/printk
  4254. ....
  4255. As of `87e846fc1f9c57840e143513ebd69c638bd37aa8` this prints:
  4256. ....
  4257. 7 4 1 7
  4258. ....
  4259. which contains:
  4260. * `7`: current log level, modifiable by previously mentioned methods
  4261. * `4`: documented as: "printk's without a loglevel use this": TODO what does that mean, how to call `printk` without a log level?
  4262. * `1`: minimum log level that still prints something (`0` prints nothing)
  4263. * `7`: default log level
  4264. We start at the boot time default after boot by default, as can be seen from:
  4265. ....
  4266. insmod myprintk.ko
  4267. ....
  4268. which outputs something like:
  4269. ....
  4270. <1>[ 12.494429] pr_alert
  4271. <2>[ 12.494666] pr_crit
  4272. <3>[ 12.494823] pr_err
  4273. <4>[ 12.494911] pr_warning
  4274. <5>[ 12.495170] pr_notice
  4275. <6>[ 12.495327] pr_info
  4276. ....
  4277. Source: link:kernel_modules/myprintk.c[]
  4278. This proc entry is defined at: https://github.com/torvalds/linux/blob/v5.1/kernel/sysctl.c#L839
  4279. ....
  4280. #if defined CONFIG_PRINTK
  4281. {
  4282. .procname = "printk",
  4283. .data = &console_loglevel,
  4284. .maxlen = 4*sizeof(int),
  4285. .mode = 0644,
  4286. .proc_handler = proc_dointvec,
  4287. },
  4288. ....
  4289. which teaches us that printk can be completely disabled at compile time:
  4290. ....
  4291. config PRINTK
  4292. default y
  4293. bool "Enable support for printk" if EXPERT
  4294. select IRQ_WORK
  4295. help
  4296. This option enables normal printk support. Removing it
  4297. eliminates most of the message strings from the kernel image
  4298. and makes the kernel more or less silent. As this makes it
  4299. very difficult to diagnose system problems, saying N here is
  4300. strongly discouraged.
  4301. ....
  4302. `console_loglevel` is defined at:
  4303. ....
  4304. #define console_loglevel (console_printk[0])
  4305. ....
  4306. and `console_printk` is an array with 4 ints:
  4307. ....
  4308. int console_printk[4] = {
  4309. CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
  4310. MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
  4311. CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
  4312. CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
  4313. };
  4314. ....
  4315. and then we see that the default is configurable with `CONFIG_CONSOLE_LOGLEVEL_DEFAULT`:
  4316. ....
  4317. /*
  4318. * Default used to be hard-coded at 7, quiet used to be hardcoded at 4,
  4319. * we're now allowing both to be set from kernel config.
  4320. */
  4321. #define CONSOLE_LOGLEVEL_DEFAULT CONFIG_CONSOLE_LOGLEVEL_DEFAULT
  4322. #define CONSOLE_LOGLEVEL_QUIET CONFIG_CONSOLE_LOGLEVEL_QUIET
  4323. ....
  4324. The message loglevel default is explained at:
  4325. ....
  4326. /* printk's without a loglevel use this.. */
  4327. #define MESSAGE_LOGLEVEL_DEFAULT CONFIG_MESSAGE_LOGLEVEL_DEFAULT
  4328. ....
  4329. The min is just hardcoded to one as you would expect, with some amazing kernel comedy around it:
  4330. ....
  4331. /* We show everything that is MORE important than this.. */
  4332. #define CONSOLE_LOGLEVEL_SILENT 0 /* Mum's the word */
  4333. #define CONSOLE_LOGLEVEL_MIN 1 /* Minimum loglevel we let people use */
  4334. #define CONSOLE_LOGLEVEL_DEBUG 10 /* issue debug messages */
  4335. #define CONSOLE_LOGLEVEL_MOTORMOUTH 15 /* You can't shut this one up */
  4336. ....
  4337. We then also learn about the useless `quiet` and `debug` kernel parameters at:
  4338. ....
  4339. config CONSOLE_LOGLEVEL_QUIET
  4340. int "quiet console loglevel (1-15)"
  4341. range 1 15
  4342. default "4"
  4343. help
  4344. loglevel to use when "quiet" is passed on the kernel commandline.
  4345. When "quiet" is passed on the kernel commandline this loglevel
  4346. will be used as the loglevel. IOW passing "quiet" will be the
  4347. equivalent of passing "loglevel=<CONSOLE_LOGLEVEL_QUIET>"
  4348. ....
  4349. which explains the useless reason why that number is special. This is implemented at:
  4350. ....
  4351. static int __init debug_kernel(char *str)
  4352. {
  4353. console_loglevel = CONSOLE_LOGLEVEL_DEBUG;
  4354. return 0;
  4355. }
  4356. static int __init quiet_kernel(char *str)
  4357. {
  4358. console_loglevel = CONSOLE_LOGLEVEL_QUIET;
  4359. return 0;
  4360. }
  4361. early_param("debug", debug_kernel);
  4362. early_param("quiet", quiet_kernel);
  4363. ....
  4364. [[ignore-loglevel]]
  4365. ==== ignore_loglevel
  4366. ....
  4367. ./run --kernel-cli 'ignore_loglevel'
  4368. ....
  4369. enables all log levels, and is basically the same as:
  4370. ....
  4371. ./run --kernel-cli 'loglevel=8'
  4372. ....
  4373. except that you don't need to know what is the maximum level.
  4374. [[pr-debug]]
  4375. ==== pr_debug
  4376. https://stackoverflow.com/questions/28936199/why-is-pr-debug-of-the-linux-kernel-not-giving-any-output/49835405#49835405
  4377. Debug messages are not printable by default without recompiling.
  4378. But the awesome `CONFIG_DYNAMIC_DEBUG=y` option which we enable by default allows us to do:
  4379. ....
  4380. echo 8 > /proc/sys/kernel/printk
  4381. echo 'file kernel/module.c +p' > /sys/kernel/debug/dynamic_debug/control
  4382. ./linux/myinsmod.out hello.ko
  4383. ....
  4384. and we have a shortcut at:
  4385. ....
  4386. ./pr_debug.sh
  4387. ....
  4388. Source: link:rootfs_overlay/lkmc/pr_debug.sh[].
  4389. Syntax: https://www.kernel.org/doc/html/v4.11/admin-guide/dynamic-debug-howto.html
  4390. Wildcards are also accepted, e.g. enable all messages from all files:
  4391. ....
  4392. echo 'file * +p' > /sys/kernel/debug/dynamic_debug/control
  4393. ....
  4394. TODO: why is this not working:
  4395. ....
  4396. echo 'func sys_init_module +p' > /sys/kernel/debug/dynamic_debug/control
  4397. ....
  4398. Enable messages in specific modules:
  4399. ....
  4400. echo 8 > /proc/sys/kernel/printk
  4401. echo 'module myprintk +p' > /sys/kernel/debug/dynamic_debug/control
  4402. insmod myprintk.ko
  4403. ....
  4404. Source: link:kernel_modules/myprintk.c[]
  4405. This outputs the `pr_debug` message:
  4406. ....
  4407. printk debug
  4408. ....
  4409. but TODO: it also shows debug messages even without enabling them explicitly:
  4410. ....
  4411. echo 8 > /proc/sys/kernel/printk
  4412. insmod myprintk.ko
  4413. ....
  4414. and it shows as enabled:
  4415. ....
  4416. # grep myprintk /sys/kernel/debug/dynamic_debug/control
  4417. /root/linux-kernel-module-cheat/out/kernel_modules/x86_64/kernel_modules/panic.c:12 [myprintk]myinit =p "pr_debug\012"
  4418. ....
  4419. Enable `pr_debug` for boot messages as well, before we can reach userland and write to `/proc`:
  4420. ....
  4421. ./run --kernel-cli 'dyndbg="file * +p" loglevel=8'
  4422. ....
  4423. Get ready for the noisiest boot ever, I think it overflows the `printk` buffer and funny things happen.
  4424. [[pr-debug-is-different-from-printk-kern-debug]]
  4425. ===== pr_debug != printk(KERN_DEBUG
  4426. When `CONFIG_DYNAMIC_DEBUG` is set, `printk(KERN_DEBUG` is not the exact same as `pr_debug(` since `printk(KERN_DEBUG` messages are visible with:
  4427. ....
  4428. ./run --kernel-cli 'initcall_debug logleve=8'
  4429. ....
  4430. which outputs lines of type:
  4431. ....
  4432. <7>[ 1.756680] calling clk_disable_unused+0x0/0x130 @ 1
  4433. <7>[ 1.757003] initcall clk_disable_unused+0x0/0x130 returned 0 after 111 usecs
  4434. ....
  4435. which are `printk(KERN_DEBUG` inside `init/main.c` in v4.16.
  4436. Mentioned at: https://stackoverflow.com/questions/37272109/how-to-get-details-of-all-modules-drivers-got-initialized-probed-during-kernel-b
  4437. This likely comes from the ifdef split at `init/main.c`:
  4438. ....
  4439. /* If you are writing a driver, please use dev_dbg instead */
  4440. #if defined(CONFIG_DYNAMIC_DEBUG)
  4441. #include <linux/dynamic_debug.h>
  4442. /* dynamic_pr_debug() uses pr_fmt() internally so we don't need it here */
  4443. #define pr_debug(fmt, ...) \
  4444. dynamic_pr_debug(fmt, ##__VA_ARGS__)
  4445. #elif defined(DEBUG)
  4446. #define pr_debug(fmt, ...) \
  4447. printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__)
  4448. #else
  4449. #define pr_debug(fmt, ...) \
  4450. no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__)
  4451. #endif
  4452. ....
  4453. === Kernel module APIs
  4454. ==== Kernel module parameters
  4455. The Linux kernel allows passing module parameters at insertion time <<myinsmod,through the `init_module` and `finit_module` system calls>>.
  4456. The `insmod` tool exposes that as:
  4457. ....
  4458. insmod params.ko i=3 j=4
  4459. ....
  4460. Parameters are declared in the module as:
  4461. ....
  4462. static u32 i = 0;
  4463. module_param(i, int, S_IRUSR | S_IWUSR);
  4464. MODULE_PARM_DESC(i, "my favorite int");
  4465. ....
  4466. Automated test:
  4467. ....
  4468. ./params.sh
  4469. echo $?
  4470. ....
  4471. Outcome: the test passes:
  4472. ....
  4473. 0
  4474. ....
  4475. Sources:
  4476. * link:kernel_modules/params.c[]
  4477. * link:rootfs_overlay/lkmc/params.sh[]
  4478. As shown in the example, module parameters can also be read and modified at runtime from <<sysfs>>.
  4479. We can obtain the help text of the parameters with:
  4480. ....
  4481. modinfo params.ko
  4482. ....
  4483. The output contains:
  4484. ....
  4485. parm: j:my second favorite int
  4486. parm: i:my favorite int
  4487. ....
  4488. ===== modprobe.conf
  4489. <<modprobe>> insertion can also set default parameters via the link:rootfs_overlay/etc/modprobe.conf[`/etc/modprobe.conf`] file:
  4490. ....
  4491. modprobe params
  4492. cat /sys/kernel/debug/lkmc_params
  4493. ....
  4494. Output:
  4495. ....
  4496. 12 34
  4497. ....
  4498. This is specially important when loading modules with <<kernel-module-dependencies>> or else we would have no opportunity of passing those.
  4499. `modprobe.conf` doesn't actually insmod anything for us: https://superuser.com/questions/397842/automatically-load-kernel-module-at-boot-angstrom/1267464#1267464
  4500. ==== Kernel module dependencies
  4501. One module can depend on symbols of another module that are exported with `EXPORT_SYMBOL`:
  4502. ....
  4503. ./dep.sh
  4504. echo $?
  4505. ....
  4506. Outcome: the test passes:
  4507. ....
  4508. 0
  4509. ....
  4510. Sources:
  4511. * link:kernel_modules/dep.c[]
  4512. * link:kernel_modules/dep2.c[]
  4513. * link:rootfs_overlay/lkmc/dep.sh[]
  4514. The kernel deduces dependencies based on the `EXPORT_SYMBOL` that each module uses.
  4515. Symbols exported by `EXPORT_SYMBOL` can be seen with:
  4516. ....
  4517. insmod dep.ko
  4518. grep lkmc_dep /proc/kallsyms
  4519. ....
  4520. sample output:
  4521. ....
  4522. ffffffffc0001030 r __ksymtab_lkmc_dep [dep]
  4523. ffffffffc000104d r __kstrtab_lkmc_dep [dep]
  4524. ffffffffc0002300 B lkmc_dep [dep]
  4525. ....
  4526. This requires `CONFIG_KALLSYMS_ALL=y`.
  4527. Dependency information is stored by the kernel module build system in the `.ko` files' <<module-info>>, e.g.:
  4528. ....
  4529. modinfo dep2.ko
  4530. ....
  4531. contains:
  4532. ....
  4533. depends: dep
  4534. ....
  4535. We can double check with:
  4536. ....
  4537. strings 3 dep2.ko | grep -E 'depends'
  4538. ....
  4539. The output contains:
  4540. ....
  4541. depends=dep
  4542. ....
  4543. Module dependencies are also stored at:
  4544. ....
  4545. cd /lib/module/*
  4546. grep dep modules.dep
  4547. ....
  4548. Output:
  4549. ....
  4550. extra/dep2.ko: extra/dep.ko
  4551. extra/dep.ko:
  4552. ....
  4553. TODO: what for, and at which point point does Buildroot / BusyBox generate that file?
  4554. ===== Kernel module dependencies with modprobe
  4555. Unlike `insmod`, <<modprobe>> deals with kernel module dependencies for us.
  4556. First get <<kernel-modules-buildroot-package>> working.
  4557. Then, for example:
  4558. ....
  4559. modprobe buildroot_dep2
  4560. ....
  4561. outputs to dmesg:
  4562. ....
  4563. 42
  4564. ....
  4565. and then:
  4566. ....
  4567. lsmod
  4568. ....
  4569. outputs:
  4570. ....
  4571. Module Size Used by Tainted: G
  4572. buildroot_dep2 16384 0
  4573. buildroot_dep 16384 1 buildroot_dep2
  4574. ....
  4575. Sources:
  4576. * link:buildroot_packages/kernel_modules/buildroot_dep.c[]
  4577. * link:buildroot_packages/kernel_modules/buildroot_dep2.c[]
  4578. Removal also removes required modules that have zero usage count:
  4579. ....
  4580. modprobe -r buildroot_dep2
  4581. ....
  4582. `modprobe` uses information from the `modules.dep` file to decide the required dependencies. That file contains:
  4583. ....
  4584. extra/buildroot_dep2.ko: extra/buildroot_dep.ko
  4585. ....
  4586. Bibliography:
  4587. * https://askubuntu.com/questions/20070/whats-the-difference-between-insmod-and-modprobe
  4588. * https://stackoverflow.com/questions/22891705/whats-the-difference-between-insmod-and-modprobe
  4589. [[module-info]]
  4590. ==== MODULE_INFO
  4591. Module metadata is stored on module files at compile time. Some of the fields can be retrieved through the `THIS_MODULE` `struct module`:
  4592. ....
  4593. insmod module_info.ko
  4594. ....
  4595. Dmesg output:
  4596. ....
  4597. name = module_info
  4598. version = 1.0
  4599. ....
  4600. Source: link:kernel_modules/module_info.c[]
  4601. Some of those are also present on sysfs:
  4602. ....
  4603. cat /sys/module/module_info/version
  4604. ....
  4605. Output:
  4606. ....
  4607. 1.0
  4608. ....
  4609. And we can also observe them with the `modinfo` command line utility:
  4610. ....
  4611. modinfo module_info.ko
  4612. ....
  4613. sample output:
  4614. ....
  4615. filename: module_info.ko
  4616. license: GPL
  4617. version: 1.0
  4618. srcversion: AF3DE8A8CFCDEB6B00E35B6
  4619. depends:
  4620. vermagic: 4.17.0 SMP mod_unload modversions
  4621. ....
  4622. Module information is stored in a special `.modinfo` section of the ELF file:
  4623. ....
  4624. ./run-toolchain readelf -- -SW "$(./getvar kernel_modules_build_subdir)/module_info.ko"
  4625. ....
  4626. contains:
  4627. ....
  4628. [ 5] .modinfo PROGBITS 0000000000000000 0000d8 000096 00 A 0 0 8
  4629. ....
  4630. and:
  4631. ....
  4632. ./run-toolchain readelf -- -x .modinfo "$(./getvar kernel_modules_build_subdir)/module_info.ko"
  4633. ....
  4634. gives:
  4635. ....
  4636. 0x00000000 6c696365 6e73653d 47504c00 76657273 license=GPL.vers
  4637. 0x00000010 696f6e3d 312e3000 61736466 3d717765 ion=1.0.asdf=qwe
  4638. 0x00000020 72000000 00000000 73726376 65727369 r.......srcversi
  4639. 0x00000030 6f6e3d41 46334445 38413843 46434445 on=AF3DE8A8CFCDE
  4640. 0x00000040 42364230 30453335 42360000 00000000 B6B00E35B6......
  4641. 0x00000050 64657065 6e64733d 006e616d 653d6d6f depends=.name=mo
  4642. 0x00000060 64756c65 5f696e66 6f007665 726d6167 dule_info.vermag
  4643. 0x00000070 69633d34 2e31372e 3020534d 50206d6f ic=4.17.0 SMP mo
  4644. 0x00000080 645f756e 6c6f6164 206d6f64 76657273 d_unload modvers
  4645. 0x00000090 696f6e73 2000 ions .
  4646. ....
  4647. I think a dedicated section is used to allow the Linux kernel and command line tools to easily parse that information from the ELF file as we've done with `readelf`.
  4648. Bibliography:
  4649. * https://stackoverflow.com/questions/19467150/significance-of-this-module-in-linux-driver/49812248#49812248
  4650. * https://stackoverflow.com/questions/4839024/how-to-find-the-version-of-a-compiled-kernel-module/42556565#42556565
  4651. * https://unix.stackexchange.com/questions/238167/how-to-understand-the-modinfo-output
  4652. ==== vermagic
  4653. link:kernel_modules/vermagic.c[]
  4654. As of kernel v5.8, you can't use `VERMAGIC_STRING` string from modules anymore as per: https://github.com/cirosantilli/linux/commit/51161bfc66a68d21f13d15a689b3ea7980457790[]. So instead we just showcase `init_utsname`.
  4655. Sample insmod output as of LKMC fa8c2ee521ea83a74a2300e7a3be9f9ab86e2cb6 + 1 aarch64:
  4656. ....
  4657. <6>[ 25.180697] sysname = Linux
  4658. <6>[ 25.180697] nodename = buildroot
  4659. <6>[ 25.180697] release = 5.9.2
  4660. <6>[ 25.180697] version = #1 SMP Thu Jan 1 00:00:00 UTC 1970
  4661. <6>[ 25.180697] machine = aarch64
  4662. <6>[ 25.180697] domainname = (none)
  4663. ....
  4664. Vermagic is a magic string present in the kernel and previously visible in <<module-info>> on kernel modules. It is used to verify that the kernel module was compiled against a compatible kernel version and relevant configuration:
  4665. ....
  4666. insmod vermagic.ko
  4667. ....
  4668. Possible dmesg output:
  4669. ....
  4670. VERMAGIC_STRING = 4.17.0 SMP mod_unload modversions
  4671. ....
  4672. If we artificially create a mismatch with `MODULE_INFO(vermagic`, the insmod fails with:
  4673. ....
  4674. insmod: can't insert 'vermagic_fail.ko': invalid module format
  4675. ....
  4676. and `dmesg` says the expected and found vermagic found:
  4677. ....
  4678. vermagic_fail: version magic 'asdfqwer' should be '4.17.0 SMP mod_unload modversions '
  4679. ....
  4680. Source: link:kernel_modules/vermagic_fail.c[]
  4681. The kernel's vermagic is defined based on compile time configurations at https://github.com/torvalds/linux/blob/v4.17/include/linux/vermagic.h#L35[include/linux/vermagic.h]:
  4682. ....
  4683. #define VERMAGIC_STRING \
  4684. UTS_RELEASE " " \
  4685. MODULE_VERMAGIC_SMP MODULE_VERMAGIC_PREEMPT \
  4686. MODULE_VERMAGIC_MODULE_UNLOAD MODULE_VERMAGIC_MODVERSIONS \
  4687. MODULE_ARCH_VERMAGIC \
  4688. MODULE_RANDSTRUCT_PLUGIN
  4689. ....
  4690. The `SMP` part of the string for example is defined on the same file based on the value of `CONFIG_SMP`:
  4691. ....
  4692. #ifdef CONFIG_SMP
  4693. #define MODULE_VERMAGIC_SMP "SMP "
  4694. #else
  4695. #define MODULE_VERMAGIC_SMP ""
  4696. ....
  4697. TODO how to get the vermagic from running kernel from userland? https://lists.kernelnewbies.org/pipermail/kernelnewbies/2012-October/006306.html
  4698. <<kmod-modprobe>> has a flag to skip the vermagic check:
  4699. ....
  4700. --force-modversion
  4701. ....
  4702. This option just strips `modversion` information from the module before loading, so it is not a kernel feature.
  4703. [[init-module]]
  4704. ==== init_module
  4705. `init_module` and `cleanup_module` are an older alternative to the `module_init` and `module_exit` macros:
  4706. ....
  4707. insmod init_module.ko
  4708. rmmod init_module
  4709. ....
  4710. Dmesg output:
  4711. ....
  4712. init_module
  4713. cleanup_module
  4714. ....
  4715. Source: link:kernel_modules/init_module.c[]
  4716. TODO why were `module_init` and `module_exit` created? https://stackoverflow.com/questions/3218320/what-is-the-difference-between-module-init-and-init-module-in-a-linux-kernel-mod
  4717. ==== Floating point in kernel modules
  4718. It is generally hard / impossible to use floating point operations in the kernel. TODO understand details.
  4719. A quick (x86-only for now because lazy) example is shown at: link:kernel_modules/float.c[]
  4720. Usage:
  4721. ....
  4722. insmod float.ko myfloat=1 enable_fpu=1
  4723. ....
  4724. We have to call: `kernel_fpu_begin()` before starting FPU operations, and `kernel_fpu_end()` when we are done. This particular example however did not blow up without it at lkmc 7f917af66b17373505f6c21d75af9331d624b3a9 + 1:
  4725. ....
  4726. insmod float.ko myfloat=1 enable_fpu=0
  4727. ....
  4728. The v5.1 documentation under https://github.com/cirosantilli/linux/blob/v5.1/arch/x86/include/asm/fpu/api.h#L15[arch/x86/include/asm/fpu/api.h] reads:
  4729. ....
  4730. * Use kernel_fpu_begin/end() if you intend to use FPU in kernel context. It
  4731. * disables preemption so be careful if you intend to use it for long periods
  4732. * of time.
  4733. ....
  4734. The example sets in the link:kernel_modules/Makefile[]:
  4735. ....
  4736. CFLAGS_REMOVE_float.o += -mno-sse -mno-sse2
  4737. ....
  4738. to avoid:
  4739. ....
  4740. error: SSE register return with SSE disabled
  4741. ....
  4742. We found those flags with `./build-modules --verbose`.
  4743. Bibliography:
  4744. * https://stackoverflow.com/questions/13886338/use-of-floating-point-in-the-linux-kernel
  4745. * https://stackoverflow.com/questions/15883947/why-am-i-able-to-perform-floating-point-operations-inside-a-linux-kernel-module/47056242
  4746. * https://stackoverflow.com/questions/1556142/sse-register-return-with-sse-disabled
  4747. === Kernel panic and oops
  4748. To test out kernel panics and oops in controlled circumstances, try out the modules:
  4749. ....
  4750. insmod panic.ko
  4751. insmod oops.ko
  4752. ....
  4753. Source:
  4754. * link:kernel_modules/panic.c[]
  4755. * link:kernel_modules/oops.c[]
  4756. A panic can also be generated with:
  4757. ....
  4758. echo c > /proc/sysrq-trigger
  4759. ....
  4760. Panic vs oops: https://unix.stackexchange.com/questions/91854/whats-the-difference-between-a-kernel-oops-and-a-kernel-panic
  4761. How to generate them:
  4762. * https://unix.stackexchange.com/questions/66197/how-to-cause-kernel-panic-with-a-single-command
  4763. * https://stackoverflow.com/questions/23484147/generate-kernel-oops-or-crash-in-the-code
  4764. When a panic happens, <<linux-kernel-magic-keys,`Shift-PgUp`>> does not work as it normally does, and it is hard to get the logs if on are on <<qemu-graphic-mode>>:
  4765. * https://superuser.com/questions/848412/scrolling-up-the-failed-screen-with-kernel-panic
  4766. * https://superuser.com/questions/269228/write-qemu-booting-virtual-machine-output-to-a-file
  4767. * http://www.reactos.org/wiki/QEMU#Redirect_to_a_file
  4768. ==== Kernel panic
  4769. On panic, the kernel dies, and so does our terminal.
  4770. The panic trace looks like:
  4771. ....
  4772. panic: loading out-of-tree module taints kernel.
  4773. panic myinit
  4774. Kernel panic - not syncing: hello panic
  4775. CPU: 0 PID: 53 Comm: insmod Tainted: G O 4.16.0 #6
  4776. Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
  4777. Call Trace:
  4778. dump_stack+0x7d/0xba
  4779. ? 0xffffffffc0000000
  4780. panic+0xda/0x213
  4781. ? printk+0x43/0x4b
  4782. ? 0xffffffffc0000000
  4783. myinit+0x1d/0x20 [panic]
  4784. do_one_initcall+0x3e/0x170
  4785. do_init_module+0x5b/0x210
  4786. load_module+0x2035/0x29d0
  4787. ? kernel_read_file+0x7d/0x140
  4788. ? SyS_finit_module+0xa8/0xb0
  4789. SyS_finit_module+0xa8/0xb0
  4790. do_syscall_64+0x6f/0x310
  4791. ? trace_hardirqs_off_thunk+0x1a/0x32
  4792. entry_SYSCALL_64_after_hwframe+0x42/0xb7
  4793. RIP: 0033:0x7ffff7b36206
  4794. RSP: 002b:00007fffffffeb78 EFLAGS: 00000206 ORIG_RAX: 0000000000000139
  4795. RAX: ffffffffffffffda RBX: 000000000000005c RCX: 00007ffff7b36206
  4796. RDX: 0000000000000000 RSI: 000000000069e010 RDI: 0000000000000003
  4797. RBP: 000000000069e010 R08: 00007ffff7ddd320 R09: 0000000000000000
  4798. R10: 00007ffff7ddd320 R11: 0000000000000206 R12: 0000000000000003
  4799. R13: 00007fffffffef4a R14: 0000000000000000 R15: 0000000000000000
  4800. Kernel Offset: disabled
  4801. ---[ end Kernel panic - not syncing: hello panic
  4802. ....
  4803. Notice how our panic message `hello panic` is visible at:
  4804. ....
  4805. Kernel panic - not syncing: hello panic
  4806. ....
  4807. ===== Kernel module stack trace to source line
  4808. The log shows which module each symbol belongs to if any, e.g.:
  4809. ....
  4810. myinit+0x1d/0x20 [panic]
  4811. ....
  4812. says that the function `myinit` is in the module `panic`.
  4813. To find the line that panicked, do:
  4814. ....
  4815. ./run-gdb
  4816. ....
  4817. and then:
  4818. ....
  4819. info line *(myinit+0x1d)
  4820. ....
  4821. which gives us the correct line:
  4822. ....
  4823. Line 7 of "/root/linux-kernel-module-cheat/out/kernel_modules/x86_64/kernel_modules/panic.c" starts at address 0xbf00001c <myinit+28> and ends at 0xbf00002c <myexit>.
  4824. ....
  4825. as explained at: https://stackoverflow.com/questions/8545931/using-gdb-to-convert-addresses-to-lines/27576029#27576029
  4826. The exact same thing can be done post mortem with:
  4827. ....
  4828. ./run-toolchain gdb -- \
  4829. -batch \
  4830. -ex 'info line *(myinit+0x1d)' \
  4831. "$(./getvar kernel_modules_build_subdir)/panic.ko" \
  4832. ;
  4833. ....
  4834. Related:
  4835. * https://stackoverflow.com/questions/6151538/addr2line-on-kernel-module
  4836. * https://stackoverflow.com/questions/13468286/how-to-read-understand-analyze-and-debug-a-linux-kernel-panic
  4837. [[bug-on]]
  4838. ===== BUG_ON
  4839. Basically just calls `panic("BUG!")` for most archs.
  4840. ===== Exit emulator on panic
  4841. For testing purposes, it is very useful to quit the emulator automatically with exit status non zero in case of kernel panic, instead of just hanging forever.
  4842. ====== Exit QEMU on panic
  4843. Enabled by default with:
  4844. * `panic=-1` command line option which reboots the kernel immediately on panic, see: xref:reboot-on-panic[xrefstyle=full]
  4845. * QEMU `-no-reboot`, which makes QEMU exit when the guest tries to reboot
  4846. Also asked at https://unix.stackexchange.com/questions/443017/can-i-make-qemu-exit-with-failure-on-kernel-panic which also mentions the x86_64 `-device pvpanic`, but I don't see much advantage to it.
  4847. TODO neither method exits with exit status different from 0, so for now we are just grepping the logs for panic messages, which sucks.
  4848. One possibility that gets close would be to use <<gdb>> to break at the `panic` function, and then send a <<qemu-monitor-from-gdb>> `quit` command if that happens, but I don't see a way to exit with non-zero status to indicate error.
  4849. ====== Exit gem5 on panic
  4850. gem5 9048ef0ffbf21bedb803b785fb68f83e95c04db8 (January 2019) can detect panics automatically if the option `system.panic_on_panic` is on.
  4851. It parses kernel symbols and detecting when the PC reaches the address of the `panic` function. gem5 then prints to stdout:
  4852. ....
  4853. Kernel panic in simulated kernel
  4854. ....
  4855. and exits with status -6.
  4856. At gem5 ff52563a214c71fcd1e21e9f00ad839612032e3b (July 2018) behaviour was different, and just exited 0: https://www.mail-archive.com/gem5-users@gem5.org/msg15870.html TODO find fixing commit.
  4857. We enable the `system.panic_on_panic` option by default on `arm` and `aarch64`, which makes gem5 exit immediately in case of panic, which is awesome!
  4858. If we don't set `system.panic_on_panic`, then gem5 just hangs on an infinite guest loop.
  4859. TODO: why doesn't gem5 x86 ff52563a214c71fcd1e21e9f00ad839612032e3b support `system.panic_on_panic` as well? Trying to set `system.panic_on_panic` there fails with:
  4860. ....
  4861. tried to set or access non-existentobject parameter: panic_on_panic
  4862. ....
  4863. However, at that commit panic on x86 makes gem5 crash with:
  4864. ....
  4865. panic: i8042 "System reset" command not implemented.
  4866. ....
  4867. which is a good side effect of an unimplemented hardware feature, since the simulation actually stops.
  4868. The implementation of panic detection happens at: https://github.com/gem5/gem5/blob/1da285dfcc31b904afc27e440544d006aae25b38/src/arch/arm/linux/system.cc#L73
  4869. ....
  4870. kernelPanicEvent = addKernelFuncEventOrPanic<Linux::KernelPanicEvent>(
  4871. "panic", "Kernel panic in simulated kernel", dmesg_output);
  4872. ....
  4873. Here we see that the symbol `"panic"` for the `panic()` function is the one being tracked.
  4874. Related thread: https://stackoverflow.com/questions/56032347/is-there-a-way-to-identify-if-gem5-run-got-over-successfully
  4875. ===== Reboot on panic
  4876. Make the kernel reboot after n seconds after panic:
  4877. ....
  4878. echo 1 > /proc/sys/kernel/panic
  4879. ....
  4880. Can also be controlled with the `panic=` kernel boot parameter.
  4881. `0` to disable, `-1` to reboot immediately.
  4882. Bibliography:
  4883. * https://github.com/torvalds/linux/blob/v4.17/Documentation/admin-guide/kernel-parameters.txt#L2931
  4884. * https://unix.stackexchange.com/questions/29567/how-to-configure-the-linux-kernel-to-reboot-on-panic/29569#29569
  4885. ===== Panic trace show addresses instead of symbols
  4886. If `CONFIG_KALLSYMS=n`, then addresses are shown on traces instead of symbol plus offset.
  4887. In v4.16 it does not seem possible to configure that at runtime. GDB step debugging with:
  4888. ....
  4889. ./run --eval-after 'insmod dump_stack.ko' --gdb-wait --tmux-args dump_stack
  4890. ....
  4891. shows that traces are printed at `arch/x86/kernel/dumpstack.c`:
  4892. ....
  4893. static void printk_stack_address(unsigned long address, int reliable,
  4894. char *log_lvl)
  4895. {
  4896. touch_nmi_watchdog();
  4897. printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
  4898. }
  4899. ....
  4900. and `%pB` is documented at `Documentation/core-api/printk-formats.rst`:
  4901. ....
  4902. If KALLSYMS are disabled then the symbol address is printed instead.
  4903. ....
  4904. I wasn't able do disable `CONFIG_KALLSYMS` to test this this out however, it is being selected by some other option? But I then used `make menuconfig` to see which options select it, and they were all off...
  4905. [[oops]]
  4906. ==== Kernel oops
  4907. On oops, the shell still lives after.
  4908. However we:
  4909. * leave the normal control flow, and `oops after` never gets printed: an interrupt is serviced
  4910. * cannot `rmmod oops` afterwards
  4911. It is possible to make `oops` lead to panics always with:
  4912. ....
  4913. echo 1 > /proc/sys/kernel/panic_on_oops
  4914. insmod oops.ko
  4915. ....
  4916. An oops stack trace looks like:
  4917. ....
  4918. BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
  4919. IP: myinit+0x18/0x30 [oops]
  4920. PGD dccf067 P4D dccf067 PUD dcc1067 PMD 0
  4921. Oops: 0002 [#1] SMP NOPTI
  4922. Modules linked in: oops(O+)
  4923. CPU: 0 PID: 53 Comm: insmod Tainted: G O 4.16.0 #6
  4924. Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
  4925. RIP: 0010:myinit+0x18/0x30 [oops]
  4926. RSP: 0018:ffffc900000d3cb0 EFLAGS: 00000282
  4927. RAX: 000000000000000b RBX: ffffffffc0000000 RCX: ffffffff81e3e3a8
  4928. RDX: 0000000000000001 RSI: 0000000000000086 RDI: ffffffffc0001033
  4929. RBP: ffffc900000d3e30 R08: 69796d2073706f6f R09: 000000000000013b
  4930. R10: ffffea0000373280 R11: ffffffff822d8b2d R12: 0000000000000000
  4931. R13: ffffffffc0002050 R14: ffffffffc0002000 R15: ffff88000dc934c8
  4932. FS: 00007ffff7ff66a0(0000) GS:ffff88000fc00000(0000) knlGS:0000000000000000
  4933. CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  4934. CR2: 0000000000000000 CR3: 000000000dcd2000 CR4: 00000000000006f0
  4935. Call Trace:
  4936. do_one_initcall+0x3e/0x170
  4937. do_init_module+0x5b/0x210
  4938. load_module+0x2035/0x29d0
  4939. ? SyS_finit_module+0xa8/0xb0
  4940. SyS_finit_module+0xa8/0xb0
  4941. do_syscall_64+0x6f/0x310
  4942. ? trace_hardirqs_off_thunk+0x1a/0x32
  4943. entry_SYSCALL_64_after_hwframe+0x42/0xb7
  4944. RIP: 0033:0x7ffff7b36206
  4945. RSP: 002b:00007fffffffeb78 EFLAGS: 00000206 ORIG_RAX: 0000000000000139
  4946. RAX: ffffffffffffffda RBX: 000000000000005c RCX: 00007ffff7b36206
  4947. RDX: 0000000000000000 RSI: 000000000069e010 RDI: 0000000000000003
  4948. RBP: 000000000069e010 R08: 00007ffff7ddd320 R09: 0000000000000000
  4949. R10: 00007ffff7ddd320 R11: 0000000000000206 R12: 0000000000000003
  4950. R13: 00007fffffffef4b R14: 0000000000000000 R15: 0000000000000000
  4951. Code: <c7> 04 25 00 00 00 00 00 00 00 00 e8 b2 33 09 c1 31 c0 c3 0f 1f 44
  4952. RIP: myinit+0x18/0x30 [oops] RSP: ffffc900000d3cb0
  4953. CR2: 0000000000000000
  4954. ---[ end trace 3cdb4e9d9842b503 ]---
  4955. ....
  4956. To find the line that oopsed, look at the `RIP` register:
  4957. ....
  4958. RIP: 0010:myinit+0x18/0x30 [oops]
  4959. ....
  4960. and then on GDB:
  4961. ....
  4962. ./run-gdb
  4963. ....
  4964. run
  4965. ....
  4966. info line *(myinit+0x18)
  4967. ....
  4968. which gives us the correct line:
  4969. ....
  4970. Line 7 of "/root/linux-kernel-module-cheat/out/kernel_modules/x86_64/kernel_modules/panic.c" starts at address 0xbf00001c <myinit+28> and ends at 0xbf00002c <myexit>.
  4971. ....
  4972. This-did not work on `arm` due to <<gdb-step-debug-kernel-module-arm>> so we need to either:
  4973. * <<gdb-module-init>>
  4974. * <<kernel-module-stack-trace-to-source-line>> post-mortem method
  4975. [[dump-stack]]
  4976. ==== dump_stack
  4977. The `dump_stack` function produces a stack trace much like panic and oops, but causes no problems and we return to the normal control flow, and can cleanly remove the module afterwards:
  4978. ....
  4979. insmod dump_stack.ko
  4980. ....
  4981. Source: link:kernel_modules/dump_stack.c[]
  4982. [[warn-on]]
  4983. ==== WARN_ON
  4984. The `WARN_ON` macro basically just calls <<dump-stack>>.
  4985. One extra side effect is that we can make it also panic with:
  4986. ....
  4987. echo 1 > /proc/sys/kernel/panic_on_warn
  4988. insmod warn_on.ko
  4989. ....
  4990. Source: link:kernel_modules/warn_on.c[]
  4991. Can also be activated with the `panic_on_warn` boot parameter.
  4992. [[not-syncing-vfs]]
  4993. ==== not syncing: VFS: Unable to mount root fs on unknown-block(0,0)
  4994. Let's learn how to diagnose problems with the root filesystem not being found. TODO add a sample panic error message for each error type:
  4995. * https://askubuntu.com/questions/41930/kernel-panic-not-syncing-vfs-unable-to-mount-root-fs-on-unknown-block0-0/1048477#1048477
  4996. This is the diagnosis procedure.
  4997. First, if we remove the following options from the our kernel build:
  4998. ....
  4999. CONFIG_VIRTIO_BLK=y
  5000. CONFIG_VIRTIO_PCI=y
  5001. ....
  5002. we get a message like this:
  5003. ....
  5004. <4>[ 0.541708] VFS: Cannot open root device "vda" or unknown-block(0,0): error -6
  5005. <4>[ 0.542035] Please append a correct "root=" boot option; here are the available partitions:
  5006. <0>[ 0.542562] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)
  5007. ....
  5008. From the message, we notice that the kernel sees a disk of some sort (vda means a virtio disk), but it could not open it.
  5009. This means that the kernel cannot properly read any bytes from the disk.
  5010. And afterwards, it has an useless message `here are the available partitions:`, but of course we have no available partitions, the list is empty, because the kernel cannot even read bytes from the disk, so it definitely cannot understand its filesystems.
  5011. This can indicate basically two things:
  5012. * on real hardware, it could mean that the hardware is broken. Kind of hard on emulators ;-)
  5013. * you didn't configure the kernel with the option that enables it to read from that kind of disk.
  5014. +
  5015. In our case, disks are virtio devices that QEMU exposes to the guest kernel. This is why removing the options:
  5016. +
  5017. ....
  5018. CONFIG_VIRTIO_BLK=y
  5019. CONFIG_VIRTIO_PCI=y
  5020. ....
  5021. +
  5022. led to this error.
  5023. Now, let's restore the previously removed virtio options, and instead remove:
  5024. ....
  5025. CONFIG_EXT4_FS=y
  5026. ....
  5027. This time, the kernel will be able to read bytes from the device. But it won't be able to read files from the filesystem, because our filesystem is in ext4 format.
  5028. Therefore, this time the error message looks like this:
  5029. ....
  5030. <4>[ 0.585296] List of all partitions:
  5031. <4>[ 0.585913] fe00 524288 vda
  5032. <4>[ 0.586123] driver: virtio_blk
  5033. <4>[ 0.586471] No filesystem could mount root, tried:
  5034. <4>[ 0.586497] squashfs
  5035. <4>[ 0.586724]
  5036. <0>[ 0.587360] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(254,0)
  5037. ....
  5038. In this case, we see that the kernel did manage to read from the `vda` disk! It even told us how: by using the `driver: virtio_blk`.
  5039. However, it then went through the list of all filesystem types it knows how to read files from, in our case just `squashf`, and none of those worked, because our partition is an ext4 partition.
  5040. Finally, the last possible error is that we simply passed the wrong `root=` <<kernel-command-line-parameters,kernel CLI option>>. For example, if we hack our command to pass:
  5041. ....
  5042. root=/dev/vda2
  5043. ....
  5044. which does not even exist since `/dev/vda` is a raw non-partitioned ext4 image, then boot fails with a message:
  5045. ....
  5046. <4>[ 0.608475] Please append a correct "root=" boot option; here are the available partitions:
  5047. <4>[ 0.609563] fe00 524288 vda
  5048. <4>[ 0.609723] driver: virtio_blk
  5049. <0>[ 0.610433] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(254,2)
  5050. ....
  5051. This one is easy, because the kernel tells us clearly which partitions it would have been able to understand. In our case `/dev/vda`.
  5052. Once all those problems are solved, in the working setup, we finally see something like:
  5053. ....
  5054. <6>[ 0.636129] EXT4-fs (vda): mounted filesystem with ordered data mode. Opts: (null)
  5055. <6>[ 0.636700] VFS: Mounted root (ext4 filesystem) on device 254:0.
  5056. ....
  5057. Tested on LKMC 863a373a30cd3c7982e3e453c4153f85133b17a9, Linux kernel 5.4.3.
  5058. Bibliography:
  5059. * https://askubuntu.com/questions/41930/kernel-panic-not-syncing-vfs-unable-to-mount-root-fs-on-unknown-block0-0/1048477#1048477
  5060. * https://unix.stackexchange.com/questions/414655/not-syncing-vfs-unable-to-mount-root-fs-on-unknown-block0-0/603197#603197
  5061. * https://stackoverflow.com/questions/63277677/i-meet-a-problem-when-i-encountered-in-the-fs-mode-of-running-gem5/63278487#63278487 summary only
  5062. === Pseudo filesystems
  5063. Pseudo filesystems are filesystems that don't represent actual files in a hard disk, but rather allow us to do special operations on filesystem-related system calls.
  5064. What each pseudo-file does for each related system call does is defined by its <<file-operations>>.
  5065. Bibliography:
  5066. * https://superuser.com/questions/1198292/what-is-a-pseudo-file-system-in-linux
  5067. * https://en.wikipedia.org/wiki/Synthetic_file_system
  5068. ==== debugfs
  5069. Debugfs is the simplest pseudo filesystem to play around with:
  5070. ....
  5071. ./debugfs.sh
  5072. echo $?
  5073. ....
  5074. Outcome: the test passes:
  5075. ....
  5076. 0
  5077. ....
  5078. Sources:
  5079. * link:kernel_modules/debugfs.c[]
  5080. * link:rootfs_overlay/lkmc/debugfs.sh[]
  5081. Debugfs is made specifically to help test kernel stuff. Just mount, set <<file-operations>>, and we are done.
  5082. For this reason, it is the filesystem that we use whenever possible in our tests.
  5083. `debugfs.sh` explicitly mounts a debugfs at a custom location, but the most common mount point is `/sys/kernel/debug`.
  5084. This mount not done automatically by the kernel however: we, like most distros, do it from userland with our link:rootfs_overlay/etc/fstab[fstab].
  5085. Debugfs support requires the kernel to be compiled with `CONFIG_DEBUG_FS=y`.
  5086. Only the more basic file operations can be implemented in debugfs, e.g. `mmap` never gets called:
  5087. * https://patchwork.kernel.org/patch/9252557/
  5088. * https://github.com/torvalds/linux/blob/v4.9/fs/debugfs/file.c#L212
  5089. Bibliography: https://github.com/chadversary/debugfs-tutorial
  5090. ==== procfs
  5091. Procfs is just another fops entry point:
  5092. ....
  5093. ./procfs.sh
  5094. echo $?
  5095. ....
  5096. Outcome: the test passes:
  5097. ....
  5098. 0
  5099. ....
  5100. Procfs is a little less convenient than <<debugfs>>, but is more used in serious applications.
  5101. Procfs can run all system calls, including ones that debugfs can't, e.g. <<mmap>>.
  5102. Sources:
  5103. * link:kernel_modules/procfs.c[]
  5104. * link:rootfs_overlay/lkmc/procfs.sh[]
  5105. Bibliography:
  5106. * https://superuser.com/questions/619955/how-does-proc-work/1442571#1442571
  5107. * https://stackoverflow.com/questions/8516021/proc-create-example-for-kernel-module/18924359#18924359
  5108. [[proc-version]]
  5109. ===== /proc/version
  5110. Its data is shared with `uname()`, which is a <<posix,POSIX C>> function and has a Linux syscall to back it up.
  5111. Where the data comes from and how to modify it:
  5112. * https://unix.stackexchange.com/questions/136959/where-does-uname-get-its-information-from/485962#485962
  5113. * https://stackoverflow.com/questions/23424174/how-to-customize-or-remove-extra-linux-kernel-version-details-shown-at-boot
  5114. In this repo, leaking host information, and to make builds more reproducible, we are setting:
  5115. - user and date to dummy values with `KBUILD_BUILD_USER` and `KBUILD_BUILD_TIMESTAMP`
  5116. - hostname to the kernel git commit with `KBUILD_BUILD_HOST` and `KBUILD_BUILD_VERSION`
  5117. A sample result is:
  5118. ....
  5119. Linux version 4.19.0-dirty (lkmc@84df9525b0c27f3ebc2ebb1864fa62a97fdedb7d) (gcc version 6.4.0 (Buildroot 2018.05-00002-gbc60382b8f)) #1 SMP Thu Jan 1 00:00:00 UTC 1970
  5120. ....
  5121. ==== sysfs
  5122. Sysfs is more restricted than <<procfs>>, as it does not take an arbitrary `file_operations`:
  5123. ....
  5124. ./sysfs.sh
  5125. echo $?
  5126. ....
  5127. Outcome: the test passes:
  5128. ....
  5129. 0
  5130. ....
  5131. Sources:
  5132. * link:kernel_modules/sysfs.c[]
  5133. * link:rootfs_overlay/lkmc/sysfs.sh[]
  5134. Vs procfs:
  5135. * https://unix.stackexchange.com/questions/4884/what-is-the-difference-between-procfs-and-sysfs/382315#382315
  5136. * https://stackoverflow.com/questions/37237835/how-to-attach-file-operations-to-sysfs-attribute-in-platform-driver
  5137. * https://serverfault.com/questions/65261/linux-proc-sys-kernel-vs-sys-kernel
  5138. You basically can only do `open`, `close`, `read`, `write`, and `lseek` on sysfs files.
  5139. It is similar to a <<seq-file>> file operation, except that write is also implemented.
  5140. TODO: what are those `kobject` structs? Make a more complex example that shows what they can do.
  5141. Bibliography:
  5142. * https://github.com/t3rm1n4l/kern-dev-tutorial/blob/1f036ef40fc4378f5c8d2842e55bcea7c6f8894a/05-sysfs/sysfs.c
  5143. * https://www.kernel.org/doc/Documentation/kobject.txt
  5144. * https://www.quora.com/What-are-kernel-objects-Kobj
  5145. * http://www.makelinux.net/ldd3/chp-14-sect-1
  5146. * https://www.win.tue.nl/~aeb/linux/lk/lk-13.html
  5147. ==== Character devices
  5148. Character devices can have arbitrary <<file-operations>> associated to them:
  5149. ....
  5150. ./character_device.sh
  5151. echo $?
  5152. ....
  5153. Outcome: the test passes:
  5154. ....
  5155. 0
  5156. ....
  5157. Sources:
  5158. * link:rootfs_overlay/lkmc/character_device.sh[]
  5159. * link:rootfs_overlay/lkmc/mknoddev.sh[]
  5160. * link:kernel_modules/character_device.c[]
  5161. Unlike <<procfs>> entires, character device files are created with userland `mknod` or `mknodat` syscalls:
  5162. ....
  5163. mknod </dev/path_to_dev> c <major> <minor>
  5164. ....
  5165. Intuitively, for physical devices like keyboards, the major number maps to which driver, and the minor number maps to which device it is.
  5166. A single driver can drive multiple compatible devices.
  5167. The major and minor numbers can be observed with:
  5168. ....
  5169. ls -l /dev/urandom
  5170. ....
  5171. Output:
  5172. ....
  5173. crw-rw-rw- 1 root root 1, 9 Jun 29 05:45 /dev/urandom
  5174. ....
  5175. which means:
  5176. * `c` (first letter): this is a character device. Would be `b` for a block device.
  5177. * `1, 9`: the major number is `1`, and the minor `9`
  5178. To avoid device number conflicts when registering the driver we:
  5179. * ask the kernel to allocate a free major number for us with: `register_chrdev(0`
  5180. * find ouf which number was assigned by grepping `/proc/devices` for the kernel module name
  5181. Bibliography: https://unix.stackexchange.com/questions/37829/understanding-character-device-or-character-special-files/371758#371758
  5182. ===== Automatically create character device file on insmod
  5183. And also destroy it on `rmmod`:
  5184. ....
  5185. ./character_device_create.sh
  5186. echo $?
  5187. ....
  5188. Outcome: the test passes:
  5189. ....
  5190. 0
  5191. ....
  5192. Sources:
  5193. * link:kernel_modules/character_device_create.c[]
  5194. * link:rootfs_overlay/lkmc/character_device_create.sh[]
  5195. Bibliography: https://stackoverflow.com/questions/5970595/how-to-create-a-device-node-from-the-init-module-code-of-a-linux-kernel-module/45531867#45531867
  5196. === Pseudo files
  5197. ==== File operations
  5198. File operations are the main method of userland driver communication.
  5199. `struct file_operations` determines what the kernel will do on filesystem system calls of <<pseudo-filesystems>>.
  5200. This example illustrates the most basic system calls: `open`, `read`, `write`, `close` and `lseek`:
  5201. ....
  5202. ./fops.sh
  5203. echo $?
  5204. ....
  5205. Outcome: the test passes:
  5206. ....
  5207. 0
  5208. ....
  5209. Sources:
  5210. * link:kernel_modules/fops.c[]
  5211. * link:rootfs_overlay/lkmc/fops.sh[]
  5212. Then give this a try:
  5213. ....
  5214. sh -x ./fops.sh
  5215. ....
  5216. We have put printks on each fop, so this allows you to see which system calls are being made for each command.
  5217. No, there no official documentation: https://stackoverflow.com/questions/15213932/what-are-the-struct-file-operations-arguments
  5218. [[seq-file]]
  5219. ==== seq_file
  5220. Writing trivial read <<file-operations>> is repetitive and error prone. The `seq_file` API makes the process much easier for those trivial cases:
  5221. ....
  5222. ./seq_file.sh
  5223. echo $?
  5224. ....
  5225. Outcome: the test passes:
  5226. ....
  5227. 0
  5228. ....
  5229. Sources:
  5230. * link:kernel_modules/seq_file.c[]
  5231. * link:rootfs_overlay/lkmc/seq_file.sh[]
  5232. In this example we create a debugfs file that behaves just like a file that contains:
  5233. ....
  5234. 0
  5235. 1
  5236. 2
  5237. ....
  5238. However, we only store a single integer in memory and calculate the file on the fly in an iterator fashion.
  5239. `seq_file` does not provide `write`: https://stackoverflow.com/questions/30710517/how-to-implement-a-writable-proc-file-by-using-seq-file-in-a-driver-module
  5240. Bibliography:
  5241. * https://github.com/torvalds/linux/blob/v4.17/Documentation/filesystems/seq_file.txt[Documentation/filesystems/seq_file.txt]
  5242. * https://stackoverflow.com/questions/25399112/how-to-use-a-seq-file-in-linux-modules
  5243. [[seq-file-single-open]]
  5244. ===== seq_file single_open
  5245. If you have the entire read output upfront, `single_open` is an even more convenient version of <<seq-file>>:
  5246. ....
  5247. ./seq_file.sh
  5248. echo $?
  5249. ....
  5250. Outcome: the test passes:
  5251. ....
  5252. 0
  5253. ....
  5254. Sources:
  5255. * link:kernel_modules/seq_file_single_open.c[]
  5256. * link:rootfs_overlay/lkmc/seq_file_single_open.sh[]
  5257. This example produces a debugfs file that behaves like a file that contains:
  5258. ....
  5259. ab
  5260. cd
  5261. ....
  5262. ==== poll
  5263. The poll system call allows an user process to do a non-busy wait on a kernel event.
  5264. Sources:
  5265. * link:kernel_modules/poll.c[]
  5266. * link:rootfs_overlay/lkmc/poll.sh[]
  5267. Example:
  5268. ....
  5269. ./poll.sh
  5270. ....
  5271. Outcome: `jiffies` gets printed to stdout every second from userland, e.g.:
  5272. ....
  5273. poll
  5274. <6>[ 4.275305] poll
  5275. <6>[ 4.275580] return POLLIN
  5276. revents = 1
  5277. POLLIN n=10 buf=4294893337
  5278. poll
  5279. <6>[ 4.276627] poll
  5280. <6>[ 4.276911] return 0
  5281. <6>[ 5.271193] wake_up
  5282. <6>[ 5.272326] poll
  5283. <6>[ 5.273207] return POLLIN
  5284. revents = 1
  5285. POLLIN n=10 buf=4294893588
  5286. poll
  5287. <6>[ 5.276367] poll
  5288. <6>[ 5.276618] return 0
  5289. <6>[ 6.275178] wake_up
  5290. <6>[ 6.276370] poll
  5291. <6>[ 6.277269] return POLLIN
  5292. revents = 1
  5293. POLLIN n=10 buf=4294893839
  5294. ....
  5295. Force the poll <<file-operations,`file_operation`>> to return 0 to see what happens more clearly:
  5296. ....
  5297. ./poll.sh pol0=1
  5298. ....
  5299. Sample output:
  5300. ....
  5301. poll
  5302. <6>[ 85.674801] poll
  5303. <6>[ 85.675788] return 0
  5304. <6>[ 86.675182] wake_up
  5305. <6>[ 86.676431] poll
  5306. <6>[ 86.677373] return 0
  5307. <6>[ 87.679198] wake_up
  5308. <6>[ 87.680515] poll
  5309. <6>[ 87.681564] return 0
  5310. <6>[ 88.683198] wake_up
  5311. ....
  5312. From this we see that control is not returned to userland: the kernel just keeps calling the poll `file_operation` again and again.
  5313. Typically, we are waiting for some hardware to make some piece of data available available to the kernel.
  5314. The hardware notifies the kernel that the data is ready with an interrupt.
  5315. To simplify this example, we just fake the hardware interrupts with a <<kthread>> that sleeps for a second in an infinite loop.
  5316. Bibliography:
  5317. * https://stackoverflow.com/questions/30035776/how-to-add-poll-function-to-the-kernel-module-code/44645336#44645336
  5318. * https://stackoverflow.com/questions/30234496/why-do-we-need-to-call-poll-wait-in-poll/44645480#44645480
  5319. ==== ioctl
  5320. The `ioctl` system call is the best way to pass an arbitrary number of parameters to the kernel in a single go:
  5321. ....
  5322. ./ioctl.sh
  5323. echo $?
  5324. ....
  5325. Outcome: the test passes:
  5326. ....
  5327. 0
  5328. ....
  5329. Sources:
  5330. * link:kernel_modules/ioctl.c[]
  5331. * link:lkmc/ioctl.h[]
  5332. * link:userland/kernel_modules/ioctl.c[]
  5333. * link:rootfs_overlay/lkmc/ioctl.sh[]
  5334. `ioctl` is one of the most important methods of communication with real device drivers, which often take several fields as input.
  5335. `ioctl` takes as input:
  5336. * an integer `request` : it usually identifies what type of operation we want to do on this call
  5337. * an untyped pointer to memory: can be anything, but is typically a pointer to a `struct`
  5338. +
  5339. The type of the `struct` often depends on the `request` input
  5340. +
  5341. This `struct` is defined on a uapi-style C header that is used both to compile the kernel module and the userland executable.
  5342. +
  5343. The fields of this `struct` can be thought of as arbitrary input parameters.
  5344. And the output is:
  5345. * an integer return value. `man ioctl` documents:
  5346. +
  5347. ____
  5348. Usually, on success zero is returned. A few `ioctl()` requests use the return value as an output parameter and return a nonnegative value on success. On error, -1 is returned, and errno is set appropriately.
  5349. ____
  5350. * the input pointer data may be overwritten to contain arbitrary output
  5351. Bibliography:
  5352. * https://stackoverflow.com/questions/2264384/how-do-i-use-ioctl-to-manipulate-my-kernel-module/44613896#44613896
  5353. * https://askubuntu.com/questions/54239/problem-with-ioctl-in-a-simple-kernel-module/926675#926675
  5354. ==== mmap
  5355. The `mmap` system call allows us to share memory between user and kernel space without copying:
  5356. ....
  5357. ./mmap.sh
  5358. echo $?
  5359. ....
  5360. Outcome: the test passes:
  5361. ....
  5362. 0
  5363. ....
  5364. Sources:
  5365. * link:kernel_modules/mmap.c[]
  5366. * link:userland/kernel_modules/mmap.c[]
  5367. * link:rootfs_overlay/lkmc/mmap.sh[]
  5368. In this example, we make a tiny 4 byte kernel buffer available to user-space, and we then modify it on userspace, and check that the kernel can see the modification.
  5369. `mmap`, like most more complex <<file-operations>>, does not work with <<debugfs>> as of 4.9, so we use a <<procfs>> file for it.
  5370. Example adapted from: https://coherentmusings.wordpress.com/2014/06/10/implementing-mmap-for-transferring-data-from-user-space-to-kernel-space/
  5371. Bibliography:
  5372. * https://stackoverflow.com/questions/10760479/mmap-kernel-buffer-to-user-space/10770582#10770582
  5373. * https://stackoverflow.com/questions/1623008/allocating-memory-for-user-space-from-kernel-thread
  5374. * https://stackoverflow.com/questions/6967933/mmap-mapping-in-user-space-a-kernel-buffer-allocated-with-kmalloc
  5375. * https://github.com/jeremytrimble/ezdma
  5376. * https://github.com/simonjhall/dma
  5377. * https://github.com/ikwzm/udmabuf
  5378. ==== Anonymous inode
  5379. Anonymous inodes allow getting multiple file descriptors from a single filesystem entry, which reduces namespace pollution compared to creating multiple device files:
  5380. ....
  5381. ./anonymous_inode.sh
  5382. echo $?
  5383. ....
  5384. Outcome: the test passes:
  5385. ....
  5386. 0
  5387. ....
  5388. Sources:
  5389. * link:kernel_modules/anonymous_inode.c[]
  5390. * link:lkmc/anonymous_inode.h[]
  5391. * link:userland/kernel_modules/anonymous_inode.c[]
  5392. * link:rootfs_overlay/lkmc/anonymous_inode.sh[]
  5393. This example gets an anonymous inode via <<ioctl>> from a debugfs entry by using `anon_inode_getfd`.
  5394. Reads to that inode return the sequence: `1`, `10`, `100`, ... `10000000`, `1`, `100`, ...
  5395. Bibliography: https://stackoverflow.com/questions/4508998/what-is-an-anonymous-inode-in-linux/44388030#44388030
  5396. ==== netlink sockets
  5397. Netlink sockets offer a socket API for kernel / userland communication:
  5398. ....
  5399. ./netlink.sh
  5400. echo $?
  5401. ....
  5402. Outcome: the test passes:
  5403. ....
  5404. 0
  5405. ....
  5406. Sources:
  5407. * link:kernel_modules/netlink.c[]
  5408. * link:lkmc/netlink.h[]
  5409. * link:userland/kernel_modules/netlink.c[]
  5410. * link:rootfs_overlay/lkmc/netlink.sh[]
  5411. Launch multiple user requests in parallel to stress our socket:
  5412. ....
  5413. insmod netlink.ko sleep=1
  5414. for i in `seq 16`; do ./netlink.out & done
  5415. ....
  5416. TODO: what is the advantage over `read`, `write` and `poll`? https://stackoverflow.com/questions/16727212/how-netlink-socket-in-linux-kernel-is-different-from-normal-polling-done-by-appl
  5417. Bibliography:
  5418. * https://stackoverflow.com/questions/3299386/how-to-use-netlink-socket-to-communicate-with-a-kernel-module
  5419. * https://en.wikipedia.org/wiki/Netlink
  5420. === kthread
  5421. Kernel threads are managed exactly like userland threads; they also have a backing `task_struct`, and are scheduled with the same mechanism:
  5422. ....
  5423. insmod kthread.ko
  5424. ....
  5425. Source: link:kernel_modules/kthread.c[]
  5426. Outcome: dmesg counts from `0` to `9` once every second infinitely many times:
  5427. ....
  5428. 0
  5429. 1
  5430. 2
  5431. ...
  5432. 8
  5433. 9
  5434. 0
  5435. 1
  5436. 2
  5437. ...
  5438. ....
  5439. The count stops when we `rmmod`:
  5440. ....
  5441. rmmod kthread
  5442. ....
  5443. The sleep is done with `usleep_range`, see: xref:sleep[xrefstyle=full].
  5444. Bibliography:
  5445. * https://stackoverflow.com/questions/10177641/proper-way-of-handling-threads-in-kernel
  5446. * https://stackoverflow.com/questions/4084708/how-to-wait-for-a-linux-kernel-thread-kthreadto-exit
  5447. ==== kthreads
  5448. Let's launch two threads and see if they actually run in parallel:
  5449. ....
  5450. insmod kthreads.ko
  5451. ....
  5452. Source: link:kernel_modules/kthreads.c[]
  5453. Outcome: two threads count to dmesg from `0` to `9` in parallel.
  5454. Each line has output of form:
  5455. ....
  5456. <thread_id> <count>
  5457. ....
  5458. Possible very likely outcome:
  5459. ....
  5460. 1 0
  5461. 2 0
  5462. 1 1
  5463. 2 1
  5464. 1 2
  5465. 2 2
  5466. 1 3
  5467. 2 3
  5468. ....
  5469. The threads almost always interleaved nicely, thus confirming that they are actually running in parallel.
  5470. ==== sleep
  5471. Count to dmesg every one second from `0` up to `n - 1`:
  5472. ....
  5473. insmod sleep.ko n=5
  5474. ....
  5475. Source: link:kernel_modules/sleep.c[]
  5476. The sleep is done with a call to https://github.com/torvalds/linux/blob/v4.17/kernel/time/timer.c#L1984[`usleep_range`] directly inside `module_init` for simplicity.
  5477. Bibliography:
  5478. * https://stackoverflow.com/questions/15994603/how-to-sleep-in-the-linux-kernel/44153288#44153288
  5479. * https://github.com/torvalds/linux/blob/v4.17/Documentation/timers/timers-howto.txt
  5480. ==== Workqueues
  5481. A more convenient front-end for <<kthread>>:
  5482. ....
  5483. insmod workqueue_cheat.ko
  5484. ....
  5485. Outcome: count from `0` to `9` infinitely many times
  5486. Stop counting:
  5487. ....
  5488. rmmod workqueue_cheat
  5489. ....
  5490. Source: link:kernel_modules/workqueue_cheat.c[]
  5491. The workqueue thread is killed after the worker function returns.
  5492. We can't call the module just `workqueue.c` because there is already a built-in with that name: https://unix.stackexchange.com/questions/364956/how-can-insmod-fail-with-kernel-module-is-already-loaded-even-is-lsmod-does-not
  5493. Bibliography: https://github.com/torvalds/linux/blob/v4.17/Documentation/core-api/workqueue.rst
  5494. ===== Workqueue from workqueue
  5495. Count from `0` to `9` every second infinitely many times by scheduling a new work item from a work item:
  5496. ....
  5497. insmod work_from_work.ko
  5498. ....
  5499. Stop:
  5500. ....
  5501. rmmod work_from_work
  5502. ....
  5503. The sleep is done indirectly through: https://github.com/torvalds/linux/blob/v4.17/include/linux/workqueue.h#L522[`queue_delayed_work`], which waits the specified time before scheduling the work.
  5504. Source: link:kernel_modules/work_from_work.c[]
  5505. ==== schedule
  5506. Let's block the entire kernel! Yay:
  5507. .....
  5508. ./run --eval-after 'dmesg -n 1;insmod schedule.ko schedule=0'
  5509. .....
  5510. Outcome: the system hangs, the only way out is to kill the VM.
  5511. Source: link:kernel_modules/schedule.c[]
  5512. kthreads only allow interrupting if you call `schedule()`, and the `schedule=0` <<kernel-module-parameters,kernel module parameter>> turns it off.
  5513. Sleep functions like `usleep_range` also end up calling schedule.
  5514. If we allow `schedule()` to be called, then the system becomes responsive:
  5515. .....
  5516. ./run --eval-after 'dmesg -n 1;insmod schedule.ko schedule=1'
  5517. .....
  5518. and we can observe the counting with:
  5519. ....
  5520. dmesg -w
  5521. ....
  5522. The system also responds if we <<number-of-cores,add another core>>:
  5523. ....
  5524. ./run --cpus 2 --eval-after 'dmesg -n 1;insmod schedule.ko schedule=0'
  5525. ....
  5526. ==== Wait queues
  5527. Wait queues are a way to make a thread sleep until an event happens on the queue:
  5528. ....
  5529. insmod wait_queue.c
  5530. ....
  5531. Dmesg output:
  5532. ....
  5533. 0 0
  5534. 1 0
  5535. 2 0
  5536. # Wait one second.
  5537. 0 1
  5538. 1 1
  5539. 2 1
  5540. # Wait one second.
  5541. 0 2
  5542. 1 2
  5543. 2 2
  5544. ...
  5545. ....
  5546. Stop the count:
  5547. ....
  5548. rmmod wait_queue
  5549. ....
  5550. Source: link:kernel_modules/wait_queue.c[]
  5551. This example launches three threads:
  5552. * one thread generates events every with https://github.com/torvalds/linux/blob/v4.17/include/linux/wait.h#L195[`wake_up`]
  5553. * the other two threads wait for that with https://github.com/torvalds/linux/blob/v4.17/include/linux/wait.h#L286[`wait_event`], and print a dmesg when it happens.
  5554. +
  5555. The `wait_event` macro works a bit like:
  5556. +
  5557. ....
  5558. while (!cond)
  5559. sleep_until_event
  5560. ....
  5561. === Timers
  5562. Count from `0` to `9` infinitely many times in 1 second intervals using timers:
  5563. ....
  5564. insmod timer.ko
  5565. ....
  5566. Stop counting:
  5567. ....
  5568. rmmod timer
  5569. ....
  5570. Source: link:kernel_modules/timer.c[]
  5571. Timers are callbacks that run when an interrupt happens, from the interrupt context itself.
  5572. Therefore they produce more accurate timing than thread scheduling, which is more complex, but you can't do too much work inside of them.
  5573. Bibliography:
  5574. * https://stackoverflow.com/questions/10812858/timers-in-linux-device-drivers
  5575. * https://gist.github.com/yagihiro/310149
  5576. === IRQ
  5577. ==== irq.ko
  5578. Brute force monitor every shared interrupt that will accept us:
  5579. ....
  5580. ./run --eval-after 'insmod irq.ko' --graphic
  5581. ....
  5582. Source: link:kernel_modules/irq.c[].
  5583. Now try the following:
  5584. * press a keyboard key and then release it after a few seconds
  5585. * press a mouse key, and release it after a few seconds
  5586. * move the mouse around
  5587. Outcome: dmesg shows which IRQ was fired for each action through messages of type:
  5588. ....
  5589. handler irq = 1 dev = 250
  5590. ....
  5591. `dev` is the character device for the module and never changes, as can be confirmed by:
  5592. ....
  5593. grep lkmc_irq /proc/devices
  5594. ....
  5595. The IRQs that we observe are:
  5596. * `1` for keyboard press and release.
  5597. +
  5598. If you hold the key down for a while, it starts firing at a constant rate. So this happens at the hardware level!
  5599. * `12` mouse actions
  5600. This only works if for IRQs for which the other handlers are registered as `IRQF_SHARED`.
  5601. We can see which ones are those, either via dmesg messages of type:
  5602. ....
  5603. genirq: Flags mismatch irq 0. 00000080 (myirqhandler0) vs. 00015a00 (timer)
  5604. request_irq irq = 0 ret = -16
  5605. request_irq irq = 1 ret = 0
  5606. ....
  5607. which indicate that `0` is not, but `1` is, or with:
  5608. ....
  5609. cat /proc/interrupts
  5610. ....
  5611. which shows:
  5612. ....
  5613. 0: 31 IO-APIC 2-edge timer
  5614. 1: 9 IO-APIC 1-edge i8042, myirqhandler0
  5615. ....
  5616. so only `1` has `myirqhandler0` attached but not `0`.
  5617. The <<qemu-monitor>> also has some interrupt statistics for x86_64:
  5618. ....
  5619. ./qemu-monitor info irq
  5620. ....
  5621. TODO: properly understand how each IRQ maps to what number.
  5622. ==== dummy-irq
  5623. The Linux kernel v4.16 mainline also has a `dummy-irq` module at `drivers/misc/dummy-irq.c` for monitoring a single IRQ.
  5624. We build it by default with:
  5625. ....
  5626. CONFIG_DUMMY_IRQ=m
  5627. ....
  5628. And then you can do
  5629. ....
  5630. ./run --graphic
  5631. ....
  5632. and in guest:
  5633. ....
  5634. modprobe dummy-irq irq=1
  5635. ....
  5636. Outcome: when you click a key on the keyboard, dmesg shows:
  5637. ....
  5638. dummy-irq: interrupt occurred on IRQ 1
  5639. ....
  5640. However, this module is intended to fire only once as can be seen from its source:
  5641. ....
  5642. static int count = 0;
  5643. if (count == 0) {
  5644. printk(KERN_INFO "dummy-irq: interrupt occurred on IRQ %d\n",
  5645. irq);
  5646. count++;
  5647. }
  5648. ....
  5649. and furthermore interrupt `1` and `12` happen immediately TODO why, were they somehow pending?
  5650. ==== /proc/interrupts
  5651. In the guest with <<qemu-graphic-mode>>:
  5652. ....
  5653. watch -n 1 cat /proc/interrupts
  5654. ....
  5655. Then see how clicking the mouse and keyboard affect the interrupt counts.
  5656. This confirms that:
  5657. * 1: keyboard
  5658. * 12: mouse click and drags
  5659. The module also shows which handlers are registered for each IRQ, as we have observed at <<irq-ko>>
  5660. When in text mode, we can also observe interrupt line 4 with handler `ttyS0` increase continuously as IO goes through the UART.
  5661. === Kernel utility functions
  5662. https://github.com/torvalds/linux/blob/v4.17/Documentation/core-api/kernel-api.rst
  5663. ==== kstrto
  5664. Convert a string to an integer:
  5665. ....
  5666. ./kstrto.sh
  5667. echo $?
  5668. ....
  5669. Outcome: the test passes:
  5670. ....
  5671. 0
  5672. ....
  5673. Sources:
  5674. * link:kernel_modules/kstrto.c[]
  5675. * link:rootfs_overlay/lkmc/kstrto.sh[]
  5676. Bibliography: https://stackoverflow.com/questions/6139493/how-convert-char-to-int-in-linux-kernel/49811658#49811658
  5677. [[virt-to-phys]]
  5678. ==== virt_to_phys
  5679. Convert a virtual address to physical:
  5680. ....
  5681. insmod virt_to_phys.ko
  5682. cat /sys/kernel/debug/lkmc_virt_to_phys
  5683. ....
  5684. Source: link:kernel_modules/virt_to_phys.c[]
  5685. Sample output:
  5686. ....
  5687. *kmalloc_ptr = 0x12345678
  5688. kmalloc_ptr = ffff88000e169ae8
  5689. virt_to_phys(kmalloc_ptr) = 0xe169ae8
  5690. static_var = 0x12345678
  5691. &static_var = ffffffffc0002308
  5692. virt_to_phys(&static_var) = 0x40002308
  5693. ....
  5694. We can confirm that the `kmalloc_ptr` translation worked with:
  5695. ....
  5696. ./qemu-monitor 'xp 0xe169ae8'
  5697. ....
  5698. which reads four bytes from a given physical address, and gives the expected:
  5699. ....
  5700. 000000000e169ae8: 0x12345678
  5701. ....
  5702. TODO it only works for kmalloc however, for the static variable:
  5703. ....
  5704. ./qemu-monitor 'xp 0x40002308'
  5705. ....
  5706. it gave a wrong value of `00000000`.
  5707. Bibliography:
  5708. * https://stackoverflow.com/questions/5748492/is-there-any-api-for-determining-the-physical-address-from-virtual-address-in-li/45128487#45128487
  5709. * https://stackoverflow.com/questions/39134990/mmap-of-dev-mem-fails-with-invalid-argument-for-virt-to-phys-address-but-addre/45127582#45127582
  5710. * https://stackoverflow.com/questions/43325205/can-we-use-virt-to-phys-for-user-space-memory-in-kernel-module
  5711. ===== Userland physical address experiments
  5712. Only tested in x86_64.
  5713. The Linux kernel exposes physical addresses to userland through:
  5714. * `/proc/<pid>/maps`
  5715. * `/proc/<pid>/pagemap`
  5716. * `/dev/mem`
  5717. In this section we will play with them.
  5718. The following files contain examples to access that data and test it out:
  5719. * link:lkmc/pagemap.h[]
  5720. * link:rootfs_overlay/lkmc/virt_to_phys.sh[]
  5721. * link:userland/linux/virt_to_phys_user.c[]
  5722. * link:userland/posix/virt_to_phys_test.c[]
  5723. First get a virtual address to play with:
  5724. ....
  5725. ./posix/virt_to_phys_test.out &
  5726. ....
  5727. Source: link:userland/posix/virt_to_phys_test.c[]
  5728. Sample output:
  5729. ....
  5730. vaddr 0x600800
  5731. pid 110
  5732. ....
  5733. The program:
  5734. * allocates a `volatile` variable and sets is value to `0x12345678`
  5735. * prints the virtual address of the variable, and the program PID
  5736. * runs a while loop until until the value of the variable gets mysteriously changed somehow, e.g. by nasty tinkerers like us
  5737. Then, translate the virtual address to physical using `/proc/<pid>/maps` and `/proc/<pid>/pagemap`:
  5738. ....
  5739. ./linux/virt_to_phys_user.out 110 0x600800
  5740. ....
  5741. Sample output physical address:
  5742. ....
  5743. 0x7c7b800
  5744. ....
  5745. Now we can verify that `linux/virt_to_phys_user.out` gave the correct physical address in the following ways:
  5746. * <<qemu-xp>>
  5747. * <<dev-mem>>
  5748. Bibliography:
  5749. * https://stackoverflow.com/questions/17021214/decode-proc-pid-pagemap-entry/45126141#45126141
  5750. * https://stackoverflow.com/questions/6284810/proc-pid-pagemaps-and-proc-pid-maps-linux/45500208#45500208
  5751. ====== QEMU xp
  5752. The `xp` <<qemu-monitor>> command reads memory at a given physical address.
  5753. First launch `linux/virt_to_phys_user.out` as described at <<userland-physical-address-experiments>>.
  5754. On a second terminal, use QEMU to read the physical address:
  5755. ....
  5756. ./qemu-monitor 'xp 0x7c7b800'
  5757. ....
  5758. Output:
  5759. ....
  5760. 0000000007c7b800: 0x12345678
  5761. ....
  5762. Yes!!! We read the correct value from the physical address.
  5763. We could not find however to write to memory from the QEMU monitor, boring.
  5764. [[dev-mem]]
  5765. ====== /dev/mem
  5766. `/dev/mem` exposes access to physical addresses, and we use it through the convenient `devmem` BusyBox utility.
  5767. First launch `linux/virt_to_phys_user.out` as described at <<userland-physical-address-experiments>>.
  5768. Next, read from the physical address:
  5769. ....
  5770. devmem 0x7c7b800
  5771. ....
  5772. Possible output:
  5773. ....
  5774. Memory mapped at address 0x7ff7dbe01000.
  5775. Value at address 0X7C7B800 (0x7ff7dbe01800): 0x12345678
  5776. ....
  5777. which shows that the physical memory contains the expected value `0x12345678`.
  5778. `0x7ff7dbe01000` is a new virtual address that `devmem` maps to the physical address to be able to read from it.
  5779. Modify the physical memory:
  5780. ....
  5781. devmem 0x7c7b800 w 0x9abcdef0
  5782. ....
  5783. After one second, we see on the screen:
  5784. ....
  5785. i 9abcdef0
  5786. [1]+ Done ./posix/virt_to_phys_test.out
  5787. ....
  5788. so the value changed, and the `while` loop exited!
  5789. This example requires:
  5790. * `CONFIG_STRICT_DEVMEM=n`, otherwise `devmem` fails with:
  5791. +
  5792. ....
  5793. devmem: mmap: Operation not permitted
  5794. ....
  5795. * `nopat` kernel parameter
  5796. which we set by default.
  5797. Bibliography: https://stackoverflow.com/questions/11891979/how-to-access-mmaped-dev-mem-without-crashing-the-linux-kernel
  5798. [[pagemap-dump-out]]
  5799. ====== pagemap_dump.out
  5800. Dump the physical address of all pages mapped to a given process using `/proc/<pid>/maps` and `/proc/<pid>/pagemap`.
  5801. First launch `linux/virt_to_phys_user.out` as described at <<userland-physical-address-experiments>>. Suppose that the output was:
  5802. ....
  5803. # ./posix/virt_to_phys_test.out &
  5804. vaddr 0x601048
  5805. pid 63
  5806. # ./linux/virt_to_phys_user.out 63 0x601048
  5807. 0x1a61048
  5808. ....
  5809. Now obtain the page map for the process:
  5810. ....
  5811. ./linux/pagemap_dump.out 63
  5812. ....
  5813. Sample output excerpt:
  5814. ....
  5815. vaddr pfn soft-dirty file/shared swapped present library
  5816. 400000 1ede 0 1 0 1 ./posix/virt_to_phys_test.out
  5817. 600000 1a6f 0 0 0 1 ./posix/virt_to_phys_test.out
  5818. 601000 1a61 0 0 0 1 ./posix/virt_to_phys_test.out
  5819. 602000 2208 0 0 0 1 [heap]
  5820. 603000 220b 0 0 0 1 [heap]
  5821. 7ffff78ec000 1fd4 0 1 0 1 /lib/libuClibc-1.0.30.so
  5822. ....
  5823. Source:
  5824. * link:userland/linux/pagemap_dump.c[]
  5825. * link:lkmc/pagemap.h[]
  5826. Adapted from: https://github.com/dwks/pagemap/blob/8a25747bc79d6080c8b94eac80807a4dceeda57a/pagemap2.c
  5827. Meaning of the flags:
  5828. * `vaddr`: first virtual address of a page the belongs to the process. Notably:
  5829. +
  5830. ....
  5831. ./run-toolchain readelf -- -l "$(./getvar userland_build_dir)/posix/virt_to_phys_test.out"
  5832. ....
  5833. +
  5834. contains:
  5835. +
  5836. ....
  5837. Type Offset VirtAddr PhysAddr
  5838. FileSiz MemSiz Flags Align
  5839. ...
  5840. LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
  5841. 0x000000000000075c 0x000000000000075c R E 0x200000
  5842. LOAD 0x0000000000000e98 0x0000000000600e98 0x0000000000600e98
  5843. 0x00000000000001b4 0x0000000000000218 RW 0x200000
  5844. Section to Segment mapping:
  5845. Segment Sections...
  5846. ...
  5847. 02 .interp .hash .dynsym .dynstr .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
  5848. 03 .ctors .dtors .jcr .dynamic .got.plt .data .bss
  5849. ....
  5850. +
  5851. from which we deduce that:
  5852. +
  5853. ** `400000` is the text segment
  5854. ** `600000` is the data segment
  5855. * `pfn`: add three zeroes to it, and you have the physical address.
  5856. +
  5857. Three zeroes is 12 bits which is 4kB, which is the size of a page.
  5858. +
  5859. For example, the virtual address `0x601000` has `pfn` of `0x1a61`, which means that its physical address is `0x1a61000`
  5860. +
  5861. This is consistent with what `linux/virt_to_phys_user.out` told us: the virtual address `0x601048` has physical address `0x1a61048`.
  5862. +
  5863. `048` corresponds to the three last zeroes, and is the offset within the page.
  5864. +
  5865. Also, this value falls inside `0x601000`, which as previously analyzed is the data section, which is the normal location for global variables such as ours.
  5866. * `soft-dirty`: TODO
  5867. * `file/shared`: TODO. `1` seems to indicate that the page can be shared across processes, possibly for read-only pages? E.g. the text segment has `1`, but the data has `0`.
  5868. * `swapped`: TODO swapped to disk?
  5869. * `present`: TODO vs swapped?
  5870. * `library`: which executable owns that page
  5871. This program works in two steps:
  5872. * parse the human readable lines lines from `/proc/<pid>/maps`. This files contains lines of form:
  5873. +
  5874. ....
  5875. 7ffff7b6d000-7ffff7bdd000 r-xp 00000000 fe:00 658 /lib/libuClibc-1.0.22.so
  5876. ....
  5877. +
  5878. which tells us that:
  5879. +
  5880. ** `7f8af99f8000-7f8af99ff000` is a virtual address range that belong to the process, possibly containing multiple pages.
  5881. ** `/lib/libuClibc-1.0.22.so` is the name of the library that owns that memory
  5882. * loop over each page of each address range, and ask `/proc/<pid>/pagemap` for more information about that page, including the physical address
  5883. === Linux kernel tracing
  5884. Good overviews:
  5885. * http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html by Brendan Greg, AKA the master of tracing. Also: https://github.com/brendangregg/perf-tools
  5886. * https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
  5887. I hope to have examples of all methods some day, since I'm obsessed with visibility.
  5888. [[config-proc-events]]
  5889. ==== CONFIG_PROC_EVENTS
  5890. Logs proc events such as process creation to a link:kernel_modules/netlink.c[netlink socket].
  5891. We then have a userland program that listens to the events and prints them out:
  5892. ....
  5893. # ./linux/proc_events.out &
  5894. # set mcast listen ok
  5895. # sleep 2 & sleep 1
  5896. fork: parent tid=48 pid=48 -> child tid=79 pid=79
  5897. fork: parent tid=48 pid=48 -> child tid=80 pid=80
  5898. exec: tid=80 pid=80
  5899. exec: tid=79 pid=79
  5900. # exit: tid=80 pid=80 exit_code=0
  5901. exit: tid=79 pid=79 exit_code=0
  5902. echo a
  5903. a
  5904. #
  5905. ....
  5906. Source: link:userland/linux/proc_events.c[]
  5907. TODO: why `exit: tid=79` shows after `exit: tid=80`?
  5908. Note how `echo a` is a Bash built-in, and therefore does not spawn a new process.
  5909. TODO: why does this produce no output?
  5910. ....
  5911. ./linux/proc_events.out >f &
  5912. ....
  5913. * https://stackoverflow.com/questions/6075013/detect-launching-of-programs-on-linux-platform/8255487#8255487
  5914. * https://serverfault.com/questions/199654/does-anyone-know-a-simple-way-to-monitor-root-process-spawn
  5915. * https://unix.stackexchange.com/questions/260162/how-to-track-newly-created-processes
  5916. TODO can you get process data such as UID and process arguments? It seems not since `exec_proc_event` contains so little data: https://github.com/torvalds/linux/blob/v4.16/include/uapi/linux/cn_proc.h#L80 We could try to immediately read it from `/proc`, but there is a risk that the process finished and another one took its PID, so it wouldn't be reliable.
  5917. * https://unix.stackexchange.com/questions/163681/print-pids-and-names-of-processes-as-they-are-created/163689 requests process name
  5918. * https://serverfault.com/questions/199654/does-anyone-know-a-simple-way-to-monitor-root-process-spawn requests UID
  5919. [[config-proc-events-aarch64]]
  5920. ===== CONFIG_PROC_EVENTS aarch64
  5921. 0111ca406bdfa6fd65a2605d353583b4c4051781 was failing with:
  5922. ....
  5923. >>> kernel_modules 1.0 Building
  5924. /usr/bin/make -j8 -C '/linux-kernel-module-cheat//out/aarch64/buildroot/build/kernel_modules-1.0/user' BR2_PACKAGE_OPENBLAS="" CC="/linux-kernel-module-cheat//out/aarch64/buildroot/host/bin/aarch64-buildroot-linux-uclibc-gcc" LD="/linux-kernel-module-cheat//out/aarch64/buildroot/host/bin/aarch64-buildroot-linux-uclibc-ld"
  5925. /linux-kernel-module-cheat//out/aarch64/buildroot/host/bin/aarch64-buildroot-linux-uclibc-gcc -ggdb3 -fopenmp -O0 -std=c99 -Wall -Werror -Wextra -o 'proc_events.out' 'proc_events.c'
  5926. In file included from /linux-kernel-module-cheat//out/aarch64/buildroot/host/aarch64-buildroot-linux-uclibc/sysroot/usr/include/signal.h:329:0,
  5927. from proc_events.c:12:
  5928. /linux-kernel-module-cheat//out/aarch64/buildroot/host/aarch64-buildroot-linux-uclibc/sysroot/usr/include/sys/ucontext.h:50:16: error: field ‘uc_mcontext’ has incomplete type
  5929. mcontext_t uc_mcontext;
  5930. ^~~~~~~~~~~
  5931. ....
  5932. so we commented it out.
  5933. Related threads:
  5934. * https://mailman.uclibc-ng.org/pipermail/devel/2018-January/001624.html
  5935. * https://github.com/DynamoRIO/dynamorio/issues/2356
  5936. If we try to naively update uclibc to 1.0.29 with `buildroot_override`, which contains the above mentioned patch, clean `aarch64` test build fails with:
  5937. ....
  5938. ../utils/ldd.c: In function 'elf_find_dynamic':
  5939. ../utils/ldd.c:238:12: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast]
  5940. return (void *)byteswap_to_host(dynp->d_un.d_val);
  5941. ^
  5942. /tmp/user/20321/cciGScKB.o: In function `process_line_callback':
  5943. msgmerge.c:(.text+0x22): undefined reference to `escape'
  5944. /tmp/user/20321/cciGScKB.o: In function `process':
  5945. msgmerge.c:(.text+0xf6): undefined reference to `poparser_init'
  5946. msgmerge.c:(.text+0x11e): undefined reference to `poparser_feed_line'
  5947. msgmerge.c:(.text+0x128): undefined reference to `poparser_finish'
  5948. collect2: error: ld returned 1 exit status
  5949. Makefile.in:120: recipe for target '../utils/msgmerge.host' failed
  5950. make[2]: *** [../utils/msgmerge.host] Error 1
  5951. make[2]: *** Waiting for unfinished jobs....
  5952. /tmp/user/20321/ccF8V8jF.o: In function `process':
  5953. msgfmt.c:(.text+0xbf3): undefined reference to `poparser_init'
  5954. msgfmt.c:(.text+0xc1f): undefined reference to `poparser_feed_line'
  5955. msgfmt.c:(.text+0xc2b): undefined reference to `poparser_finish'
  5956. collect2: error: ld returned 1 exit status
  5957. Makefile.in:120: recipe for target '../utils/msgfmt.host' failed
  5958. make[2]: *** [../utils/msgfmt.host] Error 1
  5959. package/pkg-generic.mk:227: recipe for target '/data/git/linux-kernel-module-cheat/out/aarch64/buildroot/build/uclibc-custom/.stamp_built' failed
  5960. make[1]: *** [/data/git/linux-kernel-module-cheat/out/aarch64/buildroot/build/uclibc-custom/.stamp_built] Error 2
  5961. Makefile:79: recipe for target '_all' failed
  5962. make: *** [_all] Error 2
  5963. ....
  5964. Buildroot master has already moved to uclibc 1.0.29 at f8546e836784c17aa26970f6345db9d515411700, but it is not yet in any tag... so I'm not tempted to update it yet just for this.
  5965. ==== ftrace
  5966. Trace a single function:
  5967. ....
  5968. cd /sys/kernel/debug/tracing/
  5969. # Stop tracing.
  5970. echo 0 > tracing_on
  5971. # Clear previous trace.
  5972. echo > trace
  5973. # List the available tracers, and pick one.
  5974. cat available_tracers
  5975. echo function > current_tracer
  5976. # List all functions that can be traced
  5977. # cat available_filter_functions
  5978. # Choose one.
  5979. echo __kmalloc > set_ftrace_filter
  5980. # Confirm that only __kmalloc is enabled.
  5981. cat enabled_functions
  5982. echo 1 > tracing_on
  5983. # Latest events.
  5984. head trace
  5985. # Observe trace continuously, and drain seen events out.
  5986. cat trace_pipe &
  5987. ....
  5988. Sample output:
  5989. ....
  5990. # tracer: function
  5991. #
  5992. # entries-in-buffer/entries-written: 97/97 #P:1
  5993. #
  5994. # _-----=> irqs-off
  5995. # / _----=> need-resched
  5996. # | / _---=> hardirq/softirq
  5997. # || / _--=> preempt-depth
  5998. # ||| / delay
  5999. # TASK-PID CPU# |||| TIMESTAMP FUNCTION
  6000. # | | | |||| | |
  6001. head-228 [000] .... 825.534637: __kmalloc <-load_elf_phdrs
  6002. head-228 [000] .... 825.534692: __kmalloc <-load_elf_binary
  6003. head-228 [000] .... 825.534815: __kmalloc <-load_elf_phdrs
  6004. head-228 [000] .... 825.550917: __kmalloc <-__seq_open_private
  6005. head-228 [000] .... 825.550953: __kmalloc <-tracing_open
  6006. head-229 [000] .... 826.756585: __kmalloc <-load_elf_phdrs
  6007. head-229 [000] .... 826.756627: __kmalloc <-load_elf_binary
  6008. head-229 [000] .... 826.756719: __kmalloc <-load_elf_phdrs
  6009. head-229 [000] .... 826.773796: __kmalloc <-__seq_open_private
  6010. head-229 [000] .... 826.773835: __kmalloc <-tracing_open
  6011. head-230 [000] .... 827.174988: __kmalloc <-load_elf_phdrs
  6012. head-230 [000] .... 827.175046: __kmalloc <-load_elf_binary
  6013. head-230 [000] .... 827.175171: __kmalloc <-load_elf_phdrs
  6014. ....
  6015. Trace all possible functions, and draw a call graph:
  6016. ....
  6017. echo 1 > max_graph_depth
  6018. echo 1 > events/enable
  6019. echo function_graph > current_tracer
  6020. ....
  6021. Sample output:
  6022. ....
  6023. # CPU DURATION FUNCTION CALLS
  6024. # | | | | | | |
  6025. 0) 2.173 us | } /* ntp_tick_length */
  6026. 0) | timekeeping_update() {
  6027. 0) 4.176 us | ntp_get_next_leap();
  6028. 0) 5.016 us | update_vsyscall();
  6029. 0) | raw_notifier_call_chain() {
  6030. 0) 2.241 us | notifier_call_chain();
  6031. 0) + 19.879 us | }
  6032. 0) 3.144 us | update_fast_timekeeper();
  6033. 0) 2.738 us | update_fast_timekeeper();
  6034. 0) ! 117.147 us | }
  6035. 0) | _raw_spin_unlock_irqrestore() {
  6036. 0) 4.045 us | _raw_write_unlock_irqrestore();
  6037. 0) + 22.066 us | }
  6038. 0) ! 265.278 us | } /* update_wall_time */
  6039. ....
  6040. TODO: what do `+` and `!` mean?
  6041. Each `enable` under the `events/` tree enables a certain set of functions, the higher the `enable` more functions are enabled.
  6042. TODO: can you get function arguments? https://stackoverflow.com/questions/27608752/does-ftrace-allow-capture-of-system-call-arguments-to-the-linux-kernel-or-only
  6043. ===== ftrace system calls
  6044. https://stackoverflow.com/questions/29840213/how-do-i-trace-a-system-call-in-linux/51856306#51856306
  6045. ===== trace-cmd
  6046. TODO example:
  6047. ....
  6048. ./build-buildroot --config 'BR2_PACKAGE_TRACE_CMD=y'
  6049. ....
  6050. ==== Kprobes
  6051. kprobes is an instrumentation mechanism that injects arbitrary code at a given address in a trap instruction, much like GDB. Oh, the good old kernel. :-)
  6052. ....
  6053. ./build-linux --config 'CONFIG_KPROBES=y'
  6054. ....
  6055. Then on guest:
  6056. ....
  6057. insmod kprobe_example.ko
  6058. sleep 4 & sleep 4 &'
  6059. ....
  6060. Outcome: dmesg outputs on every fork:
  6061. ....
  6062. <_do_fork> pre_handler: p->addr = 0x00000000e1360063, ip = ffffffff810531d1, flags = 0x246
  6063. <_do_fork> post_handler: p->addr = 0x00000000e1360063, flags = 0x246
  6064. <_do_fork> pre_handler: p->addr = 0x00000000e1360063, ip = ffffffff810531d1, flags = 0x246
  6065. <_do_fork> post_handler: p->addr = 0x00000000e1360063, flags = 0x246
  6066. ....
  6067. Source: link:kernel_modules/kprobe_example.c[]
  6068. TODO: it does not work if I try to immediately launch `sleep`, why?
  6069. ....
  6070. insmod kprobe_example.ko
  6071. sleep 4 & sleep 4 &
  6072. ....
  6073. I don't think your code can refer to the surrounding kernel code however: the only visible thing is the value of the registers.
  6074. You can then hack it up to read the stack and read argument values, but do you really want to?
  6075. There is also a kprobes + ftrace based mechanism with `CONFIG_KPROBE_EVENTS=y` which does read the memory for us based on format strings that indicate type... https://github.com/torvalds/linux/blob/v4.16/Documentation/trace/kprobetrace.txt Horrendous. Used by: https://github.com/brendangregg/perf-tools/blob/98d42a2a1493d2d1c651a5c396e015d4f082eb20/execsnoop
  6076. Bibliography:
  6077. * https://github.com/torvalds/linux/blob/v4.16/Documentation/kprobes.txt
  6078. * https://github.com/torvalds/linux/blob/v4.17/samples/kprobes/kprobe_example.c
  6079. ==== Count boot instructions
  6080. TODO: didn't port during refactor after 3b0a343647bed577586989fb702b760bd280844a. Reimplementing should not be hard.
  6081. * https://www.quora.com/How-many-instructions-does-a-typical-Linux-kernel-boot-take
  6082. * https://github.com/cirosantilli/chat/issues/31
  6083. * https://rwmj.wordpress.com/2016/03/17/tracing-qemu-guest-execution/
  6084. * `qemu/docs/tracing.txt` and `qemu/docs/replay.txt`
  6085. * https://stackoverflow.com/questions/39149446/how-to-use-qemus-simple-trace-backend/46497873#46497873
  6086. Results (boot not excluded) are shown at: xref:table-boot-instruction-counts[xrefstyle=full]
  6087. [[table-boot-instruction-counts]]
  6088. .Boot instruction counts for various setups
  6089. [options="header"]
  6090. |===
  6091. |Commit |Arch |Simulator |Instruction count
  6092. |7228f75ac74c896417fb8c5ba3d375a14ed4d36b
  6093. |arm
  6094. |QEMU
  6095. |680k
  6096. |7228f75ac74c896417fb8c5ba3d375a14ed4d36b
  6097. |arm
  6098. |gem5 AtomicSimpleCPU
  6099. |160M
  6100. |7228f75ac74c896417fb8c5ba3d375a14ed4d36b
  6101. |arm
  6102. |gem5 HPI
  6103. |155M
  6104. |7228f75ac74c896417fb8c5ba3d375a14ed4d36b
  6105. |x86_64
  6106. |QEMU
  6107. |3M
  6108. |7228f75ac74c896417fb8c5ba3d375a14ed4d36b
  6109. |x86_64
  6110. |gem5 AtomicSimpleCPU
  6111. |528M
  6112. |===
  6113. QEMU:
  6114. ....
  6115. ./trace-boot --arch x86_64
  6116. ....
  6117. sample output:
  6118. ....
  6119. instructions 1833863
  6120. entry_address 0x1000000
  6121. instructions_firmware 20708
  6122. ....
  6123. gem5:
  6124. ....
  6125. ./run --arch aarch64 --emulator gem5 --eval 'm5 exit'
  6126. # Or:
  6127. # ./run --arch aarch64 --emulator gem5 --eval 'm5 exit' -- --cpu-type=HPI --caches
  6128. ./gem5-stat --arch aarch64 sim_insts
  6129. ....
  6130. Notes:
  6131. * `0x1000000` is the address where QEMU puts the Linux kernel at with `-kernel` in x86.
  6132. +
  6133. It can be found from:
  6134. +
  6135. ....
  6136. ./run-toolchain readelf -- -e "$(./getvar vmlinux)" | grep Entry
  6137. ....
  6138. +
  6139. TODO confirm further. If I try to break there with:
  6140. +
  6141. ....
  6142. ./run-gdb *0x1000000
  6143. ....
  6144. +
  6145. but I have no corresponding source line. Also note that this line is not actually the first line, since the kernel messages such as `early console in extract_kernel` have already shown on screen at that point. This does not break at all:
  6146. +
  6147. ....
  6148. ./run-gdb extract_kernel
  6149. ....
  6150. +
  6151. It only appears once on every log I've seen so far, checked with `grep 0x1000000 trace.txt`
  6152. +
  6153. Then when we count the instructions that run before the kernel entry point, there is only about 100k instructions, which is insignificant compared to the kernel boot itself.
  6154. +
  6155. TODO `--arch arm` and `--arch aarch64` does not count firmware instructions properly because the entry point address of the ELF file (`ffffff8008080000` for `aarch64`) does not show up on the trace at all. Tested on https://github.com/cirosantilli/linux-kernel-module-cheat/commit/f8c0502bb2680f2dbe7c1f3d7958f60265347005[f8c0502bb2680f2dbe7c1f3d7958f60265347005].
  6156. * We can also discount the instructions after `init` runs by using `readelf` to get the initial address of `init`. One easy way to do that now is to just run:
  6157. +
  6158. ....
  6159. ./run-gdb --userland "$(./getvar userland_build_dir)/linux/poweroff.out" main
  6160. ....
  6161. +
  6162. And get that from the traces, e.g. if the address is `4003a0`, then we search:
  6163. +
  6164. ....
  6165. grep -n 4003a0 trace.txt
  6166. ....
  6167. +
  6168. I have observed a single match for that instruction, so it must be the init, and there were only 20k instructions after it, so the impact is negligible.
  6169. * to disable networking. Is replacing `init` enough?
  6170. +
  6171. --
  6172. ** https://superuser.com/questions/181254/how-do-you-boot-linux-with-networking-disabled
  6173. ** https://superuser.com/questions/684005/how-does-one-permanently-disable-gnu-linux-networking/1255015#1255015
  6174. --
  6175. +
  6176. `CONFIG_NET=n` did not significantly reduce instruction counts, so maybe replacing `init` is enough.
  6177. * gem5 simulates memory latencies. So I think that the CPU loops idle while waiting for memory, and counts will be higher.
  6178. === Linux kernel hardening
  6179. Make it harder to get hacked and easier to notice that you were, at the cost of some (small?) runtime overhead.
  6180. [[config-fortify-source]]
  6181. ==== CONFIG_FORTIFY_SOURCE
  6182. Detects buffer overflows for us:
  6183. ....
  6184. ./build-linux --config 'CONFIG_FORTIFY_SOURCE=y' --linux-build-id fortify
  6185. ./build-modules --clean
  6186. ./build-modules
  6187. ./build-buildroot
  6188. ./run --eval-after 'insmod strlen_overflow.ko' --linux-build-id fortify
  6189. ....
  6190. Possible dmesg output:
  6191. ....
  6192. strlen_overflow: loading out-of-tree module taints kernel.
  6193. detected buffer overflow in strlen
  6194. ------------[ cut here ]------------
  6195. ....
  6196. followed by a trace.
  6197. You may not get this error because this depends on `strlen` overflowing at least until the next page: if a random `\0` appears soon enough, it won't blow up as desired.
  6198. TODO not always reproducible. Find a more reproducible failure. I could not observe it on:
  6199. ....
  6200. insmod memcpy_overflow.ko
  6201. ....
  6202. Source: link:kernel_modules/strlen_overflow.c[]
  6203. Bibliography: https://www.reddit.com/r/hacking/comments/8h4qxk/what_a_buffer_overflow_in_the_linux_kernel_looks/
  6204. ==== Linux security modules
  6205. https://en.wikipedia.org/wiki/Linux_Security_Modules
  6206. ===== SELinux
  6207. TODO get a hello world permission control working:
  6208. ....
  6209. ./build-linux \
  6210. --config-fragment linux_config/selinux \
  6211. --linux-build-id selinux \
  6212. ;
  6213. ./build-buildroot --config 'BR2_PACKAGE_REFPOLICY=y'
  6214. ./run --enable-kvm --linux-build-id selinux
  6215. ....
  6216. Source: link:linux_config/selinux[]
  6217. This builds:
  6218. * `BR2_PACKAGE_REFPOLICY`, which includes a reference `/etc/selinux/config` policy: https://github.com/SELinuxProject/refpolicy
  6219. +
  6220. refpolicy in turn depends on:
  6221. * `BR2_PACKAGE_SETOOLS`, which contains tools such as `getenforced`: https://github.com/SELinuxProject/setools
  6222. +
  6223. setools depends on:
  6224. * `BR2_PACKAGE_LIBSELINUX`, which is the backing userland library
  6225. After boot finishes, we see:
  6226. ....
  6227. Starting auditd: mkdir: invalid option -- 'Z'
  6228. ....
  6229. which comes from `/etc/init.d/S01auditd`, because BusyBox' `mkdir` does not have the crazy `-Z` option like Ubuntu. That's amazing!
  6230. The kernel logs contain:
  6231. ....
  6232. SELinux: Initializing.
  6233. ....
  6234. Inside the guest we now have:
  6235. ....
  6236. getenforce
  6237. ....
  6238. which initially says:
  6239. ....
  6240. Disabled
  6241. ....
  6242. TODO: if we try to enforce:
  6243. ....
  6244. setenforce 1
  6245. ....
  6246. it does not work and outputs:
  6247. ....
  6248. setenforce: SELinux is disabled
  6249. ....
  6250. SELinux requires glibc as mentioned at: xref:libc-choice[xrefstyle=full].
  6251. === User mode Linux
  6252. I once got https://en.wikipedia.org/wiki/User-mode_Linux[UML] running on a minimal Buildroot setup at: https://unix.stackexchange.com/questions/73203/how-to-create-rootfs-for-user-mode-linux-on-fedora-18/372207#372207
  6253. But in part because it is dying, I didn't spend much effort to integrate it into this repo, although it would be a good fit in principle, since it is essentially a virtualization method.
  6254. Maybe some brave soul will send a pull request one day.
  6255. === UIO
  6256. UIO is a kernel subsystem that allows to do certain types of driver operations from userland.
  6257. This would be awesome to improve debuggability and safety of kernel modules.
  6258. VFIO looks like a newer and better UIO replacement, but there do not exist any examples of how to use it: https://stackoverflow.com/questions/49309162/interfacing-with-qemu-edu-device-via-userspace-i-o-uio-linux-driver
  6259. TODO get something interesting working. I currently don't understand the behaviour very well.
  6260. TODO how to ACK interrupts? How to ensure that every interrupt gets handled separately?
  6261. TODO how to write to registers. Currently using `/dev/mem` and `lspci`.
  6262. This example should handle interrupts from userland and print a message to stdout:
  6263. ....
  6264. ./uio_read.sh
  6265. ....
  6266. TODO: what is the expected behaviour? I should have documented this when I wrote this stuff, and I'm that lazy right now that I'm in the middle of a refactor :-)
  6267. UIO interface in a nutshell:
  6268. * blocking read / poll: waits until interrupts
  6269. * `write`: call `irqcontrol` callback. Default: 0 or 1 to enable / disable interrupts.
  6270. * `mmap`: access device memory
  6271. Sources:
  6272. * link:userland/kernel_modules/uio_read.c[]
  6273. * link:rootfs_overlay/lkmc/uio_read.sh[]
  6274. Bibliography:
  6275. * https://stackoverflow.com/questions/15286772/userspace-vs-kernel-space-driver
  6276. * https://01.org/linuxgraphics/gfx-docs/drm/driver-api/uio-howto.html
  6277. * https://stackoverflow.com/questions/7986260/linux-interrupt-handling-in-user-space
  6278. * https://yurovsky.github.io/2014/10/10/linux-uio-gpio-interrupt/
  6279. * https://github.com/bmartini/zynq-axis/blob/65a3a448fda1f0ea4977adfba899eb487201853d/dev/axis.c
  6280. * https://yurovsky.github.io/2014/10/10/linux-uio-gpio-interrupt/
  6281. * http://nairobi-embedded.org/uio_example.html that website has QEMU examples for everything as usual. The example has a kernel-side which creates the memory mappings and is used by the user.
  6282. * https://stackoverflow.com/questions/49309162/interfacing-with-qemu-edu-device-via-userspace-i-o-uio-linux-driver
  6283. * userland driver stability questions:
  6284. ** https://stackoverflow.com/questions/8030758/getting-kernel-version-from-linux-kernel-module-at-runtime/45430233#45430233
  6285. ** https://stackoverflow.com/questions/37098482/how-to-build-a-linux-kernel-module-so-that-it-is-compatible-with-all-kernel-rele/45429681#45429681
  6286. ** https://liquidat.wordpress.com/2007/07/21/linux-kernel-2623-to-have-stable-userspace-driver-api/
  6287. === Linux kernel interactive stuff
  6288. [[fbcon]]
  6289. ==== Linux kernel console fun
  6290. Requires <<graphics>>.
  6291. You can also try those on the `Ctrl-Alt-F3` of your Ubuntu host, but it is much more fun inside a VM!
  6292. Stop the cursor from blinking:
  6293. ....
  6294. echo 0 > /sys/class/graphics/fbcon/cursor_blink
  6295. ....
  6296. Rotate the console 90 degrees! https://askubuntu.com/questions/237963/how-do-i-rotate-my-display-when-not-using-an-x-server
  6297. ....
  6298. echo 1 > /sys/class/graphics/fbcon/rotate
  6299. ....
  6300. Relies on: `CONFIG_FRAMEBUFFER_CONSOLE_ROTATION=y`.
  6301. Documented under: `Documentation/fb/`.
  6302. TODO: font and keymap. Mentioned at: https://cmcenroe.me/2017/05/05/linux-console.html and I think can be done with BusyBox `loadkmap` and `loadfont`, we just have to understand their formats, related:
  6303. * https://unix.stackexchange.com/questions/177024/remap-keyboard-on-the-linux-console
  6304. * https://superuser.com/questions/194202/remapping-keys-system-wide-in-linux-not-just-in-x
  6305. ==== Linux kernel magic keys
  6306. Requires <<graphics>>.
  6307. Let's have some fun.
  6308. I think most are implemented under:
  6309. ....
  6310. drivers/tty
  6311. ....
  6312. TODO find all.
  6313. Scroll up / down the terminal:
  6314. ....
  6315. Shift-PgDown
  6316. Shift-PgUp
  6317. ....
  6318. Or inside `./qemu-monitor`:
  6319. ....
  6320. sendkey shift-pgup
  6321. sendkey shift-pgdown
  6322. ....
  6323. ===== Ctrl Alt Del
  6324. If you run in <<qemu-graphic-mode>>:
  6325. ....
  6326. ./run --graphic
  6327. ....
  6328. and then from the graphic window you enter the keys:
  6329. ....
  6330. Ctrl-Alt-Del
  6331. ....
  6332. then this runs the following command on the guest:
  6333. ....
  6334. /sbin/reboot
  6335. ....
  6336. This is enabled from our link:rootfs_overlay/etc/inittab[]:
  6337. ....
  6338. ::ctrlaltdel:/sbin/reboot
  6339. ....
  6340. This leads Linux to try to reboot, and QEMU shutdowns due to the `-no-reboot` option which we set by default for, see: xref:exit-emulator-on-panic[xrefstyle=full].
  6341. Here is a minimal example of Ctrl Alt Del:
  6342. ....
  6343. ./run --kernel-cli 'init=/lkmc/linux/ctrl_alt_del.out' --graphic
  6344. ....
  6345. Source: link:userland/linux/ctrl_alt_del.c[]
  6346. When you hit `Ctrl-Alt-Del` in the guest, our tiny init handles a `SIGINT` sent by the kernel and outputs to stdout:
  6347. ....
  6348. cad
  6349. ....
  6350. To map between `man 2 reboot` and the uClibc `RB_*` magic constants see:
  6351. ....
  6352. less "$(./getvar buildroot_build_build_dir)"/uclibc-*/include/sys/reboot.h"
  6353. ....
  6354. The procfs mechanism is documented at:
  6355. ....
  6356. less linux/Documentation/sysctl/kernel.txt
  6357. ....
  6358. which says:
  6359. ....
  6360. When the value in this file is 0, ctrl-alt-del is trapped and
  6361. sent to the init(1) program to handle a graceful restart.
  6362. When, however, the value is > 0, Linux's reaction to a Vulcan
  6363. Nerve Pinch (tm) will be an immediate reboot, without even
  6364. syncing its dirty buffers.
  6365. Note: when a program (like dosemu) has the keyboard in 'raw'
  6366. mode, the ctrl-alt-del is intercepted by the program before it
  6367. ever reaches the kernel tty layer, and it's up to the program
  6368. to decide what to do with it.
  6369. ....
  6370. Under the hood, behaviour is controlled by the `reboot` syscall:
  6371. ....
  6372. man 2 reboot
  6373. ....
  6374. `reboot` system calls can set either of the these behaviours for `Ctrl-Alt-Del`:
  6375. * do a hard shutdown syscall. Set in uClibc C code with:
  6376. +
  6377. ....
  6378. reboot(RB_ENABLE_CAD)
  6379. ....
  6380. +
  6381. or from procfs with:
  6382. +
  6383. ....
  6384. echo 1 > /proc/sys/kernel/ctrl-alt-del
  6385. ....
  6386. +
  6387. Done by BusyBox' `reboot -f`.
  6388. * send a SIGINT to the init process. This is what BusyBox' init does, and it then execs the string set in `inittab`.
  6389. +
  6390. Set in uclibc C code with:
  6391. +
  6392. ....
  6393. reboot(RB_DISABLE_CAD)
  6394. ....
  6395. +
  6396. or from procfs with:
  6397. +
  6398. ....
  6399. echo 0 > /proc/sys/kernel/ctrl-alt-del
  6400. ....
  6401. +
  6402. Done by BusyBox' `reboot`.
  6403. When a BusyBox init is with the signal, it prints the following lines:
  6404. ....
  6405. The system is going down NOW!
  6406. Sent SIGTERM to all processes
  6407. Sent SIGKILL to all processes
  6408. Requesting system reboot
  6409. ....
  6410. On busybox-1.29.2's init at init/init.c we see how the kill signals are sent:
  6411. ....
  6412. static void run_shutdown_and_kill_processes(void)
  6413. {
  6414. /* Run everything to be run at "shutdown". This is done _prior_
  6415. * to killing everything, in case people wish to use scripts to
  6416. * shut things down gracefully... */
  6417. run_actions(SHUTDOWN);
  6418. message(L_CONSOLE | L_LOG, "The system is going down NOW!");
  6419. /* Send signals to every process _except_ pid 1 */
  6420. kill(-1, SIGTERM);
  6421. message(L_CONSOLE, "Sent SIG%s to all processes", "TERM");
  6422. sync();
  6423. sleep(1);
  6424. kill(-1, SIGKILL);
  6425. message(L_CONSOLE, "Sent SIG%s to all processes", "KILL");
  6426. sync();
  6427. /*sleep(1); - callers take care about making a pause */
  6428. }
  6429. ....
  6430. and `run_shutdown_and_kill_processes` is called from:
  6431. ....
  6432. /* The SIGPWR/SIGUSR[12]/SIGTERM handler */
  6433. static void halt_reboot_pwoff(int sig) NORETURN;
  6434. static void halt_reboot_pwoff(int sig)
  6435. ....
  6436. which also prints the final line:
  6437. ....
  6438. message(L_CONSOLE, "Requesting system %s", m);
  6439. ....
  6440. which is set as the signal handler via TODO.
  6441. Bibliography:
  6442. * https://superuser.com/questions/193652/does-linux-have-a-ctrlaltdel-equivalent/1324415#1324415
  6443. * https://unix.stackexchange.com/questions/42573/meaning-and-commands-for-ctrlaltdel/444969#444969
  6444. ===== SysRq
  6445. We cannot test these actual shortcuts on QEMU since the host captures them at a lower level, but from:
  6446. ....
  6447. ./qemu-monitor
  6448. ....
  6449. we can for example crash the system with:
  6450. ....
  6451. sendkey alt-sysrq-c
  6452. ....
  6453. Same but boring because no magic key:
  6454. ....
  6455. echo c > /proc/sysrq-trigger
  6456. ....
  6457. Implemented in:
  6458. ....
  6459. drivers/tty/sysrq.c
  6460. ....
  6461. On your host, on modern systems that don't have the `SysRq` key you can do:
  6462. ....
  6463. Alt-PrtSc-space
  6464. ....
  6465. which prints a message to `dmesg` of type:
  6466. ....
  6467. sysrq: SysRq : HELP : loglevel(0-9) reboot(b) crash(c) terminate-all-tasks(e) memory-full-oom-kill(f) kill-all-tasks(i) thaw-filesystems(j) sak(k) show-backtrace-all-active-cpus(l) show-memory-usage(m) nice-all-RT-tasks(n) poweroff(o) show-registers(p) show-all-timers(q) unraw(r) sync(s) show-task-states(t) unmount(u) show-blocked-tasks(w) dump-ftrace-buffer(z)
  6468. ....
  6469. Individual SysRq can be enabled or disabled with the bitmask:
  6470. ....
  6471. /proc/sys/kernel/sysrq
  6472. ....
  6473. The bitmask is documented at:
  6474. ....
  6475. less linux/Documentation/admin-guide/sysrq.rst
  6476. ....
  6477. Bibliography: https://en.wikipedia.org/wiki/Magic_SysRq_key
  6478. ==== TTY
  6479. In order to play with TTYs, do this:
  6480. ....
  6481. printf '
  6482. tty2::respawn:/sbin/getty -n -L -l /lkmc/loginroot.sh tty2 0 vt100
  6483. tty3::respawn:-/bin/sh
  6484. tty4::respawn:/sbin/getty 0 tty4
  6485. tty63::respawn:-/bin/sh
  6486. ::respawn:/sbin/getty -L ttyS0 0 vt100
  6487. ::respawn:/sbin/getty -L ttyS1 0 vt100
  6488. ::respawn:/sbin/getty -L ttyS2 0 vt100
  6489. # Leave one serial empty.
  6490. #::respawn:/sbin/getty -L ttyS3 0 vt100
  6491. ' >> rootfs_overlay/etc/inittab
  6492. ./build-buildroot
  6493. ./run --graphic -- \
  6494. -serial telnet::1235,server,nowait \
  6495. -serial vc:800x600 \
  6496. -serial telnet::1236,server,nowait \
  6497. ;
  6498. ....
  6499. and on a second shell:
  6500. ....
  6501. telnet localhost 1235
  6502. ....
  6503. We don't add more TTYs by default because it would spawn more processes, even if we use `askfirst` instead of `respawn`.
  6504. On the GUI, switch TTYs with:
  6505. * `Alt-Left` or `Alt-Right:` go to previous / next populated `/dev/ttyN` TTY. Skips over empty TTYs.
  6506. * `Alt-Fn`: go to the nth TTY. If it is not populated, don't go there.
  6507. * `chvt <n>`: go to the n-th virtual TTY, even if it is empty: https://superuser.com/questions/33065/console-commands-to-change-virtual-ttys-in-linux-and-openbsd
  6508. You can also test this on most hosts such as Ubuntu 18.04, except that when in the GUI, you must use `Ctrl-Alt-Fx` to switch to another terminal.
  6509. Next, we also have the following shells running on the serial ports, hit enter to activate them:
  6510. * `/dev/ttyS0`: first shell that was used to run QEMU, corresponds to QEMU's `-serial mon:stdio`.
  6511. +
  6512. It would also work if we used `-serial stdio`, but:
  6513. +
  6514. --
  6515. ** `Ctrl-C` would kill QEMU instead of going to the guest
  6516. ** `Ctrl-A C` wouldn't open the QEMU console there
  6517. --
  6518. +
  6519. see also: https://stackoverflow.com/questions/49716931/how-to-run-qemu-with-nographic-and-monitor-but-still-be-able-to-send-ctrlc-to
  6520. * `/dev/ttyS1`: second shell running `telnet`
  6521. * `/dev/ttyS2`: go on the GUI and enter `Ctrl-Alt-2`, corresponds to QEMU's `-serial vc`. Go back to the main console with `Ctrl-Alt-1`.
  6522. although we cannot change between terminals from there.
  6523. Each populated TTY contains a "shell":
  6524. * `-/bin/sh`: goes directly into an `sh` without a login prompt.
  6525. +
  6526. The trailing dash `-` can be used on any command. It makes the command that follows take over the TTY, which is what we typically want for interactive shells: https://askubuntu.com/questions/902998/how-to-check-which-tty-am-i-using
  6527. +
  6528. The `getty` executable however also does this operation and therefore dispenses the `-`.
  6529. * `/sbin/getty` asks for password, and then gives you an `sh`
  6530. +
  6531. We can overcome the password prompt with the `-l /lkmc/loginroot.sh` technique explained at: https://askubuntu.com/questions/902998/how-to-check-which-tty-am-i-using but I don't see any advantage over `-/bin/sh` currently.
  6532. Identify the current TTY with the command:
  6533. ....
  6534. tty
  6535. ....
  6536. Bibliography:
  6537. * https://unix.stackexchange.com/questions/270272/how-to-get-the-tty-in-which-bash-is-running/270372
  6538. * https://unix.stackexchange.com/questions/187319/how-to-get-the-real-name-of-the-controlling-terminal
  6539. * https://unix.stackexchange.com/questions/77796/how-to-get-the-current-terminal-name
  6540. * https://askubuntu.com/questions/902998/how-to-check-which-tty-am-i-using
  6541. This outputs:
  6542. * `/dev/console` for the initial GUI terminal. But I think it is the same as `/dev/tty1`, because if I try to do
  6543. +
  6544. ....
  6545. tty1::respawn:-/bin/sh
  6546. ....
  6547. +
  6548. it makes the terminal go crazy, as if multiple processes are randomly eating up the characters.
  6549. * `/dev/ttyN` for the other graphic TTYs. Note that there are only 63 available ones, from `/dev/tty1` to `/dev/tty63` (`/dev/tty0` is the current one): https://superuser.com/questions/449781/why-is-there-so-many-linux-dev-tty[]. I think this is determined by:
  6550. +
  6551. ....
  6552. #define MAX_NR_CONSOLES 63
  6553. ....
  6554. +
  6555. in `linux/include/uapi/linux/vt.h`.
  6556. * `/dev/ttySN` for the text shells.
  6557. +
  6558. These are Serial ports, see this to understand what those represent physically: https://unix.stackexchange.com/questions/307390/what-is-the-difference-between-ttys0-ttyusb0-and-ttyama0-in-linux/367882#367882
  6559. +
  6560. There are only 4 serial ports, I think this is determined by QEMU. TODO check.
  6561. +
  6562. See also: https://stackoverflow.com/questions/16706423/two-instances-of-busybox-on-separate-serial-lines-ttysn
  6563. Get the TTY in bulk for all processes:
  6564. ....
  6565. ./psa.sh
  6566. ....
  6567. Source: link:rootfs_overlay/lkmc/psa.sh[].
  6568. The TTY appears under the `TT` section, which is enabled by `-o tty`. This shows the TTY device number, e.g.:
  6569. ....
  6570. 4,1
  6571. ....
  6572. and we can then confirm it with:
  6573. ....
  6574. ls -l /dev/tty1
  6575. ....
  6576. Next try:
  6577. ....
  6578. insmod kthread.ko
  6579. ....
  6580. and switch between virtual terminals, to understand that the dmesg goes to whatever current virtual terminal you are on, but not the others, and not to the serial terminals.
  6581. Bibliography:
  6582. * https://serverfault.com/questions/119736/how-to-enable-multiple-virtual-consoles-on-linux
  6583. * https://github.com/mirror/busybox/blob/1_28_3/examples/inittab#L60
  6584. * http://web.archive.org/web/20180117124612/http://nairobi-embedded.org/qemu_serial_port_system_console.html
  6585. ===== Start a getty from outside of init
  6586. TODO: https://unix.stackexchange.com/questions/196704/getty-start-from-command-line
  6587. TODO: how to place an `sh` directly on a TTY as well without `getty`?
  6588. If I try the exact same command that the `inittab` is doing from a regular shell after boot:
  6589. ....
  6590. /sbin/getty 0 tty1
  6591. ....
  6592. it fails with:
  6593. ....
  6594. getty: setsid: Operation not permitted
  6595. ....
  6596. The following however works:
  6597. ....
  6598. ./run --eval 'getty 0 tty1 & getty 0 tty2 & getty 0 tty3 & sleep 99999999' --graphic
  6599. ....
  6600. presumably because it is being called from `init` directly?
  6601. Outcome: `Alt-Right` cycles between three TTYs, `tty1` being the default one that appears under the boot messages.
  6602. `man 2 setsid` says that there is only one failure possibility:
  6603. ____
  6604. EPERM The process group ID of any process equals the PID of the calling process. Thus, in particular, setsid() fails if the calling process is already a process group leader.
  6605. ____
  6606. We can get some visibility into it to try and solve the problem with:
  6607. ....
  6608. ./psa.sh
  6609. ....
  6610. ===== console kernel boot parameter
  6611. Take the command described at <<tty>> and try adding the following:
  6612. * `-e 'console=tty7'`: boot messages still show on `/dev/tty1` (TODO how to change that?), but we don't get a shell at the end of boot there.
  6613. +
  6614. Instead, the shell appears on `/dev/tty7`.
  6615. * `-e 'console=tty2'` like `/dev/tty7`, but `/dev/tty2` is broken, because we have two shells there:
  6616. ** one due to the `::respawn:-/bin/sh` entry which uses whatever `console` points to
  6617. ** another one due to the `tty2::respawn:/sbin/getty` entry we added
  6618. * `-e 'console=ttyS0'` much like `tty2`, but messages show only on serial, and the terminal is broken due to having multiple shells on it
  6619. * `-e 'console=tty1 console=ttyS0'`: boot messages show on both `tty1` and `ttyS0`, but only `S0` gets a shell because it came last
  6620. [[config-logo]]
  6621. ==== CONFIG_LOGO
  6622. If you run in <<graphics>>, then you get a Penguin image for <<number-of-cores,every core>> above the console! https://askubuntu.com/questions/80938/is-it-possible-to-get-the-tux-logo-on-the-text-based-boot
  6623. This is due to the https://github.com/torvalds/linux/blob/v4.17/drivers/video/logo/Kconfig#L5[`CONFIG_LOGO=y`] option which we enable by default.
  6624. `reset` on the terminal then kills the poor penguins.
  6625. When `CONFIG_LOGO=y` is set, the logo can be disabled at boot with:
  6626. ....
  6627. ./run --kernel-cli 'logo.nologo'
  6628. ....
  6629. * https://stackoverflow.com/questions/39872463/how-can-i-disable-the-startup-penguins-and-boot-text-on-linaro-ubuntu
  6630. * https://unix.stackexchange.com/questions/332198/centos-remove-penguin-logo-at-startup
  6631. Looks like a recompile is needed to modify the image...
  6632. * https://superuser.com/questions/736423/changing-kernel-bootsplash-image
  6633. * https://unix.stackexchange.com/questions/153975/how-to-change-boot-logo-in-linux-mint
  6634. === DRM
  6635. DRM / DRI is the new interface that supersedes `fbdev`:
  6636. ....
  6637. ./build-buildroot --config 'BR2_PACKAGE_LIBDRM=y'
  6638. ./build-userland --package libdrm -- userland/libs/libdrm/modeset.c
  6639. ./run --eval-after './libs/libdrm/modeset.out' --graphic
  6640. ....
  6641. Source: link:userland/libs/libdrm/modeset.c[]
  6642. Outcome: for a few seconds, the screen that contains the terminal gets taken over by changing colors of the rainbow.
  6643. TODO not working for `aarch64`, it takes over the screen for a few seconds and the kernel messages disappear, but the screen stays black all the time.
  6644. ....
  6645. ./build-buildroot --config 'BR2_PACKAGE_LIBDRM=y'
  6646. ./build-userland --package libdrm
  6647. ./build-buildroot
  6648. ./run --eval-after './libs/libdrm/modeset.out' --graphic
  6649. ....
  6650. <<kmscube>> however worked, which means that it must be a bug with this demo?
  6651. We set `CONFIG_DRM=y` on our default kernel configuration, and it creates one device file for each display:
  6652. ....
  6653. # ls -l /dev/dri
  6654. total 0
  6655. crw------- 1 root root 226, 0 May 28 09:41 card0
  6656. # grep 226 /proc/devices
  6657. 226 drm
  6658. # ls /sys/module/drm /sys/module/drm_kms_helper/
  6659. ....
  6660. Try creating new displays:
  6661. ....
  6662. ./run --arch aarch64 --graphic -- -device virtio-gpu-pci
  6663. ....
  6664. to see multiple `/dev/dri/cardN`, and then use a different display with:
  6665. ....
  6666. ./run --eval-after './libs/libdrm/modeset.out' --graphic
  6667. ....
  6668. Bibliography:
  6669. * https://dri.freedesktop.org/wiki/DRM/
  6670. * https://en.wikipedia.org/wiki/Direct_Rendering_Infrastructure
  6671. * https://en.wikipedia.org/wiki/Direct_Rendering_Manager
  6672. * https://en.wikipedia.org/wiki/Mode_setting KMS
  6673. Tested on: https://github.com/cirosantilli/linux-kernel-module-cheat/commit/93e383902ebcc03d8a7ac0d65961c0e62af9612b[93e383902ebcc03d8a7ac0d65961c0e62af9612b]
  6674. ==== kmscube
  6675. ....
  6676. ./build-buildroot --config-fragment buildroot_config/kmscube
  6677. ....
  6678. Outcome: a colored spinning cube coded in OpenGL + EGL takes over your display and spins forever: https://www.youtube.com/watch?v=CqgJMgfxjsk
  6679. It is a bit amusing to see OpenGL running outside of a window manager window like that: https://stackoverflow.com/questions/3804065/using-opengl-without-a-window-manager-in-linux/50669152#50669152
  6680. TODO: it is very slow, about 1FPS. I tried Buildroot master ad684c20d146b220dd04a85dbf2533c69ec8ee52 with:
  6681. ....
  6682. make qemu_x86_64_defconfig
  6683. printf "
  6684. BR2_CCACHE=y
  6685. BR2_PACKAGE_HOST_QEMU=y
  6686. BR2_PACKAGE_HOST_QEMU_LINUX_USER_MODE=n
  6687. BR2_PACKAGE_HOST_QEMU_SYSTEM_MODE=y
  6688. BR2_PACKAGE_HOST_QEMU_VDE2=y
  6689. BR2_PACKAGE_KMSCUBE=y
  6690. BR2_PACKAGE_MESA3D=y
  6691. BR2_PACKAGE_MESA3D_DRI_DRIVER_SWRAST=y
  6692. BR2_PACKAGE_MESA3D_OPENGL_EGL=y
  6693. BR2_PACKAGE_MESA3D_OPENGL_ES=y
  6694. BR2_TOOLCHAIN_BUILDROOT_CXX=y
  6695. " >> .config
  6696. ....
  6697. and the FPS was much better, I estimate something like 15FPS.
  6698. On Ubuntu 18.04 with NVIDIA proprietary drivers:
  6699. ....
  6700. sudo apt-get instll kmscube
  6701. kmscube
  6702. ....
  6703. fails with:
  6704. ....
  6705. drmModeGetResources failed: Invalid argument
  6706. failed to initialize legacy DRM
  6707. ....
  6708. See also:
  6709. * https://github.com/robclark/kmscube/issues/12 and:
  6710. * https://stackoverflow.com/questions/26920835/can-egl-application-run-in-console-mode/26921287#26921287
  6711. * https://stackoverflow.com/questions/3804065/how-to-use-opengl-without-a-window-manager-in-linux/50669152#50669152
  6712. Tested on: https://github.com/cirosantilli/linux-kernel-module-cheat/commit/2903771275372ccfecc2b025edbb0d04c4016930[2903771275372ccfecc2b025edbb0d04c4016930]
  6713. ==== kmscon
  6714. TODO get working.
  6715. Implements a console for <<drm>>.
  6716. The Linux kernel has a built-in fbdev console called <<fbcon>> but not for <<drm>> it seems.
  6717. The upstream project seems dead with last commit in 2014: https://www.freedesktop.org/wiki/Software/kmscon/
  6718. Build failed in Ubuntu 18.04 with: https://github.com/dvdhrm/kmscon/issues/131 but this fork compiled but didn't run on host: https://github.com/Aetf/kmscon/issues/2#issuecomment-392484043
  6719. Haven't tested the fork on QEMU too much insanity.
  6720. ==== libdri2
  6721. TODO get working.
  6722. Looks like a more raw alternative to libdrm:
  6723. ....
  6724. ./build-buildroot --config 'BR2_PACKABE_LIBDRI2=y'
  6725. wget \
  6726. -O "$(./getvar userland_source_dir)/dri2test.c" \
  6727. https://raw.githubusercontent.com/robclark/libdri2/master/test/dri2test.c \
  6728. ;
  6729. ./build-userland
  6730. ....
  6731. but then I noticed that that example requires multiple files, and I don't feel like integrating it into our build.
  6732. When I build it on Ubuntu 18.04 host, it does not generate any executable, so I'm confused.
  6733. === Linux kernel testing
  6734. Bibliography: https://stackoverflow.com/questions/3177338/how-is-the-linux-kernel-tested
  6735. ==== Linux Test Project
  6736. https://github.com/linux-test-project/ltp
  6737. Tests a lot of Linux and POSIX userland visible interfaces.
  6738. Buildroot already has a package, so it is trivial to build it:
  6739. ....
  6740. ./build-buildroot --config 'BR2_PACKAGE_LTP_TESTSUITE=y'
  6741. ....
  6742. So now let's try and see if the `exit` system call is working:
  6743. ....
  6744. /usr/lib/ltp-testsuite/testcases/bin/exit01
  6745. ....
  6746. which gives successful output:
  6747. ....
  6748. exit01 1 TPASS : exit() test PASSED
  6749. ....
  6750. and has source code at: https://github.com/linux-test-project/ltp/blob/20190115/testcases/kernel/syscalls/exit/exit01.c
  6751. Besides testing any kernel modifications you make, LTP can also be used to the system call implementation of <<user-mode-simulation>> as shown at <<user-mode-buildroot-executables>>:
  6752. ....
  6753. ./run --userland "$(./getvar buildroot_target_dir)/usr/lib/ltp-testsuite/testcases/bin/exit01"
  6754. ....
  6755. Tested at: 287c83f3f99db8c1ff9bbc85a79576da6a78e986 + 1.
  6756. ==== stress
  6757. <<posix>> userland stress. Two versions:
  6758. ....
  6759. ./build-buildroot \
  6760. --config 'BR2_PACKAGE_STRESS=y' \
  6761. --config 'BR2_PACKAGE_STRESS_NG=y' \
  6762. ;
  6763. ....
  6764. `STRESS_NG` is likely the best, but it requires glibc, see: xref:libc-choice[xrefstyle=full].
  6765. Websites:
  6766. * https://people.seas.harvard.edu/~apw/stress/
  6767. * https://github.com/ColinIanKing/stress-ng
  6768. `stress` usage:
  6769. ....
  6770. stress --help
  6771. stress -c 16 &
  6772. ps
  6773. ....
  6774. and notice how 16 threads were created in addition to a parent worker thread.
  6775. It just runs forever, so kill it when you get tired:
  6776. ....
  6777. kill %1
  6778. ....
  6779. `stress -c 1 -t 1` makes gem5 irresponsive for a very long time.
  6780. === Linux kernel build system
  6781. ==== vmlinux vs bzImage vs zImage vs Image
  6782. Between all archs on QEMU and gem5 we touch all of those kernel built output files.
  6783. We are trying to maintain a description of each at: https://unix.stackexchange.com/questions/5518/what-is-the-difference-between-the-following-kernel-makefile-terms-vmlinux-vml/482978#482978
  6784. QEMU does not seem able to boot ELF files like `vmlinux`: https://superuser.com/questions/1376944/can-qemu-boot-linux-from-vmlinux-instead-of-bzimage
  6785. Converting `arch/*` images to `vmlinux` is possible in theory x86 with https://github.com/torvalds/linux/blob/v5.1/scripts/extract-vmlinux[`extract-vmlinux`] but we didn't get any gem5 boots working from images generated like that for some reason, see: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/79
  6786. === Virtio
  6787. https://www.linux-kvm.org/page/Virtio
  6788. Virtio is an interface that guest machines can use to efficiently use resources from host machines.
  6789. The types of resources it supports are for disks and networking hardware.
  6790. This interface is not like the real interface used by the host to read from real disks and network devices.
  6791. Rather, it is a simplified interface, that makes those operations simpler and faster since guest and host work together knowing that this is an emulation use case.
  6792. === Kernel modules
  6793. [[dump-regs]]
  6794. ==== dump_regs
  6795. The following kernel modules and <<baremetal>> executables dump and disassemble various registers which cannot be observed from userland (usually "system registers", "control registers"):
  6796. * link:kernel_modules/dump_regs.c[]
  6797. * link:userland/arch/arm/dump_regs.c[]
  6798. * link:userland/arch/aarch64/dump_regs.c[]
  6799. * link:baremetal/arch/arm/dump_regs.c[]
  6800. * link:baremetal/arch/aarch64/dump_regs.c[]
  6801. Some of those programs are using:
  6802. * link:lkmc/aarch64_dump_regs.h[]
  6803. Alternatively, you can also get their value from inside <<gdb>> with:
  6804. ....
  6805. info registers all
  6806. ....
  6807. or the short version:
  6808. ....
  6809. i r a
  6810. ....
  6811. or to get just specific registers, e.g. just ARMv8's SCTLR:
  6812. ....
  6813. i r SCTLR
  6814. ....
  6815. but it is sometimes just more convenient to run an executable to get the registers at the point of interest.
  6816. See also:
  6817. * https://stackoverflow.com/questions/5429137/how-to-print-register-values-in-gdb/31340294#31340294
  6818. * https://stackoverflow.com/questions/24169614/how-to-show-all-x86-control-registers-when-debugging-the-linux-kernel-in-gdb-thr/59311764#59311764
  6819. == FreeBSD
  6820. https://en.wikipedia.org/wiki/FreeBSD
  6821. Prebuilt on Ubuntu 20.04 worked: https://stackoverflow.com/questions/49656395/how-to-boot-freebsd-image-under-qemu/64027161#64027161[]
  6822. TODO minimal build + boot on QEMU example anywhere???
  6823. == RTOS
  6824. https://en.wikipedia.org/wiki/Real-time_operating_system
  6825. === Zephyr
  6826. https://en.wikipedia.org/wiki/Zephyr_(operating_system)
  6827. Zephyr is an RTOS that has <<posix>> support. I think it works much like our <<baremetal-setup>> which uses Newlib and generates individual ELF files that contain both our C program's code, and the Zephyr libraries.
  6828. TODO get a hello world working, and then consider further integration in this repo, e.g. being able to run all C userland content on it.
  6829. TODO: Cortex-A CPUs are not currently supported, there are some `qemu_cortex_m0` boards, but can't find a QEMU Cortex-A. There is an x86_64 qemu board, but we don't currently have an <<about-the-baremetal-setup,x86 baremetal toolchain>>. For this reason, we won't touch this further for now.
  6830. However, unlike Newlib, Zephyr must be setting up a simple pre-main runtime to be able to handle threads.
  6831. Failed attempt:
  6832. ....
  6833. # https://askubuntu.com/questions/952429/is-there-a-good-ppa-for-cmake-backports
  6834. wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | sudo apt-key add -
  6835. sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic-rc main'
  6836. sudo apt-get update
  6837. sudo apt-get install cmake
  6838. git clone https://github.com/zephyrproject-rtos/zephyr
  6839. pip3 install --user -U west packaging
  6840. cd zephyr
  6841. git checkout v1.14.1
  6842. west init zephyrproject
  6843. west update
  6844. export ZEPHYR_TOOLCHAIN_VARIANT=xtools
  6845. export XTOOLS_TOOLCHAIN_PATH="$(pwd)/out/crosstool-ng/build/default/install/aarch64/bin/"
  6846. source zephyr-env.sh
  6847. west build -b qemu_aarch64 samples/hello_world
  6848. ....
  6849. The build system of that project is a bit excessive / wonky. You need an edge CMake not present in Ubuntu 18.04, which I don't want to install right now, and it uses the weird custom `west` build tool frontend.
  6850. === ARM Mbed
  6851. https://en.wikipedia.org/wiki/Mbed
  6852. TODO minimal setup to run it on QEMU? Possible?
  6853. == Xen
  6854. https://en.wikipedia.org/wiki/Xen
  6855. TODO: get prototype working and then properly integrate:
  6856. ....
  6857. ./build-xen
  6858. ....
  6859. Source: link:build-xen[]
  6860. This script attempts to build Xen for aarch64 and feed it into QEMU through link:submodules/boot-wrapper-aarch64[]
  6861. TODO: other archs not yet attempted.
  6862. The current bad behaviour is that it prints just:
  6863. ....
  6864. Boot-wrapper v0.2
  6865. ....
  6866. and nothing else.
  6867. We will also need `CONFIG_XEN=y` on the Linux kernel, but first Xen should print some Xen messages before the kernel is ever reached.
  6868. If we pass to QEMU the xen image directly instead of the boot wrapper one:
  6869. ....
  6870. -kernel ../xen/xen/xen
  6871. ....
  6872. then Xen messages do show up! So it seems that the configuration failure lies in the boot wrapper itself rather than Xen.
  6873. Maybe it is also possible to run Xen directly like this: QEMU can already load multiple images at different memory locations with the generic loader: https://github.com/qemu/qemu/blob/master/docs/generic-loader.txt which looks something along:
  6874. ....
  6875. -kernel file1.elf -device loader,file=file2.elf
  6876. ....
  6877. so as long as we craft the correct DTB and feed it into Xen so that it can see the kernel, it should work. TODO does QEMU support patching the auto-generated DTB with pre-generated options? In the worst case we can just dump it hand hack it up though with `-machine dumpdtb`, see: xref:device-tree-emulator-generation[xrefstyle=full].
  6878. Bibliography:
  6879. * this attempt was based on: https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions/FastModels which is the documentation for the ARM Fast Models closed source simulators.
  6880. * https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions/qemu-system-aarch64 this is the only QEMU aarch64 Xen page on the web. It uses the Ubuntu aarc64 image, which has EDK2.
  6881. +
  6882. I however see no joy on blobs. Buildroot does not seem to support EDK 2.
  6883. Link on readme https://stackoverflow.com/questions/49348453/xen-on-qemu-with-arm64-architecture
  6884. == U-Boot
  6885. https://en.wikipedia.org/wiki/Das_U-Boot
  6886. U-Boot is a popular bootloader.
  6887. It can read disk filesystems, and Buildroot supports it, so we could in theory put it into memory, and let it find a kernel image from the root filesystem and boot that, but I didn't manage to get it working yet: https://stackoverflow.com/questions/58028789/how-to-boot-linux-aarch64-with-u-boot-with-buildroot-on-qemu
  6888. == Emulators
  6889. https://en.wikipedia.org/wiki/Emulator
  6890. * <<qemu>>
  6891. * <<gem5>>
  6892. * <<gensim>>
  6893. == QEMU
  6894. === Introduction to QEMU
  6895. https://en.wikipedia.org/wiki/QEMU[QEMU] is a system simulator: it simulates a CPU and devices such as interrupt handlers, timers, UART, screen, keyboard, etc.
  6896. If you are familiar with https://en.wikipedia.org/wiki/VirtualBox[VirtualBox], then QEMU then basically does the same thing: it opens a "window" inside your desktop that can run an operating system inside your operating system.
  6897. Also both can use very similar techniques: either <<binary-translation>> or <<KVM>>. VirtualBox' binary translator is / was based on QEMU's it seems: https://en.wikipedia.org/wiki/VirtualBox#Software-based_virtualization
  6898. The huge advantage of QEMU over VirtualBox is that is supports cross arch simulation, e.g. simulate an ARM guest on an x86 host.
  6899. QEMU is likely the leading cross arch system simulator as of 2018. It is even the default <<android>> simulator that developers get with Android Studio 3 to develop apps without real hardware.
  6900. Another advantage of QEMU over virtual box is that it doesn't have Oracle' hands all all over it, more like RedHat + ARM.
  6901. Another advantage of QEMU is that is has no nice configuration GUI. Because who needs GUIs when you have 50 million semi-documented CLI options? Android Studio adds a custom GUI configuration tool on top of it.
  6902. QEMU is also supported by Buildroot in-tree, see e.g.: https://github.com/buildroot/buildroot/blob/2018.05/configs/qemu_aarch64_virt_defconfig We however just build our own manually with link:build-qemu[], as it gives more flexibility, and building QEMU is very easy!
  6903. All of this makes QEMU the natural choice of reference system simulator for this repo.
  6904. === Binary translation
  6905. https://en.wikipedia.org/wiki/Binary_translation
  6906. Used by <<qemu>> and <<gensim>>.
  6907. === Disk persistency
  6908. We disable disk persistency for both QEMU and gem5 by default, to prevent the emulator from putting the image in an unknown state.
  6909. For QEMU, this is done by passing the `snapshot` option to `-drive`, and for gem5 it is the default behaviour.
  6910. If you hack up our link:run[] script to remove that option, then:
  6911. ....
  6912. ./run --eval-after 'date >f;poweroff'
  6913. ....
  6914. followed by:
  6915. ....
  6916. ./run --eval-after 'cat f'
  6917. ....
  6918. gives the date, because `poweroff` without `-n` syncs before shutdown.
  6919. The `sync` command also saves the disk:
  6920. ....
  6921. sync
  6922. ....
  6923. When you do:
  6924. ....
  6925. ./build-buildroot
  6926. ....
  6927. the disk image gets overwritten by a fresh filesystem and you lose all changes.
  6928. Remember that if you forcibly turn QEMU off without `sync` or `poweroff` from inside the VM, e.g. by closing the QEMU window, disk changes may not be saved.
  6929. Persistency is also turned off when booting from <<initrd>> with a CPIO instead of with a disk.
  6930. Disk persistency is useful to re-run shell commands from the history of a previous session with `Ctrl-R`, but we felt that the loss of determinism was not worth it.
  6931. ==== gem5 disk persistency
  6932. TODO how to make gem5 disk writes persistent?
  6933. As of cadb92f2df916dbb47f428fd1ec4932a2e1f0f48 there are some `read_only` entries in the <<gem5-config-ini>> under cow sections, but hacking them to true did not work:
  6934. ....
  6935. diff --git a/configs/common/FSConfig.py b/configs/common/FSConfig.py
  6936. index 17498c42b..76b8b351d 100644
  6937. --- a/configs/common/FSConfig.py
  6938. +++ b/configs/common/FSConfig.py
  6939. @@ -60,7 +60,7 @@ os_types = { 'alpha' : [ 'linux' ],
  6940. }
  6941. class CowIdeDisk(IdeDisk):
  6942. - image = CowDiskImage(child=RawDiskImage(read_only=True),
  6943. + image = CowDiskImage(child=RawDiskImage(read_only=False),
  6944. read_only=False)
  6945. def childImage(self, ci):
  6946. ....
  6947. The directory of interest is `src/dev/storage`.
  6948. === gem5 qcow2
  6949. qcow2 does not appear supported, there are not hits in the source tree, and there is a mention on Nate's 2009 wishlist: http://gem5.org/Nate%27s_Wish_List
  6950. This would be good to allow storing smaller sparse ext2 images locally on disk.
  6951. === Snapshot
  6952. QEMU allows us to take snapshots at any time through the monitor.
  6953. You can then restore CPU, memory and disk state back at any time.
  6954. qcow2 filesystems must be used for that to work.
  6955. To test it out, login into the VM with and run:
  6956. ....
  6957. ./run --eval-after 'umount /mnt/9p/*;./count.sh'
  6958. ....
  6959. On another shell, take a snapshot:
  6960. ....
  6961. ./qemu-monitor savevm my_snap_id
  6962. ....
  6963. The counting continues.
  6964. Restore the snapshot:
  6965. ....
  6966. ./qemu-monitor loadvm my_snap_id
  6967. ....
  6968. and the counting goes back to where we saved. This shows that CPU and memory states were reverted.
  6969. The `umount` is needed because snapshotting conflicts with <<9p>>, which we felt is a more valuable default. If you forget to unmount, the following error appears on the QEMU monitor:
  6970. .....
  6971. Migration is disabled when VirtFS export path '/linux-kernel-module-cheat/out/x86_64/buildroot/build' is mounted in the guest using mount_tag 'host_out'
  6972. .....
  6973. We can also verify that the disk state is also reversed. Guest:
  6974. ....
  6975. echo 0 >f
  6976. ....
  6977. Monitor:
  6978. ....
  6979. ./qemu-monitor savevm my_snap_id
  6980. ....
  6981. Guest:
  6982. ....
  6983. echo 1 >f
  6984. ....
  6985. Monitor:
  6986. ....
  6987. ./qemu-monitor loadvm my_snap_id
  6988. ....
  6989. Guest:
  6990. ....
  6991. cat f
  6992. ....
  6993. And the output is `0`.
  6994. Our setup does not allow for snapshotting while using <<initrd>>.
  6995. Bibliography: https://stackoverflow.com/questions/40227651/does-qemu-emulator-have-checkpoint-function/48724371#48724371
  6996. ==== Snapshot internals
  6997. Snapshots are stored inside the `.qcow2` images themselves.
  6998. They can be observed with:
  6999. ....
  7000. "$(./getvar buildroot_host_dir)/bin/qemu-img" info "$(./getvar qcow2_file)"
  7001. ....
  7002. which after `savevm my_snap_id` and `savevm asdf` contains an output of type:
  7003. ....
  7004. image: out/x86_64/buildroot/images/rootfs.ext2.qcow2
  7005. file format: qcow2
  7006. virtual size: 512M (536870912 bytes)
  7007. disk size: 180M
  7008. cluster_size: 65536
  7009. Snapshot list:
  7010. ID TAG VM SIZE DATE VM CLOCK
  7011. 1 my_snap_id 47M 2018-04-27 21:17:50 00:00:15.251
  7012. 2 asdf 47M 2018-04-27 21:20:39 00:00:18.583
  7013. Format specific information:
  7014. compat: 1.1
  7015. lazy refcounts: false
  7016. refcount bits: 16
  7017. corrupt: false
  7018. ....
  7019. As a consequence:
  7020. * it is possible to restore snapshots across boots, since they stay on the same image the entire time
  7021. * it is not possible to use snapshots with <<initrd>> in our setup, since we don't pass `-drive` at all when initrd is enabled
  7022. === Device models
  7023. This section documents:
  7024. * how to interact with peripheral hardware device models through device drivers
  7025. * how to write your own hardware device models for our emulators, see also: https://stackoverflow.com/questions/28315265/how-to-add-a-new-device-in-qemu-source-code
  7026. For the more complex interfaces, we focus on simplified educational devices, either:
  7027. * present in the QEMU upstream:
  7028. ** <<qemu-edu>>
  7029. ==== PCI
  7030. Only tested in x86.
  7031. [[qemu-edu]]
  7032. ===== QEMU edu PCI device
  7033. Small upstream educational PCI device:
  7034. ....
  7035. ./qemu_edu.sh
  7036. ....
  7037. This tests a lot of features of the edu device, to understand the results, compare the inputs with the documentation of the hardware: https://github.com/qemu/qemu/blob/v2.12.0/docs/specs/edu.txt
  7038. Sources:
  7039. * kernel module: link:kernel_modules/qemu_edu.c[]
  7040. * QEMU device: https://github.com/qemu/qemu/blob/v2.12.0/hw/misc/edu.c
  7041. * test script: link:rootfs_overlay/lkmc/qemu_edu.sh[]
  7042. Works because we add to our default QEMU CLI:
  7043. ....
  7044. -device edu
  7045. ....
  7046. This example uses:
  7047. * the QEMU `edu` educational device, which is a minimal educational in-tree PCI example
  7048. * the `pci.ko` kernel module, which exercises the `edu` hardware.
  7049. +
  7050. I've contacted the awesome original author author of `edu` https://github.com/jirislaby[Jiri Slaby], and he told there is no official kernel module example because this was created for a kernel module university course that he gives, and he didn't want to give away answers. https://github.com/cirosantilli/how-to-teach-efficiently[I don't agree with that philosophy], so students, cheat away with this repo and go make startups instead.
  7051. TODO exercise DMA on the kernel module. The `edu` hardware model has that feature:
  7052. * https://stackoverflow.com/questions/17913679/how-to-instantiate-and-use-a-dma-driver-linux-module
  7053. * https://stackoverflow.com/questions/32592734/are-there-any-dma-driver-example-pcie-and-fpga/44716747#44716747
  7054. * https://stackoverflow.com/questions/62831327/add-memory-device-to-qemu
  7055. * https://stackoverflow.com/questions/64539528/qemu-pci-dma-read-and-pci-dma-write-does-not-work
  7056. * https://stackoverflow.com/questions/64842929/general-protection-error-while-tring-to-perform-ioctl
  7057. ===== Manipulate PCI registers directly
  7058. In this section we will try to interact with PCI devices directly from userland without kernel modules.
  7059. First identify the PCI device with:
  7060. ....
  7061. lspci
  7062. ....
  7063. In our case for example, we see:
  7064. ....
  7065. 00:06.0 Unclassified device [00ff]: Device 1234:11e8 (rev 10)
  7066. 00:07.0 Unclassified device [00ff]: Device 1234:11e9
  7067. ....
  7068. which we identify as being <<qemu-edu>> by the magic number: `1234:11e8`.
  7069. Alternatively, we can also do use the QEMU monitor:
  7070. ....
  7071. ./qemu-monitor info qtree
  7072. ....
  7073. which gives:
  7074. ....
  7075. dev: edu, id ""
  7076. addr = 06.0
  7077. romfile = ""
  7078. rombar = 1 (0x1)
  7079. multifunction = false
  7080. command_serr_enable = true
  7081. x-pcie-lnksta-dllla = true
  7082. x-pcie-extcap-init = true
  7083. class Class 00ff, addr 00:06.0, pci id 1234:11e8 (sub 1af4:1100)
  7084. bar 0: mem at 0xfea00000 [0xfeafffff]
  7085. ....
  7086. See also: https://serverfault.com/questions/587189/list-all-devices-emulated-for-a-vm/913622#913622
  7087. Read the configuration registers as binary:
  7088. ....
  7089. hexdump /sys/bus/pci/devices/0000:00:06.0/config
  7090. ....
  7091. Get nice human readable names and offsets of the registers and some enums:
  7092. ....
  7093. setpci --dumpregs
  7094. ....
  7095. Get the values of a given config register from its human readable name, either with either bus or device id:
  7096. ....
  7097. setpci -s 0000:00:06.0 BASE_ADDRESS_0
  7098. setpci -d 1234:11e8 BASE_ADDRESS_0
  7099. ....
  7100. Note however that `BASE_ADDRESS_0` also appears when you do:
  7101. ....
  7102. lspci -v
  7103. ....
  7104. as:
  7105. ....
  7106. Memory at feb54000
  7107. ....
  7108. Then you can try messing with that address with <<dev-mem>>:
  7109. ....
  7110. devmem 0xfeb54000 w 0x12345678
  7111. ....
  7112. which writes to the first register of the edu device.
  7113. The device then fires an interrupt at irq 11, which is unhandled, which leads the kernel to say you are a bad person:
  7114. ....
  7115. <3>[ 1065.567742] irq 11: nobody cared (try booting with the "irqpoll" option)
  7116. ....
  7117. followed by a trace.
  7118. Next, also try using our <<irq-ko>> IRQ monitoring module before triggering the interrupt:
  7119. ....
  7120. insmod irq.ko
  7121. devmem 0xfeb54000 w 0x12345678
  7122. ....
  7123. Our kernel module handles the interrupt, but does not acknowledge it like our proper edu kernel module, and so it keeps firing, which leads to infinitely many messages being printed:
  7124. ....
  7125. handler irq = 11 dev = 251
  7126. ....
  7127. ===== pciutils
  7128. There are two versions of `setpci` and `lspci`:
  7129. * a simple one from BusyBox
  7130. * a more complete one from https://github.com/pciutils/pciutils[pciutils] which Buildroot has a package for, and is the default on Ubuntu 18.04 host. This is the one we enable by default.
  7131. ===== Introduction to PCI
  7132. The PCI standard is non-free, obviously like everything in low level: https://pcisig.com/specifications but Google gives several illegal PDF hits :-)
  7133. And of course, the best documentation available is: http://wiki.osdev.org/PCI
  7134. Like every other hardware, we could interact with PCI on x86 using only IO instructions and memory operations.
  7135. But PCI is a complex communication protocol that the Linux kernel implements beautifully for us, so let's use the kernel API.
  7136. Bibliography:
  7137. * edu device source and spec in QEMU tree:
  7138. ** https://github.com/qemu/qemu/blob/v2.7.0/hw/misc/edu.c
  7139. ** https://github.com/qemu/qemu/blob/v2.7.0/docs/specs/edu.txt
  7140. * http://www.zarb.org/~trem/kernel/pci/pci-driver.c inb outb runnable example (no device)
  7141. * LDD3 PCI chapter
  7142. * another QEMU device + module, but using a custom QEMU device:
  7143. ** https://github.com/levex/kernel-qemu-pci/blob/31fc9355161b87cea8946b49857447ddd34c7aa6/module/levpci.c
  7144. ** https://github.com/levex/kernel-qemu-pci/blob/31fc9355161b87cea8946b49857447ddd34c7aa6/qemu/hw/char/lev-pci.c
  7145. * https://is.muni.cz/el/1433/podzim2016/PB173/um/65218991/ course given by the creator of the edu device. In Czech, and only describes API
  7146. * http://nairobi-embedded.org/linux_pci_device_driver.html
  7147. ===== PCI BFD
  7148. `lspci -k` shows something like:
  7149. ....
  7150. 00:04.0 Class 00ff: 1234:11e8 lkmc_pci
  7151. ....
  7152. Meaning of the first numbers:
  7153. ....
  7154. <8:bus>:<5:device>.<3:function>
  7155. ....
  7156. Often abbreviated to BDF.
  7157. * bus: groups PCI slots
  7158. * device: maps to one slot
  7159. * function: https://stackoverflow.com/questions/19223394/what-is-the-function-number-in-pci/44735372#44735372
  7160. Sometimes a fourth number is also added, e.g.:
  7161. ....
  7162. 0000:00:04.0
  7163. ....
  7164. TODO is that the domain?
  7165. Class: pure magic: https://www-s.acm.illinois.edu/sigops/2007/roll_your_own/7.c.1.html TODO: does it have any side effects? Set in the edu device at:
  7166. ....
  7167. k->class_id = PCI_CLASS_OTHERS
  7168. ....
  7169. ===== PCI BAR
  7170. https://stackoverflow.com/questions/30190050/what-is-base-address-register-bar-in-pcie/44716618#44716618
  7171. Each PCI device has 6 BAR IOs (base address register) as per the PCI spec.
  7172. Each BAR corresponds to an address range that can be used to communicate with the PCI.
  7173. Each BAR is of one of the two types:
  7174. * `IORESOURCE_IO`: must be accessed with `inX` and `outX`
  7175. * `IORESOURCE_MEM`: must be accessed with `ioreadX` and `iowriteX`. This is the saner method apparently, and what the edu device uses.
  7176. The length of each region is defined by the hardware, and communicated to software via the configuration registers.
  7177. The Linux kernel automatically parses the 64 bytes of standardized configuration registers for us.
  7178. QEMU devices register those regions with:
  7179. ....
  7180. memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
  7181. "edu-mmio", 1 << 20);
  7182. pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
  7183. ....
  7184. ==== GPIO
  7185. TODO: broken. Was working before we moved `arm` from `-M versatilepb` to `-M virt` around af210a76711b7fa4554dcc2abd0ddacfc810dfd4. Either make it work on `-M virt` if that is possible, or document precisely how to make it work with `versatilepb`, or hopefully `vexpress` which is newer.
  7186. QEMU does not have a very nice mechanism to observe GPIO activity: https://raspberrypi.stackexchange.com/questions/56373/is-it-possible-to-get-the-state-of-the-leds-and-gpios-in-a-qemu-emulation-like-t/69267#69267
  7187. The best you can do is to hack our link:build[] script to add:
  7188. ....
  7189. HOST_QEMU_OPTS='--extra-cflags=-DDEBUG_PL061=1'
  7190. ....
  7191. where http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0190b/index.html[PL061] is the dominating ARM Holdings hardware that handles GPIO.
  7192. Then compile with:
  7193. ....
  7194. ./build-buildroot --arch arm --config-fragment buildroot_config/gpio
  7195. ./build-linux --config-fragment linux_config/gpio
  7196. ....
  7197. then test it out with:
  7198. ....
  7199. ./gpio.sh
  7200. ....
  7201. Source: link:rootfs_overlay/lkmc/gpio.sh[]
  7202. Buildroot's Linux tools package provides some GPIO CLI tools: `lsgpio`, `gpio-event-mon`, `gpio-hammer`, TODO document them here.
  7203. ==== LEDs
  7204. TODO: broken when `arm` moved to `-M virt`, same as <<gpio>>.
  7205. Hack QEMU's `hw/misc/arm_sysctl.c` with a printf:
  7206. ....
  7207. static void arm_sysctl_write(void *opaque, hwaddr offset,
  7208. uint64_t val, unsigned size)
  7209. {
  7210. arm_sysctl_state *s = (arm_sysctl_state *)opaque;
  7211. switch (offset) {
  7212. case 0x08: /* LED */
  7213. printf("LED val = %llx\n", (unsigned long long)val);
  7214. ....
  7215. and then rebuild with:
  7216. ....
  7217. ./build-qemu --arch arm
  7218. ./build-linux --arch arm --config-fragment linux_config/leds
  7219. ....
  7220. But beware that one of the LEDs has a heartbeat trigger by default (specified on dts), so it will produce a lot of output.
  7221. And then activate it with:
  7222. ....
  7223. cd /sys/class/leds/versatile:0
  7224. cat max_brightness
  7225. echo 255 >brightness
  7226. ....
  7227. Relevant QEMU files:
  7228. * `hw/arm/versatilepb.c`
  7229. * `hw/misc/arm_sysctl.c`
  7230. Relevant kernel files:
  7231. * `arch/arm/boot/dts/versatile-pb.dts`
  7232. * `drivers/leds/led-class.c`
  7233. * `drivers/leds/leds-sysctl.c`
  7234. ==== gem5 educational hardware models
  7235. TODO get some working!
  7236. http://gedare-csphd.blogspot.co.uk/2013/02/adding-simple-io-device-to-gem5.html
  7237. === QEMU monitor
  7238. The QEMU monitor is a magic terminal that allows you to send text commands to the QEMU VM itself: https://en.wikibooks.org/wiki/QEMU/Monitor
  7239. While QEMU is running, on another terminal, run:
  7240. ....
  7241. ./qemu-monitor
  7242. ....
  7243. or send one command such as `info qtree` and quit the monitor:
  7244. ....
  7245. ./qemu-monitor info qtree
  7246. ....
  7247. or equivalently:
  7248. ....
  7249. echo 'info qtree' | ./qemu-monitor
  7250. ....
  7251. Source: link:qemu-monitor[]
  7252. `qemu-monitor` uses the `-monitor` QEMU command line option, which makes the monitor listen from a socket.
  7253. Alternatively, we can also enter the QEMU monitor from inside `-nographics` <<qemu-text-mode>> with:
  7254. ....
  7255. Ctrl-A C
  7256. ....
  7257. and go back to the terminal with:
  7258. ....
  7259. Ctrl-A C
  7260. ....
  7261. * https://stackoverflow.com/questions/14165158/how-to-switch-to-qemu-monitor-console-when-running-with-curses
  7262. * https://superuser.com/questions/488263/how-to-switch-to-the-qemu-control-panel-with-nographics
  7263. When in graphic mode, we can do it from the GUI:
  7264. ....
  7265. Ctrl-Alt ?
  7266. ....
  7267. where `?` is a digit `1`, or `2`, or, `3`, etc. depending on what else is available on the GUI: serial, parallel and frame buffer.
  7268. Finally, we can also access QEMU monitor commands directly from <<gdb>> with the `monitor` command:
  7269. ....
  7270. ./run-gdb
  7271. ....
  7272. then inside that shell:
  7273. ....
  7274. monitor info qtree
  7275. ....
  7276. This way you can use both QEMU monitor and GDB commands to inspect the guest from inside a single shell! Pretty awesome.
  7277. In general, `./qemu-monitor` is the best option, as it:
  7278. * works on both modes
  7279. * allows to use the host Bash history to re-run one off commands
  7280. * allows you to search the output of commands on your host shell even when in graphic mode
  7281. Getting everything to work required careful choice of QEMU command line options:
  7282. * https://stackoverflow.com/questions/49716931/how-to-run-qemu-with-nographic-and-monitor-but-still-be-able-to-send-ctrlc-to/49751144#49751144
  7283. * https://unix.stackexchange.com/questions/167165/how-to-pass-ctrl-c-to-the-guest-when-running-qemu-with-nographic/436321#436321
  7284. ==== QEMU monitor from guest
  7285. Peter Maydell said potentially not possible nicely as of August 2018: https://stackoverflow.com/questions/51747744/how-to-run-a-qemu-monitor-command-from-inside-the-guest/51764110#51764110
  7286. It is also worth looking into the QEMU Guest Agent tool `qemu-gq` that can be enabled with:
  7287. ....
  7288. ./build-buildroot --config 'BR2_PACKAGE_QEMU=y'
  7289. ....
  7290. See also: https://superuser.com/questions/930588/how-to-pass-commands-noninteractively-to-running-qemu-from-the-guest-qmp-via-te
  7291. ==== QEMU monitor from GDB
  7292. When doing <<gdb>> it is possible to send QEMU monitor commands through the GDB `monitor` command, which saves you the trouble of opening yet another shell.
  7293. Try for example:
  7294. ....
  7295. monitor help
  7296. monitor info qtree
  7297. ....
  7298. === Debug the emulator
  7299. When you start hacking QEMU or gem5, it is useful to see what is going on inside the emulator themselves.
  7300. This is of course trivial since they are just regular userland programs on the host, but we make it a bit easier with:
  7301. ....
  7302. ./run --debug-vm
  7303. ....
  7304. Or for a faster development loop you can pass `-ex` command as a semicolon separated list:
  7305. ....
  7306. ./run --debug-vm-ex 'break qemu_add_opts;run'
  7307. ....
  7308. which is equivalent to the more verbose:
  7309. ....
  7310. ./run --debug-vm-args '-ex "break qemu_add_opts" -ex "run"'
  7311. ....
  7312. if you ever want need anything besides -ex.
  7313. Or if things get really involved and you want a debug script:
  7314. ....
  7315. printf 'break qemu_add_opts
  7316. run
  7317. ' > data/vm.gdb
  7318. ./run --debug-vm-file data/vm.gdb
  7319. ....
  7320. Our default emulator builds are optimized with `gcc -O2 -g`. To use `-O0` instead, build and run with:
  7321. ....
  7322. ./build-qemu --qemu-build-type debug --verbose
  7323. ./run --debug-vm
  7324. ./build-gem5 --gem5-build-type debug --verbose
  7325. ./run --debug-vm --emulator-gem5
  7326. ....
  7327. The `--verbose` is optional, but shows clearly each GCC build command so that you can confirm what `--*-build-type` is doing.
  7328. The build outputs are automatically stored in a different directories for optimized and debug builds, which prevents `debug` files from overwriting `opt` ones. Therefore, `--gem5-build-id` is not required.
  7329. The price to pay for debuggability is high however: a Linux kernel boot was about 3x slower in QEMU and 14 times slower in gem5 debug compared to opt, see benchmarks at: xref:benchmark-linux-kernel-boot[xrefstyle=full].
  7330. Similar slowdowns can be observed at: xref:benchmark-emulators-on-userland-executables[xrefstyle=full].
  7331. When in <<qemu-text-mode>>, using `--debug-vm` makes Ctrl-C not get passed to the QEMU guest anymore: it is instead captured by GDB itself, so allow breaking. So e.g. you won't be able to easily quit from a guest program like:
  7332. ....
  7333. sleep 10
  7334. ....
  7335. In graphic mode, make sure that you never click inside the QEMU graphic while debugging, otherwise you mouse gets captured forever, and the only solution I can find is to go to a TTY with `Ctrl-Alt-F1` and `kill` QEMU.
  7336. You can still send key presses to QEMU however even without the mouse capture, just either click on the title bar, or alt tab to give it focus.
  7337. ==== Reverse debug the emulator
  7338. While step debugging any complex program, you always end up feeling the need to step in reverse to reach the last call to some function that was called before the failure point, in order to trace back the problem to the actual bug source.
  7339. While GDB "has" this feature, it is just too broken to be usable, and so we expose the amazing Mozilla RR tool conveniently in this repo: https://stackoverflow.com/questions/1470434/how-does-reverse-debugging-work/53063242#53063242
  7340. Before the first usage setup rr with:
  7341. ....
  7342. echo 'kernel.perf_event_paranoid=1' | sudo tee -a /etc/sysctl.conf
  7343. sudo sysctl -p
  7344. ....
  7345. Then use it with your content of interest, for example:
  7346. ....
  7347. ./run --debug-vm-rr --userland userland/c/hello.c
  7348. ....
  7349. This will:
  7350. * first run the program once until completion or crash
  7351. * then restart the program at the very first instruction at `_start` and leave you in a GDB shell
  7352. From there, run the program until your point of interest, e.g.:
  7353. ....
  7354. break qemu_add_opts
  7355. continue
  7356. ....
  7357. and you can now reliably use reverse debugging commands such as `reverse-continue`, `reverse-finish` and `reverse-next`!
  7358. To restart debugging again after quitting `rr`, simply run on your host terminal:
  7359. ....
  7360. rr replay
  7361. ....
  7362. The use case of `rr` is often to go to the final crash and then walk back from there, so you often want to automate running until the end after record with `--debug-vm-args` as in:
  7363. ....
  7364. ./run --debug-vm-args='-ex continue' --debug-vm-rr --userland userland/c/hello.c
  7365. ....
  7366. Programs often tend to blow up in very low frames that use values passed in from higher frames. In those cases, remember that just like with forward debugging, you can't just go:
  7367. ....
  7368. up
  7369. up
  7370. up
  7371. reverse-next
  7372. ....
  7373. but rather, you must:
  7374. ....
  7375. reverse-finish
  7376. reverse-finish
  7377. reverse-finish
  7378. reverse-next
  7379. ....
  7380. ==== Debug gem5 Python scripts
  7381. Start pdb at the first instruction:
  7382. ....
  7383. ./run --emulator gem5 --gem5-exe-args='--pdb' --terminal
  7384. ....
  7385. Requires `--terminal` as we must be on foreground.
  7386. Alternatively, you can add to the point of the code where you want to break the usual:
  7387. ....
  7388. import ipdb; ipdb.set_trace()
  7389. ....
  7390. and then run with:
  7391. ....
  7392. ./run --emulator gem5 --terminal
  7393. ....
  7394. TODO test PyCharm: https://stackoverflow.com/questions/51982735/writing-gem5-configuration-scripts-with-pycharm
  7395. === Tracing
  7396. QEMU can log several different events.
  7397. The most interesting are events which show instructions that QEMU ran, for which we have a helper:
  7398. ....
  7399. ./trace-boot --arch x86_64
  7400. ....
  7401. Under the hood, this uses QEMU's `-trace` option.
  7402. You can then inspect the address of each instruction run:
  7403. ....
  7404. less "$(./getvar --arch x86_64 run_dir)/trace.txt"
  7405. ....
  7406. Sample output excerpt:
  7407. ....
  7408. exec_tb 0.000 pid=10692 tb=0x7fb4f8000040 pc=0xfffffff0
  7409. exec_tb 35.391 pid=10692 tb=0x7fb4f8000180 pc=0xfe05b
  7410. exec_tb 21.047 pid=10692 tb=0x7fb4f8000340 pc=0xfe066
  7411. exec_tb 12.197 pid=10692 tb=0x7fb4f8000480 pc=0xfe06a
  7412. ....
  7413. Get the list of available trace events:
  7414. ....
  7415. ./run --trace help
  7416. ....
  7417. TODO: any way to show the actualy disassembled instruction executed directly from there? Possible with <<qemu-d-tracing>>.
  7418. Enable other specific trace events:
  7419. ....
  7420. ./run --trace trace1,trace2
  7421. ./qemu-trace2txt -a "$arch"
  7422. less "$(./getvar -a "$arch" run_dir)/trace.txt"
  7423. ....
  7424. This functionality relies on the following setup:
  7425. * `./configure --enable-trace-backends=simple`. This logs in a binary format to the trace file.
  7426. +
  7427. It makes 3x execution faster than the default trace backend which logs human readable data to stdout.
  7428. +
  7429. Logging with the default backend `log` greatly slows down the CPU, and in particular leads to this boot message:
  7430. +
  7431. ....
  7432. All QSes seen, last rcu_sched kthread activity 5252 (4294901421-4294896169), jiffies_till_next_fqs=1, root ->qsmask 0x0
  7433. swapper/0 R running task 0 1 0 0x00000008
  7434. ffff880007c03ef8 ffffffff8107aa5d ffff880007c16b40 ffffffff81a3b100
  7435. ffff880007c03f60 ffffffff810a41d1 0000000000000000 0000000007c03f20
  7436. fffffffffffffedc 0000000000000004 fffffffffffffedc ffffffff00000000
  7437. Call Trace:
  7438. <IRQ> [<ffffffff8107aa5d>] sched_show_task+0xcd/0x130
  7439. [<ffffffff810a41d1>] rcu_check_callbacks+0x871/0x880
  7440. [<ffffffff810a799f>] update_process_times+0x2f/0x60
  7441. ....
  7442. +
  7443. in which the boot appears to hang for a considerable time.
  7444. * patch QEMU source to remove the `disable` from `exec_tb` in the `trace-events` file. See also: https://rwmj.wordpress.com/2016/03/17/tracing-qemu-guest-execution/
  7445. ==== QEMU -d tracing
  7446. QEMU also has a second trace mechanism in addition to `-trace`, find out the events with:
  7447. ....
  7448. ./run -- -d help
  7449. ....
  7450. Let's pick the one that dumps executed instructions, `in_asm`:
  7451. ....
  7452. ./run --eval './linux/poweroff.out' -- -D out/trace.txt -d in_asm
  7453. less out/trace.txt
  7454. ....
  7455. Sample output excerpt:
  7456. ....
  7457. ----------------
  7458. IN:
  7459. 0xfffffff0: ea 5b e0 00 f0 ljmpw $0xf000:$0xe05b
  7460. ----------------
  7461. IN:
  7462. 0x000fe05b: 2e 66 83 3e 88 61 00 cmpl $0, %cs:0x6188
  7463. 0x000fe062: 0f 85 7b f0 jne 0xd0e1
  7464. ....
  7465. TODO: after `IN:`, symbol names are meant to show, which is awesome, but I don't get any. I do see them however when running a bare metal example from: https://github.com/cirosantilli/newlib-examples/tree/900a9725947b1f375323c7da54f69e8049158881
  7466. TODO: what is the point of having two mechanisms, `-trace` and `-d`? `-d` tracing is cool because it does not require a messy recompile, and it can also show symbols.
  7467. ==== QEMU trace register values
  7468. TODO: is it possible to show the register values for each instruction?
  7469. This would include the memory values read into the registers.
  7470. Asked at: https://superuser.com/questions/1377764/how-to-trace-the-register-values-of-executed-instructions-in-qemu
  7471. Seems impossible due to optimizations that QEMU does:
  7472. * https://lists.gnu.org/archive/html/qemu-devel/2015-06/msg07479.html
  7473. * https://lists.gnu.org/archive/html/qemu-devel/2014-04/msg02856.html
  7474. * https://lists.gnu.org/archive/html/qemu-devel/2012-08/msg03057.html
  7475. PANDA can list memory addresses, so I bet it can also decode the instructions: https://github.com/panda-re/panda/blob/883c85fa35f35e84a323ed3d464ff40030f06bd6/panda/docs/LINE_Censorship.md I wonder why they don't just upstream those things to QEMU's tracing: https://github.com/panda-re/panda/issues/290
  7476. gem5 can do it as shown at: xref:gem5-tracing[xrefstyle=full].
  7477. ==== QEMU trace memory accesses
  7478. Not possible apparently, not even with the `memory_region_ops_read` and `memory_region_ops_write` trace events, Peter comments https://lists.gnu.org/archive/html/qemu-devel/2015-06/msg07482.html
  7479. ____
  7480. No. You will miss all the fast-path memory accesses, which are
  7481. done with custom generated assembly in the TCG backend. In
  7482. general QEMU is not designed to support this kind of monitoring
  7483. of guest operations.
  7484. ____
  7485. Related question: https://reverseengineering.stackexchange.com/questions/12260/how-to-log-all-memory-accesses-read-and-write-including-the-memory-content-in
  7486. ==== Trace source lines
  7487. We can further use Binutils' `addr2line` to get the line that corresponds to each address:
  7488. ....
  7489. ./trace-boot --arch x86_64
  7490. ./trace2line --arch x86_64
  7491. less "$(./getvar --arch x86_64 run_dir)/trace-lines.txt"
  7492. ....
  7493. The last commands takes several seconds.
  7494. The format is as follows:
  7495. ....
  7496. 39368 _static_cpu_has arch/x86/include/asm/cpufeature.h:148
  7497. ....
  7498. Where:
  7499. * `39368`: number of consecutive times that a line ran. Makes the output much shorter and more meaningful
  7500. * `_static_cpu_has`: name of the function that contains the line
  7501. * `arch/x86/include/asm/cpufeature.h:148`: file and line
  7502. This could of course all be done with GDB, but it would likely be too slow to be practical.
  7503. TODO do even more awesome offline post-mortem analysis things, such as:
  7504. * detect if we are in userspace or kernelspace. Should be a simple matter of reading the
  7505. * read kernel data structures, and determine the current thread. Maybe we can reuse / extend the kernel's GDB Python scripts??
  7506. ==== QEMU record and replay
  7507. QEMU runs, unlike gem5, are not deterministic by default, however it does support a record and replay mechanism that allows you to replay a previous run deterministically.
  7508. This awesome feature allows you to examine a single run as many times as you would like until you understand everything:
  7509. ....
  7510. # Record a run.
  7511. ./run --eval-after './linux/rand_check.out;./linux/poweroff.out;' --record
  7512. # Replay the run.
  7513. ./run --eval-after './linux/rand_check.out;./linux/poweroff.out;' --replay
  7514. ....
  7515. A convenient shortcut to do both at once to test the feature is:
  7516. ....
  7517. ./qemu-rr --eval-after './linux/rand_check.out;./linux/poweroff.out;'
  7518. ....
  7519. By comparing the terminal output of both runs, we can see that they are the exact same, including things which normally differ across runs:
  7520. * timestamps of dmesg output
  7521. * <<rand-check-out>> output
  7522. The record and replay feature was revived around QEMU v3.0.0. In v5.2.0 it is quite usable, almost all peripherals and vCPUs are supported.
  7523. Documented at: https://github.com/qemu/qemu/blob/v5.2.0/docs/replay.txt
  7524. replay may be used with with network:
  7525. ....
  7526. ./qemu-rr --eval-after 'ifup -a;wget -S google.com;./linux/poweroff.out;'
  7527. ....
  7528. `arm` and `aarch64` targets can also be used with rr:
  7529. ....
  7530. ./qemu-rr --arch aarch64 --eval-after './linux/rand_check.out;./linux/poweroff.out;'
  7531. ./qemu-rr --arch aarch64 --eval-after 'ifup -a;wget -S google.com;./linux/poweroff.out;'
  7532. ....
  7533. Replay also supports <<initrd>> and no disk:
  7534. ....
  7535. ./build-buildroot --arch aarch64 --initrd
  7536. ./qemu-rr --arch aarch64 --eval-after './linux/rand_check.out;./linux/poweroff.out;' --initrd
  7537. ....
  7538. ===== QEMU reverse debugging
  7539. QEMU replays support checkpointing, and this allows for a simplistic "reverse debugging" implementation since v5.2.0:
  7540. ....
  7541. ./run --eval-after './linux/rand_check.out;./linux/poweroff.out;' --record
  7542. ./run --eval-after './linux/rand_check.out;./linux/poweroff.out;' --replay --gdb-wait
  7543. ....
  7544. On another shell:
  7545. ....
  7546. ./run-gdb start_kernel
  7547. ....
  7548. In GDB:
  7549. ....
  7550. n
  7551. n
  7552. n
  7553. n
  7554. reverse-continue
  7555. ....
  7556. and we are back at `start_kernel`
  7557. `reverse-continue` proceeds to the latest of the earlier breakpoints or to the very beginning if there were no breakpoints before.
  7558. ==== QEMU trace multicore
  7559. TODO: is there any way to distinguish which instruction runs on each core? Doing:
  7560. ....
  7561. ./run --arch x86_64 --cpus 2 --eval './linux/poweroff.out' --trace exec_tb
  7562. ./qemu-trace2txt
  7563. ....
  7564. just appears to output both cores intertwined without any clear differentiation.
  7565. ==== QEMU get guest instruction count
  7566. TODO: https://stackoverflow.com/questions/58766571/how-to-count-the-number-of-guest-instructions-qemu-executed-from-the-beginning-t
  7567. ==== gem5 tracing
  7568. gem5 provides also provides a tracing mechanism documented at: http://www.gem5.org/Trace_Based_Debugging[]:
  7569. ....
  7570. ./run --arch aarch64 --eval 'm5 exit' --emulator gem5 --trace ExecAll
  7571. less "$(./getvar --arch aarch64 run_dir)/trace.txt"
  7572. ....
  7573. Our wrapper just forwards the options to the `--debug-flags` gem5 option.
  7574. Keep in mind however that the disassembly is very broken in several places as of 2019q2, so you can't always trust it.
  7575. Output the trace to stdout instead of a file:
  7576. ....
  7577. ./run \
  7578. --arch aarch64 \
  7579. --emulator gem5 \
  7580. --eval 'm5 exit' \
  7581. --trace ExecAll \
  7582. --trace-stdout \
  7583. ;
  7584. ....
  7585. We also have a shortcut for `--trace ExecAll -trace-stdout` with `--trace-insts-stdout`
  7586. ....
  7587. ./run \
  7588. --arch aarch64 \
  7589. --emulator gem5 \
  7590. --eval 'm5 exit' \
  7591. --trace-insts-stdout \
  7592. ;
  7593. ....
  7594. Be warned, the trace is humongous, at 16Gb.
  7595. This would produce a lot of output however, so you will likely not want that when tracing a Linux kernel boot instructions. But it can be very convenient for smaller traces such as <<baremetal>>.
  7596. List all available debug flags:
  7597. ....
  7598. ./run --arch aarch64 --gem5-exe-args='--debug-help' --emulator gem5
  7599. ....
  7600. but to understand most of them you have to look at the source code:
  7601. ....
  7602. less "$(./getvar gem5_source_dir)/src/cpu/SConscript"
  7603. less "$(./getvar gem5_source_dir)/src/cpu/exetrace.cc"
  7604. ....
  7605. The most important trace flags to know about are:
  7606. * <<gem5-execall-trace-format,`ExecAll`>>
  7607. * `Faults`: CPU exceptions / interrupts, see an example at: <<arm-svc-instruction>>
  7608. * <<gem5-registers-trace-format,`Registers`>>
  7609. * <<gem5-syscall-emulation-mode-syscall-tracing,`SyscallBase`, `SyscallVerbose`>>
  7610. Trace internals are discussed at: <<gem5-trace-internals>>.
  7611. As can be seen on the `Sconstruct`, `Exec` is just an alias that enables a set of flags.
  7612. We can make the trace smaller by naming the trace file as `trace.txt.gz`, which enables GZIP compression, but that is not currently exposed on our scripts, since you usually just need something human readable to work on.
  7613. Enabling tracing made the runtime about 4x slower on the <<p51>>, with or without `.gz` compression.
  7614. Trace the source lines just like <<trace-source-lines,for QEMU>> with:
  7615. ....
  7616. ./trace-boot --arch aarch64 --emulator gem5
  7617. ./trace2line --arch aarch64 --emulator gem5
  7618. less "$(./getvar --arch aarch64 run_dir)/trace-lines.txt"
  7619. ....
  7620. TODO: 7452d399290c9c1fc6366cdad129ef442f323564 `./trace2line` this is too slow and takes hours. QEMU's processing of 170k events takes 7 seconds. gem5's processing is analogous, but there are 140M events, so it should take 7000 seconds ~ 2 hours which seems consistent with what I observe, so maybe there is no way to speed this up... The workaround is to just use gem5's `ExecSymbol` to get function granularity, and then GDB individually if line detail is needed?
  7621. ===== gem5 trace internals
  7622. gem5 traces are generated from `DPRINTF(<trace-id>` calls scattered throughout the code, except for `ExecAll` instruction traces, which uses `Debug::ExecEnable` directly..
  7623. The trace IDs are themselves encoded in `SConscript` files, e.g.:
  7624. ....
  7625. DebugFlag('Event'
  7626. ....
  7627. in `src/cpu/SConscript`.
  7628. The build system then automatically adds the options to the `--debug-flags`.
  7629. For this entry, the build system then generates a file `build/ARM/debug/ExecEnable.hh`, which contains:
  7630. ....
  7631. namespace Debug {
  7632. class SimpleFlag;
  7633. extern SimpleFlag ExecEnable;
  7634. }
  7635. ....
  7636. and must be included in from callers of `DPRINTF(` as `<debug/ExecEnable.hh>`.
  7637. Tested in b4879ae5b0b6644e6836b0881e4da05c64a6550d.
  7638. ===== gem5 ExecAll trace format
  7639. This debug flag traces all instructions.
  7640. The output format is of type:
  7641. ....
  7642. 25007000: system.cpu T0 : @start_kernel : stp
  7643. 25007000: system.cpu T0 : @start_kernel.0 : addxi_uop ureg0, sp, #-112 : IntAlu : D=0xffffff8008913f90
  7644. 25007500: system.cpu T0 : @start_kernel.1 : strxi_uop x29, [ureg0] : MemWrite : D=0x0000000000000000 A=0xffffff8008913f90
  7645. 25008000: system.cpu T0 : @start_kernel.2 : strxi_uop x30, [ureg0, #8] : MemWrite : D=0x0000000000000000 A=0xffffff8008913f98
  7646. 25008500: system.cpu T0 : @start_kernel.3 : addxi_uop sp, ureg0, #0 : IntAlu : D=0xffffff8008913f90
  7647. ....
  7648. There are two types of lines:
  7649. * full instructions, as the first line. Only shown if the `ExecMacro` flag is given.
  7650. * micro ops that constitute the instruction, the lines that follow. Yes, `aarch64` also has microops: https://superuser.com/questions/934752/do-arm-processors-like-cortex-a9-use-microcode/934755#934755[]. Only shown if the `ExecMicro` flag is given.
  7651. Breakdown:
  7652. * `25007500`: time count in some unit. Note how the microops execute at further timestamps.
  7653. * `system.cpu`: distinguishes between CPUs when there are more than one. For example, running xref:arm-baremetal-multicore[xrefstyle=full] with two cores produces `system.cpu0` and `system.cpu1`
  7654. * `T0`: thread number. TODO: https://superuser.com/questions/133082/hyper-threading-and-dual-core-whats-the-difference/995858#995858[hyperthread]? How to play with it?
  7655. +
  7656. `config`.ini has `--param 'system.multi_thread = True' --param 'system.cpu[0].numThreads = 2'`, but in <<arm-baremetal-multicore>> the first one alone does not produce `T1`, and with the second one simulation blows up with:
  7657. +
  7658. ....
  7659. fatal: fatal condition interrupts.size() != numThreads occurred: CPU system.cpu has 1 interrupt controllers, but is expecting one per thread (2)
  7660. ....
  7661. * `@start_kernel`: we are in the `start_kernel` function. Awesome feature! Implemented with libelf https://sourceforge.net/projects/elftoolchain/ copy pasted in-tree `ext/libelf`. To get raw addresses, remove the `ExecSymbol`, which is enabled by `Exec`. This can be done with `Exec,-ExecSymbol`.
  7662. * `.1` as in `@start_kernel.1`: index of the <<gem5-microops>>
  7663. * `stp`: instruction disassembly. Note however that the disassembly of many instructions are very broken as of 2019q2, and you can't just trust them blindly.
  7664. * `strxi_uop x29, [ureg0]`: microop disassembly.
  7665. * `MemWrite : D=0x0000000000000000 A=0xffffff8008913f90`: a memory write microop:
  7666. ** `D` stands for data, and represents the value that was written to memory or to a register
  7667. ** `A` stands for address, and represents the address to which the value was written. It only shows when data is being written to memory, but not to registers.
  7668. The best way to verify all of this is to write some <<baremetal,baremetal code>>
  7669. ===== gem5 Registers trace format
  7670. This flag shows a more detailed register usage than <<gem5-execall-trace-format>>.
  7671. For example, if we run in LKMC 0323e81bff1d55b978a4b36b9701570b59b981eb:
  7672. ....
  7673. ./run --arch aarch64 --baremetal userland/arch/aarch64/add.S --emulator gem5 --trace ExecAll,Registers --trace-stdout
  7674. ....
  7675. then the stdout contains:
  7676. ....
  7677. 31000: system.cpu A0 T0 : @main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  7678. 31500: system.cpu.[tid:0]: Setting int reg 34 (34) to 0.
  7679. 31500: system.cpu.[tid:0]: Reading int reg 0 (0) as 0x1.
  7680. 31500: system.cpu.[tid:0]: Setting int reg 1 (1) to 0x3.
  7681. 31500: system.cpu A0 T0 : @main_after_prologue+4 : add x1, x0, #2 : IntAlu : D=0x0000000000000003 flags=(IsInteger)
  7682. 32000: system.cpu.[tid:0]: Setting int reg 34 (34) to 0.
  7683. 32000: system.cpu.[tid:0]: Reading int reg 1 (1) as 0x3.
  7684. 32000: system.cpu.[tid:0]: Reading int reg 31 (34) as 0.
  7685. 32000: system.cpu.[tid:0]: Setting int reg 0 (0) to 0x3.
  7686. ....
  7687. which corresponds to the two following instructions:
  7688. ....
  7689. mov x0, 1
  7690. add x1, x0, 2
  7691. ....
  7692. TODO that format is either buggy or is very difficult to understand:
  7693. * what is `34`? Presumably some flags register?
  7694. * what do the numbers in parenthesis mean at `31 (34)`? Presumably some flags register?
  7695. * why is the first instruction setting `reg 1` and the second one `reg 0`, given that the first sets `x0` and the second `x1`?
  7696. ===== gem5 TARMAC traces
  7697. https://stackoverflow.com/questions/54882466/how-to-use-the-tarmac-tracer-with-gem5
  7698. ===== gem5 tracing internals
  7699. As of gem5 16eeee5356585441a49d05c78abc328ef09f7ace the default tracer is `ExeTracer`. It is set at:
  7700. ....
  7701. src/cpu/BaseCPU.py:63:default_tracer = ExeTracer()
  7702. ....
  7703. which then gets used at:
  7704. ....
  7705. class BaseCPU(ClockedObject):
  7706. [...]
  7707. tracer = Param.InstTracer(default_tracer, "Instruction tracer")
  7708. ....
  7709. All tracers derive from the common `InstTracer` base class:
  7710. ....
  7711. git grep ': InstTracer'
  7712. ....
  7713. gives:
  7714. ....
  7715. src/arch/arm/tracers/tarmac_parser.hh:218: TarmacParser(const Params *p) : InstTracer(p), startPc(p->start_pc),
  7716. src/arch/arm/tracers/tarmac_tracer.cc:57: : InstTracer(p),
  7717. src/cpu/exetrace.hh:67: ExeTracer(const Params *params) : InstTracer(params)
  7718. src/cpu/inst_pb_trace.cc:72: : InstTracer(p), buf(nullptr), bufSize(0), curMsg(nullptr)
  7719. src/cpu/inteltrace.hh:63: IntelTrace(const IntelTraceParams *p) : InstTracer(p)
  7720. ....
  7721. As mentioned at <<gem5-tarmac-traces>>, there appears to be no way to select those currently without hacking the config scripts.
  7722. TARMAC is described at: <<gem5-tarmac-traces>>.
  7723. TODO: are `IntelTrace` and `TarmacParser` useful for anything or just relics?
  7724. Then there is also the `NativeTrace` class:
  7725. ....
  7726. src/cpu/nativetrace.hh:68:class NativeTrace : public ExeTracer
  7727. ....
  7728. which gets implemented in a few different ISAs, but not all:
  7729. ....
  7730. src/arch/arm/nativetrace.hh:40:class ArmNativeTrace : public NativeTrace
  7731. src/arch/sparc/nativetrace.hh:41:class SparcNativeTrace : public NativeTrace
  7732. src/arch/x86/nativetrace.hh:41:class X86NativeTrace : public NativeTrace
  7733. ....
  7734. TODO: I can't find any usages of those classes from in-tree configs.
  7735. === QEMU GUI is unresponsive
  7736. Sometimes in Ubuntu 14.04, after the QEMU SDL GUI starts, it does not get updated after keyboard strokes, and there are artifacts like disappearing text.
  7737. We have not managed to track this problem down yet, but the following workaround always works:
  7738. ....
  7739. Ctrl-Shift-U
  7740. Ctrl-C
  7741. root
  7742. ....
  7743. This started happening when we switched to building QEMU through Buildroot, and has not been observed on later Ubuntu.
  7744. Using text mode is another workaround if you don't need GUI features.
  7745. == gem5
  7746. Getting started at: xref:gem5-buildroot-setup[xrefstyle=full].
  7747. gem5 has a bunch of crappiness, mostly described at: <<gem5-vs-qemu>>, but it does deserve some credit on the following points:
  7748. * insanely configurable system topology from Python without recompiling, made possible in part due to a well defined memory packet structure that allows adding caches and buses transparently
  7749. * each micro architectural model (<<gem5-cpu-types>>) works with all ISAs
  7750. === gem5 vs QEMU
  7751. * advantages of gem5:
  7752. ** simulates a generic more realistic <<gem5-cpu-types,optionally pipelined and out-of-order>> CPU cycle by cycle, including a realistic DRAM memory access model with latencies, caches and page table manipulations. This allows us to:
  7753. +
  7754. --
  7755. *** do much more realistic performance benchmarking with it, which makes absolutely no sense in QEMU, which is purely functional
  7756. *** make certain functional observations that are not possible in QEMU, e.g.:
  7757. **** use Linux kernel APIs that flush cache memory like DMA, which are crucial for driver development. In QEMU, the driver would still work even if we forget to flush caches.
  7758. **** spectre / meltdown:
  7759. ***** https://www.mail-archive.com/gem5-users@gem5.org/msg15319.html
  7760. ***** https://github.com/jlpresearch/gem5/tree/spectre-test
  7761. --
  7762. +
  7763. It is not of course truly cycle accurate, as that:
  7764. +
  7765. --
  7766. ** would require exposing proprietary information of the CPU designs: https://stackoverflow.com/questions/17454955/can-you-check-performance-of-a-program-running-with-qemu-simulator/33580850#33580850[]
  7767. ** would make the simulation even slower TODO confirm, by how much
  7768. --
  7769. +
  7770. but the approximation is reasonable.
  7771. +
  7772. It is used mostly for microarchitecture research purposes: when you are making a new chip technology, you don't really need to specialize enormously to an existing microarchitecture, but rather develop something that will work with a wide range of future architectures.
  7773. ** runs are deterministic by default, unlike QEMU which has a special <<qemu-record-and-replay>> mode, that requires first playing the content once and then replaying
  7774. ** gem5 ARM at least appears to implement more low level CPU functionality than QEMU, e.g. QEMU only added EL2 in 2018: https://stackoverflow.com/questions/42824706/qemu-system-aarch64-entering-el1-when-emulating-a53-power-up See also: xref:arm-exception-levels[xrefstyle=full]
  7775. ** gem5 offers more advanced logging, even for non micro architectural things which QEMU models in some way, e.g. <<qemu-trace-memory-accesses>>, because QEMU's binary translation optimizations reduce visibility
  7776. * disadvantages of gem5:
  7777. ** slower than QEMU, see: xref:benchmark-linux-kernel-boot[xrefstyle=full]
  7778. +
  7779. This implies that the user base is much smaller, since no Android devs.
  7780. +
  7781. Instead, we have only chip makers, who keep everything that really works closed, and researchers, who can't version track or document code properly >:-) And this implies that:
  7782. +
  7783. --
  7784. *** the documentation is more scarce
  7785. *** it takes longer to support new hardware features
  7786. --
  7787. +
  7788. Well, not that AOSP is that much better anyway.
  7789. ** not sure: gem5 has BSD license while QEMU has GPL
  7790. +
  7791. This suits chip makers that want to distribute forks with secret IP to their customers.
  7792. +
  7793. On the other hand, the chip makers tend to upstream less, and the project becomes more crappy in average :-)
  7794. ** gem5 is way more complex and harder to modify and maintain
  7795. +
  7796. The only hairy thing in QEMU is the binary code generation.
  7797. +
  7798. gem5 however has tended towards horrendous intensive <<gem5-code-generation,code generation>> in order to support all its different hardware types
  7799. +
  7800. gem5 also has a complex Python interface which is also largely auto-generated, which greatly increases the maintenance complexity of the project: <<embedding-python-in-another-application>>.
  7801. +
  7802. This is done so that reconfiguring platforms can be done quickly without recompiling, and it is amazing when it works, but the maintenance costs are also very high. For example, <<pybind11>> of several trivial `param_` files accounted for 50% of the build time at one point: <<pybind11-accounts-for-50-of-gem5-build-time>>.
  7803. +
  7804. All of this also makes it hard to setup an IDE for developing gem5: <<gem5-eclipse-configuration>>
  7805. +
  7806. The feelings of helplessness this brings are well summarized by the following CSDN article https://blog.csdn.net/maokelong95/article/details/85333905:
  7807. +
  7808. ____
  7809. Found DPRINTF based debugging unable to meet your needs?
  7810. Found GDB based debugging unfriendly to human beings?
  7811. Want to debug gem5 source with the help of modern IDEs like Eclipse?
  7812. Failed in getting help from GEM5 community?
  7813. Come on, dude! Here is the up-to-date tutorial for you!
  7814. Just be ready for THE ENDLESS NIGHTMARE gem5 will bring!
  7815. ____
  7816. === gem5 run benchmark
  7817. OK, this is why we used gem5 in the first place, performance measurements!
  7818. Let's see how many cycles dhrystone, which Buildroot provides, takes for a few different input parameters.
  7819. We will do that for various input parameters on full system by taking a checkpoint after the boot finishes a fast atomic CPU boot, and then we will restore in a more detailed mode and run the benchmark:
  7820. ....
  7821. ./build-buildroot --config 'BR2_PACKAGE_DHRYSTONE=y'
  7822. # Boot fast, take checkpoint, and exit.
  7823. ./run --arch aarch64 --emulator gem5 --eval-after './gem5.sh'
  7824. # Restore the checkpoint after boot, and benchmark with input 1000.
  7825. ./run \
  7826. --arch aarch64 \
  7827. --emulator gem5 \
  7828. --eval-after './gem5.sh' \
  7829. --gem5-readfile 'm5 resetstats;dhrystone 1000;m5 dumpstats' \
  7830. --gem5-restore 1 \
  7831. -- \
  7832. --cpu-type=HPI \
  7833. --restore-with-cpu=HPI \
  7834. --caches \
  7835. --l2cache \
  7836. --l1d_size=64kB \
  7837. --l1i_size=64kB \
  7838. --l2_size=256kB \
  7839. ;
  7840. # Get the value for number of cycles.
  7841. # head because there are two lines: our dumpstats and the
  7842. # automatic dumpstats at the end which we don't care about.
  7843. ./gem5-stat --arch aarch64 | head -n 1
  7844. # Now for input 10000.
  7845. ./run \
  7846. --arch aarch64 \
  7847. --emulator gem5 \
  7848. --eval-after './gem5.sh' \
  7849. --gem5-readfile 'm5 resetstats;dhrystone 10000;m5 dumpstats' \
  7850. --gem5-restore 1 \
  7851. -- \
  7852. --cpu-type=HPI \
  7853. --restore-with-cpu=HPI \
  7854. --caches \
  7855. --l2cache \
  7856. --l1d_size=64kB \
  7857. --l1i_size=64kB \
  7858. --l2_size=256kB \
  7859. ;
  7860. ./gem5-stat --arch aarch64 | head -n 1
  7861. ....
  7862. If you ever need a shell to quickly inspect the system state after boot, you can just use:
  7863. ....
  7864. ./run \
  7865. --arch aarch64 \
  7866. --emulator gem5 \
  7867. --eval-after './gem5.sh' \
  7868. --gem5-readfile 'sh' \
  7869. --gem5-restore 1 \
  7870. ....
  7871. This procedure is further automated and DRYed up at:
  7872. ....
  7873. ./gem5-bench-dhrystone
  7874. cat out/gem5-bench-dhrystone.txt
  7875. ....
  7876. Source: link:gem5-bench-dhrystone[]
  7877. Output at 2438410c25e200d9766c8c65773ee7469b599e4a + 1:
  7878. ....
  7879. n cycles
  7880. 1000 13665219
  7881. 10000 20559002
  7882. 100000 85977065
  7883. ....
  7884. so as expected, the Dhrystone run with a larger input parameter `100000` took more cycles than the ones with smaller input parameters.
  7885. The `gem5-stats` commands output the approximate number of CPU cycles it took Dhrystone to run.
  7886. A more naive and simpler to understand approach would be a direct:
  7887. ....
  7888. ./run --arch aarch64 --emulator gem5 --eval 'm5 checkpoint;m5 resetstats;dhrystone 10000;m5 exit'
  7889. ....
  7890. but the problem is that this method does not allow to easily run a different script without running the boot again. The `./gem5.sh` script works around that by using <<m5-readfile>> as explained further at: xref:gem5-restore-new-script[xrefstyle=full].
  7891. Now you can play a fun little game with your friends:
  7892. * pick a computational problem
  7893. * make a program that solves the computation problem, and outputs output to stdout
  7894. * write the code that runs the correct computation in the smallest number of cycles possible
  7895. Interesting algorithms and benchmarks for this game are being collected at:
  7896. * <<algorithms>>
  7897. * <<benchmarks>>
  7898. To find out why your program is slow, a good first step is to have a look at the <<gem5-m5out-stats-txt-file>>.
  7899. ==== Skip extra benchmark instructions
  7900. A few imperfections of our <<gem5-run-benchmark,benchmarking method>> are:
  7901. * when we do `m5 resetstats` and `m5 exit`, there is some time passed before the `exec` system call returns and the actual benchmark starts and ends
  7902. * the benchmark outputs to stdout, which means so extra cycles in addition to the actual computation. But TODO: how to get the output to check that it is correct without such IO cycles?
  7903. Solutions to these problems include:
  7904. * modify benchmark code with instrumentation directly, see <<m5ops-instructions>> for an example.
  7905. * monitor known addresses TODO possible? Create an example.
  7906. Discussion at: https://stackoverflow.com/questions/48944587/how-to-count-the-number-of-cpu-clock-cycles-between-the-start-and-end-of-a-bench/48944588#48944588
  7907. Those problems should be insignificant if the benchmark runs for long enough however.
  7908. === gem5 system parameters
  7909. Besides optimizing a program for a given CPU setup, chip developers can also do the inverse, and optimize the chip for a given benchmark!
  7910. The rabbit hole is likely deep, but let's scratch a bit of the surface.
  7911. ==== Number of cores
  7912. ....
  7913. ./run --arch arm --cpus 2 --emulator gem5
  7914. ....
  7915. Can be checked with `/proc/cpuinfo` or <<sysconf,getconf>> in Ubuntu 18.04:
  7916. ....
  7917. cat /proc/cpuinfo
  7918. getconf _NPROCESSORS_CONF
  7919. ....
  7920. Or from <<user-mode-simulation>>, we can use either of:
  7921. * <<sysconf>> with link:userland/linux/sysconf.c[]
  7922. +
  7923. ....
  7924. ./run --cpus 2 --emulator gem5 --userland userland/linux/sysconf.c | grep _SC_NPROCESSORS_ONLN
  7925. ....
  7926. * <<cpp-multithreading>>'s link:userland/cpp/thread_hardware_concurrency.cpp[]:
  7927. +
  7928. ....
  7929. ./run --cpus 2 --emulator gem5 --userland userland/cpp/thread_hardware_concurrency.cpp
  7930. ....
  7931. * direct access to several special filesystem files that contain this information e.g. via link:userland/c/cat.c[]:
  7932. +
  7933. ....
  7934. ./run --cpus 2 --emulator gem5 --userland userland/c/cat.c --cli-args /proc/cpuinfo
  7935. ....
  7936. ===== QEMU user mode multithreading
  7937. <<user-mode-simulation>> QEMU v4.0.0 always shows the number of cores of the host, presumably because the thread switching uses host threads directly which would make that harder to implement.
  7938. It does not seem possible to make the guest see a different number of cores than what the host has. Full system does have the `-smp` options, which controls this.
  7939. E.g., all of of the following output the same as `nproc` on the host:
  7940. ....
  7941. nproc
  7942. ./run --cpus 1 --userland userland/cpp/thread_hardware_concurrency.cpp
  7943. ./run --cpus 2 --userland userland/cpp/thread_hardware_concurrency.cpp
  7944. ....
  7945. This random page suggests that QEMU splits one host thread thread per guest thread, and thus presumably delegates context switching to the host kernel: https://qemu.weilnetz.de/w64/2012/2012-12-04/qemu-tech.html#User-emulation-specific-details
  7946. We can confirm that with:
  7947. ....
  7948. ./run --userland userland/posix/pthread_count.c --cli-args 4
  7949. ps Haux | grep qemu | wc
  7950. ....
  7951. Remember <<qemu-user-mode-does-not-show-stdout-immediately>> though.
  7952. At 369a47fc6e5c2f4a7f911c1c058b6088f8824463 + 1 QEMU appears to spawn 3 host threads plus one for every new guest thread created. Remember that link:userland/posix/pthread_count.c[] spawns N + 1 total threads if you count the `main` thread.
  7953. ===== gem5 ARM full system with more than 8 cores
  7954. https://stackoverflow.com/questions/50248067/how-to-run-a-gem5-arm-aarch64-full-system-simulation-with-fs-py-with-more-than-8
  7955. With <<arm-gic,GICv3>>, tested at LKMC 224fae82e1a79d9551b941b19196c7e337663f22 gem5 3ca404da175a66e0b958165ad75eb5f54cb5e772 on vanilla kernel:
  7956. ....
  7957. ./run \
  7958. --arch aarch64 \
  7959. --emulator gem5 \
  7960. --cpus 16 \
  7961. -- \
  7962. --machine-type VExpress_GEM5_V2 \
  7963. ;
  7964. ....
  7965. boots to a shell and `nproc` shows `16`.
  7966. For the GICv2 extension method, build the kernel with the <<gem5-arm-linux-kernel-patches>>, and then run:
  7967. ....
  7968. ./run \
  7969. --arch aarch64 \
  7970. --linux-build-id gem5-v4.15 \
  7971. --emulator gem5 \
  7972. --cpus 16 \
  7973. -- \
  7974. --param 'system.realview.gic.gem5_extensions = True' \
  7975. ;
  7976. ....
  7977. Tested in LKMC 788087c6f409b84adf3cff7ac050fa37df6d4c46. It fails after boot with `FATAL: kernel too old` as mentioned at: <<gem5-arm-linux-kernel-patches>> but everything seems to work on the gem5 side of things.
  7978. ==== gem5 cache size
  7979. https://stackoverflow.com/questions/49624061/how-to-run-gem5-simulator-in-fs-mode-without-cache/49634544#49634544
  7980. A quick `+./run --emulator gem5 -- -h+` leads us to the options:
  7981. ....
  7982. --caches
  7983. --l1d_size=1024
  7984. --l1i_size=1024
  7985. --l2cache
  7986. --l2_size=1024
  7987. --l3_size=1024
  7988. ....
  7989. But keep in mind that it only affects benchmark performance of the most detailed CPU types as shown at: xref:table-gem5-cache-cpu-type[xrefstyle=full].
  7990. [[table-gem5-cache-cpu-type]]
  7991. .gem5 cache support in function of CPU type
  7992. [options="header"]
  7993. |===
  7994. |arch |CPU type |caches used
  7995. |X86
  7996. |`AtomicSimpleCPU`
  7997. |no
  7998. |X86
  7999. |`DerivO3CPU`
  8000. |?*
  8001. |ARM
  8002. |`AtomicSimpleCPU`
  8003. |no
  8004. |ARM
  8005. |`HPI`
  8006. |yes
  8007. |===
  8008. {empty}*: couldn't test because of:
  8009. * https://stackoverflow.com/questions/49011096/how-to-switch-cpu-models-in-gem5-after-restoring-a-checkpoint-and-then-observe-t
  8010. Cache sizes can in theory be checked with the methods described at: https://superuser.com/questions/55776/finding-l2-cache-size-in-linux[]:
  8011. ....
  8012. lscpu
  8013. cat /sys/devices/system/cpu/cpu0/cache/index2/size
  8014. ....
  8015. and on Ubuntu 20.04 host <<sysconf,but not Buildroot 1.31.1>>:
  8016. ....
  8017. getconf -a | grep CACHE
  8018. ....
  8019. and we also have an easy to use userland executable using <<sysconf>> at link:userland/linux/sysconf.c[]:
  8020. ....
  8021. ./run --emulator gem5 --userland userland/linux/sysconf.c
  8022. ....
  8023. but for some reason the Linux kernel is not seeing the cache sizes:
  8024. * https://stackoverflow.com/questions/49008792/why-doesnt-the-linux-kernel-see-the-cache-sizes-in-the-gem5-emulator-in-full-sy
  8025. * http://gem5-users.gem5.narkive.com/4xVBlf3c/verify-cache-configuration
  8026. Behaviour breakdown:
  8027. * arm QEMU and gem5 (both `AtomicSimpleCPU` or `HPI`), x86 gem5: `/sys` files don't exist, and `getconf` and `lscpu` value empty
  8028. * x86 QEMU: `/sys` files exist, but `getconf` and `lscpu` values still empty
  8029. The only precise option is therefore to look at <<gem5-config-ini>> as done at: <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches>>.
  8030. Or for a quick and dirty performance measurement approach instead:
  8031. ....
  8032. ./gem5-bench-cache -- --arch aarch64
  8033. cat "$(./getvar --arch aarch64 run_dir)/bench-cache.txt"
  8034. ....
  8035. which gives:
  8036. ....
  8037. cmd ./run --emulator gem5 --arch aarch64 --gem5-readfile "dhrystone 1000" --gem5-restore 1 -- --caches --l2cache --l1d_size=1024 --l1i_size=1024 --l2_size=1024 --l3_size=1024 --cpu-type=HPI --restore-with-cpu=HPI
  8038. time 23.82
  8039. exit_status 0
  8040. cycles 93284622
  8041. instructions 4393457
  8042. cmd ./run --emulator gem5 --arch aarch64 --gem5-readfile "dhrystone 1000" --gem5-restore 1 -- --caches --l2cache --l1d_size=1024kB --l1i_size=1024kB --l2_size=1024kB --l3_size=1024kB --cpu-type=HPI --restore-with-cpu=HPI
  8043. time 14.91
  8044. exit_status 0
  8045. cycles 10128985
  8046. instructions 4211458
  8047. cmd ./run --emulator gem5 --arch aarch64 --gem5-readfile "dhrystone 10000" --gem5-restore 1 -- --caches --l2cache --l1d_size=1024 --l1i_size=1024 --l2_size=1024 --l3_size=1024 --cpu-type=HPI --restore-with-cpu=HPI
  8048. time 51.87
  8049. exit_status 0
  8050. cycles 188803630
  8051. instructions 12401336
  8052. cmd ./run --emulator gem5 --arch aarch64 --gem5-readfile "dhrystone 10000" --gem5-restore 1 -- --caches --l2cache --l1d_size=1024kB --l1i_size=1024kB --l2_size=1024kB --l3_size=1024kB --cpu-type=HPI --restore-with-cpu=HPI
  8053. time 35.35
  8054. exit_status 0
  8055. cycles 20715757
  8056. instructions 12192527
  8057. cmd ./run --emulator gem5 --arch aarch64 --gem5-readfile "dhrystone 100000" --gem5-restore 1 -- --caches --l2cache --l1d_size=1024 --l1i_size=1024 --l2_size=1024 --l3_size=1024 --cpu-type=HPI --restore-with-cpu=HPI
  8058. time 339.07
  8059. exit_status 0
  8060. cycles 1176559936
  8061. instructions 94222791
  8062. cmd ./run --emulator gem5 --arch aarch64 --gem5-readfile "dhrystone 100000" --gem5-restore 1 -- --caches --l2cache --l1d_size=1024kB --l1i_size=1024kB --l2_size=1024kB --l3_size=1024kB --cpu-type=HPI --restore-with-cpu=HPI
  8063. time 240.37
  8064. exit_status 0
  8065. cycles 125666679
  8066. instructions 91738770
  8067. ....
  8068. We make the following conclusions:
  8069. * the number of instructions almost does not change: the CPU is waiting for memory all the extra time. TODO: why does it change at all?
  8070. * the wall clock execution time is not directionally proportional to the number of cycles: here we had a 10x cycle increase, but only 2x time increase. This suggests that the simulation of cycles in which the CPU is waiting for memory to come back is faster.
  8071. ==== gem5 DRAM model
  8072. Some info at: <<timingsimplecpu-analysis-1>> but highly TODO :-)
  8073. ===== gem5 memory latency
  8074. TODO These look promising:
  8075. ....
  8076. --list-mem-types
  8077. --mem-type=MEM_TYPE
  8078. --mem-channels=MEM_CHANNELS
  8079. --mem-ranks=MEM_RANKS
  8080. --mem-size=MEM_SIZE
  8081. ....
  8082. TODO: now to verify this with the Linux kernel? Besides raw performance benchmarks.
  8083. Now for a raw simplistic benchmark on <<gem5-timingsimplecpu,`TimingSimpleCPU`>> without caches via <<c-busy-loop>>:
  8084. ....
  8085. ./run --arch aarch64 --cli-args 1000000 --emulator gem5 --userland userland/gcc/busy_loop.c -- --cpu-type TimingSimpleCPU
  8086. ....
  8087. LKMC eb22fd3b6e7fff7e9ef946a88b208debf5b419d5 gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1 outputs:
  8088. ....
  8089. Exiting @ tick 897173931000 because exiting with last active thread context
  8090. ....
  8091. and now because:
  8092. * we have no caches, each instruction is fetched from memory
  8093. * each loop contains 11 instructions as shown at xref:c-busy-loop[xrefstyle=full]
  8094. * and supposing that the loop dominated executable pre/post `main`, which we know is true since as shown in <<benchmark-emulators-on-userland-executables>> an empty dynamically linked C program only as about 100k instructions, while our loop runs 1000000 * 11 = 12M.
  8095. we should have about 1000000 * 11 / 897173931000 ps ~ 12260722 ~ 12MB/s of random accesses. The default memory type used is `DDR3_1600_8x8` as per:
  8096. ....
  8097. common/Options.py:101: parser.add_option("--mem-type", type="choice", default="DDR3_1600_8x8
  8098. ....
  8099. and according to https://en.wikipedia.org/wiki/DDR3_SDRAM that reaches 6400 MB/s so we are only off by a factor of 50x :-) TODO. Maybe if the minimum transaction if 64 bytes, we would be on point.
  8100. Another example we could use later on is link:userland/gcc/busy_loop.c[], but then that mixes icache and dcache accesses, so the analysis is a bit more complex:
  8101. ....
  8102. ./run --arch aarch64 --cli-args 0x1000000 --emulator gem5 --userland userland/gcc/busy_loop.c -- --cpu-type TimingSimpleCPU
  8103. ....
  8104. ===== Memory size
  8105. Can be set across emulators with:
  8106. ....
  8107. ./run --memory 512M
  8108. ....
  8109. We can verify this on the guest directly from the kernel with:
  8110. ....
  8111. cat /proc/meminfo
  8112. ....
  8113. as of LKMC 1e969e832f66cb5a72d12d57c53fb09e9721d589 this output contains:
  8114. ....
  8115. MemTotal: 498472 kB
  8116. ....
  8117. which we expand with:
  8118. ....
  8119. printf '0x%X\n' $((498472 * 1024))
  8120. ....
  8121. to:
  8122. ....
  8123. 0x1E6CA000
  8124. ....
  8125. TODO: why is this value a bit smaller than 512M?
  8126. `free` also gives the same result:
  8127. ....
  8128. free -b
  8129. ....
  8130. contains:
  8131. ....
  8132. total used free shared buffers cached
  8133. Mem: 510435328 20385792 490049536 0 503808 2760704
  8134. -/+ buffers/cache: 17121280 493314048
  8135. Swap: 0 0 0
  8136. ....
  8137. which we expand with:
  8138. ....
  8139. printf '0x%X\n' 510435328$((498472 * 1024)
  8140. ....
  8141. `man free` from Ubuntu's procps 3.3.15 tells us that `free` obtains this information from `/proc/meminfo` as well.
  8142. From C, we can get this information with `sysconf(_SC_PHYS_PAGES)` or `get_phys_pages()`:
  8143. ....
  8144. ./linux/total_memory.out
  8145. ....
  8146. Source: link:userland/linux/total_memory.c[]
  8147. Output:
  8148. ....
  8149. sysconf(_SC_PHYS_PAGES) * sysconf(_SC_PAGESIZE) = 0x1E6CA000
  8150. sysconf(_SC_AVPHYS_PAGES) * sysconf(_SC_PAGESIZE) = 0x1D178000
  8151. get_phys_pages() * sysconf(_SC_PAGESIZE) = 0x1E6CA000
  8152. get_avphys_pages() * sysconf(_SC_PAGESIZE) = 0x1D178000
  8153. ....
  8154. This is mentioned at: https://stackoverflow.com/questions/22670257/getting-ram-size-in-c-linux-non-precise-result/22670407#22670407
  8155. AV means available and gives the free memory: https://stackoverflow.com/questions/14386856/c-check-available-ram/57659190#57659190
  8156. ===== gem5 DRAM setup
  8157. This can be explored pretty well from <<gem5-config-ini>>.
  8158. se.py just has a single `DDR3_1600_8x8` DRAM with size given as <<memory-size>> and physical address starting at 0.
  8159. fs.py also has that `DDR3_1600_8x8` DRAM, but can have more memory types. Notably, aarch64 has as shown on RealView.py `VExpress_GEM5_Base`:
  8160. ....
  8161. 0x00000000-0x03ffffff: ( 0 - 64 MiB) Boot memory (CS0)
  8162. 0x04000000-0x07ffffff: ( 64 MiB - 128 MiB) Reserved
  8163. 0x08000000-0x0bffffff: (128 MiB - 192 MiB) NOR FLASH0 (CS0 alias)
  8164. 0x0c000000-0x0fffffff: (192 MiB - 256 MiB) NOR FLASH1 (Off-chip, CS4)
  8165. 0x80000000-XxXXXXXXXX: ( 2 GiB - ) DRAM
  8166. ....
  8167. We place the entry point of our baremetal executables right at the start of DRAM with our <<baremetal-linker-script>>.
  8168. This can be seen indirectly with:
  8169. ....
  8170. ./getvar --arch aarch64 --emulator gem5 entry_address
  8171. ....
  8172. which gives 0x80000000 in decimal, or more directly with some some <<gem5-tracing>>:
  8173. ....
  8174. ./run \
  8175. --arch aarch64 \
  8176. --baremetal baremetal/arch/aarch64/no_bootloader/exit.S \
  8177. --emulator gem5 \
  8178. --trace ExecAll,-ExecSymbol \
  8179. --trace-stdout \
  8180. ;
  8181. ....
  8182. and we see that the first instruction runs at 0x80000000:
  8183. ....
  8184. 0: system.cpu: A0 T0 : 0x80000000
  8185. ....
  8186. TODO: what are the boot memory and NOR FLASH used for?
  8187. ==== gem5 disk and network latency
  8188. TODO These look promising:
  8189. ....
  8190. --ethernet-linkspeed
  8191. --ethernet-linkdelay
  8192. ....
  8193. and also: `gem5-dist`: https://publish.illinois.edu/icsl-pdgem5/
  8194. ==== gem5 clock frequency
  8195. As of gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1 defaults to 2GHz for fs.py:
  8196. ....
  8197. parser.add_option("--cpu-clock", action="store", type="string",
  8198. default='2GHz',
  8199. help="Clock for blocks running at CPU speed")
  8200. ....
  8201. We can check that very easily by looking at the timestamps of a <<gem5-execall-trace-format,Exec trace>> of an <<gem5-atomicsimplecpu>> without any caches:
  8202. ....
  8203. ./run \
  8204. --arch aarch64 \
  8205. --emulator gem5 \
  8206. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  8207. --trace-insts-stdout \
  8208. ;
  8209. ....
  8210. which shows:
  8211. ....
  8212. 0: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  8213. 500: system.cpu: A0 T0 : @asm_main_after_prologue+4 : adr x1, #28 : IntAlu : D=0x0000000000400098 flags=(IsInteger)
  8214. 1000: system.cpu: A0 T0 : @asm_main_after_prologue+8 : ldr w2, #4194464 : MemRead : D=0x0000000000000006 A=0x4000a0 flags=(IsInteger|IsMemRef|IsLoad)
  8215. 1500: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x8, #64, #0 : IntAlu : D=0x0000000000000040 flags=(IsInteger)
  8216. 2000: system.cpu: A0 T0 : @asm_main_after_prologue+16 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  8217. hello
  8218. 2500: system.cpu: A0 T0 : @asm_main_after_prologue+20 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8219. 3000: system.cpu: A0 T0 : @asm_main_after_prologue+24 : movz x8, #93, #0 : IntAlu : D=0x000000000000005d flags=(IsInteger)
  8220. 3500: system.cpu: A0 T0 : @asm_main_after_prologue+28 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  8221. ....
  8222. so we see that it runs one instruction every 500 ps which makes up 2GHz.
  8223. So if we change the frequency to say 1GHz and re-run it:
  8224. ....
  8225. ./run \
  8226. --arch aarch64 \
  8227. --emulator gem5 \
  8228. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  8229. --trace-insts-stdout \
  8230. -- \
  8231. --cpu-clock 1GHz \
  8232. ;
  8233. ....
  8234. we get as expected:
  8235. ....
  8236. 0: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  8237. 1000: system.cpu: A0 T0 : @asm_main_after_prologue+4 : adr x1, #28 : IntAlu : D=0x0000000000400098 flags=(IsInteger)
  8238. 2000: system.cpu: A0 T0 : @asm_main_after_prologue+8 : ldr w2, #4194464 : MemRead : D=0x0000000000000006 A=0x4000a0 flags=(IsInteger|IsMemRef|IsLoad)
  8239. 3000: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x8, #64, #0 : IntAlu : D=0x0000000000000040 flags=(IsInteger)
  8240. 4000: system.cpu: A0 T0 : @asm_main_after_prologue+16 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  8241. hello
  8242. 5000: system.cpu: A0 T0 : @asm_main_after_prologue+20 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8243. 6000: system.cpu: A0 T0 : @asm_main_after_prologue+24 : movz x8, #93, #0 : IntAlu : D=0x000000000000005d flags=(IsInteger)
  8244. 7000: system.cpu: A0 T0 : @asm_main_after_prologue+28 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  8245. ....
  8246. As of gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1, but like <<gem5-cache-size>>, does not get propagated to the guest, and is not for example visible at:
  8247. ....
  8248. ls /sys/devices/system/cpu/cpu0/cpufreq
  8249. ....
  8250. === gem5 kernel command line parameters
  8251. Analogous <<kernel-command-line-parameters,to QEMU>>:
  8252. ....
  8253. ./run --arch arm --kernel-cli 'init=/lkmc/linux/poweroff.out' --emulator gem5
  8254. ....
  8255. Internals: when we give `--command-line=` to gem5, it overrides default command lines, including some mandatory ones which are required to boot properly.
  8256. Our run script hardcodes the require options in the default `--command-line` and appends extra options given by `-e`.
  8257. To find the default options in the first place, we removed `--command-line` and ran:
  8258. ....
  8259. ./run --arch arm --emulator gem5
  8260. ....
  8261. and then looked at the line of the Linux kernel that starts with:
  8262. ....
  8263. Kernel command line:
  8264. ....
  8265. [[gem5-gdb]]
  8266. === gem5 GDB step debug
  8267. ==== gem5 GDB step debug kernel
  8268. Analogous <<gdb,to QEMU>>, on the first shell:
  8269. ....
  8270. ./run --arch arm --emulator gem5 --gdb-wait
  8271. ....
  8272. On the second shell:
  8273. ....
  8274. ./run-gdb --arch arm --emulator gem5
  8275. ....
  8276. On a third shell:
  8277. ....
  8278. ./gem5-shell
  8279. ....
  8280. When you want to break, just do a `Ctrl-C` on GDB shell, and then `continue`.
  8281. And we now see the boot messages, and then get a shell. Now try the `./count.sh` procedure described for QEMU at: xref:gdb-step-debug-kernel-post-boot[xrefstyle=full].
  8282. ==== gem5 GDB step debug userland process
  8283. We are unable to use `gdbserver` because of networking as mentioned at: xref:gem5-host-to-guest-networking[xrefstyle=full]
  8284. The alternative is to do as in <<gdb-step-debug-userland-processes>>.
  8285. Next, follow the exact same steps explained at <<gdb-step-debug-userland-non-init-without-gdb-wait>>, but passing `--emulator gem5` to every command as usual.
  8286. But then TODO (I'll still go crazy one of those days): for `arm`, while debugging `./linux/myinsmod.out hello.ko`, after then line:
  8287. ....
  8288. 23 if (argc < 3) {
  8289. 24 params = "";
  8290. ....
  8291. I press `n`, it just runs the program until the end, instead of stopping on the next line of execution. The module does get inserted normally.
  8292. TODO:
  8293. ....
  8294. ./run-gdb --arch arm --emulator gem5 --userland gem5-1.0/gem5/util/m5/m5 main
  8295. ....
  8296. breaks when `m5` is run on guest, but does not show the source code.
  8297. ==== gem5 GDB step debug secondary cores
  8298. gem5's secondary core GDB setup is a hack and spawns one gdbserver for each core in separate ports, e.g. 7000, 7001, etc.
  8299. Partly because of this, it is basically unusable/very hard to use, because you can't attach to a core that is stopped either because it hasn't been initialized, or if you are already currently debugging another core.
  8300. This affects both full system and <<gdb-step-debug-multicore-userland,userland>>, and is described in more detail at: https://gem5.atlassian.net/browse/GEM5-626
  8301. In LKMC 0a3ce2f41f12024930bcdc74ff646b66dfc46999, we can easily test attaching to another core by passing `--run-id`, e.g. to connect to the second core we can use `--run-id 1`:
  8302. ....
  8303. ./run-gdb --arch aarch64 --emulator gem5 --userland userland/gcc/busy_loop.c --run-id 1
  8304. ....
  8305. === gem5 checkpoint
  8306. Analogous to QEMU's <<snapshot>>, but better since it can be started from inside the guest, so we can easily checkpoint after a specific guest event, e.g. just before `init` is done.
  8307. Documentation: http://gem5.org/Checkpoints
  8308. To see it in action try:
  8309. ....
  8310. ./run --arch aarch64 --emulator gem5
  8311. ....
  8312. In the guest, wait for the boot to end and run:
  8313. ....
  8314. m5 checkpoint
  8315. ....
  8316. where <<gem5-m5-executable>> is a guest utility present inside the gem5 tree which we cross-compiled and installed into the guest.
  8317. To restore the checkpoint, kill the VM and run:
  8318. ....
  8319. ./run --arch arm --emulator gem5 --gem5-restore 1
  8320. ....
  8321. The `--gem5-restore` option restores the checkpoint that was created most recently.
  8322. Let's create a second checkpoint to see how it works, in guest:
  8323. ....
  8324. date >f
  8325. m5 checkpoint
  8326. ....
  8327. Kill the VM, and try it out:
  8328. ....
  8329. ./run --arch arm --emulator gem5 --gem5-restore 1
  8330. ....
  8331. Here we use `--gem5-restore 1` again, since the second snapshot we took is now the most recent one
  8332. Now in the guest:
  8333. ....
  8334. cat f
  8335. ....
  8336. contains the `date`. The file `f` wouldn't exist had we used the first checkpoint with `--gem5-restore 2`, which is the second most recent snapshot taken.
  8337. If you automate things with <<kernel-command-line-parameters>> as in:
  8338. ....
  8339. ./run --arch arm --eval 'm5 checkpoint;m5 resetstats;dhrystone 1000;m5 exit' --emulator gem5
  8340. ....
  8341. Then there is no need to pass the kernel command line again to gem5 for replay:
  8342. ....
  8343. ./run --arch arm --emulator gem5 --gem5-restore 1
  8344. ....
  8345. since boot has already happened, and the parameters are already in the RAM of the snapshot.
  8346. ==== gem5 checkpoint userland minimal example
  8347. In order to debug checkpoint restore bugs, this minimal setup using link:userland/freestanding/gem5_checkpoint.S[] can be handy:
  8348. ....
  8349. ./build-userland --arch aarch64 --static
  8350. ./run --arch aarch64 --emulator gem5 --static --userland userland/freestanding/gem5_checkpoint.S --trace-insts-stdout
  8351. ./run --arch aarch64 --emulator gem5 --static --userland userland/freestanding/gem5_checkpoint.S --trace-insts-stdout --gem5-restore 1
  8352. ./run --arch aarch64 --emulator gem5 --static --userland userland/freestanding/gem5_checkpoint.S --trace-insts-stdout --gem5-restore 1 -- --cpu-type=DerivO3CPU --restore-with-cpu=DerivO3CPU --caches
  8353. ....
  8354. On the initial run, we see that all instructions are executed and the checkpoint is taken:
  8355. ....
  8356. 0: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8357. 500: system.cpu: A0 T0 : @asm_main_after_prologue+4 : movz x1, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8358. 1000: system.cpu: A0 T0 : @asm_main_after_prologue+8 : m5checkpoint : IntAlu : flags=(IsInteger|IsNonSpeculative|IsUnverifiable)
  8359. Writing checkpoint
  8360. warn: Checkpoints for file descriptors currently do not work.
  8361. info: Entering event queue @ 1000. Starting simulation...
  8362. 1500: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8363. 2000: system.cpu: A0 T0 : @asm_main_after_prologue+16 : m5exit : No_OpClass : flags=(IsInteger|IsNonSpeculative)
  8364. Exiting @ tick 2000 because m5_exit instruction encountered
  8365. ....
  8366. Then, on the first restore run, the checkpoint is restored, and only instructions after the checkpoint are executed:
  8367. ....
  8368. info: Entering event queue @ 1000. Starting simulation...
  8369. 1500: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8370. 2000: system.cpu: A0 T0 : @asm_main_after_prologue+16 : m5exit : No_OpClass : flags=(IsInteger|IsNonSpeculative)
  8371. Exiting @ tick 2000 because m5_exit instruction encountered
  8372. ....
  8373. and a similar thing happens for the <<gem5-restore-checkpoint-with-a-different-cpu,restore with a different CPU type>>:
  8374. ....
  8375. info: Entering event queue @ 1000. Starting simulation...
  8376. 79000: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 FetchSeq=1 CPSeq=1 flags=(IsInteger)
  8377. Exiting @ tick 84500 because m5_exit instruction encountered
  8378. ....
  8379. Here we don't see the last `m5 exit` instruction on the log, but it must just be something to do with the O3 logging.
  8380. ==== gem5 checkpoint internals
  8381. A quick way to get a <<gem5-syscall-emulation-mode>> or full system checkpoint to observe is:
  8382. ....
  8383. ./run --arch aarch64 --emulator gem5 --baremetal userland/freestanding/gem5_checkpoint.S --trace-insts-stdout
  8384. ./run --arch aarch64 --emulator gem5 --userland userland/freestanding/gem5_checkpoint.S --trace-insts-stdout
  8385. ....
  8386. Checkpoints are stored inside the <<m5out-directory>> at:
  8387. ....
  8388. "$(./getvar --emulator gem5 m5out_dir)/cpt.<checkpoint-time>"
  8389. ....
  8390. where `<checkpoint-time>` is the cycle number at which the checkpoint was taken.
  8391. `fs.py` exposes the `-r N` flag to restore checkpoints, which N-th checkpoint with the largest `<checkpoint-time>`: https://github.com/gem5/gem5/blob/e02ec0c24d56bce4a0d8636a340e15cd223d1930/configs/common/Simulation.py#L118
  8392. However, that interface is bad because if you had taken previous checkpoints, you have no idea what `N` to use, unless you memorize which checkpoint was taken at which cycle.
  8393. Therefore, just use our superior `--gem5-restore` flag, which uses directory timestamps to determine which checkpoint you created most recently.
  8394. The `-r N` integer value is just pure `fs.py` sugar, the backend at `m5.instantiate` just takes the actual tracepoint directory path as input.
  8395. The file `m5out/cpt.1000/m5.cpt` contains almost everything in the checkpoint except memory.
  8396. It is a https://docs.python.org/3/library/configparser.html[Python configparser compatible file] with a section structure that matches the <<gem5-python-c-interaction,SimObject>> tree e.g.:
  8397. ....
  8398. [system.cpu.itb.walker.power_state]
  8399. currState=0
  8400. prvEvalTick=0
  8401. ....
  8402. When a checkpoint is taken, each `SimObject` calls its overridden `serialize` method to generate the checkpoint, and when loading, `unserialize` is called.
  8403. [[gem5-restore-new-script]]
  8404. ==== gem5 checkpoint restore and run a different script
  8405. You want to automate running several tests from a single pristine post-boot state.
  8406. The problem is that boot takes forever, and after the checkpoint, the memory and disk states are fixed, so you can't for example:
  8407. * hack up an existing rc script, since the disk is fixed
  8408. * inject new kernel boot command line options, since those have already been put into memory by the bootloader
  8409. There is however a few loopholes, <<m5-readfile>> being the simplest, as it reads whatever is present on the host.
  8410. So we can do it like:
  8411. ....
  8412. # Boot, checkpoint and exit.
  8413. printf 'echo "setup run";m5 exit' > "$(./getvar gem5_readfile_file)"
  8414. ./run --emulator gem5 --eval 'm5 checkpoint;m5 readfile > /tmp/gem5.sh && sh /tmp/gem5.sh'
  8415. # Restore and run the first benchmark.
  8416. printf 'echo "first benchmark";m5 exit' > "$(./getvar gem5_readfile_file)"
  8417. ./run --emulator gem5 --gem5-restore 1
  8418. # Restore and run the second benchmark.
  8419. printf 'echo "second benchmark";m5 exit' > "$(./getvar gem5_readfile_file)"
  8420. ./run --emulator gem5 --gem5-restore 1
  8421. # If something weird happened, create an interactive shell to examine the system.
  8422. printf 'sh' > "$(./getvar gem5_readfile_file)"
  8423. ./run --emulator gem5 --gem5-restore 1
  8424. ....
  8425. Since this is such a common setup, we provide the following helpers for this operation:
  8426. * `./run --gem5-readfile` is a convenient way to set the `m5 readfile` file contents from a string in the command line, e.g.:
  8427. +
  8428. ....
  8429. # Boot, checkpoint and exit.
  8430. ./run --emulator gem5 --eval './gem5.sh' --gem5-readfile 'echo "setup run"'
  8431. # Restore and run the first benchmark.
  8432. ./run --emulator gem5 --gem5-restore 1 --gem5-readfile 'echo "first benchmark"'
  8433. # Restore and run the second benchmark.
  8434. ./run --emulator gem5 --gem5-restore 1 --gem5-readfile 'echo "second benchmark"'
  8435. ....
  8436. * link:rootfs_overlay/lkmc/gem5.sh[]. This script is analogous to gem5's in-tree https://github.com/gem5/gem5/blob/2b4b94d0556c2d03172ebff63f7fc502c3c26ff8/configs/boot/hack_back_ckpt.rcS[hack_back_ckpt.rcS], but with less noise.
  8437. +
  8438. Usage:
  8439. +
  8440. ....
  8441. # Boot, checkpoint and exit.
  8442. ./run --emulator gem5 --eval './gem5.sh' --gem5-readfile 'echo "setup run"'
  8443. # Restore and run the first benchmark.
  8444. ./run --emulator gem5 --gem5-restore 1 --gem5-readfile 'echo "first benchmark"'
  8445. # Restore and run the second benchmark.
  8446. ./run --emulator gem5 --gem5-restore 1 --gem5-readfile 'echo "second benchmark"'
  8447. ....
  8448. Their usage is also exemplified at <<gem5-run-benchmark>>.
  8449. If you forgot to use an appropriate `--eval` for your boot and the simulation is already running, link:rootfs_overlay/lkmc/gem5.sh[] can be used directly from an interactive guest shell.
  8450. First we reset the readfile to something that runs quickly:
  8451. ....
  8452. printf 'echo "first benchmark"' > "$(./getvar gem5_readfile_file)"
  8453. ....
  8454. and then in the guest, take a checkpoint and exit with:
  8455. ....
  8456. ./gem5.sh
  8457. ....
  8458. Now the guest is in a state where readfile will be executed automatically without interactive intervention:
  8459. ....
  8460. ./run --emulator gem5 --gem5-restore 1 --gem5-readfile 'echo "first benchmark"'
  8461. ./run --emulator gem5 --gem5-restore 1 --gem5-readfile 'echo "second benchmark"'
  8462. ....
  8463. Other loophole possibilities to execute different benchmarks non-interactively include:
  8464. * <<9p>>
  8465. * <<secondary-disk>>
  8466. * `expect` as mentioned at: https://stackoverflow.com/questions/7013137/automating-telnet-session-using-bash-scripts
  8467. +
  8468. ....
  8469. #!/usr/bin/expect
  8470. spawn telnet localhost 3456
  8471. expect "# $"
  8472. send "pwd\r"
  8473. send "ls /\r"
  8474. send "m5 exit\r"
  8475. expect eof
  8476. ....
  8477. +
  8478. This is ugly however as it is not deterministic.
  8479. https://www.mail-archive.com/gem5-users@gem5.org/msg15233.html
  8480. ==== gem5 restore checkpoint with a different CPU
  8481. gem5 can switch to a different CPU model when restoring a checkpoint.
  8482. A common combo is to boot Linux with a fast CPU, make a checkpoint and then replay the benchmark of interest with a slower CPU.
  8483. This can be observed interactively in full system with:
  8484. ....
  8485. ./run --arch aarch64 --emulator gem5
  8486. ....
  8487. Then in the guest terminal after boot ends:
  8488. ....
  8489. sh -c 'm5 checkpoint;sh'
  8490. m5 exit
  8491. ....
  8492. And then restore the checkpoint with a different slower CPU:
  8493. ....
  8494. ./run --arch arm --emulator gem5 --gem5-restore 1 -- --caches --cpu-type=DerivO3CPU
  8495. ....
  8496. And now you will notice that everything happens much slower in the guest terminal!
  8497. One even more direct and minimal way to observe this is with link:userland/freestanding/gem5_checkpoint.S[] which was mentioned at <<gem5-checkpoint-userland-minimal-example>> plus some logging:
  8498. ....
  8499. ./run \
  8500. --arch aarch64 \
  8501. --emulator gem5 \
  8502. --static \
  8503. --trace ExecAll,FmtFlag,O3CPU,SimpleCPU \
  8504. --userland userland/freestanding/gem5_checkpoint.S \
  8505. ;
  8506. cat "$(./getvar --arch aarch64 --emulator gem5 trace_txt_file)"
  8507. ./run \
  8508. --arch aarch64 \
  8509. --emulator gem5 \
  8510. --gem5-restore 1 \
  8511. --static \
  8512. --trace ExecAll,FmtFlag,O3CPU,SimpleCPU \
  8513. --userland userland/freestanding/gem5_checkpoint.S \
  8514. -- \
  8515. --caches \
  8516. --cpu-type DerivO3CPU \
  8517. --restore-with-cpu DerivO3CPU \
  8518. ;
  8519. cat "$(./getvar --arch aarch64 --emulator gem5 trace_txt_file)"
  8520. ....
  8521. At gem5 2235168b72537535d74c645a70a85479801e0651, the first run does everything in <<gem5-atomicsimplecpu,AtomicSimpleCPU>>:
  8522. ....
  8523. ...
  8524. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x1f92 WriteReq
  8525. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x1e40 WriteReq
  8526. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x1e30 WriteReq
  8527. 0: SimpleCPU: system.cpu: Tick
  8528. 0: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8529. 500: SimpleCPU: system.cpu: Tick
  8530. 500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : movz x1, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8531. 1000: SimpleCPU: system.cpu: Tick
  8532. 1000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : m5checkpoint : IntAlu : flags=(IsInteger|IsNonSpeculative|IsUnverifiable)
  8533. 1000: SimpleCPU: system.cpu: Resume
  8534. 1500: SimpleCPU: system.cpu: Tick
  8535. 1500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8536. 2000: SimpleCPU: system.cpu: Tick
  8537. 2000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+16 : m5exit : No_OpClass : flags=(IsInteger|IsNonSpeculative)
  8538. ....
  8539. and after restore we see as expected a single `ExecEnable` instruction executed amidst `O3CPU` noise:
  8540. ....
  8541. FullO3CPU: Ticking main, FullO3CPU.
  8542. 79000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 FetchSeq=1 CPSeq=1 flags=(IsInteger)
  8543. 82500: O3CPU: system.cpu: Removing committed instruction [tid:0] PC (0x400084=>0x400088).(0=>1) [sn:1]
  8544. 82500: O3CPU: system.cpu: Removing instruction, [tid:0] [sn:1] PC (0x400084=>0x400088).(0=>1)
  8545. 82500: O3CPU: system.cpu: Scheduling next tick!
  8546. 83000: O3CPU: system.cpu:
  8547. ....
  8548. which is the `movz` after the checkpoint. The final `m5exit` does not appear due to DerivO3CPU logging insanity.
  8549. Bibliography:
  8550. * https://stackoverflow.com/questions/60876259/which-system-characteristics-such-as-number-of-cores-of-cache-configurations-can
  8551. * https://stackoverflow.com/questions/49011096/how-to-switch-cpu-models-in-gem5-after-restoring-a-checkpoint-and-then-observe-t
  8552. ===== gem5 fast forward
  8553. Besides switching CPUs after a checkpoint restore, fs.py also has the `--fast-forward` option to automatically run the script from the start on a less detailed CPU, and switch to a more detailed CPU at a given tick.
  8554. This is generally useless compared to checkpoint restoring because:
  8555. * checkpoint restore allows to run multiple contents after the restore, and restoring to multiple different system states, which you almost always want to do
  8556. * we generally don't know the exact tick at which the region of interest will start, especially as the binaries change. It is much easier to just instrument the content with a checkoint <<m5ops,m5op>>
  8557. But let's give it a try anyway with link:userland/freestanding/gem5_checkpoint.S[] which was mentioned at <<gem5-checkpoint-userland-minimal-example>>
  8558. ....
  8559. ./run \
  8560. --arch aarch64 \
  8561. --emulator gem5 \
  8562. --static \
  8563. --trace ExecAll,FmtFlag,O3CPU,SimpleCPU \
  8564. --userland userland/freestanding/gem5_checkpoint.S \
  8565. -- \
  8566. --caches
  8567. --cpu-type DerivO3CPU \
  8568. --fast-forward 1000 \
  8569. ;
  8570. cat "$(./getvar --arch aarch64 --emulator gem5 trace_txt_file)"
  8571. ....
  8572. At gem5 2235168b72537535d74c645a70a85479801e0651 we see something like:
  8573. ....
  8574. 0: O3CPU: system.switch_cpus: Creating O3CPU object.
  8575. 0: O3CPU: system.switch_cpus: Workload[0] process is 0 0: SimpleCPU: system.cpu: ActivateContext 0
  8576. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0 WriteReq
  8577. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x40 WriteReq
  8578. ...
  8579. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x1f92 WriteReq
  8580. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x1e40 WriteReq
  8581. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x1e30 WriteReq
  8582. 0: SimpleCPU: system.cpu: Tick
  8583. 0: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8584. 500: SimpleCPU: system.cpu: Tick
  8585. 500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : movz x1, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8586. 1000: SimpleCPU: system.cpu: Tick
  8587. 1000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : m5checkpoint : IntAlu : flags=(IsInteger|IsNonSpeculative|IsUnverifiable)
  8588. 1000: O3CPU: system.switch_cpus: [tid:0] Calling activate thread.
  8589. 1000: O3CPU: system.switch_cpus: [tid:0] Adding to active threads list
  8590. 1500: O3CPU: system.switch_cpus:
  8591. FullO3CPU: Ticking main, FullO3CPU.
  8592. 1500: O3CPU: system.switch_cpus: Scheduling next tick!
  8593. 2000: O3CPU: system.switch_cpus:
  8594. FullO3CPU: Ticking main, FullO3CPU.
  8595. 2000: O3CPU: system.switch_cpus: Scheduling next tick!
  8596. 2500: O3CPU: system.switch_cpus:
  8597. ...
  8598. FullO3CPU: Ticking main, FullO3CPU.
  8599. 44500: ExecEnable: system.switch_cpus: A0 T0 : @asm_main_after_prologue+12 : movz x0, #0, #0 : IntAlu : D=0x00000000000
  8600. 48000: O3CPU: system.switch_cpus: Removing committed instruction [tid:0] PC (0x400084=>0x400088).(0=>1) [sn:1]
  8601. 48000: O3CPU: system.switch_cpus: Removing instruction, [tid:0] [sn:1] PC (0x400084=>0x400088).(0=>1)
  8602. 48000: O3CPU: system.switch_cpus: Scheduling next tick!
  8603. 48500: O3CPU: system.switch_cpus:
  8604. ...
  8605. ....
  8606. We can also compare that to the same log but without `--fast-forward` and other CPU switch options:
  8607. ....
  8608. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x1e40 WriteReq
  8609. 0: SimpleCPU: system.cpu.dcache_port: received snoop pkt for addr:0x1e30 WriteReq
  8610. 0: SimpleCPU: system.cpu: Tick
  8611. 0: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8612. 500: SimpleCPU: system.cpu: Tick
  8613. 500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : movz x1, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8614. 1000: SimpleCPU: system.cpu: Tick
  8615. 1000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : m5checkpoint : IntAlu : flags=(IsInteger|IsNonSpeculative|IsUnverifiable)
  8616. 1000: SimpleCPU: system.cpu: Resume
  8617. 1500: SimpleCPU: system.cpu: Tick
  8618. 1500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  8619. 2000: SimpleCPU: system.cpu: Tick
  8620. 2000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+16 : m5exit : No_OpClass : flags=(IsInteger|IsNonSpeculative)
  8621. ....
  8622. Therefore, it is clear that what we wanted happen:
  8623. * up until the tick 1000, `SimpleCPU` was ticking
  8624. * after tick 1000, cpu `O3CPU` started ticking
  8625. Bibliography:
  8626. * https://cs.stackexchange.com/questions/69511/what-does-fast-forwarding-mean-in-the-context-of-cpu-simulation
  8627. ==== gem5 checkpoint upgrader
  8628. The in-tree `util/cpt_upgrader.py` is a tool to upgrade checkpoints taken from an older version of gem5 to be compatible with the newest version, so you can update gem5 without having to re-run the simulation that generated the checkpoints.
  8629. For example, whenever a <<arm-system-register-instructions,system register is added in ARMv8>>, old checkpoints break unless upgraded.
  8630. Unfortunately, since the process is not very automated (automatable?), and requires manually patching the upgrader every time a new breaking change is done, the upgrader tends to break soon if you try to move many versions of gem5 ahead as of 2020. This is evidenced in bug reports such as this one: https://gem5.atlassian.net/browse/GEM5-472
  8631. The script can be used as:
  8632. ....
  8633. util/cpt_upgrader.py m5out/cpt.1000/m5.cpt
  8634. ....
  8635. This updates the `m5.cpt` file in-place, and a `m5out/cpt.1000/m5.cpt.bak` is generated as a backup of the old file.
  8636. The upgrader determines which upgrades are needed by checking the `version_tags` entry of the checkpoint:
  8637. ....
  8638. [Globals]
  8639. version_tags=arm-ccregs arm-contextidr-el2 arm-gem5-gic-ext ...
  8640. ....
  8641. Each of those tags corresponds to a Python file under `util/cpt_upgraders/` e.g. `util/cpt_upgraders/arm-ccregs.py`.
  8642. === Pass extra options to gem5
  8643. Remember that in the gem5 command line, we can either pass options to the script being run as in:
  8644. ....
  8645. build/X86/gem5.opt configs/examples/fs.py --some-option
  8646. ....
  8647. or to the gem5 executable itself:
  8648. ....
  8649. build/X86/gem5.opt --some-option configs/examples/fs.py
  8650. ....
  8651. Pass options to the script in our setup use:
  8652. * get help:
  8653. +
  8654. ....
  8655. ./run --emulator gem5 -- -h
  8656. ....
  8657. * boot with the more detailed and slow `HPI` CPU model:
  8658. +
  8659. ....
  8660. ./run --arch arm --emulator gem5 -- --caches --cpu-type=HPI
  8661. ....
  8662. To pass options to the `gem5` executable we expose the `--gem5-exe-args` option:
  8663. * get help:
  8664. +
  8665. ....
  8666. ./run --gem5-exe-args='-h' --emulator gem5
  8667. ....
  8668. === m5ops
  8669. m5ops are magic instructions which lead gem5 to do magic things, like quitting or dumping stats.
  8670. Documentation: http://gem5.org/M5ops
  8671. There are two main ways to use m5ops:
  8672. * <<gem5-m5-executable>>
  8673. * <<m5ops-instructions>>
  8674. `m5` is convenient if you only want to take snapshots before or after the benchmark, without altering its source code. It uses the <<m5ops-instructions>> as its backend.
  8675. `m5` cannot should / should not be used however:
  8676. * in bare metal setups
  8677. * when you want to call the instructions from inside interest points of your benchmark. Otherwise you add the syscall overhead to the benchmark, which is more intrusive and might affect results.
  8678. +
  8679. Why not just hardcode some <<m5ops-instructions>> as in our example instead, since you are going to modify the source of the benchmark anyway?
  8680. ==== gem5 m5 executable
  8681. `m5` is a guest command line utility that is installed and run on the guest, that serves as a CLI front-end for the <<m5ops>>
  8682. Its source is present in the gem5 tree: https://github.com/gem5/gem5/blob/6925bf55005c118dc2580ba83e0fa10b31839ef9/util/m5/m5.c
  8683. It is possible to guess what most tools do from the corresponding <<m5ops>>, but let's at least document the less obvious ones here.
  8684. In LKMC we build `m5` with:
  8685. ....
  8686. ./build-m5 --arch aarch64
  8687. ....
  8688. The `m5` executable can be run on <<user-mode-simulation>> as normal with:
  8689. ....
  8690. ./run --arch aarch64 --emulator gem5 --userland "$(./getvar --arch aarch64 out_rootfs_overlay_bin_dir)/m5" --cli-args dumpstats
  8691. ....
  8692. This can be a good test <<m5ops>> since it executes very quickly.
  8693. ===== m5 exit
  8694. End the simulation.
  8695. Sane Python scripts will exit gem5 with status 0, which is what `fs.py` does.
  8696. ===== m5 dumpstats
  8697. Makes gem5 dump one more statistics entry to the <<gem5-m5out-stats-txt-file>>.
  8698. ===== m5 fail
  8699. End the simulation with a failure exit event:
  8700. ....
  8701. m5 fail 1
  8702. ....
  8703. Sane Python scripts would use that as the exit status of gem5, which would be useful for testing purposes, but `fs.py` at 200281b08ca21f0d2678e23063f088960d3c0819 just prints an error message:
  8704. ....
  8705. Simulated exit code not 0! Exit code is 1
  8706. ....
  8707. and exits with status 0.
  8708. We then parse that string ourselves in link:run[] and exit with the correct status...
  8709. TODO: it used to be like that, but it actually got changed to just print the message. Why? https://gem5-review.googlesource.com/c/public/gem5/+/4880
  8710. `m5 fail` is just a superset of `m5 exit`, which is just:
  8711. ....
  8712. m5 fail 0
  8713. ....
  8714. as can be seen from the source: https://github.com/gem5/gem5/blob/50a57c0376c02c912a978c4443dd58caebe0f173/src/sim/pseudo_inst.cc#L303
  8715. ===== m5 writefile
  8716. Send a guest file to the host. <<9p>> is a more advanced alternative.
  8717. Guest:
  8718. ....
  8719. echo mycontent > myfileguest
  8720. m5 writefile myfileguest myfilehost
  8721. ....
  8722. Host:
  8723. ....
  8724. cat "$(./getvar --arch aarch64 --emulator gem5 m5out_dir)/myfilehost"
  8725. ....
  8726. Does not work for subdirectories, gem5 crashes:
  8727. ....
  8728. m5 writefile myfileguest mydirhost/myfilehost
  8729. ....
  8730. ===== m5 readfile
  8731. Read a host file pointed to by the `fs.py --script` option to stdout.
  8732. https://stackoverflow.com/questions/49516399/how-to-use-m5-readfile-and-m5-execfile-in-gem5/49538051#49538051
  8733. Host:
  8734. ....
  8735. date > "$(./getvar gem5_readfile_file)"
  8736. ....
  8737. Guest:
  8738. ....
  8739. m5 readfile
  8740. ....
  8741. Outcome: date shows on guest.
  8742. ===== m5 initparam
  8743. Ermm, just another <<m5-readfile>> that only takes integers and only from CLI options? Is this software so redundant?
  8744. Host:
  8745. ....
  8746. ./run --emulator gem5 --gem5-restore 1 -- --initparam 13
  8747. ./run --emulator gem5 --gem5-restore 1 -- --initparam 42
  8748. ....
  8749. Guest:
  8750. ....
  8751. m5 initparm
  8752. ....
  8753. Outputs the given paramter.
  8754. ===== m5 execfile
  8755. Trivial combination of `m5 readfile` + execute the script.
  8756. Host:
  8757. ....
  8758. printf '#!/bin/sh
  8759. echo asdf
  8760. ' > "$(./getvar gem5_readfile_file)"
  8761. ....
  8762. Guest:
  8763. ....
  8764. touch /tmp/execfile
  8765. chmod +x /tmp/execfile
  8766. m5 execfile
  8767. ....
  8768. Outcome:
  8769. ....
  8770. adsf
  8771. ....
  8772. ==== m5ops instructions
  8773. There are few different possible instructions that can be used to implement identical m5ops:
  8774. * magic instructions reserved in the encoding space
  8775. * magic addresses: <<m5ops-magic-addresses>>
  8776. * unused <<semihosting>> addresses space on ARM platforms
  8777. All of those those methods are exposed through the <<gem5-m5-executable>> in-tree executable. You can select which method to use when calling the executable, e.g.:
  8778. ....
  8779. m5 exit
  8780. # Same as the above.
  8781. m5 --inst exit
  8782. # The address is mandatory if not configured at build time.
  8783. m5 --addr 0x10010000 exit
  8784. m5 --semi exit
  8785. ....
  8786. To make things simpler to understand, you can play around with our own minimized educational `m5` subset:
  8787. * link:userland/c/m5ops.c[]
  8788. * link:userland/cpp/m5ops.cpp[]
  8789. The instructions used by `./c/m5ops.out` are present in link:lkmc/m5ops.h[] in a very simple to understand and reuse inline assembly form.
  8790. To use that file, first rebuild `m5ops.out` with the m5ops instructions enabled and install it on the root filesystem:
  8791. ....
  8792. ./build-userland \
  8793. --arch aarch64 \
  8794. --force-rebuild \
  8795. userland/c/m5ops.c \
  8796. ;
  8797. ./build-buildroot --arch aarch64
  8798. ....
  8799. We don't enable `-DLKMC_M5OPS_ENABLE=1` by default on userland executables because we try to use a single image for both gem5, QEMU and <<userland-setup-getting-started-natively,native>>, and those instructions would break the latter two. We enable it in the <<baremetal-setup>> by default since we already have different images for QEMU and gem5 there.
  8800. Then, from inside <<gem5-buildroot-setup>>, test it out with:
  8801. ....
  8802. # checkpoint
  8803. ./c/m5ops.out c
  8804. # dumpstats
  8805. ./c/m5ops.out d
  8806. # exit
  8807. ./c/m5ops.out e
  8808. # dump resetstats
  8809. ./c/m5ops.out r
  8810. ....
  8811. In theory, the cleanest way to add m5ops to your benchmarks would be to do exactly what the `m5` tool does:
  8812. * include https://github.com/gem5/gem5/blob/05c4c2b566ce351ab217b2bd7035562aa7a76570/include/gem5/asm/generic/m5ops.h[`include/gem5/asm/generic/m5ops.h`]
  8813. * link with the `.o` file under `util/m5` for the correct arch, e.g. `m5op_arm_A64.o` for aarch64.
  8814. However, I think it is usually not worth the trouble of hacking up the build system of the benchmark to do this, and I recommend just hardcoding in a few raw instructions here and there, and managing it with version control + `sed`.
  8815. Bibliography:
  8816. * https://stackoverflow.com/questions/63488050/what-are-pseudo-instructions-for-in-gem5/63489417#63489417
  8817. * https://stackoverflow.com/questions/62757008/how-to-use-m5-in-gem5-20/62759204#62759204
  8818. * https://stackoverflow.com/questions/56506154/how-to-analyze-only-interest-area-in-source-code-by-using-gem5/56506419#56506419
  8819. * https://www.mail-archive.com/gem5-users@gem5.org/msg15418.html
  8820. ===== m5ops magic addresses
  8821. These are magic addresses that when accessed lead to an <<m5ops,m5op>>.
  8822. The base address is given by `system.m5ops_base`, and then each m5op happens at a different address offset form that base.
  8823. If `system.m5ops_base` is 0, then the memory m5ops are disabled.
  8824. Note that the address is physical, and therefore when running in full system on top of the Linux kernel, you must first map a virtual to physical address with `/dev/mem` as mentioned at: <<userland-physical-address-experiments>>.
  8825. One advantage of this method is that it can work with <<gem5-kvm>>, whereas the magic instructions don't, since the host cannot handle them and it is hard to hook into that.
  8826. A <<baremetal>> example of that can be found at: link:baremetal/arch/aarch64/no_bootloader/m5_exit_addr.S[].
  8827. As of gem5 0d5a80cb469f515b95e03f23ddaf70c9fd2ecbf2, `fs.py --baremetal` disables the memory m5ops however for some reason, therefore you should run that program as:
  8828. ....
  8829. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/no_bootloader/m5_exit_addr.S --emulator gem5 --trace-insts-stdout -- --param 'system.m5ops_base=0x10010000'
  8830. ....
  8831. TODO failing with:
  8832. ....
  8833. info: Entering event queue @ 0. Starting simulation...
  8834. fatal: Unable to find destination for [0x10012100:0x10012108] on system.iobus
  8835. ....
  8836. ===== m5ops instructions interface
  8837. Let's study how the <<gem5-m5-executable>> uses them:
  8838. * https://github.com/gem5/gem5/blob/05c4c2b566ce351ab217b2bd7035562aa7a76570/include/gem5/asm/generic/m5ops.h[`include/gem5/asm/generic/m5ops.h`]: defines the magic constants that represent the instructions
  8839. * https://github.com/gem5/gem5/blob/05c4c2b566ce351ab217b2bd7035562aa7a76570/util/m5/m5op_arm_A64.S[`util/m5/m5op_arm_A64.S`]: use the magic constants that represent the instructions using C preprocessor magic
  8840. * https://github.com/gem5/gem5/blob/05c4c2b566ce351ab217b2bd7035562aa7a76570/util/m5/m5.c[`util/m5/m5.c`]: the actual executable. Gets linked to `m5op_arm_A64.S` which defines a function for each m5op.
  8841. We notice that there are two different implementations for each arch:
  8842. * magic instructions, which don't exist in the corresponding arch
  8843. * magic memory addresses on a given page: <<m5ops-magic-addresses>>
  8844. Then, in aarch64 magic instructions for example, the lines:
  8845. ....
  8846. .macro m5op_func, name, func, subfunc
  8847. .globl \name
  8848. \name:
  8849. .long 0xff000110 | (\func << 16) | (\subfunc << 12)
  8850. ret
  8851. ....
  8852. define a simple function function for each m5op. Here we see that:
  8853. * `0xff000110` is a base mask for the magic non-existing instruction
  8854. * `\func` and `\subfunc` are OR-applied on top of the base mask, and define m5op this is.
  8855. +
  8856. Those values will loop over the magic constants defined in `m5ops.h` with the deferred preprocessor idiom.
  8857. +
  8858. For example, `exit` is `0x21` due to:
  8859. +
  8860. ....
  8861. #define M5OP_EXIT 0x21
  8862. ....
  8863. Finally, `m5.c` calls the defined functions as in:
  8864. ....
  8865. m5_exit(ints[0]);
  8866. ....
  8867. Therefore, the runtime "argument" that gets passed to the instruction, e.g. the delay in ticks until the exit for `m5 exit`, gets passed directly through the https://en.wikipedia.org/wiki/Calling_convention#ARM_(A64)[aarch64 calling convention].
  8868. Keep in mind that for all archs, `m5.c` does the calls with 64-bit integers:
  8869. ....
  8870. uint64_t ints[2] = {0,0};
  8871. parse_int_args(argc, argv, ints, argc);
  8872. m5_fail(ints[1], ints[0]);
  8873. ....
  8874. Therefore, for example:
  8875. * aarch64 uses `x0` for the first argument and `x1` for the second, since each is 64 bits log already
  8876. * arm uses `r0` and `r1` for the first argument, and `r2` and `r3` for the second, since each register is only 32 bits long
  8877. That convention specifies that `x0` to `x7` contain the function arguments, so `x0` contains the first argument, and `x1` the second.
  8878. In our `m5ops` example, we just hardcode everything in the assembly one-liners we are producing.
  8879. We ignore the `\subfunc` since it is always 0 on the ops that interest us.
  8880. ===== m5op annotations
  8881. `include/gem5/asm/generic/m5ops.h` also describes some annotation instructions.
  8882. What they mean: https://stackoverflow.com/questions/50583962/what-are-the-gem5-annotations-mops-magic-instructions-and-how-to-use-them
  8883. === gem5 arm Linux kernel patches
  8884. https://gem5.googlesource.com/arm/linux/ contains an ARM Linux kernel forks with a few gem5 specific Linux kernel patches on top of mainline created by ARM Holdings on top of a few upstream kernel releases.
  8885. Our link:build[] script automatically adds that remote for us as `gem5-arm`.
  8886. The patches are optional: the vanilla kernel does boot. But they add some interesting gem5-specific optimizations, instrumentations and device support.
  8887. The patches also <<notable-alternate-gem5-kernel-configs,add defconfigs>> that are known to work well with gem5.
  8888. E.g. for arm v4.9 there is: https://gem5.googlesource.com/arm/linux/+/917e007a4150d26a0aa95e4f5353ba72753669c7/arch/arm/configs/gem5_defconfig[].
  8889. In order to use those patches and their associated configs, and, we recommend using <<linux-kernel-build-variants>> as:
  8890. ....
  8891. git -C "$(./getvar linux_source_dir)" fetch gem5-arm:gem5/v4.15
  8892. git -C "$(./getvar linux_source_dir)" checkout gem5/v4.15
  8893. ./build-linux \
  8894. --arch aarch64 \
  8895. --custom-config-file-gem5 \
  8896. --linux-build-id gem5-v4.15 \
  8897. ;
  8898. git -C "$(./getvar linux_source_dir)" checkout -
  8899. ./run \
  8900. --arch aarch64 \
  8901. --emulator gem5 \
  8902. --linux-build-id gem5-v4.15 \
  8903. ;
  8904. ....
  8905. QEMU also boots that kernel successfully:
  8906. ....
  8907. ./run \
  8908. --arch aarch64 \
  8909. --linux-build-id gem5-v4.15 \
  8910. ;
  8911. ....
  8912. but glibc kernel version checks make init fail with:
  8913. ....
  8914. FATAL: kernel too old
  8915. ....
  8916. because glibc was built to expect a newer Linux kernel as shown at: xref:fatal-kernel-too-old-failure-in-userland-simulation[xrefstyle=full]. Your choices to solve this are:
  8917. * see if there is a more recent gem5 kernel available, or port your patch of interest to the newest kernel
  8918. * modify this repo to use <<libc-choice,uClibc>>, which is not hard because of Buildroot
  8919. * patch glibc to remove that check, which is easy because glibc is in a submodule of this repo
  8920. It is obviously not possible to understand what the Linux kernel fork commits actually do from their commit message, so let's explain them one by one here as we understand them:
  8921. * `drm: Add component-aware simple encoder` allows you to see images through VNC, see: xref:gem5-graphic-mode[xrefstyle=full]
  8922. * `gem5: Add support for gem5's extended GIC mode` adds support for more than 8 cores, see: xref:gem5-arm-full-system-with-more-than-8-cores[xrefstyle=full]
  8923. Tested on 649d06d6758cefd080d04dc47fd6a5a26a620874 + 1.
  8924. ==== gem5 arm Linux kernel patches boot speedup
  8925. We have observed that with the kernel patches, boot is 2x faster, falling from 1m40s to 50s.
  8926. With https://stackoverflow.com/questions/49797246/how-to-monitor-for-how-much-time-each-line-of-stdout-was-the-last-output-line-in/49797547#49797547[`ts`], we see that a large part of the difference is at the message:
  8927. ....
  8928. clocksource: Switched to clocksource arch_sys_counter
  8929. ....
  8930. which takes 4s on the patched kernel, and 30s on the unpatched one! TODO understand why, especially if it is a config difference, or if it actually comes from a patch.
  8931. === m5out directory
  8932. When you run gem5, it generates an `m5out` directory at:
  8933. ....
  8934. echo $(./getvar --arch arm --emulator gem5 m5out_dir)"
  8935. ....
  8936. The location of that directory can be set with `./gem5.opt -d`, and defaults to `./m5out`.
  8937. The files in that directory contains some very important information about the run, and you should become familiar with every one of them.
  8938. [[gem5-m5out-system-terminal-file]]
  8939. ==== gem5 m5out/system.terminal file
  8940. Contains UART output, both from the Linux kernel or from the baremetal system.
  8941. Can also be seen live on <<m5term>>.
  8942. [[gem5-m5out-system-dmesg-file]]
  8943. ==== gem5 `m5out/system.workload.dmesg` file
  8944. This file used to be called just `m5out/system.dmesg`, but the name was changed after the workload refactorings of March 2020.
  8945. This file is capable of showing terminal messages that are `printk` before the serial is enabled as described at: <<linux-kernel-early-boot-messages>>.
  8946. The file is dumped only on kernel panics which gem5 can detect by the PC address: <<exit-gem5-on-panic>>.
  8947. This mechanism can be very useful to debug the Linux kernel boot if problems happen before the serial is enabled.
  8948. This magic mechanism works by activating an event when the PC reaches the `printk` address, much like gem5 <<exit-gem5-on-panic,can detect `panic` by PC>> and then parsing printk function arguments and buffers!
  8949. The relevant source is at https://github.com/gem5/gem5/blob/cd69bb50414450c3bb5ef41dce676b75fd42c0ee/src/kern/linux/printk.cc[`src/kern/linux/printk.c`].
  8950. We can test this mechanism in a controlled way by hacking a `panic()` into the kernel next to a `printk` that shows up before the serial is enabled, e.g. on Linux v5.4.3 we could do:
  8951. ....
  8952. diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
  8953. index f296d89be757..3e79916322c2 100644
  8954. --- a/kernel/trace/ftrace.c
  8955. +++ b/kernel/trace/ftrace.c
  8956. @@ -6207,6 +6207,7 @@ void __init ftrace_init(void)
  8957. pr_info("ftrace: allocating %ld entries in %ld pages\n",
  8958. count, count / ENTRIES_PER_PAGE + 1);
  8959. + panic("foobar");
  8960. last_ftrace_enabled = ftrace_enabled = 1;
  8961. ....
  8962. With this, after the panic, `system.workload.dmesg` contains on LKMC d09a0d97b81582cc88381c4112db631da61a048d aarch64:
  8963. ....
  8964. [0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd070]
  8965. [0.000000] Linux version 5.4.3-dirty (lkmc@f7688b48ac46e9a669e279f1bc167722d5141eda) (gcc version 8.3.0 (Buildroot 2019.11-00002-g157ac499cf)) #1 SMP Thu Jan 1 00:00:00 UTC 1970
  8966. [0.000000] Machine model: V2P-CA15
  8967. [0.000000] Memory limited to 256MB
  8968. [0.000000] efi: Getting EFI parameters from FDT:
  8969. [0.000000] efi: UEFI not found.
  8970. [0.000000] On node 0 totalpages: 65536
  8971. [0.000000] DMA32 zone: 1024 pages used for memmap
  8972. [0.000000] DMA32 zone: 0 pages reserved
  8973. [0.000000] DMA32 zone: 65536 pages, LIFO batch:15
  8974. [0.000000] percpu: Embedded 29 pages/cpu s79960 r8192 d30632 u118784
  8975. [0.000000] pcpu-alloc: s79960 r8192 d30632 u118784 alloc=29*4096
  8976. [0.000000] pcpu-alloc: [0] 0
  8977. [0.000000] Detected PIPT I-cache on CPU0
  8978. [0.000000] CPU features: detected: ARM erratum 832075
  8979. [0.000000] CPU features: detected: EL2 vector hardening
  8980. [0.000000] ARM_SMCCC_ARCH_WORKAROUND_1 missing from firmware
  8981. [0.000000] Built 1 zonelists, mobility grouping on. Total pages: 64512
  8982. [0.000000] Kernel command line: earlyprintk=pl011,0x1c090000 lpj=19988480 rw loglevel=8 mem=256MB root=/dev/sda console_msg_format=syslog nokaslr norandmaps panic=-1 printk.devkmsg=on printk.time=y rw console=ttyAMA0 - lkmc_home=/lkmc
  8983. [0.000000] Dentry cache hash table entries: 32768 (order: 6, 262144 bytes, linear)
  8984. [0.000000] Inode-cache hash table entries: 16384 (order: 5, 131072 bytes, linear)
  8985. [0.000000] mem auto-init: stack:off, heap alloc:off, heap free:off
  8986. [0.000000] Memory: 233432K/262144K available (6652K kernel code, 792K rwdata, 2176K rodata, 896K init, 659K bss, 28712K reserved, 0K cma-reserved)
  8987. [0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
  8988. [0.000000] ftrace: allocating 22067 entries in 87 pages
  8989. ....
  8990. So we see that messages up to the `ftrace` do show up!
  8991. [[gem5-m5out-stats-txt-file]]
  8992. ==== gem5 m5out/stats.txt file
  8993. This file contains important statistics about the run:
  8994. ....
  8995. cat "$(./getvar --arch aarch64 m5out_dir)/stats.txt"
  8996. ....
  8997. Whenever we run `m5 dumpstats` or when fs.py and se.py are exiting (TODO other scripts?), a section with the following format is added to that file:
  8998. ....
  8999. ---------- Begin Simulation Statistics ----------
  9000. [the stats]
  9001. ---------- End Simulation Statistics ----------
  9002. ....
  9003. That file contains several important execution metrics, e.g. number of cycles and several types of cache misses:
  9004. ....
  9005. system.cpu.numCycles
  9006. system.cpu.dtb.inst_misses
  9007. system.cpu.dtb.inst_hits
  9008. ....
  9009. For x86, it is interesting to try and correlate `numCycles` with:
  9010. In LKMC f42c525d7973d70f4c836d2169cc2bd2893b4197 gem5 5af26353b532d7b5988cf0f6f3d0fbc5087dd1df, the stat file for a <<c>> hello world:
  9011. ....
  9012. ./run --arch aarch64 --emulator gem5 --userland userland/c/hello.c
  9013. ....
  9014. which has a single dump done at the exit, has size 59KB and stat lines of form:
  9015. ....
  9016. final_tick 91432000 # Number of ticks from beginning of simulation (restored from checkpoints and never reset)
  9017. ....
  9018. We can reduce the file size by adding the `?desc=False` magic suffix to the stat flie name:
  9019. ....
  9020. --stats-file stats.txt?desc=false
  9021. ....
  9022. as explained in:
  9023. ....
  9024. gem5.opt --stats-help
  9025. ....
  9026. and this reduces the file size to 39KB by removing those excessive comments:
  9027. ....
  9028. final_tick 91432000
  9029. ....
  9030. although trailing spaces are still prse
  9031. We can further reduce this size by removing spaces from the dumps with this hack:
  9032. ....
  9033. ccprintf(stream, " |%12s %10s %10s",
  9034. ValueToString(value, precision), pdfstr.str(), cdfstr.str());
  9035. } else {
  9036. - ccprintf(stream, "%-40s %12s %10s %10s", name,
  9037. - ValueToString(value, precision), pdfstr.str(), cdfstr.str());
  9038. + ccprintf(stream, "%s %s", name, ValueToString(value, precision));
  9039. + if (pdfstr.rdbuf()->in_avail())
  9040. + stream << " " << pdfstr.str();
  9041. + if (cdfstr.rdbuf()->in_avail())
  9042. + stream << " " << cdfstr.str();
  9043. if (descriptions) {
  9044. if (!desc.empty())
  9045. ....
  9046. and after that the file size went down to 21KB.
  9047. ===== gem5 HDF5 statistics
  9048. We can make gem5 dump statistics in the <<hdf5>> format by adding the magic `h5://` prefix to the file name as in:
  9049. ....
  9050. gem5.opt --stats-file h5://stats.h5
  9051. ....
  9052. as explained in:
  9053. ....
  9054. gem5.opt --stats-help
  9055. ....
  9056. This is not exposed in LKMC f42c525d7973d70f4c836d2169cc2bd2893b4197 however, you just have to <<dry-run,hack the gem5 CLI for now>>.
  9057. TODO what is the advantage? The generated file for `--stats-file h5://stats.h5?desc=False` in LKMC f42c525d7973d70f4c836d2169cc2bd2893b4197 gem5 5af26353b532d7b5988cf0f6f3d0fbc5087dd1df for a single dump was 946K, so much larger than the text version seen at <<gem5-m5out-stats-txt-file>> which was only 59KB max!
  9058. We then try to see if it is any better when you have a bunch of dump events:
  9059. ....
  9060. ./run --arch aarch64 --emulator gem5 --userland userland/c/m5ops.c --cli-args 'd 1000'
  9061. ....
  9062. and there yes, we see that the file size fell from 39MB on `stats.txt` to 3.2MB on `stats.m5`, so the increase observed previously was just due to some initial size overhead (considering the patched gem5 with no spaces in the text file).
  9063. We also note however that the stat dump made the such a simulation that just loops and dumps considerably slower, from 3s to 15s on <<p51>>. Fascinating, we are definitely not disk bound there.
  9064. We enable HDF5 on the build by default with `USE_HDF5=1`. To disable it, you can add `USE_HDF5=0` to the build as in:
  9065. ....
  9066. ./build-gem5 -- USE_HDF5=0
  9067. ....
  9068. Library support is automatically detected, and only built if you have it installed. But there have been some compilation bugs with HDF5, which is why you might want to turn it off sometimes, e.g.: https://gem5.atlassian.net/browse/GEM5-365
  9069. ===== gem5 only dump selected stats
  9070. https://stackoverflow.com/questions/52014953/how-to-dump-only-a-single-or-certain-selected-stats-in-gem5
  9071. To prevent the stats file from becoming humongous.
  9072. https://stackoverflow.com/questions/52014953/how-to-dump-only-a-single-or-certain-selected-stats-in-gem5/57221132#57221132
  9073. ===== Meaning of each gem5 stat
  9074. Well, run minimal examples, and reverse engineer them up!
  9075. We can start with link:userland/arch/x86_64/freestanding/linux/hello.S[] on atomic with <<gem5-execall-trace-format>>.
  9076. ....
  9077. ./run \
  9078. --arch aarch64 \
  9079. --emulator gem5 \
  9080. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  9081. --trace ExecAll \
  9082. --trace-stdout \
  9083. ;
  9084. ....
  9085. which gives:
  9086. ....
  9087. 0: system.cpu: A0 T0 : @_start : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  9088. 500: system.cpu: A0 T0 : @_start+4 : adr x1, #28 : IntAlu : D=0x0000000000400098 flags=(IsInteger)
  9089. 1000: system.cpu: A0 T0 : @_start+8 : ldr w2, #4194464 : MemRead : D=0x0000000000000006 A=0x4000a0 flags=(IsInteger|IsMemRef|IsLoad)
  9090. 1500: system.cpu: A0 T0 : @_start+12 : movz x8, #64, #0 : IntAlu : D=0x0000000000000040 flags=(IsInteger)
  9091. 2000: system.cpu: A0 T0 : @_start+16 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  9092. 2500: system.cpu: A0 T0 : @_start+20 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  9093. 3000: system.cpu: A0 T0 : @_start+24 : movz x8, #93, #0 : IntAlu : D=0x000000000000005d flags=(IsInteger)
  9094. 3500: system.cpu: A0 T0 : @_start+28 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  9095. ....
  9096. The most important stat of all is usually the cycle count, which is a direct measure of performance if you modelled you system well:
  9097. ....
  9098. sim_ticks 3500 # Number of ticks simulated
  9099. ....
  9100. Next, `sim_insts` and `sim_ops` are often critical:
  9101. ....
  9102. sim_insts 6 # Number of instructions simulated
  9103. sim_ops 6 # Number of ops (including micro ops) simulated
  9104. ....
  9105. `sim_ops` is like `sim_insts` but it also includes <<gem5-microops>>.
  9106. In <<gem5-syscall-emulation-mode>>, syscall instructions are magic, and therefore appear to not be counted, that is why we get 6 instructions instead of 8.
  9107. ===== gem5 stats internals
  9108. This describes the internals of the <<gem5-m5out-stats-txt-file>>.
  9109. GDB call stack to `dumpstats`:
  9110. ....
  9111. Stats::pythonDump () at build/ARM/python/pybind11/stats.cc:58
  9112. Stats::StatEvent::process() ()
  9113. GlobalEvent::BarrierEvent::process (this=0x555559fa6a80) at build/ARM/sim/global_event.cc:131
  9114. EventQueue::serviceOne (this=this@entry=0x555558c36080) at build/ARM/sim/eventq.cc:228
  9115. doSimLoop (eventq=0x555558c36080) at build/ARM/sim/simulate.cc:219
  9116. simulate (num_cycles=<optimized out>) at build/ARM/sim/simulate.cc:132
  9117. ....
  9118. `Stats::pythonDump` does:
  9119. ....
  9120. void
  9121. pythonDump()
  9122. {
  9123. py::module m = py::module::import("m5.stats");
  9124. m.attr("dump")();
  9125. }
  9126. ....
  9127. This calls `src/python/m5/stats/__init__.py` in `def dump` does the main dumping
  9128. That function does notably:
  9129. ....
  9130. for output in outputList:
  9131. if output.valid():
  9132. output.begin()
  9133. for stat in stats_list:
  9134. stat.visit(output)
  9135. output.end()
  9136. ....
  9137. `begin` and `end` are defined in C++ and output the header and tail respectively
  9138. ....
  9139. void
  9140. Text::begin()
  9141. {
  9142. ccprintf(*stream, "\n---------- Begin Simulation Statistics ----------\n");
  9143. }
  9144. void
  9145. Text::end()
  9146. {
  9147. ccprintf(*stream, "\n---------- End Simulation Statistics ----------\n");
  9148. stream->flush();
  9149. }
  9150. ....
  9151. `stats_list` contains the stats, and `stat.visit` prints them, `outputList` contains by default just the text output. I don't see any other types of output in gem5, but likely JSON / binary formats could be envisioned.
  9152. Tested in gem5 b4879ae5b0b6644e6836b0881e4da05c64a6550d.
  9153. ==== gem5 config.ini
  9154. The `m5out/config.ini` file, contains a very good high level description of the system:
  9155. ....
  9156. less $(./getvar --arch arm --emulator gem5 m5out_dir)"
  9157. ....
  9158. That file contains a tree representation of the system, sample excerpt:
  9159. ....
  9160. [root]
  9161. type=Root
  9162. children=system
  9163. full_system=true
  9164. [system]
  9165. type=ArmSystem
  9166. children=cpu cpu_clk_domain
  9167. auto_reset_addr_64=false
  9168. semihosting=Null
  9169. [system.cpu]
  9170. type=AtomicSimpleCPU
  9171. children=dstage2_mmu dtb interrupts isa istage2_mmu itb tracer
  9172. branchPred=Null
  9173. [system.cpu_clk_domain]
  9174. type=SrcClockDomain
  9175. clock=500
  9176. ....
  9177. Each node has:
  9178. * a list of child nodes, e.g. `system` is a child of `root`, and both `cpu` and `cpu_clk_domain` are children of `system`
  9179. * a list of parameters, e.g. `system.semihosting` is `Null`, which means that <<semihosting>> was turned off
  9180. ** the `type` parameter shows is present on every node, and it maps to a `Python` object that inherits from <<gem5-python-c-interaction,`SimObject`>>.
  9181. +
  9182. For example, `AtomicSimpleCPU` maps is defined at https://github.com/gem5/gem5/blob/05c4c2b566ce351ab217b2bd7035562aa7a76570/src/cpu/simple/AtomicSimpleCPU.py#L45[src/cpu/simple/AtomicSimpleCPU.py].
  9183. Set custom configs with the `--param` option of `fs.py`, e.g. we can make gem5 wait for GDB to connect with:
  9184. ....
  9185. fs.py --param 'system.cpu[0].wait_for_remote_gdb = True'
  9186. ....
  9187. More complex settings involving new classes however require patching the config files, although it is easy to hack this up. See for example: link:patches/manual/gem5-semihost.patch[].
  9188. Modifying the `config.ini` file manually does nothing since it gets overwritten every time.
  9189. ===== gem5 config.dot
  9190. The `m5out/config.dot` file contains a graphviz `.dot` file that provides a simplified graphical view of a subset of the <<gem5-config-ini>>.
  9191. This file gets automatically converted to `.svg` and `.pdf`, which you can view after running gem5 with:
  9192. ....
  9193. xdg-open "$(./getvar --arch arm --emulator gem5 m5out_dir)/config.dot.pdf"
  9194. xdg-open "$(./getvar --arch arm --emulator gem5 m5out_dir)/config.dot.svg"
  9195. ....
  9196. An example of such file can be seen at: <<config-dot-svg-timingsimplecpu>>.
  9197. On Ubuntu 20.04, you can also see the dot file "directly" with xdot:
  9198. ....
  9199. xdot "$(./getvar --arch arm --emulator gem5 m5out_dir)/config.dot"
  9200. ....
  9201. which is kind of really cool because it allows you to view graph arrows on hover. This can be very useful because the PDF and SVG often overlap so many arrows together that you just can't know which one is coming from/going to where.
  9202. It is worth noting that if you are running a bunch of short simulations, dot/SVG/PDF generation could have a significant impact in simulation startup time, so it is something to watch out for. As per https://gem5-review.googlesource.com/c/public/gem5/+/29232 it can be turned off with:
  9203. ....
  9204. gem5.opt --dot-config=''
  9205. ....
  9206. or in LKMC:
  9207. ....
  9208. ./run --gem5-exe-args='--dot-config= --json-config= --dump-config='
  9209. ....
  9210. The time difference can be readily observed on minimal examples by running gem5 with `time`.
  9211. By looking into gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1 `src/python/m5/util/dot_writer.py` are can try to remove the SVG/PDF conversion to see if those dominate the runtime:
  9212. ....
  9213. def do_dot(root, outdir, dotFilename):
  9214. if not pydot:
  9215. warn("No dot file generated. " +
  9216. "Please install pydot to generate the dot file and pdf.")
  9217. return
  9218. # * use ranksep > 1.0 for for vertical separation between nodes
  9219. # especially useful if you need to annotate edges using e.g. visio
  9220. # which accepts svg format
  9221. # * no need for hoizontal separation as nothing moves horizonally
  9222. callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
  9223. dot_create_nodes(root, callgraph)
  9224. dot_create_edges(root, callgraph)
  9225. dot_filename = os.path.join(outdir, dotFilename)
  9226. callgraph.write(dot_filename)
  9227. try:
  9228. # dot crashes if the figure is extremely wide.
  9229. # So avoid terminating simulation unnecessarily
  9230. callgraph.write_svg(dot_filename + ".svg")
  9231. callgraph.write_pdf(dot_filename + ".pdf")
  9232. except:
  9233. warn("failed to generate dot output from %s", dot_filename)
  9234. ....
  9235. but nope, they don't, `dot_create_nodes` and `dot_create_edges` are the culprits, so the only way to gain speed is to remove `.dot` generation altogether. It is tempting to do this by default on LKMC and add an option to enable dot generation when desired so we can be a bit faster by default... but I'm lazy to document the option right now. When it annoys me further maybe :-)
  9236. === m5term
  9237. We use the `m5term` in-tree executable to connect to the terminal instead of a direct `telnet`.
  9238. If you use `telnet` directly, it mostly works, but certain interactive features don't, e.g.:
  9239. * up and down arrows for history navigation
  9240. * tab to complete paths
  9241. * `Ctrl-C` to kill processes
  9242. TODO understand in detail what `m5term` does differently than `telnet`.
  9243. === gem5 Python scripts without rebuild
  9244. We have made a crazy setup that allows you to just `cd` into `submodules/gem5`, and edit Python scripts directly there.
  9245. This is not normally possible with Buildroot, since normal Buildroot packages first copy files to the output directory (`$(./getvar -a <arch> buildroot_build_build_dir)/<pkg>`), and then build there.
  9246. So if you modified the Python scripts with this setup, you would still need to `./build` to copy the modified files over.
  9247. For gem5 specifically however, we have hacked up the build so that we `cd` into the `submodules/gem5` tree, and then do an https://stackoverflow.com/questions/54343515/how-to-build-gem5-out-of-tree/54343516#54343516[out of tree] build to `out/common/gem5`.
  9248. Another advantage of this method is the we factor out the `arm` and `aarch64` gem5 builds which are identical and large, as well as the smaller arch generic pieces.
  9249. Using Buildroot for gem5 is still convenient because we use it to:
  9250. * to cross build `m5` for us
  9251. * check timestamps and skip the gem5 build when it is not requested
  9252. The out of build tree is required, because otherwise Buildroot would copy the output build of all archs to each arch directory, resulting in `arch^2` build copies, which is significant.
  9253. [[gem5-fs-biglittle]]
  9254. === gem5 fs_bigLITTLE
  9255. By default, we use `configs/example/fs.py` script.
  9256. The `--gem5-script biglittle` option enables the alternative `configs/example/arm/fs_bigLITTLE.py` script instead:
  9257. ....
  9258. ./run --arch aarch64 --emulator gem5 --gem5-script biglittle
  9259. ....
  9260. Advantages over `fs.py`:
  9261. * more representative of mobile ARM SoCs, which almost always have big little cluster
  9262. * simpler than `fs.py`, and therefore easier to understand and modify
  9263. Disadvantages over `fs.py`:
  9264. * only works for ARM, not other archs
  9265. * not as many configuration options as `fs.py`, many things are hardcoded
  9266. We setup 2 big and 2 small CPUs, but `cat /proc/cpuinfo` shows 4 identical CPUs instead of 2 of two different types, likely because gem5 does not expose some informational register much like the caches: https://www.mail-archive.com/gem5-users@gem5.org/msg15426.html <<gem5-config-ini>> does show that the two big ones are `DerivO3CPU` and the small ones are `MinorCPU`.
  9267. TODO: why is the `--dtb` required despite `fs_bigLITTLE.py` having a DTB generation capability? Without it, nothing shows on terminal, and the simulation terminates with `simulate() limit reached @ 18446744073709551615`. The magic `vmlinux.vexpress_gem5_v1.20170616` works however without a DTB.
  9268. Tested on: https://github.com/cirosantilli/linux-kernel-module-cheat/commit/18c1c823feda65f8b54cd38e261c282eee01ed9f[18c1c823feda65f8b54cd38e261c282eee01ed9f]
  9269. === gem5 in-tree tests
  9270. https://stackoverflow.com/questions/52279971/how-to-run-the-gem5-unit-tests
  9271. All those tests could in theory be added to this repo instead of to gem5, and this is actually the superior setup as it is cross emulator.
  9272. But can the people from the project be convinced of that?
  9273. ==== gem5 unit tests
  9274. These are just very small GTest tests that test a single class in isolation, they don't run any executables.
  9275. Build the unit tests and run them:
  9276. ....
  9277. ./build-gem5 --unit-tests
  9278. ....
  9279. Running individual unit tests is not yet exposed, but it is easy to do: while running the full tests, GTest prints each test command being run, e.g.:
  9280. ....
  9281. /path/to/build/ARM/base/circlebuf.test.opt --gtest_output=xml:/path/to/build/ARM/unittests.opt/base/circlebuf.test.xml
  9282. [==========] Running 4 tests from 1 test case.
  9283. [----------] Global test environment set-up.
  9284. [----------] 4 tests from CircleBufTest
  9285. [ RUN ] CircleBufTest.BasicReadWriteNoOverflow
  9286. [ OK ] CircleBufTest.BasicReadWriteNoOverflow (0 ms)
  9287. [ RUN ] CircleBufTest.SingleWriteOverflow
  9288. [ OK ] CircleBufTest.SingleWriteOverflow (0 ms)
  9289. [ RUN ] CircleBufTest.MultiWriteOverflow
  9290. [ OK ] CircleBufTest.MultiWriteOverflow (0 ms)
  9291. [ RUN ] CircleBufTest.PointerWrapAround
  9292. [ OK ] CircleBufTest.PointerWrapAround (0 ms)
  9293. [----------] 4 tests from CircleBufTest (0 ms total)
  9294. [----------] Global test environment tear-down
  9295. [==========] 4 tests from 1 test case ran. (0 ms total)
  9296. [ PASSED ] 4 tests.
  9297. ....
  9298. so you can just copy paste the command.
  9299. Building individual tests is possible with `--unit-test` (singular, no 's'):
  9300. ....
  9301. ./build-gem5 --unit-test base/circlebuf.test
  9302. ....
  9303. This does not run the test however.
  9304. Note that the command and it's corresponding results don't need to show consecutively on stdout because tests are run in parallel. You just have to match them based on the class name `CircleBufTest` to the file `circlebuf.test.cpp`.
  9305. ==== gem5 regression tests
  9306. This section is about running the gem5 in-tree tests.
  9307. https://stackoverflow.com/questions/52279971/how-to-run-the-gem5-unit-tests
  9308. Running the larger 2019 regression tests is exposed for example with:
  9309. ....
  9310. ./build-gem5 --arch aarch64
  9311. ./gem5-regression --arch aarch64 -- --length quick --length long
  9312. ....
  9313. Sample run time: 87 minutes on <<p51>> Ubuntu 20.04 gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1.
  9314. After the first run has downloaded the test binaries for you, you can speed up the process a little bit by skipping an useless SCons call:
  9315. ....
  9316. ./gem5-regression --arch aarch64 -- --length quick --length long --skip-build
  9317. ....
  9318. Note however that running without `--skip-build` is required at least once to download the test binaries, because the test interface is bad.
  9319. List available instead of running them:
  9320. ....
  9321. ./gem5-regression --arch aarch64 --cmd list -- --length quick --length long
  9322. ....
  9323. You can then pick one suite (has to be a suite, not an "individual test") from the list and run just it e.g. with:
  9324. ....
  9325. ./gem5-regression --arch aarch64 -- --uid SuiteUID:tests/gem5/cpu_tests/test.py:cpu_test_AtomicSimpleCPU_Bubblesort-ARM-opt
  9326. ....
  9327. === gem5 simulate() limit reached
  9328. This error happens when the following instruction limits are reached:
  9329. ....
  9330. system.cpu[0].max_insts_all_threads
  9331. system.cpu[0].max_insts_any_thread
  9332. ....
  9333. If the parameter is not set, it defaults to `0`, which is magic and means the huge maximum value of `uint64_t`: 0xFFFFFFFFFFFFFFFF, which in practice would require a very long simulation if at least one CPU were live.
  9334. So this usually means all CPUs are in a sleep state, and no events are scheduled in the future, which usually indicates a bug in either gem5 or guest code, leading gem5 to blow up.
  9335. Still, fs.py at gem5 08c79a194d1a3430801c04f37d13216cc9ec1da3 does not exit with non-zero status due to this... and so we just parse it out just as for <<m5-fail>>...
  9336. A trivial and very direct way to see message would be:
  9337. ....
  9338. ./run \
  9339. --emulator gem5 \
  9340. --userland userland/arch/x86_64/freestanding/linux/hello.S \
  9341. --trace-insts-stdout \
  9342. -- \
  9343. --param 'system.cpu[0].max_insts_all_threads = 3' \
  9344. ;
  9345. ....
  9346. which as of lkmc 402059ed22432bb351d42eb10900e5a8e06aa623 runs only the first three instructions and quits!
  9347. ....
  9348. info: Entering event queue @ 0. Starting simulation...
  9349. 0: system.cpu A0 T0 : @asm_main_after_prologue : mov rdi, 0x1
  9350. 0: system.cpu A0 T0 : @asm_main_after_prologue.0 : MOV_R_I : limm rax, 0x1 : IntAlu : D=0x0000000000000001 flags=(IsInteger|IsMicroop|IsLastMicroop|IsFirstMicroop)
  9351. 1000: system.cpu A0 T0 : @asm_main_after_prologue+7 : mov rdi, 0x1
  9352. 1000: system.cpu A0 T0 : @asm_main_after_prologue+7.0 : MOV_R_I : limm rdi, 0x1 : IntAlu : D=0x0000000000000001 flags=(IsInteger|IsMicroop|IsLastMicroop|IsFirstMicroop)
  9353. 2000: system.cpu A0 T0 : @asm_main_after_prologue+14 : lea rsi, DS:[rip + 0x19]
  9354. 2000: system.cpu A0 T0 : @asm_main_after_prologue+14.0 : LEA_R_P : rdip t7, %ctrl153, : IntAlu : D=0x000000000040008d flags=(IsInteger|IsMicroop|IsDelayedCommit|IsFirstMicroop)
  9355. 2500: system.cpu A0 T0 : @asm_main_after_prologue+14.1 : LEA_R_P : lea rsi, DS:[t7 + 0x19] : IntAlu : D=0x00000000004000a6 flags=(IsInteger|IsMicroop|IsLastMicroop)
  9356. Exiting @ tick 3000 because all threads reached the max instruction count
  9357. ....
  9358. The exact same can be achieved with the older hardcoded `--maxinsts` mechanism present in `se.py` and `fs.py`:
  9359. ....
  9360. ./run \
  9361. --emulator gem5 \
  9362. --userland \userland/arch/x86_64/freestanding/linux/hello.S \
  9363. --trace-insts-stdout \
  9364. -- \
  9365. --maxinsts 3
  9366. ;
  9367. ....
  9368. Other related fs.py options are:
  9369. * `--abs-max-tick`: set the maximum guest simulation time. The same scale as the ExecAll trace is used. E.g., for the above example with 3 instructions, the same trace would be achieved with a value of 3000.
  9370. The message also shows on <<user-mode-simulation>> deadlocks, for example in link:userland/posix/pthread_deadlock.c[]:
  9371. ....
  9372. ./run \
  9373. --emulator gem5 \
  9374. --userland userland/posix/pthread_deadlock.c \
  9375. --cli-args 1 \
  9376. ;
  9377. ....
  9378. ends in:
  9379. ....
  9380. Exiting @ tick 18446744073709551615 because simulate() limit reached
  9381. ....
  9382. where 18446744073709551615 is 0xFFFFFFFFFFFFFFFF in decimal.
  9383. And there is a <<baremetal>> example at link:baremetal/arch/aarch64/no_bootloader/wfe_loop.S[] that dies on <<arm-wfe-and-sev-instructions,WFE>>:
  9384. ....
  9385. ./run \
  9386. --arch aarch64 \
  9387. --baremetal baremetal/arch/aarch64/no_bootloader/wfe_loop.S \
  9388. --emulator gem5 \
  9389. --trace-insts-stdout \
  9390. ;
  9391. ....
  9392. which gives:
  9393. ....
  9394. info: Entering event queue @ 0. Starting simulation...
  9395. 0: system.cpu A0 T0 : @lkmc_start : wfe : IntAlu : D=0x0000000000000000 flags=(IsSerializeAfter|IsNonSpeculative|IsQuiesce|IsUnverifiable)
  9396. 1000: system.cpu A0 T0 : @lkmc_start+4 : b <lkmc_start> : IntAlu : flags=(IsControl|IsDirectControl|IsUncondControl)
  9397. 1500: system.cpu A0 T0 : @lkmc_start : wfe : IntAlu : D=0x0000000000000000 flags=(IsSerializeAfter|IsNonSpeculative|IsQuiesce|IsUnverifiable)
  9398. Exiting @ tick 18446744073709551615 because simulate() limit reached
  9399. ....
  9400. Other examples of the message:
  9401. * <<arm-baremetal-multicore>> with a single CPU stays stopped at an WFE sleep instruction
  9402. * this sample bug on se.py multithreading: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/81
  9403. === gem5 build options
  9404. In order to use different build options, you might also want to use <<gem5-build-variants>> to keep the build outputs separate from one another.
  9405. ==== gem5 debug build
  9406. How to use it in LKMC: xref:debug-the-emulator[xrefstyle=full].
  9407. If you build gem5 with `scons build/ARM/gem5.debug`, then that is a `.debug` build.
  9408. It relates to the more common `.opt` build just as explained at xref:debug-the-emulator[xrefstyle=full]: both `.opt` and `.debug` have `-g`, but `.opt` uses `-O2` while `.debug` uses `-O0`.
  9409. ==== gem5 fast build
  9410. ....
  9411. ./build-gem5 --gem5-build-type fast
  9412. ....
  9413. How it goes faster is explained at: https://stackoverflow.com/questions/59860091/how-to-increase-the-simulation-speed-of-a-gem5-run/59861375#59861375
  9414. Disables debug symbols (no `-g`) for some reason.
  9415. Benchmarks present at:
  9416. * xref:benchmark-emulators-on-userland-executables[xrefstyle=full]
  9417. ==== gem5 prof and perf builds
  9418. Profiling builds as of 3cea7d9ce49bda49c50e756339ff1287fd55df77 both use: `-g -O3` and disable asserts and logging like the <<gem5-fast-build>> and:
  9419. * `prof` uses `-pg` for gprof
  9420. * `perf` uses `-lprofile` for google-pprof
  9421. Profiling techniques are discussed in more detail at: <<profiling-userland-programs>>.
  9422. For the `prof` build, you can get the `gmon.out` file with:
  9423. ....
  9424. ./run --arch aarch64 --emulator gem5 --userland userland/c/hello.c --gem5-build-type prof
  9425. gprof "$(./getvar --arch aarch64 gem5_executable)" > tmp.gprof
  9426. ....
  9427. ==== gem5 clang build
  9428. TODO test properly, benchmark vs GCC.
  9429. ....
  9430. sudo apt-get install clang
  9431. ./build-gem5 --gem5-clang
  9432. ./run --emulator gem5 --gem5-clang
  9433. ....
  9434. ==== gem5 sanitation build
  9435. If there gem5 appears to have a C++ undefined behaviour bug, which is often very difficult to track down, you can try to build it with the following extra SCons options:
  9436. ....
  9437. ./build-gem5 --gem5-build-id san --verbose -- --with-ubsan --without-tcmalloc
  9438. ....
  9439. This will make GCC do a lot of extra sanitation checks at compile and run time.
  9440. As a result, the build and runtime will be way slower than normal, but that still might be the fastest way to solve undefined behaviour problems.
  9441. Ideally, we should also be able to run it with asan with `--with-asan`, but if we try then the build fails at gem5 16eeee5356585441a49d05c78abc328ef09f7ace (with two ubsan trivial fixes I'll push soon):
  9442. ....
  9443. =================================================================
  9444. ==9621==ERROR: LeakSanitizer: detected memory leaks
  9445. Direct leak of 371712 byte(s) in 107 object(s) allocated from:
  9446. #0 0x7ff039804448 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c448)
  9447. #1 0x7ff03950d065 in dictresize ../Objects/dictobject.c:643
  9448. Direct leak of 23728 byte(s) in 26 object(s) allocated from:
  9449. #0 0x7ff039804448 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c448)
  9450. #1 0x7ff03945e40d in _PyObject_GC_Malloc ../Modules/gcmodule.c:1499
  9451. #2 0x7ff03945e40d in _PyObject_GC_Malloc ../Modules/gcmodule.c:1493
  9452. Direct leak of 2928 byte(s) in 43 object(s) allocated from:
  9453. #0 0x7ff03980487e in __interceptor_realloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c87e)
  9454. #1 0x7ff03951d763 in list_resize ../Objects/listobject.c:62
  9455. #2 0x7ff03951d763 in app1 ../Objects/listobject.c:277
  9456. #3 0x7ff03951d763 in PyList_Append ../Objects/listobject.c:289
  9457. Direct leak of 2002 byte(s) in 3 object(s) allocated from:
  9458. #0 0x7ff039804448 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c448)
  9459. #1 0x7ff0394fd813 in PyString_FromStringAndSize ../Objects/stringobject.c:88
  9460. #2 0x7ff0394fd813 in PyString_FromStringAndSize ../Objects/stringobject.c:
  9461. Direct leak of 40 byte(s) in 2 object(s) allocated from
  9462. #0 0x7ff039804448 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c448)
  9463. #1 0x7ff03951ea4b in PyList_New ../Objects/listobject.c:152
  9464. Indirect leak of 10384 byte(s) in 11 object(s) allocated from
  9465. #0 0x7ff039804448 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c448
  9466. #1 0x7ff03945e40d in _PyObject_GC_Malloc ../Modules/gcmodule.c:
  9467. #2 0x7ff03945e40d in _PyObject_GC_Malloc ../Modules/gcmodule.c:1493
  9468. Indirect leak of 4089 byte(s) in 6 object(s) allocated from:
  9469. #0 0x7ff039804448 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c448)
  9470. #1 0x7ff0394fd648 in PyString_FromString ../Objects/stringobject.c:143
  9471. Indirect leak of 2090 byte(s) in 3 object(s) allocated from:
  9472. #0 0x7ff039804448 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c448
  9473. #1 0x7ff0394eb36f in type_new ../Objects/typeobject.c:
  9474. #2 0x7ff0394eb36f in type_new ../Objects/typeobject.c:2094
  9475. Indirect leak of 1346 byte(s) in 2 object(s) allocated from:
  9476. #0 0x7ff039804448 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x10c448)
  9477. #1 0x7ff0394fd813 in PyString_FromStringAndSize ../Objects/stringobject.c:
  9478. #2 0x7ff0394fd813 in PyString_FromStringAndSize ../Objects/stringobject.c:
  9479. SUMMARY: AddressSanitizer: 418319 byte(s) leaked in 203 allocation(s).
  9480. ....
  9481. From the message, this appears however to be a Python / pyenv11 bug however and not in gem5 specifically. I think it worked when I tried it in the past in an older gem5 / Ubuntu.
  9482. `--without-tcmalloc` is needed / a good idea when using `--with-asan`: https://stackoverflow.com/questions/42712555/address-sanitizer-fsanitize-address-works-with-tcmalloc since both do more or less similar jobs, see also <<memory-leaks>>.
  9483. ==== gem5 Ruby build
  9484. gem5 has two types of memory system:
  9485. * the classic memory system, which is used by default, its caches are covered at: <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches>>
  9486. * the Ruby memory system
  9487. The Ruby memory system includes the SLICC domain specific language to describe memory systems: http://gem5.org/Ruby SLICC transpiles to C++ auto-generated files under `build/<isa>/mem/ruby/protocol/`.
  9488. Ruby seems to have usage outside of gem5, but the naming overload with the link:https://en.wikipedia.org/wiki/Ruby_(programming_language)[Ruby programming language], which also has link:https://thoughtbot.com/blog/writing-a-domain-specific-language-in-ruby[domain specific languages] as a concept, makes it impossible to google anything about it!
  9489. Since it is not the default, Ruby is generally less stable that the classic memory model. However, because it allows describing a wide variety of important <<cache-coherence,cache coherence protocols>>, while the classic system only describes a single protocol, Ruby is very importanonly describes a single protocol, Ruby is a very important feature of gem5.
  9490. Ruby support must be enabled at compile time with the `scons PROTOCOL=` flag, which compiles support for the desired memory system type.
  9491. Note however that most ISAs already implicitly set `PROTOCOL` via the `build_opts/` directory, e.g. `build_opts/ARM` contains:
  9492. ....
  9493. PROTOCOL = 'MOESI_CMP_directory'
  9494. ....
  9495. and therefore ARM already compiles `MOESI_CMP_directory` by default.
  9496. Then, with `fs.py` and `se.py`, you can choose to use either the classic or the ruby system type selected at build time with `PROTOCOL=` at runtime by passing the `--ruby` option:
  9497. * if `--ruby` is given, use the ruby memory system that was compiled into gem5. Caches are always present when Ruby is used, since the main goal of Ruby is to specify the cache coherence protocol, and it therefore hardcodes cache hierarchies.
  9498. * otherwise, use the classic memory system. Caches may be optional for certain CPU types and are enabled with `--caches`.
  9499. Note that the `--ruby` option has some crazy side effects besides enabling Ruby, e.g. it https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/configs/ruby/Ruby.py#L61[sets the default `--cpu-type` to `TimingSimpleCPU` instead of the otherwise default `AtomicSimpleCPU`]. TODO: I have been told that this is because <<gem5-functional-vs-atomic-vs-timing-memory-requests,sends the packet atomically,atomic requests do not work with Ruby, only timing>>.
  9500. It is not possible to build more than one Ruby system into a single build, and this is a major pain point for testing Ruby: https://gem5.atlassian.net/browse/GEM5-467
  9501. For example, to use a two level <<mesi-cache-coherence-protocol>> we can do:
  9502. ....
  9503. ./build-gem5 --arch aarch64 --gem5-build-id ruby -- PROTOCOL=MESI_Two_Level
  9504. ./run --arch aarch64 --emulator -gem5 --gem5-build-id ruby -- --ruby
  9505. ....
  9506. and during build we see a humongous line of type:
  9507. ....
  9508. [ SLICC] src/mem/protocol/MESI_Two_Level.slicc -> ARM/mem/protocol/AccessPermission.cc, ARM/mem/protocol/AccessPermission.hh, ...
  9509. ....
  9510. which shows that dozens of C++ files are being generated from Ruby SLICC.
  9511. The relevant Ruby source files live in the source tree under:
  9512. ....
  9513. src/mem/protocol/MESI_Two_Level*
  9514. ....
  9515. We already pass the `SLICC_HTML` flag by default to the build, which generates an HTML summary of each memory protocol under (TODO broken: https://gem5.atlassian.net/browse/GEM5-357[]):
  9516. ....
  9517. xdg-open "$(./getvar --arch aarch64 --gem5-build-id ruby gem5_build_build_dir)/ARM/mem/protocol/html/index.html"
  9518. ....
  9519. A minimized ruby config which was not merged upstream can be found for study at: https://gem5-review.googlesource.com/c/public/gem5/+/13599/1
  9520. One easy way to see that Ruby is being used without understanding it in detail is to <<gem5-tracing,enable some logging>>:
  9521. ....
  9522. ./run \
  9523. --arch aarch64 \
  9524. --emulator gem5 \
  9525. --gem5-worktree master \
  9526. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  9527. --static \
  9528. --trace ExecAll,FmtFlag,Ruby,XBar \
  9529. -- \
  9530. --ruby \
  9531. ;
  9532. cat "$(./getvar --arch aarch64 --emulator gem5 trace_txt_file)"
  9533. ....
  9534. Then:
  9535. * when the `--ruby` flag is given, we see a gazillion Ruby related messages prefixed e.g. by `RubyPort:`.
  9536. +
  9537. We also observe from `ExecEnable` lines that instruction timing is not simple anymore, so the memory system must have latencies
  9538. * without `--ruby`, we instead see `XBar` (Coherent Crossbar) related messages such as `CoherentXBar:`, which I believe is the more precise name for the memory model that the classic memory system uses: <<gem5-crossbar-interconnect>>.
  9539. Certain features may not work in Ruby. For example, <<gem5-checkpoint>> creation is only possible in Ruby protocols that support flush, which is the case for `PROTOCOL=MOESI_hammer` but not `PROTOCOL=MESI_Three_Level`: https://www.mail-archive.com/gem5-users@gem5.org/msg17418.html
  9540. Tested in gem5 d7d9bc240615625141cd6feddbadd392457e49eb.
  9541. [[gem5-ruby-mi-example-protocol]]
  9542. ===== gem5 Ruby MI_example protocol
  9543. This is the simplest of all protocols, and therefore the first one you should study to learn how Ruby works.
  9544. To study it, we can take an approach similar to what was done at: <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>>.
  9545. Our full command line will be something like
  9546. ....
  9547. ./build-gem5 --arch aarch64 --gem5-build-id MI_example
  9548. ./run \
  9549. --arch aarch64 \
  9550. --cli-args '2 100' \
  9551. --cpus 3 \
  9552. --emulator gem5 \
  9553. --userland userland/cpp/atomic/aarch64_add.cpp \
  9554. --gem5-build-id MI_example \
  9555. -- \
  9556. --ruby \
  9557. ;
  9558. ....
  9559. which produces a <<gem5-config-dot,`config.dot.svg`>> like the following by with 3 CPUs instead of 2:
  9560. [[config-dot-svg-timingsimplecpu-caches-3-cpus-ruby]]
  9561. .`config.dot.svg` for a system with three TimingSimpleCPU CPUs with the Ruby `MI_example` protocol.
  9562. image::{cirosantilli-media-base}gem5_config_TimingSimpleCPU_3_CPUs_MI_example_b1623cb2087873f64197e503ab8894b5e4d4c7b4.svg?sanitize=true[height=600]
  9563. ===== gem5 crossbar interconnect
  9564. Crossbar or `XBar` in the code, is the default <<cache-coherence,CPU interconnect>> that gets used by `fs.py` if <<gem5-ruby-build,`--ruby`>> is not given.
  9565. It presumably implements a crossbar switch along the lines of: https://en.wikipedia.org/wiki/Crossbar_switch
  9566. This is the best introductory example analysis we have so far: <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>>. It contains more or less the most minimal example in which something interesting can be observed: multiple cores fighting over a single data memory variable.
  9567. Long story short: the interconnect contains the snoop mechanism, and it forwards packets coming form caches of a CPU to the caches of other CPUs in which the block is present.
  9568. It is therefore the heart of the <<cache-coherence>> mechanism, as it informs other caches of bus transactions they need to know about.
  9569. TODO: describe it in more detail. It appears to be a very simple mechanism.
  9570. Under `src/mem/` we see that there is both a coherent and a non-coherent XBar.
  9571. In `se.py` it is set at:
  9572. ....
  9573. if options.ruby:
  9574. ...
  9575. else:
  9576. MemClass = Simulation.setMemClass(options)
  9577. system.membus = SystemXBar()
  9578. ....
  9579. and `SystemXBar` is defined at `src/mem/XBar.py` with a nice comment:
  9580. ....
  9581. # One of the key coherent crossbar instances is the system
  9582. # interconnect, tying together the CPU clusters, GPUs, and any I/O
  9583. # coherent masters, and DRAM controllers.
  9584. class SystemXBar(CoherentXBar):
  9585. ....
  9586. Tested in gem5 12c917de54145d2d50260035ba7fa614e25317a3.
  9587. ==== gem5 Python 3 build
  9588. Python 3 support was mostly added in 2019 Q3 at arounda347a1a68b8a6e370334be3a1d2d66675891e0f1 but remained buggy for some time afterwards.
  9589. In an Ubuntu 18.04 host where `python` is `python2` by default, build with Python 3 instead with:
  9590. ....
  9591. ./build-gem5 --gem5-build-id python3 -- PYTHON_CONFIG=python3-config
  9592. ....
  9593. Python 3 is then automatically used when running if you use that build.
  9594. === gem5 CPU types
  9595. gem5 has a few in tree CPU models for different purposes.
  9596. In fs.py and se.py, those are selectable with the `--cpu-type` option.
  9597. The information to make highly accurate models isn't generally public for non-free CPUs, so either you must either rely vendor provided models or on experiments/reverse engineering.
  9598. There is no simple answer for "what is the best CPU", in theory you have to understand each model and decide which one is closer your target system.
  9599. Whenever possible, stick to:
  9600. * vendor provide ones obviously, e.g. ARM Holdings models of ARM cores, unless there is good reason not to, as they are the most likely to be accurate
  9601. * newer models instead of older models
  9602. Both of those can be checked with `git log` and `git blame`.
  9603. All CPU types inherit from the `BaseCPU` class, and looking at the class hierarchy in <<gem5-eclipse-configuration,Eclipse>> gives a good overview of what we have:
  9604. * `BaseCPU`
  9605. ** `BaseKvmCPU`
  9606. ** `BaseSimpleCPU`: <<gem5-basesimplecpu>>
  9607. *** `AtomicSimpleCPU`
  9608. *** `TimingSimpleCPU`
  9609. ** `MinorO3CPU`: <<gem5-minorcpu>>
  9610. ** `BaseO3CPU`
  9611. *** `FullO3CPU`
  9612. **** `DerivO3CPU : public FullO3CPU<O3CPUImpl>`: <<gem5-derivo3cpu>>
  9613. From this we see that there are basically only 4 C++ CPU models in gem5: Atomic, Timing, Minor and O3. All others are basically parametrizations of those base types.
  9614. ==== List of gem5 CPU types
  9615. ===== gem5 `BaseSimpleCPU`
  9616. Simple abstract CPU without a pipeline.
  9617. They are therefore completely unrealistic. But they also run much faster. <<gem5-kvm,KVM CPUs>> are an alternative way of fast forwarding boot when they work.
  9618. Implementations:
  9619. * <<gem5-atomicsimplecpu>>
  9620. * <<gem5-timingsimplecpu>>
  9621. ====== gem5 `AtomicSimpleCPU`
  9622. `AtomicSimpleCPU`: the default one. Memory accesses happen instantaneously. The fastest simulation except for KVM, but not realistic at all.
  9623. Useful to <<gem5-restore-checkpoint-with-a-different-cpu,boot Linux fast and then checkpoint and switch to a more detailed CPU>>.
  9624. ====== gem5 `TimingSimpleCPU`
  9625. `TimingSimpleCPU`: memory accesses are realistic, but the CPU has no pipeline. The simulation is faster than detailed models, but slower than `AtomicSimpleCPU`.
  9626. To fully understand `TimingSimpleCPU`, see: <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis>>.
  9627. Without caches, the CPU just stalls all the time waiting for memory requests for every advance of the PC or memory read from a instruction!
  9628. Caches do make a difference here of course, and lead to much faster memory return times.
  9629. ===== gem5 MinorCPU
  9630. Generic <<out-of-order-execution,in-order>> <<superscalar-processor,superscalar>> core.
  9631. Its C++ implementation that can be parametrized to more closely match real cores.
  9632. Note that since gem5 is highly parametrizable, the parametrization could even change which instructions a CPU can execute by altering its available <<gem5-functional-units,functional units>>, which are used to model performance.
  9633. For example, `MinorCPU` allows all implemented instructions, including <<arm-sve>> instructions, but a derived class modelling, say, an https://en.wikipedia.org/wiki/ARM_Cortex-A7[ARM Cortex A7 core], might not, since SVE is a newer feature and the A7 core does not have SVE.
  9634. The weird name "Minor" stands for "M (TODO what is M) IN ONder".
  9635. Its 4 stage pipeline is described at the "MinorCPU" section of <<gem5-arm-rsk>>.
  9636. A commented execution example can be seen at: <<gem5-event-queue-minorcpu-syscall-emulation-freestanding-example-analysis>>.
  9637. There is also an in-tree doxygen at: https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/doc/inside-minor.doxygen[`src/doc/inside-minor.doxygen`] and rendered at: http://pages.cs.wisc.edu/~swilson/gem5-docs/minor.html
  9638. As of 2019, in-order cores are mostly present in low power/cost contexts, for example little cores of https://en.wikipedia.org/wiki/ARM_big.LITTLE[ARM bigLITTLE].
  9639. The following models extend the `MinorCPU` class by parametrization to make it match existing CPUs more closely:
  9640. * `HPI`: derived from `MinorCPU`.
  9641. +
  9642. Created by Ashkan Tousi in 2017 while working at ARM.
  9643. +
  9644. According to <<gem5-arm-rsk>>:
  9645. +
  9646. ____
  9647. The HPI CPU timing model is tuned to be representative of a modern in-order Armv8-A implementation.
  9648. ____
  9649. +
  9650. * `ex5_LITTLE`: derived from `MinorCPU`. Description reads:
  9651. +
  9652. ____
  9653. ex5 LITTLE core (based on the ARM Cortex-A7)
  9654. ____
  9655. +
  9656. Implemented by Pierre-Yves Péneau from LIRMM, which is a research lab in Montpellier, France, in 2017.
  9657. ===== gem5 `DerivO3CPU`
  9658. Generic <<out-of-order-execution,out-of-order core>>. "O3" Stands for "Out Of Order"!
  9659. Basic documentation on the old gem5 wiki: http://www.m5sim.org/O3CPU
  9660. Analogous to <<gem5-minorcpu,MinorCPU>>, but modelling an out of order core instead of in order.
  9661. A commented execution example can be seen at: <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis>>.
  9662. The default <<execution-unit,functional units>> are described at: <<gem5-derivo3cpu-default-functional-units>>. All default widths are set to 8 instructions, from the <<gem5-config-ini,`config.ini`>>:
  9663. ....
  9664. [system.cpu]
  9665. type=DerivO3CPU
  9666. commitWidth=8
  9667. decodeWidth=8
  9668. dispatchWidth=8
  9669. fetchWidth=8
  9670. issueWidth=8
  9671. renameWidth=8
  9672. squashWidth=8
  9673. wbWidth=8
  9674. ....
  9675. This can be observed for example at: <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-hazardless>>.
  9676. Existing parametrizations:
  9677. * `ex5_big`: big corresponding to `ex5_LITTLE`, by same author at same time. It description reads:
  9678. +
  9679. ____
  9680. ex5 big core (based on the ARM Cortex-A15)
  9681. ____
  9682. * `O3_ARM_v7a`: implemented by Ronald Dreslinski from the https://en.wikipedia.org/wiki/University_of_Michigan[University of Michigan] in 2012
  9683. +
  9684. Not sure why it has v7a in the name, since I believe the CPUs are just the microarchitectural implementation of any ISA, and the v8 hello world did run.
  9685. +
  9686. The CLI option is named slightly differently as: `--cpu-type O3_ARM_v7a_3`.
  9687. ====== gem5 `DerivO3CPU` pipeline stages
  9688. * fetch: besides obviously fetching the instruction, this is also where branch prediction runs. Presumably because you need to branch predict before deciding what to fetch next.
  9689. * retire: the instruction is completely and totally done with.
  9690. +
  9691. Mispeculated instructions never reach this stage as can be seen at: <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-speculative>>.
  9692. +
  9693. The `ExecAll` happens at this time as well. And therefore `ExecAll` does not happen for mispeculated instructions.
  9694. [[gem5-util-o3-pipeview-py-o3-pipeline-viewer]]
  9695. ====== gem5 util/o3-pipeview.py O3 pipeline viewer
  9696. Mentioned at: http://www.m5sim.org/Visualization
  9697. ....
  9698. ./run \
  9699. --arch aarch64 \
  9700. --emulator gem5 \
  9701. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  9702. --trace O3PipeView \
  9703. --trace-stdout \
  9704. -- \
  9705. --cpu-type DerivO3CPU \
  9706. --caches \
  9707. ;
  9708. "$(./getvar gem5_source_dir)/util/o3-pipeview.py" -c 500 -o o3pipeview.tmp.log --color "$(./getvar --arch aarch64 trace_txt_file)"
  9709. less -R o3pipeview.tmp.log
  9710. ....
  9711. Or without color:
  9712. ....
  9713. "$(./getvar gem5_source_dir)/util/o3-pipeview.py" -c 500 -o o3pipeview.tmp.log "$(./getvar --arch aarch64 trace_txt_file)"
  9714. less o3pipeview.tmp.log
  9715. ....
  9716. A sample output for this can be seen at: <<hazardless-o3-pipeline>>.
  9717. ====== gem5 Konata O3 pipeline viewer
  9718. https://github.com/shioyadan/Konata
  9719. http://learning.gem5.org/tutorial/presentations/vis-o3-gem5.pdf
  9720. Appears to be browser based, so you can zoom in and out, rather than the forced wrapping as for <<gem5-util-o3-pipeview-py-o3-pipeline-viewer>>.
  9721. Uses the same data source as `util/o3-pipeview.py`.
  9722. <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-stall-gain>> shows how the text-based visualization can get problematic due to stalls requiring wraparounds.
  9723. ==== gem5 ARM RSK
  9724. https://github.com/arm-university/arm-gem5-rsk/blob/aa3b51b175a0f3b6e75c9c856092ae0c8f2a7cdc/gem5_rsk.pdf
  9725. Dated 2017, it contains a good overview of gem5 CPUs.
  9726. === gem5 ARM platforms
  9727. The gem5 platform is selectable with the `--machine` option, which is named after the analogous QEMU `-machine` option, and which sets the `--machine-type`.
  9728. Each platform represents a different system with different devices, memory and interrupt setup.
  9729. TODO: describe the main characteristics of each platform, as of gem5 5e83d703522a71ec4f3eb61a01acd8c53f6f3860:
  9730. * `VExpress_GEM5_V1`: good sane base platform
  9731. * `VExpress_GEM5_V1_DPU`: `VExpress_GEM5_V1` with DP650 instead of HDLCD, selected automatically by `./run --dp650`, see also: <<gem5-graphic-mode-dp650>>
  9732. * `VExpress_GEM5_V2`: VExpress_GEM5_V1 with GICv3, uses a different bootloader `arm/aarch64_bootloader/boot_emm_v2.arm64` TODO is it because of GICv3?
  9733. * anything that does not start with: `VExpress_GEM5_`: old and bad, don't use them
  9734. === gem5 upstream images
  9735. Present at:
  9736. * http://www.gem5.org/dist/current/arm/
  9737. * http://www.gem5.org/dist/current/x86/
  9738. Depending on which archive you download from there, you can find some of:
  9739. * Ubuntu based images
  9740. * precompiled Linux kernels, with the <<gem5-arm-linux-kernel-patches>> for arm
  9741. * precompiled <<gem5-bootloaders>> for ISAs that have them, e.g. ARM
  9742. * precompiled DTBs if you don't want to use autogeneration for some crazy reason
  9743. Some of those images are also used on the <<gem5-unit-tests>> continuous integration.
  9744. Could be used as an alternative to this repository. But why would you do that? :-)
  9745. E.g. to use a precompiled ARM kernel:
  9746. ....
  9747. mkdir aarch-system-201901106
  9748. cd aarch-system-201901106
  9749. wget http://dist.gem5.org/dist/current/arm/aarch-system-201901106.tar.bz2
  9750. tar xvf aarch-system-201901106.tar.bz2
  9751. cd ..
  9752. ./run --arch aarch64 --emulator gem5 --linux-exec aarch-system-201901106/binaries/vmlinux.arm64
  9753. ....
  9754. === gem5 bootloaders
  9755. Certain ISAs like ARM have bootloaders that are automatically run before the main image to setup basic system state.
  9756. We cross compile those bootloaders from source automatically during `./build-gem5`.
  9757. As of gem5 bcf041f257623e5c9e77d35b7531bae59edc0423, the source code of the bootloaderes can be found under:
  9758. ....
  9759. system/arm/
  9760. ....
  9761. and their selection can be seen under: `src/dev/arm/RealView.py`, e.g.:
  9762. ....
  9763. def setupBootLoader(self, cur_sys, loc):
  9764. if not cur_sys.boot_loader:
  9765. cur_sys.boot_loader = [ loc('boot_emm.arm64'), loc('boot_emm.arm') ]
  9766. ....
  9767. The bootloader basically just sets up a bit of CPU state and jumps to the kernel entry point.
  9768. In aarch64 at least, CPUs other than CPU0 are also started up briefly, run some initialization, and are made wait on a WFE. This can be seen easily by booting a multicore Linux kernel run with <<gem5-execall-trace-format>>.
  9769. === gem5 memory system
  9770. Parent section: <<gem5-internals>>.
  9771. ==== gem5 port system
  9772. The gem5 memory system is connected in a very flexible way through the port system.
  9773. This system exists to allow seamlessly connecting any combination of CPU, caches, interconnects, DRAM and peripherals.
  9774. A <<gem5-packet,`Packet`>> is the basic information unit that gets sent across ports.
  9775. ===== gem5 functional vs atomic vs timing memory requests
  9776. gem5 memory requests can be classified in the following broad categories:
  9777. * functional: get the value magically, do not update caches, see also: <<gem5-functional-requests>>
  9778. * atomic: get the value now without making a <<gem5-event-queue,separate event>>, but do not update caches. Cannot work in <<gem5-ruby-build,Ruby>> due to fundamental limitations, mentioned in passing at: https://gem5.atlassian.net/browse/GEM5-676
  9779. * timing: get the value simulating delays and updating caches
  9780. This trichotomy can be notably seen in the definition of the https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/mem/port.hh#L75[MasterPort class]:
  9781. ....
  9782. class MasterPort : public Port, public AtomicRequestProtocol,
  9783. public TimingRequestProtocol, public FunctionalRequestProtocol
  9784. ....
  9785. and the base classes are defined under `src/mem/protocol/`.
  9786. Then, by reading the rest of the class, we see that the send methods are all boring, and just forward to some polymorphic receiver that does the actual interesting activity:
  9787. ....
  9788. Tick
  9789. sendAtomicSnoop(PacketPtr pkt)
  9790. {
  9791. return AtomicResponseProtocol::sendSnoop(_masterPort, pkt);
  9792. }
  9793. Tick
  9794. AtomicResponseProtocol::sendSnoop(AtomicRequestProtocol *peer, PacketPtr pkt)
  9795. {
  9796. assert(pkt->isRequest());
  9797. return peer->recvAtomicSnoop(pkt);
  9798. }
  9799. ....
  9800. The receive methods are therefore the interesting ones, and must be overridden on derived classes if they ever expect to receive such requests:
  9801. ....
  9802. Tick
  9803. recvAtomicSnoop(PacketPtr pkt) override
  9804. {
  9805. panic("%s was not expecting an atomic snoop request\n", name());
  9806. return 0;
  9807. }
  9808. void
  9809. recvFunctionalSnoop(PacketPtr pkt) override
  9810. {
  9811. panic("%s was not expecting a functional snoop request\n", name());
  9812. }
  9813. void
  9814. recvTimingSnoopReq(PacketPtr pkt) override
  9815. {
  9816. panic("%s was not expecting a timing snoop request.\n", name());
  9817. }
  9818. ....
  9819. One question that comes up now is: but why do CPUs need to care about <<cache-coherence,snoop requests>>?
  9820. And one big answer is: to be able to implement LLSC atomicity as mentioned at: <<arm-ldxr-and-stxr-instructions>>, since when other cores update memory, they could invalidate the lock of the current core.
  9821. Then, as you might expect, we can see that for example `AtomicSimpleCPU` does not override `recvTimingSnoopReq`.
  9822. Now let see which requests are generated by ordinary <<arm-ldr-instruction>>. We run:
  9823. ....
  9824. ./run \
  9825. --arch aarch64 \
  9826. --debug-vm \
  9827. --emulator gem5 \
  9828. --gem5-build-type debug \
  9829. --useland userland/arch/aarch64/freestanding/linux/hello.S \
  9830. ....
  9831. and then break at the methods of the LDR class `LDRXL64_LIT`: <<gem5-execute-vs-initiateacc-vs-completeacc>>.
  9832. Before starting, we of course guess that:
  9833. * `AtomicSimpleCPU` will be making atomic accesses from `execute`
  9834. * `TimingSimpleCPU` will be making timing accesses from `initiateAcc`, which must generate the event which leads to `completeAcc`
  9835. so let's confirm it.
  9836. We break on `ArmISAInst::LDRXL64_LIT::execute` which is what `AtomicSimpleCPU` uses, and that leads as expected to:
  9837. ....
  9838. MasterPort::sendAtomic
  9839. AtomicSimpleCPU::sendPacket
  9840. AtomicSimpleCPU::readMem
  9841. SimpleExecContext::readMem
  9842. readMemAtomic<(ByteOrder)1, ExecContext, unsigned long>
  9843. readMemAtomicLE<ExecContext, unsigned long>
  9844. ArmISAInst::LDRXL64_LIT::execute
  9845. AtomicSimpleCPU::tick
  9846. ....
  9847. Notably, `AtomicSimpleCPU::readMem` immediately translates the address, creates a packet, sends the atomic request, and gets the response back without any events.
  9848. And now if we do the same with `--cpu-type TimingSimpleCPU` and break at `ArmISAInst::LDRXL64_LIT::initiateAcc`, and then add another break for the next event schedule `b EventManager::schedule` (which we imagine is the memory read) we reach:
  9849. ....
  9850. EventManager::schedule
  9851. DRAMCtrl::addToReadQueue
  9852. DRAMCtrl::recvTimingReq
  9853. DRAMCtrl::MemoryPort::recvTimingReq
  9854. TimingRequestProtocol::sendReq
  9855. MasterPort::sendTimingReq
  9856. CoherentXBar::recvTimingReq
  9857. CoherentXBar::CoherentXBarSlavePort::recvTimingReq
  9858. TimingRequestProtocol::sendReq
  9859. MasterPort::sendTimingReq
  9860. TimingSimpleCPU::handleReadPacket
  9861. TimingSimpleCPU::sendData
  9862. TimingSimpleCPU::finishTranslation
  9863. DataTranslation<TimingSimpleCPU*>::finish
  9864. ArmISA::TLB::translateComplete
  9865. ArmISA::TLB::translateTiming
  9866. ArmISA::TLB::translateTiming
  9867. TimingSimpleCPU::initiateMemRead
  9868. SimpleExecContext::initiateMemRead
  9869. initiateMemRead<ExecContext, unsigned long>
  9870. ArmISAInst::LDRXL64_LIT::initiateAcc
  9871. TimingSimpleCPU::completeIfetch
  9872. TimingSimpleCPU::IcachePort::ITickEvent::process
  9873. EventQueue::serviceOne
  9874. ....
  9875. so as expected we have `TimingRequestProtocol::sendReq`.
  9876. Remember however that timing requests are a bit more complicated due to <<arm-paging,paging>>, since the page table walk can itself lead to further memory requests.
  9877. In this particular instance, the address being read with `ldr x2, =len` <<arm-ldr-pseudo-instruction>> is likely placed just after the text section, and therefore the pagewalk is already in the TLB due to previous instruction fetches, and this is because the translation just finished immediately going through `TimingSimpleCPU::finishTranslation`, some key snippets are:
  9878. ....
  9879. TLB::translateComplete(const RequestPtr &req, ThreadContext *tc,
  9880. Translation *translation, Mode mode, TLB::ArmTranslationType tranType,
  9881. bool callFromS2)
  9882. {
  9883. bool delay = false;
  9884. Fault fault;
  9885. if (FullSystem)
  9886. fault = translateFs(req, tc, mode, translation, delay, true, tranType);
  9887. else
  9888. fault = translateSe(req, tc, mode, translation, delay, true);
  9889. if (!delay)
  9890. translation->finish(fault, req, tc, mode);
  9891. else
  9892. translation->markDelayed();
  9893. ....
  9894. and then `translateSe` does not use `delay` at all, so we learn that in syscall emulation, `delay` is always `false` and things progress immediately there. And then further down `TimingSimpleCPU::finishTranslation` does some more fault checking:
  9895. ....
  9896. void
  9897. TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
  9898. {
  9899. if (state->getFault() != NoFault) {
  9900. translationFault(state->getFault());
  9901. } else {
  9902. if (!state->isSplit) {
  9903. sendData(state->mainReq, state->data, state->res,
  9904. state->mode == BaseTLB::Read);
  9905. ....
  9906. Tested in gem5 b1623cb2087873f64197e503ab8894b5e4d4c7b4.
  9907. ====== gem5 functional requests
  9908. As seen at <<gem5-functional-vs-atomic-vs-timing-memory-requests>>, functional requests are not used in common simulation, since the core must always go through caches.
  9909. Functional access are therefore only used for more magic simulation functionalities.
  9910. One such functionality, is the <<gem5-syscall-emulation-mode>> implementation of the <<futex-system-call>> which is done at `futexFunc` in https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/sim/syscall_emul.hh#L394[`src/sim/sycall_emul.hh`].
  9911. As seen from `man futex`, the Linux kernel reads the value from an address that is given as the first argument of the call.
  9912. Therefore, here it makes sense for gem5 syscall implementation, which does not actually have a real kernel running, to just make a functional request and be done with it, since the impact of cache changes done by this read would be insignificant to the cost of an actual full context switch that would happen on a real syscall.
  9913. It is generally hard to implement functional requests for <<gem5-ruby-build,Ruby>> runs, because packets are flying through the memory system in a transient state, and there is no simple way of finding exactly which ones might have the latest version of the memory. See for example:
  9914. * https://gem5.atlassian.net/browse/GEM5-496
  9915. * https://gem5.atlassian.net/browse/GEM5-604
  9916. * https://gem5.atlassian.net/browse/GEM5-675
  9917. * https://gem5.atlassian.net/browse/GEM5-676
  9918. The typical error message in that case is:
  9919. ....
  9920. fatal: Ruby functional read failed for address
  9921. ....
  9922. ==== gem5 `Packet` vs `Request`
  9923. ===== gem5 `Packet`
  9924. `Packet` is what goes through <<gem5-port-system,ports>>: a single packet is sent out to the memory system, gets modified when it hits valid data, and then returns with the reply.
  9925. `Packet` is what CPUs create and send to get memory values. E.g. on <<gem5-atomicsimplecpu>>:
  9926. ....
  9927. void
  9928. AtomicSimpleCPU::tick()
  9929. {
  9930. ...
  9931. Packet ifetch_pkt = Packet(ifetch_req, MemCmd::ReadReq);
  9932. ifetch_pkt.dataStatic(&inst);
  9933. icache_latency = sendPacket(icachePort, &ifetch_pkt);
  9934. Tick
  9935. AtomicSimpleCPU::sendPacket(MasterPort &port, const PacketPtr &pkt)
  9936. {
  9937. return port.sendAtomic(pkt);
  9938. }
  9939. ....
  9940. On <<gem5-timingsimplecpu,TimingSimpleCPU>>, we note that the packet is dynamically created unlike for the AtomicSimpleCPU, since it must exist across multiple <<gem5-event-queue,events>> which happen on separate function calls, unlike atomic memory which is done immediately in a single call:
  9941. ....
  9942. void
  9943. TimingSimpleCPU::sendFetch(const Fault &fault, const RequestPtr &req,
  9944. ThreadContext *tc)
  9945. {
  9946. if (fault == NoFault) {
  9947. DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
  9948. req->getVaddr(), req->getPaddr());
  9949. ifetch_pkt = new Packet(req, MemCmd::ReadReq);
  9950. ifetch_pkt->dataStatic(&inst);
  9951. DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
  9952. if (!icachePort.sendTimingReq(ifetch_pkt)) {
  9953. ....
  9954. It must later delete the return packet that it gets later on, e.g. for the ifetch:
  9955. ....
  9956. TimingSimpleCPU::completeIfetch(PacketPtr pkt)
  9957. {
  9958. if (pkt) {
  9959. delete pkt;
  9960. }
  9961. ....
  9962. The most important properties of a Packet are:
  9963. * `PacketDataPtr data;`: the data coming back from a reply packet or being sent via it
  9964. * `Addr addr;`: the physical address of the data. TODO comment says could be virtual too, when?
  9965. +
  9966. ....
  9967. /// The address of the request. This address could be virtual or
  9968. /// physical, depending on the system configuration.
  9969. Addr addr;
  9970. ....
  9971. * `Flags flags;`: flags describing properties of the `Packet`
  9972. * `MemCmd cmd;`: see <<gem5-memcmd>>
  9973. ====== gem5 `MemCmd`
  9974. Each <<gem5-packet>> contains a `MemCmd`
  9975. The `MemCmd` is basically an enumeration of possible commands, stuff like:
  9976. ....
  9977. enum Command
  9978. {
  9979. InvalidCmd,
  9980. ReadReq,
  9981. ReadResp,
  9982. ....
  9983. Each command has a fixed number of attributes defined in the static array:
  9984. ....
  9985. static const CommandInfo commandInfo[];
  9986. ....
  9987. which gets initialized in the .cc file in the same order as the Command enum.
  9988. ....
  9989. const MemCmd::CommandInfo
  9990. MemCmd::commandInfo[] =
  9991. {
  9992. /* InvalidCmd */
  9993. { 0, InvalidCmd, "InvalidCmd" },
  9994. /* ReadReq - Read issued by a non-caching agent such as a CPU or
  9995. * device, with no restrictions on alignment. */
  9996. { SET3(IsRead, IsRequest, NeedsResponse), ReadResp, "ReadReq" },
  9997. /* ReadResp */
  9998. { SET3(IsRead, IsResponse, HasData), InvalidCmd, "ReadResp" },
  9999. ....
  10000. From this we see for example that both `ReadReq` and `ReadResp` are marked with the `IsRead` attribute.
  10001. The second field of this array also specifies the corresponding reply of each request. E.g. the reply of a `ReadReq` is a `ReadResp`. `InvalidCmd` is just a placeholders for requests that are already replies.
  10002. ....
  10003. struct CommandInfo
  10004. {
  10005. /// Set of attribute flags.
  10006. const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
  10007. /// Corresponding response for requests; InvalidCmd if no
  10008. /// response is applicable.
  10009. const Command response;
  10010. /// String representation (for printing)
  10011. const std::string str;
  10012. };
  10013. ....
  10014. Some important commands include:
  10015. * `ReadReq`: what the CPU sends out to its cache, see also: <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>>
  10016. * `ReadSharedReq`: what dcache of the CPU sends forward to the <<gem5-crossbar-interconnect>> after a `ReadReq`, see also: see also: <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>>
  10017. * `ReadResp`: response to a `ReadReq`. Can come from either DRAM or another cache that has the data. On <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>> we see that a new packet is created.
  10018. * `WriteReq`: what the CPU sends out to its cache, see also: <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>>
  10019. * `UpgradeReq`: what dcache of CPU sends forward after a `WriteReq`
  10020. ===== gem5 `Request`
  10021. One good way to think about `Request` vs `Packet` could be "it is what the <<gem5-instruction-definitions,instruction definitions>> see", a bit like `ExecContext` vs `ThreadContext`.
  10022. `Request` is passed to the constructor of `Packet`, and `Packet` keeps a reference to it:
  10023. ....
  10024. Packet(const RequestPtr &_req, MemCmd _cmd)
  10025. : cmd(_cmd), id((PacketId)_req.get()), req(_req),
  10026. data(nullptr), addr(0), _isSecure(false), size(0),
  10027. _qosValue(0), headerDelay(0), snoopDelay(0),
  10028. payloadDelay(0), senderState(NULL)
  10029. {
  10030. if (req->hasPaddr()) {
  10031. addr = req->getPaddr();
  10032. flags.set(VALID_ADDR);
  10033. _isSecure = req->isSecure();
  10034. }
  10035. if (req->hasSize()) {
  10036. size = req->getSize();
  10037. flags.set(VALID_SIZE);
  10038. }
  10039. }
  10040. ....
  10041. where `RequestPtr` is defined as:
  10042. ....
  10043. typedef std::shared_ptr<Request> RequestPtr;
  10044. ....
  10045. so we see that shared pointers to requests are basically passed around.
  10046. Some key fields include:
  10047. * `_paddr`:
  10048. +
  10049. ....
  10050. /**
  10051. * The physical address of the request. Valid only if validPaddr
  10052. * is set.
  10053. */
  10054. Addr _paddr = 0;
  10055. ....
  10056. * `_vaddr`:
  10057. +
  10058. ....
  10059. /** The virtual address of the request. */
  10060. Addr _vaddr = MaxAddr;
  10061. ....
  10062. ====== gem5 `Request` in `AtomicSimpleCPU`
  10063. In `AtomicSimpleCPU`, a single packet of each type is kept for the entire CPU, e.g.:
  10064. ....
  10065. RequestPtr ifetch_req;
  10066. ....
  10067. and it gets created at construction time:
  10068. ....
  10069. AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
  10070. {
  10071. ifetch_req = std::make_shared<Request>();
  10072. ....
  10073. and then it gets modified for each request:
  10074. ....
  10075. setupFetchRequest(ifetch_req);
  10076. ....
  10077. which does:
  10078. ....
  10079. req->setVirt(fetchPC, sizeof(MachInst), Request::INST_FETCH,
  10080. instMasterId(), instAddr);
  10081. ....
  10082. Virtual to physical address translation done by the CPU stores the physical address:
  10083. ....
  10084. fault = thread->dtb->translateAtomic(req, thread->getTC(),
  10085. BaseTLB::Read);
  10086. ....
  10087. which eventually calls e.g. on fs with MMU enabled:
  10088. ....
  10089. Fault
  10090. TLB::translateMmuOn(ThreadContext* tc, const RequestPtr &req, Mode mode,
  10091. Translation *translation, bool &delay, bool timing,
  10092. bool functional, Addr vaddr,
  10093. ArmFault::TranMethod tranMethod)
  10094. {
  10095. req->setPaddr(pa);
  10096. ....
  10097. ====== gem5 `Request` in `TimingSimpleCPU`
  10098. In <<gem5-timingsimplecpu,TimingSimpleCPU>>, the request gets created per memory read:
  10099. ....
  10100. Fault
  10101. TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
  10102. Request::Flags flags,
  10103. const std::vector<bool>& byte_enable)
  10104. {
  10105. ...
  10106. RequestPtr req = std::make_shared<Request>(
  10107. addr, size, flags, dataMasterId(), pc, thread->contextId());
  10108. ....
  10109. and from <<gem5-functional-vs-atomic-vs-timing-memory-requests>> and <<gem5-functional-vs-atomic-vs-timing-memory-requests>> we remember that `initiateMemRead` is actually started from the `initiateAcc` instruction definitions for timing:
  10110. ....
  10111. Fault LDRWL64_LIT::initiateAcc(ExecContext *xc,
  10112. Trace::InstRecord *traceData) const
  10113. {
  10114. ...
  10115. fault = initiateMemRead(xc, traceData, EA, Mem, memAccessFlags);
  10116. ....
  10117. From this we see that `initiateAcc` memory instructions are basically extracting the required information for the request, notably the address `EA` and flags.
  10118. ==== gem5 `MSHR`
  10119. Mentioned at: http://pages.cs.wisc.edu/~swilson/gem5-docs/gem5MemorySystem.html
  10120. Each cache object owns a `MSHRQueue`:
  10121. ....
  10122. class BaseCache : public ClockedObject
  10123. {
  10124. /** Miss status registers */
  10125. MSHRQueue mshrQueue;
  10126. ....
  10127. `BaseCache` is the base class of `Cache` and `NoncoherentCache`.
  10128. `MSHRQueue` is a `Queue` of `MSHR`:
  10129. ....
  10130. class MSHRQueue : public Queue<MSHR>
  10131. ....
  10132. and Queue is also a gem5 class under `src/mem/cache/queue.hh`.
  10133. The MSHR basically keeps track of all information the cache receives, and helps it take appropriate action. I'm not sure why it is separate form the cache at all, as it is basically performing essential cache bookkeeping.
  10134. A clear example of MSHR in action can be seen at: <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>>. In that example what happened was:
  10135. * CPU1 writes to an address and it completes
  10136. * CPU2 sends read
  10137. * CPU1 writes to the address again
  10138. * CPU2 snoops the write, and notes it down in its MSHR
  10139. * CPU2 receives a snoop reply for its read, also from CPU1 which has the data and the line becomes valid
  10140. * CPU2 gets its data. But the MSHR remembers that it had also received a write snoop, so it also immediately invalidates that line
  10141. From this we understand that MSHR is the part of the cache that synchronizes stuff pending snoops and ensures that things get invalidated.
  10142. ==== gem5 `CommMonitor`
  10143. You can place this <<gem5-python-c-interaction,SimObject>> in between two <<gem5-port-system,ports>> to get extra statistics about the packets that are going through.
  10144. It only works on <<gem5-functional-vs-atomic-vs-timing-memory-requests,timing requests>>, and does not seem to dump any memory values, only add extra <<gem5-m5out-stats-txt-file,statistics>>.
  10145. For example, the patch link:patches/manual/gem5-commmonitor-se.patch[] hack a `CommMonitor` between the CPU and the L1 cache on top of gem5 1c3662c9557c85f0d25490dc4fbde3f8ab0cb350:
  10146. ....
  10147. patch -d "$(./getvar gem5_source_dir)" -p 1 < patches/manual/gem5-commmonitor-se.patch
  10148. ....
  10149. That patch was done largely by copying what `fs.py --memcheck` does with a `MemChecker` object.
  10150. You can then run with:
  10151. ....
  10152. ./run \
  10153. --arch aarch64 \
  10154. --emulator gem5 \
  10155. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  10156. -- \
  10157. --caches \
  10158. --cpu-type TimingSimpleCPU \
  10159. ;
  10160. ....
  10161. and now we have some new extra histogram statistics such as:
  10162. ....
  10163. system.cpu.dcache_mon.readBurstLengthHist::samples 1
  10164. ....
  10165. One neat thing about this is that it is agnostic to the memory object type, so you don't have to recode those statistics for every new type of object that operates on memory packets.
  10166. ==== gem5 `SimpleMemory`
  10167. `SimpleMemory` is a highly simplified memory system. It can replace a more complex DRAM model if you use it e.g. as:
  10168. ....
  10169. ./run --emulator gem5 -- --mem-type SimpleMemory
  10170. ....
  10171. and it also gets used in certain system-y memories present in ARM systems by default e.g. Flash memory:
  10172. ....
  10173. [system.realview.flash0]
  10174. type=SimpleMemory
  10175. ....
  10176. As of gem5 3ca404da175a66e0b958165ad75eb5f54cb5e772 LKMC 059a7ef9d9c378a6d1d327ae97d90b78183680b2 it did not provide any speedup to the Linux kernel boot according to a quick test.
  10177. === gem5 internals
  10178. Internals under other sections:
  10179. * <<gem5-memory-system>>
  10180. * <<gem5-trace-internals>>
  10181. * <<gem5-checkpoint-internals>>
  10182. * <<gem5-graphic-mode-internals>>
  10183. ==== gem5 Eclipse configuration
  10184. https://stackoverflow.com/questions/61656709/how-to-setup-eclipse-ide-for-gem5-development
  10185. In order to develop complex C++ software such as gem5, a good IDE setup is fundamental.
  10186. The best setup I've reached is with Eclipse. It is not perfect, and there is a learning curve, but is worth it.
  10187. Notably, it is very hard to get perfect due to: <<why-are-all-c-symlinked-into-the-gem5-build-dir>>.
  10188. I recommend the following settings, tested in Eclipse 2019.09, Ubuntu 18.04:
  10189. * fix all missing stdlib headers: https://stackoverflow.com/questions/10373788/how-to-solve-unresolved-inclusion-iostream-in-a-c-file-in-eclipse-cdt/51099533#51099533
  10190. * use spaces instead of tabs: Window, Preferences, Code Style, C/C++, Formatter, New, Edit, Tab Policy, Spaces Only
  10191. * either
  10192. ** create the project in the gem5 build directory! Files are moved around there and symlinked, and this gives the best chances of success
  10193. ** add to the include search path:
  10194. *** ./src/ in the source tree
  10195. *** the ISA specific build directory which contains some self-generated stuff, e.g.: out/gem5/default/build/ARM
  10196. To run and GDB step debug the executable, just copy the <<dry-run,full command line without newlines>> from your run command (Eclipse does not like newlines for the arguments), e.g.:
  10197. ....
  10198. ./run --emulator gem5 --print-cmd-oneline
  10199. ....
  10200. and configure it into Eclipse as usual.
  10201. One downside of this setup is that if you want to nuke your build directory to get a clean build, then the Eclipse configuration files present in it might get deleted. Maybe it is possible to store configuration files outside of the directory, but we are now mitigating that by making a backup copy of those configuration files before removing the directory, and restoring it when you do `./build-gem --clean`.
  10202. ==== gem5 Python C++ interaction
  10203. The interaction uses the Python C extension interface https://docs.python.org/2/extending/extending.html interface through the <<pybind11>> helper library: https://github.com/pybind/pybind11
  10204. The C++ executable both:
  10205. * starts running the Python executable
  10206. * provides Python classes written in C++ for that Python code to use
  10207. An example of this can be found at:
  10208. * https://docs.python.org/2/extending/embedding.html#extending-embedded-python
  10209. * https://github.com/pybind/pybind11/tree/v2.2.3/tests/test_embed
  10210. then gem5 magic `SimObject` class adds some crazy stuff on top of it further, is is a mess. In particular, it auto generates `params/` headers. TODO: why is this mess needed at all? pybind11 seems to handle constructor arguments just fine:
  10211. * https://github.com/pybind/pybind11/blob/v2.2.3/tests/test_class.py#L77
  10212. * https://github.com/pybind/pybind11/blob/v2.2.3/tests/test_class.cpp#L41
  10213. Let's study `BadDevice` for example:
  10214. `src/dev/BadDevice.py` defines `devicename`:
  10215. ....
  10216. class BadDevice(BasicPioDevice):
  10217. type = 'BadDevice'
  10218. cxx_header = "dev/baddev.hh"
  10219. devicename = Param.String("Name of device to error on")
  10220. ....
  10221. The object is created in Python for example from `src/dev/alpha/Tsunami.py` as:
  10222. ....
  10223. fb = BadDevice(pio_addr=0x801fc0003d0, devicename='FrameBuffer')
  10224. ....
  10225. Since `BadDevice` has no `+__init__+` method, and neither `BasicPioDevice`, it all just falls through until the `+SimObject.__init__+` constructor.
  10226. This constructor will loop through the inheritance chain and give the Python parameters to the C++ BadDeviceParams class as follows.
  10227. The auto-generated `build/ARM/params/BadDevice.hh` file defines BadDeviceParams in C++:
  10228. ....
  10229. #ifndef __PARAMS__BadDevice__
  10230. #define __PARAMS__BadDevice__
  10231. class BadDevice;
  10232. #include <cstddef>
  10233. #include <string>
  10234. #include "params/BasicPioDevice.hh"
  10235. struct BadDeviceParams
  10236. : public BasicPioDeviceParams
  10237. {
  10238. BadDevice * create();
  10239. std::string devicename;
  10240. };
  10241. #endif // __PARAMS__BadDevice__
  10242. ....
  10243. and `./python/_m5/param_BadDevice.cc` defines the param Python from C++ with pybind11:
  10244. ....
  10245. namespace py = pybind11;
  10246. static void
  10247. module_init(py::module &m_internal)
  10248. {
  10249. py::module m = m_internal.def_submodule("param_BadDevice");
  10250. py::class_<BadDeviceParams, BasicPioDeviceParams, std::unique_ptr<BadDeviceParams, py::nodelete>>(m, "BadDeviceParams")
  10251. .def(py::init<>())
  10252. .def("create", &BadDeviceParams::create)
  10253. .def_readwrite("devicename", &BadDeviceParams::devicename)
  10254. ;
  10255. py::class_<BadDevice, BasicPioDevice, std::unique_ptr<BadDevice, py::nodelete>>(m, "BadDevice")
  10256. ;
  10257. }
  10258. static EmbeddedPyBind embed_obj("BadDevice", module_init, "BasicPioDevice");
  10259. ....
  10260. `src/dev/baddev.hh` then uses the parameters on the constructor:
  10261. ....
  10262. class BadDevice : public BasicPioDevice
  10263. {
  10264. private:
  10265. std::string devname;
  10266. public:
  10267. typedef BadDeviceParams Params;
  10268. protected:
  10269. const Params *
  10270. params() const
  10271. {
  10272. return dynamic_cast<const Params *>(_params);
  10273. }
  10274. public:
  10275. /**
  10276. * Constructor for the Baddev Class.
  10277. * @param p object parameters
  10278. * @param a base address of the write
  10279. */
  10280. BadDevice(Params *p);
  10281. ....
  10282. `src/dev/baddev.cc` then uses the parameter:
  10283. ....
  10284. BadDevice::BadDevice(Params *p)
  10285. : BasicPioDevice(p, 0x10), devname(p->devicename)
  10286. {
  10287. }
  10288. ....
  10289. It has been found that this usage of <<pybind11>> across hundreds of `SimObject` files accounted for 50% of the gem5 build time at one point: <<pybind11-accounts-for-50-of-gem5-build-time>>.
  10290. To get a feeling of how `SimObject` objects are run, see: <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis>>.
  10291. Bibliography:
  10292. * https://stackoverflow.com/questions/61910993/viewing-the-parameters-of-the-branch-predictor-in-gem5/61914449#61914449
  10293. * https://stackoverflow.com/questions/62969566/attributes-of-system-object-in-gem5/62970092#62970092
  10294. Tested on gem5 08c79a194d1a3430801c04f37d13216cc9ec1da3.
  10295. ==== gem5 entry point
  10296. The main is at: `src/sim/main.cc`. It calls:
  10297. ....
  10298. ret = initM5Python();
  10299. ....
  10300. src/sim/init.cc:
  10301. ....
  10302. 230 int
  10303. 231 initM5Python()
  10304. 232 {
  10305. 233 EmbeddedPyBind::initAll();
  10306. 234 return EmbeddedPython::initAll();
  10307. 235 }
  10308. ....
  10309. `initAll` basically just initializes the `_m5` Python object, which is used across multiple `.py`.
  10310. Back on `main`:
  10311. ....
  10312. ret = m5Main(argc, argv);
  10313. ....
  10314. which goes to:
  10315. ....
  10316. result = PyRun_String(*command, Py_file_input, dict, dict);
  10317. ....
  10318. with commands looping over:
  10319. ....
  10320. import m5
  10321. m5.main()
  10322. ....
  10323. which leads into:
  10324. ....
  10325. src/python/m5/main.py#main
  10326. ....
  10327. which finally calls your config file like `fs.py` with:
  10328. ....
  10329. filename = sys.argv[0]
  10330. filedata = file(filename, 'r').read()
  10331. filecode = compile(filedata, filename, 'exec')
  10332. [...]
  10333. exec filecode in scope
  10334. ....
  10335. TODO: the file path name appears to be passed as a command line argument to the Python script, but I didn't have the patience to fully understand the details.
  10336. The Python config files then set the entire system up in Python, and finally call `m5.simulate()` to run the actual simulation. This function has a C++ native implementation at:
  10337. ....
  10338. src/sim/simulate.cc
  10339. ....
  10340. and that is where the main event loop, `doSimLoop`, gets called and starts kicking off the <<gem5-event-queue>>.
  10341. Tested at gem5 b4879ae5b0b6644e6836b0881e4da05c64a6550d.
  10342. ===== gem5 `m5.objects` module
  10343. All `SimObjects` seem to be automatically added to the `m5.objects` namespace, and this is done in a very convoluted way, let's try to understand a bit:
  10344. ....
  10345. src/python/m5/objects/__init__.py
  10346. ....
  10347. contains:
  10348. ....
  10349. modules = __loader__.modules
  10350. for module in modules.keys():
  10351. if module.startswith('m5.objects.'):
  10352. exec("from %s import *" % module)
  10353. ....
  10354. And from <<debug-gem5-python-scripts,IPDB>> we see that this appears to loop over every object string of type `m5.objects.modulename`.
  10355. This `+__init__+` gets called from `src/python/importer.py` at the `exec`:
  10356. ....
  10357. class CodeImporter(object):
  10358. def load_module(self, fullname):
  10359. override = os.environ.get('M5_OVERRIDE_PY_SOURCE', 'false').lower()
  10360. if override in ('true', 'yes') and os.path.exists(abspath):
  10361. src = open(abspath, 'r').read()
  10362. code = compile(src, abspath, 'exec')
  10363. if os.path.basename(srcfile) == '__init__.py':
  10364. mod.__path__ = fullname.split('.')
  10365. mod.__package__ = fullname
  10366. else:
  10367. mod.__package__ = fullname.rpartition('.')[0]
  10368. mod.__file__ = srcfile
  10369. exec(code, mod.__dict__)
  10370. import sys
  10371. importer = CodeImporter()
  10372. add_module = importer.add_module
  10373. sys.meta_path.append(importer)
  10374. ....
  10375. Here as a bonus here we also see how <<m5-override-py-source,`M5_OVERRIDE_PY_SOURCE`>> works.
  10376. In `src/SConscript` we see that `SimObject` is just a `PySource` with module equals to `m5.objects`:
  10377. ....
  10378. class SimObject(PySource):
  10379. def __init__(self, source, tags=None, add_tags=None):
  10380. '''Specify the source file and any tags (automatically in
  10381. the m5.objects package)'''
  10382. super(SimObject, self).__init__('m5.objects', source, tags, add_tags)
  10383. ....
  10384. The `add_module` method seems to be doing the magic and is called from `src/sim/init.cc`:
  10385. ....
  10386. bool
  10387. EmbeddedPython::addModule() const
  10388. {
  10389. PyObject *code = getCode();
  10390. PyObject *result = PyObject_CallMethod(importerModule, PyCC("add_module"),
  10391. ....
  10392. which is called from:
  10393. ....
  10394. int
  10395. EmbeddedPython::initAll()
  10396. {
  10397. // Load the importer module
  10398. PyObject *code = importer->getCode();
  10399. importerModule = PyImport_ExecCodeModule(PyCC("importer"), code);
  10400. if (!importerModule) {
  10401. PyErr_Print();
  10402. return 1;
  10403. }
  10404. // Load the rest of the embedded python files into the embedded
  10405. // python importer
  10406. list<EmbeddedPython *>::iterator i = getList().begin();
  10407. list<EmbeddedPython *>::iterator end = getList().end();
  10408. for (; i != end; ++i)
  10409. if (!(*i)->addModule())
  10410. ....
  10411. and `getList` comes from:
  10412. ....
  10413. EmbeddedPython::EmbeddedPython(const char *filename, const char *abspath,
  10414. const char *modpath, const unsigned char *code, int zlen, int len)
  10415. : filename(filename), abspath(abspath), modpath(modpath), code(code),
  10416. zlen(zlen), len(len)
  10417. {
  10418. // if we've added the importer keep track of it because we need it
  10419. // to bootstrap.
  10420. if (string(modpath) == string("importer"))
  10421. importer = this;
  10422. else
  10423. getList().push_back(this);
  10424. }
  10425. list<EmbeddedPython *> &
  10426. EmbeddedPython::getList()
  10427. {
  10428. static list<EmbeddedPython *> the_list;
  10429. return the_list;
  10430. }
  10431. ....
  10432. and the constructor in turn gets called from per `SimObject` autogenerated files such as e.g. `dev/storage/Ide.py.cc` for `src/dev/storage/Ide.py`:
  10433. ....
  10434. EmbeddedPython embedded_m5_objects_Ide(
  10435. "m5/objects/Ide.py",
  10436. "/home/ciro/bak/git/linux-kernel-module-cheat/data/gem5/master4/src/dev/storage/Ide.py",
  10437. "m5.objects.Ide",
  10438. data_m5_objects_Ide,
  10439. 947,
  10440. 2099);
  10441. } // anonymous namespace
  10442. ....
  10443. which get autogenerated at `src/SConscript`:
  10444. ....
  10445. def embedPyFile(target, source, env):
  10446. for source in PySource.all:
  10447. base_py_env.Command(source.cpp, [ py_marshal, source.tnode ],
  10448. MakeAction(embedPyFile, Transform("EMBED PY")))
  10449. ....
  10450. where the `PySource.all` thing as you might expect is a static list of all `PySource` source files as they get updated in the constructor.
  10451. Tested in gem5 d9cb548d83fa81858599807f54b52e5be35a6b03.
  10452. ==== gem5 event queue
  10453. gem5 is an event based simulator, and as such the event queue is of of the crucial elements in the system.
  10454. Every single action that takes time (e.g. notably <<timingsimplecpu-analysis-ldr-stall,reading from memory>>) models that time delay by scheduling an event in the future.
  10455. The gem5 event queue stores one callback event for each future point in time.
  10456. The event queue is implemented in the class `EventQueue` in the file `src/sim/eventq.hh`.
  10457. Not all times need to have an associated event: if a given time has no events, gem5 just skips it and jumps to the next event: the queue is basically a linked list of events.
  10458. Important examples of events include:
  10459. * CPU ticks
  10460. * peripherals and memory
  10461. At <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis>> we see for example that at the beginning of an <<gem5-atomicsimplecpu,AtomicCPU>> simulation, gem5 sets up exactly two events:
  10462. * the first CPU cycle
  10463. * one exit event at the end of time which triggers <<gem5-simulate-limit-reached>>
  10464. Then, at the end of the callback of one tick event, another tick is scheduled.
  10465. And so the simulation progresses tick by tick, until an exit event happens.
  10466. The `EventQueue` class has one awesome `dump()` function that prints a human friendly representation of the queue, and can be easily called from GDB. TODO example.
  10467. We can also observe what is going on in the event queue with the `Event` <<gem5-tracing,debug flag>>.
  10468. Event execution is done at `EventQueue::serviceOne()`:
  10469. ....
  10470. Event *exit_event = eventq->serviceOne();
  10471. ....
  10472. This calls the `Event::process` method of the event.
  10473. Another important technique is to use <<debug-the-emulator,GDB>> and break at interesting points such as:
  10474. ....
  10475. b Trace::OstreamLogger::logMessage
  10476. b EventManager::schedule
  10477. b EventFunctionWrapper::process
  10478. ....
  10479. although stepping into `EventFunctionWrapper::process` which does `std::function` is a bit of a pain: https://stackoverflow.com/questions/59429401/how-to-step-into-stdfunction-user-code-from-c-functional-with-gdb
  10480. Another potentially useful technique is to use:
  10481. ....
  10482. --trace Event,ExecAll,FmtFlag,FmtStackTrace --trace-stdout
  10483. ....
  10484. which automates the logging of `Trace::OstreamLogger::logMessage()` backtraces.
  10485. But alas, it misses which function callback is being scheduled, which is the awesome thing we actually want:
  10486. * https://stackoverflow.com/questions/37545327/get-the-name-of-a-stdfunction
  10487. * https://stackoverflow.com/questions/40706805/how-to-convert-a-function-pointer-to-function-name/40706869
  10488. Then, once we had that, the most perfect thing ever would be to make the full event graph containing which events schedule which events!
  10489. ===== gem5 event queue AtomicSimpleCPU syscall emulation freestanding example analysis
  10490. Let's now analyze every single event on a minimal <<gem5-syscall-emulation-mode>> in the <<gem5-cpu-types,simplest CPU that we have>>:
  10491. ....
  10492. ./run \
  10493. --arch aarch64 \
  10494. --emulator gem5 \
  10495. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  10496. --trace Event,ExecAll,FmtFlag \
  10497. --trace-stdout \
  10498. ;
  10499. ....
  10500. which gives:
  10501. ....
  10502. 0: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 scheduled @ 0
  10503. **** REAL SIMULATION ****
  10504. 0: Event: Event_70: generic 70 scheduled @ 0
  10505. info: Entering event queue @ 0. Starting simulation...
  10506. 0: Event: Event_70: generic 70 rescheduled @ 18446744073709551615
  10507. 0: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 0
  10508. 0: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  10509. 0: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 rescheduled @ 500
  10510. 500: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 500
  10511. 500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : adr x1, #28 : IntAlu : D=0x0000000000400098 flags=(IsInteger)
  10512. 500: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 rescheduled @ 1000
  10513. 1000: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 1000
  10514. 1000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : ldr w2, #4194464 : MemRead : D=0x0000000000000006 A=0x4000a0 flags=(IsInteger|IsMemRef|IsLoad)
  10515. 1000: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 rescheduled @ 1500
  10516. 1500: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 1500
  10517. 1500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x8, #64, #0 : IntAlu : D=0x0000000000000040 flags=(IsInteger)
  10518. 1500: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 rescheduled @ 2000
  10519. 2000: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 2000
  10520. 2000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+16 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  10521. hello
  10522. 2000: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 rescheduled @ 2500
  10523. 2500: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 2500
  10524. 2500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+20 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  10525. 2500: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 rescheduled @ 3000
  10526. 3000: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 3000
  10527. 3000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+24 : movz x8, #93, #0 : IntAlu : D=0x000000000000005d flags=(IsInteger)
  10528. 3000: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 rescheduled @ 3500
  10529. 3500: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 3500
  10530. 3500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+28 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  10531. 3500: Event: Event_71: generic 71 scheduled @ 3500
  10532. 3500: Event: Event_71: generic 71 executed @ 3500
  10533. ....
  10534. On the event trace, we can first see:
  10535. ....
  10536. 0: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 scheduled @ 0
  10537. ....
  10538. This schedules a tick event for time `0`, and leads to the first clock tick.
  10539. Then:
  10540. ....
  10541. 0: Event: Event_70: generic 70 scheduled @ 0
  10542. 0: Event: Event_70: generic 70 rescheduled @ 18446744073709551615
  10543. ....
  10544. schedules the end of time event for time `0`, which is later rescheduled to the actual end of time.
  10545. At:
  10546. ....
  10547. 0: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 executed @ 0
  10548. 0: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  10549. 0: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 rescheduled @ 500
  10550. ....
  10551. the tick event happens, the instruction runs, and then the instruction is rescheduled in `500` time units. This is done at the end of `AtomicSimpleCPU::tick()`:
  10552. ....
  10553. if (_status != Idle)
  10554. reschedule(tickEvent, curTick() + latency, true);
  10555. ....
  10556. At:
  10557. ....
  10558. 3500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+28 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  10559. 3500: Event: Event_71: generic 71 scheduled @ 3500
  10560. 3500: Event: Event_71: generic 71 executed @ 3500
  10561. ....
  10562. the exit system call is called, and then it schedules an exit evit, which gets executed and the simulation ends.
  10563. We guess then that `Event_71` comes from the SE implementation of the exit syscall, so let's just confirm, the trace contains:
  10564. ....
  10565. exitSimLoop() at sim_events.cc:97 0x5555594746e0
  10566. exitImpl() at syscall_emul.cc:215 0x55555948c046
  10567. exitFunc() at syscall_emul.cc:225 0x55555948c147
  10568. SyscallDesc::doSyscall() at syscall_desc.cc:72 0x5555594949b6
  10569. Process::syscall() at process.cc:401 0x555559484717
  10570. SimpleThread::syscall() at 0x555559558059
  10571. ArmISA::SupervisorCall::invoke() at faults.cc:856 0x5555572950d7
  10572. BaseSimpleCPU::advancePC() at base.cc:681 0x555559083133
  10573. AtomicSimpleCPU::tick() at atomic.cc:757 0x55555907834c
  10574. ....
  10575. and `exitSimLoop()` does:
  10576. ....
  10577. new GlobalSimLoopExitEvent(when + simQuantum, message, exit_code, repeat);
  10578. ....
  10579. Tested in gem5 12c917de54145d2d50260035ba7fa614e25317a3.
  10580. ====== AtomicSimpleCPU initial events
  10581. Let's have a closer look at the initial magically scheduled events of the simulation.
  10582. Most events come from other events, but at least one initial event must be scheduled somehow from elsewhere to kick things off.
  10583. The initial tick event:
  10584. ....
  10585. 0: Event: AtomicSimpleCPU tick.wrapped_function_event: EventFunctionWrapped 39 scheduled @ 0
  10586. ....
  10587. we'll study by breaking at at the point that prints messages: `b Trace::OstreamLogger::logMessage()` to see where events are being scheduled from:
  10588. ....
  10589. Trace::OstreamLogger::logMessage() at trace.cc:149 0x5555593b3b1e
  10590. void Trace::Logger::dprintf_flag<char const*, char const*, unsigned long>() at 0x55555949e603
  10591. void Trace::Logger::dprintf<char const*, char const*, unsigned long>() at 0x55555949de58
  10592. Event::trace() at eventq.cc:395 0x55555946d109
  10593. EventQueue::schedule() at eventq_impl.hh:65 0x555557195441
  10594. EventManager::schedule() at eventq.hh:746 0x555557194aa2
  10595. AtomicSimpleCPU::activateContext() at atomic.cc:239 0x555559075531
  10596. SimpleThread::activate() at simple_thread.cc:177 0x555559545a63
  10597. Process::initState() at process.cc:283 0x555559484011
  10598. ArmProcess64::initState() at process.cc:126 0x55555730827a
  10599. ArmLinuxProcess64::initState() at process.cc:1,777 0x5555572d5e5e
  10600. ....
  10601. The interesting call is at `AtomicSimpleCPU::activateContext`:
  10602. ....
  10603. schedule(tickEvent, clockEdge(Cycles(0)));
  10604. ....
  10605. which calls `EventManager::schedule`.
  10606. `AtomicSimpleCPU` is an `EventManager` because <<gem5-python-c-interaction,`SimObject`>> inherits from it.
  10607. `tickEvent` is an `EventFunctionWrapper` which contains a `std::function<void(void)> callback;`, and is initialized in the constructor as:
  10608. ....
  10609. tickEvent([this]{ tick(); }, "AtomicSimpleCPU tick",
  10610. false, Event::CPU_Tick_Pri),
  10611. ....
  10612. The call stack above `ArmLinuxProcess64::initState` is <<pybind11>> fuzziness, but if we grep a bit we find the Python call point:
  10613. src/python/m5/simulate.py
  10614. ....
  10615. def instantiate(ckpt_dir=None):
  10616. ...
  10617. # Create the C++ sim objects and connect ports
  10618. for obj in root.descendants(): obj.createCCObject()
  10619. for obj in root.descendants(): obj.connectPorts()
  10620. # Do a second pass to finish initializing the sim objects
  10621. for obj in root.descendants(): obj.init()
  10622. ...
  10623. # Restore checkpoint (if any)
  10624. if ckpt_dir:
  10625. ...
  10626. else:
  10627. for obj in root.descendants(): obj.initState()
  10628. ....
  10629. and this gets called from the toplevel Python scripts e.g. se.py `configs/common/Simulation.py` does:
  10630. ....
  10631. m5.instantiate(checkpoint_dir)
  10632. ....
  10633. As we can see, `initState` is just one stage of generic `SimObject` initialization. `root.descendants()` goes over the entire `SimObject` tree calling `initState()`.
  10634. Finally, we see that `initState` is part of the `SimObject` C++ API:
  10635. src/sim/sim_object.hh
  10636. ....
  10637. class SimObject : public EventManager, public Serializable, public Drainable,
  10638. public Stats::Group
  10639. {
  10640. ...
  10641. /**
  10642. * initState() is called on each SimObject when *not* restoring
  10643. * from a checkpoint. This provides a hook for state
  10644. * initializations that are only required for a "cold start".
  10645. */
  10646. virtual void initState();
  10647. ....
  10648. Finally, we see that `initState` is exposed to the Python API at:
  10649. build/ARM/python/_m5/param_SimObject.cc
  10650. ....
  10651. module_init(py::module &m_internal)
  10652. {
  10653. py::module m = m_internal.def_submodule("param_SimObject");
  10654. py::class_<SimObjectParams, std::unique_ptr<SimObjectParams, py::nodelete>>(m, "SimObjectParams")
  10655. .def_readwrite("name", &SimObjectParams::name)
  10656. .def_readwrite("eventq_index", &SimObjectParams::eventq_index)
  10657. ;
  10658. py::class_<SimObject, Drainable, Serializable, Stats::Group, std::unique_ptr<SimObject, py::nodelete>>(m, "SimObject")
  10659. .def("init", &SimObject::init)
  10660. .def("initState", &SimObject::initState)
  10661. .def("memInvalidate", &SimObject::memInvalidate)
  10662. .def("memWriteback", &SimObject::memWriteback)
  10663. .def("regProbePoints", &SimObject::regProbePoints)
  10664. .def("regProbeListeners", &SimObject::regProbeListeners)
  10665. .def("startup", &SimObject::startup)
  10666. .def("loadState", &SimObject::loadState, py::arg("cp"))
  10667. .def("getPort", &SimObject::getPort, pybind11::return_value_policy::reference, py::arg("if_name"), py::arg("idx"))
  10668. ;
  10669. }
  10670. ....
  10671. which is more magical than the other param classes since `py::class_<SimObject` has non-trivial methods, those are auto-generated by the `cxx_exports` code generation mechanism:
  10672. ....
  10673. class SimObject(object):
  10674. ...
  10675. cxx_exports = [
  10676. PyBindMethod("init"),
  10677. PyBindMethod("initState"),
  10678. PyBindMethod("memInvalidate"),
  10679. PyBindMethod("memWriteback"),
  10680. PyBindMethod("regProbePoints"),
  10681. PyBindMethod("regProbeListeners"),
  10682. PyBindMethod("startup"),
  10683. ]
  10684. ....
  10685. And the second magically scheduled event is the exit event:
  10686. ....
  10687. 0: Event: Event_70: generic 70 scheduled @ 0
  10688. 0: Event: Event_70: generic 70 rescheduled @ 18446744073709551615
  10689. ....
  10690. which is scheduled with backtrace:
  10691. ....
  10692. Trace::OstreamLogger::logMessage() at trace.cc:149 0x5555593b3b1e
  10693. void Trace::Logger::dprintf_flag<char const*, char const*, unsigned long>() at 0x55555949e603
  10694. void Trace::Logger::dprintf<char const*, char const*, unsigned long>() at 0x55555949de58
  10695. Event::trace() at eventq.cc:395 0x55555946d109
  10696. EventQueue::schedule() at eventq_impl.hh:65 0x555557195441
  10697. BaseGlobalEvent::schedule() at global_event.cc:78 0x55555946d6f1
  10698. GlobalEvent::GlobalEvent() at 0x55555949d177
  10699. GlobalSimLoopExitEvent::GlobalSimLoopExitEvent() at sim_events.cc:61 0x555559474470
  10700. simulate() at simulate.cc:104 0x555559476d6f
  10701. ....
  10702. which comes at object creation inside `simulate()` through the `GlobalEvent()` constructor:
  10703. ....
  10704. simulate_limit_event =
  10705. new GlobalSimLoopExitEvent(mainEventQueue[0]->getCurTick(),
  10706. "simulate() limit reached", 0);
  10707. ....
  10708. This event indicates that the simulation should finish by overriding `bool isExitEvent()` which gets checked in the main simulation at `EventQueue::serviceOne`:
  10709. ....
  10710. if (event->isExitEvent()) {
  10711. assert(!event->flags.isSet(Event::Managed) ||
  10712. !event->flags.isSet(Event::IsMainQueue)); // would be silly
  10713. return event;
  10714. ....
  10715. Tested in gem5 12c917de54145d2d50260035ba7fa614e25317a3.
  10716. ====== AtomicSimpleCPU tick reschedule timing
  10717. Inside `AtomicSimpleCPU::tick()` we saw previously that the reschedule happens at:
  10718. ....
  10719. if (latency < clockPeriod())
  10720. latency = clockPeriod();
  10721. if (_status != Idle)
  10722. reschedule(tickEvent, curTick() + latency, true);
  10723. ....
  10724. so it is interesting to learn where that `latency` comes from.
  10725. From our logs, we see that all events happened with a `500` time unit interval between them, so that must be the value for all instructions of our simple example.
  10726. By GDBing it a bit, we see that none of our instructions incremented `latency`, and so it got set to `clockPeriod()`, which comes from `ClockDomain::clockPeriod()` which then likely comes from:
  10727. ....
  10728. parser.add_option("--cpu-clock", action="store", type="string",
  10729. default='2GHz',
  10730. ....
  10731. because the time unit is picoseconds. This then shows on the <<gem5-config-ini,`config.ini`>> as:
  10732. ....
  10733. [system.cpu_clk_domain]
  10734. type=SrcClockDomain
  10735. clock=500
  10736. ....
  10737. ====== AtomicSimpleCPU memory access
  10738. It will be interesting to see how `AtomicSimpleCPU` makes memory access on GDB and to compare that with <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis,`TimingSimpleCPU`>>.
  10739. We assume that the memory access still goes through the <<gem5-crossbar-interconnect,`CoherentXBar`>>, but instead of generating an event to model delayed response, it must be doing the access directly.
  10740. Inside `AtomicSimpleCPU::tick`, we track `ifetch_req` and see:
  10741. ....
  10742. fault = thread->itb->translateAtomic(ifetch_req, thread->getTC(),
  10743. BaseTLB::Execute);
  10744. ....
  10745. and later on after translation the memory is obtained at:
  10746. ....
  10747. icache_latency = sendPacket(icachePort, &ifetch_pkt);
  10748. ....
  10749. which <<gem5-functional-vs-atomic-vs-timing-memory-requests,sends the packet atomically>> through the port:
  10750. ....
  10751. AtomicSimpleCPU::sendPacket(MasterPort &port, const PacketPtr &pkt) {
  10752. return port.sendAtomic(pkt);
  10753. }
  10754. ....
  10755. We can compare that with what happen sin `TimingSimpleCPU`:
  10756. ....
  10757. thread->itb->translateTiming(ifetch_req, thread->getTC(),
  10758. &fetchTranslation, BaseTLB::Execute);
  10759. ....
  10760. and so there it is: the `ITB` classes are the same, but there are a separate `Atomic` and `Timing` methods!
  10761. The timing request is shown further at: <<gem5-functional-vs-atomic-vs-timing-memory-requests,sends the packet atomically>>.
  10762. Tested in gem5 b4879ae5b0b6644e6836b0881e4da05c64a6550d.
  10763. ====== gem5 se.py page translation
  10764. Happens on `EmulationPageTable`, and seems to happen atomically without making any extra memory requests.
  10765. TODO confirm from code, notably by seeing where the translation table is set.
  10766. But we can confirm with logging with:
  10767. ....
  10768. --trace DRAM,ExecAll,FmtFlag
  10769. ....
  10770. which gives
  10771. ....
  10772. 0: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0x78
  10773. 0: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  10774. 500: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0x7c
  10775. 500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : adr x1, #28 : IntAlu : D=0x0000000000400098 flags=(IsInteger)
  10776. 1000: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0x80
  10777. 1000: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0xa0
  10778. 1000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : ldr w2, #4194464 : MemRead : D=0x0000000000000006 A=0x4000a0 flags=(IsInteger|IsMemRef|IsLoad)
  10779. 1500: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0x84
  10780. 1500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x8, #64, #0 : IntAlu : D=0x0000000000000040 flags=(IsInteger)
  10781. 2000: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0x88
  10782. 2000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+16 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  10783. hello
  10784. 2500: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0x8c
  10785. 2500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+20 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  10786. 3000: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0x90
  10787. 3000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+24 : movz x8, #93, #0 : IntAlu : D=0x000000000000005d flags=(IsInteger)
  10788. 3500: DRAM: system.mem_ctrls: recvAtomic: ReadReq 0x94
  10789. 3500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+28 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  10790. Exiting @ tick 3500 because exiting with last active thread context
  10791. 3500: DRAM: system.mem_ctrls_0: Computing stats due to a dump callback
  10792. 3500: DRAM: system.mem_ctrls_1: Computing stats due to a dump callback
  10793. ....
  10794. So we see that before every instruction execution there was a DRAM event! Also, each read happens 4 bytes after the previous one, which is consistent with instruction fetches.
  10795. The DRAM addresses are very close to zero e.g. `0x78` for the first instruction, and therefore we guess that they are physical since the ELF entry point is much higher:
  10796. ....
  10797. ./run-toolchain --arch aarch64 readelf -- -h "$(./getvar --arch aarch64 userland_build_dir)/arch/aarch64/freestanding/linux/hello.out
  10798. ....
  10799. at:
  10800. ....
  10801. Entry point address: 0x400078
  10802. ....
  10803. For LDR, we see that there was an extra DRAM read as well after the fetch read, as expected.
  10804. Tested in gem5 b4879ae5b0b6644e6836b0881e4da05c64a6550d.
  10805. ===== gem5 event queue TimingSimpleCPU syscall emulation freestanding example analysis
  10806. Now, let's move on to `TimingSimpleCPU`, which is just like `AtomicSimpleCPU` internally, but now the memory requests don't actually finish immediately: <<gem5-cpu-types>>!
  10807. This means that simulation will be much more accurate, and the DRAM memory will be modelled.
  10808. TODO: analyze better what each of the memory event mean. For now, we have just collected a bunch of data there, but needs interpreting. The CPU specifics in this section are already insightful however.
  10809. <<gem5-timingsimplecpu,TimingSimpleCPU>> should be the second simplest CPU to analyze, so let's give it a try:
  10810. ....
  10811. ./run \
  10812. --arch aarch64 \
  10813. --emulator gem5 \
  10814. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  10815. --trace Event,ExecAll,FmtFlag \
  10816. --trace-stdout \
  10817. -- \
  10818. --cpu-type TimingSimpleCPU \
  10819. ;
  10820. ....
  10821. As of LKMC 78ce2dabe18ef1d87dc435e5bc9369ce82e8d6d2 gem5 12c917de54145d2d50260035ba7fa614e25317a3 the log is now much more complex.
  10822. Here is an abridged version with:
  10823. * the beginning up to the second instruction
  10824. * end ending
  10825. because all that happens in between is exactly the same as the first two instructions and therefore boring.
  10826. We have also manually added:
  10827. * double newlines before each event execution
  10828. * line IDs to be able to refer to specific events more easily (`#0`, `#1`, etc.)
  10829. ....
  10830. #0 0: Event: system.cpu.wrapped_function_event: EventFunctionWrapped 43 scheduled @ 0
  10831. **** REAL SIMULATION ****
  10832. #1 0: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 14 scheduled @ 7786250
  10833. #2 0: Event: system.mem_ctrls_1.wrapped_function_event: EventFunctionWrapped 20 scheduled @ 7786250
  10834. #3 0: Event: Event_74: generic 74 scheduled @ 0
  10835. info: Entering event queue @ 0. Starting simulation...
  10836. #4 0: Event: Event_74: generic 74 rescheduled @ 18446744073709551615
  10837. #5 0: Event: system.cpu.wrapped_function_event: EventFunctionWrapped 43 executed @ 0
  10838. #6 0: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 0
  10839. #7 0: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 60 scheduled @ 1000
  10840. #8 0: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 executed @ 0
  10841. #9 0: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 12 scheduled @ 0
  10842. #10 0: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 10 scheduled @ 46250
  10843. #11 0: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 5000
  10844. #12 0: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 12 executed @ 0
  10845. #13 0: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 15 scheduled @ 0
  10846. #14 0: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 15 executed @ 0
  10847. #15 1000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 60 executed @ 1000
  10848. #16 5000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 executed @ 5000
  10849. #17 46250: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 10 executed @ 46250
  10850. #18 46250: Event: system.mem_ctrls.port-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 8 scheduled @ 74250
  10851. #19 74250: Event: system.mem_ctrls.port-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 8 executed @ 74250
  10852. #20 74250: Event: system.membus.slave[1]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 64 scheduled @ 77000
  10853. #21 74250: Event: system.membus.respLayer1.wrapped_function_event: EventFunctionWrapped 65 scheduled @ 77000
  10854. #22 77000: Event: system.membus.respLayer1.wrapped_function_event: EventFunctionWrapped 65 executed @ 77000
  10855. #23 77000: Event: system.membus.slave[1]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 64 executed @ 77000
  10856. #24 77000: Event: Event_40: Timing CPU icache tick 40 scheduled @ 77000
  10857. #25 77000: Event: Event_40: Timing CPU icache tick 40 executed @ 77000
  10858. 77000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  10859. #26 77000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 77000
  10860. #27 77000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 60 scheduled @ 78000
  10861. #28 77000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 executed @ 77000
  10862. #29 77000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 10 scheduled @ 95750
  10863. #30 77000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 77000
  10864. #31 77000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 executed @ 77000
  10865. #32 78000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 60 executed @ 78000
  10866. #33 95750: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 10 executed @ 95750
  10867. #34 95750: Event: system.mem_ctrls.port-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 8 scheduled @ 123750
  10868. #35 123750: Event: system.mem_ctrls.port-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 8 executed @ 123750
  10869. #36 123750: Event: system.membus.slave[1]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 64 scheduled @ 126000
  10870. #37 123750: Event: system.membus.respLayer1.wrapped_function_event: EventFunctionWrapped 65 scheduled @ 126000
  10871. #38 126000: Event: system.membus.respLayer1.wrapped_function_event: EventFunctionWrapped 65 executed @ 126000
  10872. #39 126000: Event: system.membus.slave[1]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 64 executed @ 126000
  10873. #40 126000: Event: Event_40: Timing CPU icache tick 40 scheduled @ 126000
  10874. #41 126000: Event: Event_40: Timing CPU icache tick 40 executed @ 126000
  10875. 126000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : adr x1, #28 : IntAlu : D=0x0000000000400098 flags=(IsInteger)
  10876. #42 126000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 126000
  10877. #43 126000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 60 scheduled @ 127000
  10878. [...]
  10879. 469000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+28 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  10880. 469000: Event: Event_75: generic 75 scheduled @ 469000
  10881. 469000: Event: Event_75: generic 75 executed @ 469000
  10882. ....
  10883. Looking into the generated <<gem5-config-ini,`config.dot.svg`>> can give a better intuition on the shape of the memory system: xref:config-dot-svg-timingsimplecpu[xrefstyle=full], so it is good to keep that in mind.
  10884. [[config-dot-svg-timingsimplecpu]]
  10885. .`config.dot.svg` for a TimingSimpleCPU without caches.
  10886. image::{cirosantilli-media-base}gem5_config_TimingSimpleCPU_12c917de54145d2d50260035ba7fa614e25317a3.svg?sanitize=true[height=600]
  10887. It is also helpful to see this as a tree of events where one execute event schedules other events:
  10888. ....
  10889. | | | | |
  10890. 0 1 2 3 4 0 TimingSimpleCPU::fetch
  10891. 5
  10892. |
  10893. +---+
  10894. | |
  10895. 6 7 6 DRAMCtrl::processNextReqEvent (0)
  10896. 8 15 7 BaseXBar::Layer::releaseLayer
  10897. |
  10898. +---+---+
  10899. | | |
  10900. 9 10 11 9 DRAMCtrl::Rank::processActivateEvent
  10901. 12 17 16 10 DRAMCtrl::processRespondEvent (46.25)
  10902. | | 11 DRAMCtrl::processNextReqEvent (5)
  10903. | |
  10904. 13 18 13 DRAMCtrl::Rank::processPowerEvent
  10905. 14 19 18 PacketQueue::processSendEvent (28)
  10906. |
  10907. +---+
  10908. | |
  10909. 20 21 20 PacketQueue::processSendEvent (2.75)
  10910. 23 22 21 BaseXBar::Layer<SrcType, DstType>::releaseLayer
  10911. |
  10912. 24 24 TimingSimpleCPU::IcachePort::ITickEvent::process (0)
  10913. 25
  10914. |
  10915. +---+
  10916. | |
  10917. 26 27 26 DRAMCtrl::processNextReqEvent
  10918. 28 32 27 BaseXBar::Layer<SrcType, DstType>::releaseLayer
  10919. |
  10920. +---+
  10921. | |
  10922. 29 30 29 DRAMCtrl::processRespondEvent
  10923. 33 31 30 DRAMCtrl::processNextReqEvent
  10924. |
  10925. 34 34 PacketQueue::processSendEvent
  10926. 35
  10927. |
  10928. +---+
  10929. | |
  10930. 36 37 36 PacketQueue::processSendEvent
  10931. 39 38 37 BaseXBar::Layer<SrcType, DstType>::releaseLayer
  10932. |
  10933. 40 40 TimingSimpleCPU::IcachePort::ITickEvent::process
  10934. 41
  10935. |
  10936. +---+
  10937. | |
  10938. 42 43 42 DRAMCtrl::processNextReqEvent
  10939. 43 BaseXBar::Layer<SrcType, DstType>::releaseLayer
  10940. ....
  10941. Note that every schedule is followed by an execution, so we put them together, for example:
  10942. ....
  10943. | |
  10944. 6 7 6 DRAMCtrl::processNextReqEvent (0)
  10945. 8 15 7 BaseXBar::Layer::releaseLayer (0)
  10946. |
  10947. ....
  10948. means:
  10949. * `6`: schedule `DRAMCtrl::processNextReqEvent` to run in `0` ns after the execution that scheduled it
  10950. * `8`: execute `DRAMCtrl::processNextReqEvent`
  10951. * `7`: schedule `BaseXBar::Layer::releaseLayer` to run in `0` ns after the execution that scheduled it
  10952. * `15`: execute `BaseXBar::Layer::releaseLayer`
  10953. With this, we can focus on going up the event tree from an event of interest until we see what originally caused it!
  10954. Notably, the above tree contains the execution of the first two instructions.
  10955. Observe how the events leading up to the second instruction are basically a copy of those of the first one, this is the basic `TimingSimpleCPU` event loop in action.
  10956. One line summary of events:
  10957. * #5: adds the request to the DRAM queue, and schedules a `DRAMCtrl::processNextReqEvent` which later sees that request immediately
  10958. * #8: picks up the only request from the DRAM read queue (`readQueue`) and services that.
  10959. +
  10960. If there were multiple requests, priority arbitration under `DRAMCtrl::chooseNext` could chose a different one than the first based on packet priorities
  10961. +
  10962. This puts the request on the response queue `respQueue` and schedules another `DRAMCtrl::processNextReqEvent` but the request queue is empty, and that does nos schedule further events
  10963. * #17: picks up the only request from the DRAM response queue and services that by placing it in yet another queue, and scheduling the `PacketQueue::processSendEvent` which will later pick up that packet
  10964. * #19: picks up the request from the previous queue, and forwards it to another queue, and schedules yet another `PacketQueue::processSendEvent`
  10965. +
  10966. The current one is the DRAM passing the message to the XBar, and the next `processSendEvent` is the XBar finally sending it back to the CPU
  10967. * #23: the XBar port is actually sending the reply back.
  10968. +
  10969. If knows to which CPU core to send the request to because ports keep a map of request to source:
  10970. +
  10971. ....
  10972. const auto route_lookup = routeTo.find(pkt->req);
  10973. ....
  10974. ====== TimingSimpleCPU analysis #0
  10975. Schedules `TimingSimpleCPU::fetch` through:
  10976. ....
  10977. EventManager::schedule
  10978. TimingSimpleCPU::activateContext
  10979. SimpleThread::activate
  10980. Process::initState
  10981. ArmProcess64::initState
  10982. ArmLinuxProcess64::initState
  10983. ....
  10984. This schedules the initial tick, much like for for `AtomicSimpleCPU`.
  10985. This time however, it is not a tick as in `AtomicSimpleCPU`, but rather a fetch event that gets scheduled for later on, since reading DRAM memory now takes time:
  10986. ....
  10987. TimingSimpleCPU::activateContext(ThreadID thread_num)
  10988. {
  10989. DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
  10990. assert(thread_num < numThreads);
  10991. threadInfo[thread_num]->notIdleFraction = 1;
  10992. if (_status == BaseSimpleCPU::Idle)
  10993. _status = BaseSimpleCPU::Running;
  10994. // kick things off by initiating the fetch of the next instruction
  10995. if (!fetchEvent.scheduled())
  10996. schedule(fetchEvent, clockEdge(Cycles(0)));
  10997. ....
  10998. By looking at the source, we see that `fetchEvent` runs `TimingSimpleCPU::fetch`.
  10999. Just like for `AtomicSimpleCPU`, this call comes from the `initState` call, which is exposed on `SimObject` and ultimately comes from Python.
  11000. ====== TimingSimpleCPU analysis #1
  11001. Backtrace:
  11002. ....
  11003. EventManager::schedule
  11004. DRAMCtrl::Rank::startup
  11005. DRAMCtrl::startup
  11006. ....
  11007. Snippets:
  11008. ....
  11009. void
  11010. DRAMCtrl::startup()
  11011. {
  11012. // remember the memory system mode of operation
  11013. isTimingMode = system()->isTimingMode();
  11014. if (isTimingMode) {
  11015. // timestamp offset should be in clock cycles for DRAMPower
  11016. timeStampOffset = divCeil(curTick(), tCK);
  11017. // update the start tick for the precharge accounting to the
  11018. // current tick
  11019. for (auto r : ranks) {
  11020. r->startup(curTick() + tREFI - tRP);
  11021. }
  11022. // shift the bus busy time sufficiently far ahead that we never
  11023. // have to worry about negative values when computing the time for
  11024. // the next request, this will add an insignificant bubble at the
  11025. // start of simulation
  11026. nextBurstAt = curTick() + tRP + tRCD;
  11027. }
  11028. }
  11029. ....
  11030. which then calls:
  11031. ....
  11032. void
  11033. DRAMCtrl::Rank::startup(Tick ref_tick)
  11034. {
  11035. assert(ref_tick > curTick());
  11036. pwrStateTick = curTick();
  11037. // kick off the refresh, and give ourselves enough time to
  11038. // precharge
  11039. schedule(refreshEvent, ref_tick);
  11040. }
  11041. ....
  11042. `DRAMCtrl::startup` is itself a `SimObject` method exposed to Python and called from `simulate` in `src/python/m5/simulate.py`:
  11043. ....
  11044. def simulate(*args, **kwargs):
  11045. global need_startup
  11046. if need_startup:
  11047. root = objects.Root.getInstance()
  11048. for obj in root.descendants(): obj.startup()
  11049. ....
  11050. where `simulate` happens after `m5.instantiate`, and both are called directly from the toplevel scripts, e.g. for se.py in `configs/common/Simulation.py`:
  11051. ....
  11052. def run(options, root, testsys, cpu_class):
  11053. ...
  11054. exit_event = m5.simulate()
  11055. ....
  11056. By looking up some variable definitions in the source, we now we see some memory parameters clearly:
  11057. * ranks: `std::vector<DRAMCtrl::Rank*>` with 2 elements. TODO why do we have 2? What does it represent? Likely linked to <<gem5-config-ini,`config.ini`>> at `system.mem_ctrls.ranks_per_channel=2`: https://en.wikipedia.org/wiki/Memory_rank
  11058. * `tCK=1250`, `tREFI=7800000`, `tRP=13750`, `tRCD=13750`: all defined in a single code location with a comment:
  11059. +
  11060. ....
  11061. /**
  11062. * Basic memory timing parameters initialized based on parameter
  11063. * values.
  11064. */
  11065. ....
  11066. +
  11067. Their values can be seen under `config.ini` and they are documented in `src/mem/DRAMCtrl.py` e.g.:
  11068. +
  11069. ....
  11070. # the base clock period of the DRAM
  11071. tCK = Param.Latency("Clock period")
  11072. # minimum time between a precharge and subsequent activate
  11073. tRP = Param.Latency("Row precharge time")
  11074. # the amount of time in nanoseconds from issuing an activate command
  11075. # to the data being available in the row buffer for a read/write
  11076. tRCD = Param.Latency("RAS to CAS delay")
  11077. # refresh command interval, how often a "ref" command needs
  11078. # to be sent. It is 7.8 us for a 64ms refresh requirement
  11079. tREFI = Param.Latency("Refresh command interval")
  11080. ....
  11081. So we realize that we are going into deep DRAM modelling, more detail that a mere mortal should ever need to know.
  11082. `curTick() + tREFI - tRP = 0 + 7800000 - 13750 = 7786250` which is when that `refreshEvent` was scheduled. Our simulation ends way before that point however, so we will never know what it did thank God.
  11083. ====== TimingSimpleCPU analysis #2
  11084. This is just the startup of the second rank, see: <<timingsimplecpu-analysis-1>>.
  11085. `se.py` allocates the memory controller at `configs/common/MemConfig.py`:
  11086. ....
  11087. def config_mem(options, system):
  11088. ...
  11089. opt_mem_channels = options.mem_channels
  11090. ...
  11091. nbr_mem_ctrls = opt_mem_channels
  11092. ...
  11093. for r in system.mem_ranges:
  11094. for i in range(nbr_mem_ctrls):
  11095. mem_ctrl = create_mem_ctrl(cls, r, i, nbr_mem_ctrls, intlv_bits,
  11096. intlv_size)
  11097. ...
  11098. mem_ctrls.append(mem_ctrl)
  11099. ....
  11100. ====== TimingSimpleCPU analysis #3 and #4
  11101. From the timing we know what that one is: the end of time exit event, like for `AtomicSimpleCPU`.
  11102. ====== TimingSimpleCPU analysis #5
  11103. Executes `TimingSimpleCPU::fetch()`.
  11104. The log shows that event ID `43` is now executing: we had previously seen event `43` get scheduled and had analyzed it to be the initial fetch.
  11105. We can step into `TimingSimpleCPU::fetch()` to confirm that the expected <<elf>> entry point is being fetched. We can inspect the ELF with:
  11106. ....
  11107. ./run-toolchain --arch aarch64 readelf -- \
  11108. -h "$(./getvar --arch aarch64 userland_build_dir)/arch/aarch64/freestanding/linux/hello.out"
  11109. ....
  11110. which contains:
  11111. ....
  11112. Entry point address: 0x400078
  11113. ....
  11114. and by the time we go past:
  11115. ....
  11116. TimingSimpleCPU::fetch()
  11117. {
  11118. ...
  11119. if (needToFetch) {
  11120. ...
  11121. setupFetchRequest(ifetch_req);
  11122. DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
  11123. thread->itb->translateTiming(ifetch_req, thread->getTC(),
  11124. &fetchTranslation, BaseTLB::Execute);
  11125. ....
  11126. `BaseSimpleCPU::setupFetchRequest` sets up the fetch of the expected entry point by reading the PC:
  11127. ....
  11128. p/x ifetch_req->getVaddr()
  11129. ....
  11130. Still during the execution of the `fetch`, execution then moves into the address translation `ArmISA::TLB::translateTiming`, and after a call to:
  11131. ....
  11132. TLB::translateSe
  11133. ....
  11134. the packet now contains the physical address:
  11135. ....
  11136. _paddr = 0x78
  11137. ....
  11138. so we deduce that the virtual address 0x400078 maps to the physical address 0x78. But of course, https://lmgtfy.com/[let me log that for you] by adding `--trace MMU`:
  11139. ....
  11140. 0: MMU: system.cpu.workload: Translating: 0x400078->0x78
  11141. ....
  11142. If we try `--trace DRAM` we can see:
  11143. ....
  11144. 0: DRAM: system.mem_ctrls: recvTimingReq: request ReadReq addr 120 size 4
  11145. ....
  11146. where 120 == 0x78 (it logs addresses in decimal? Really??) and the size 4 which is the instruction width.
  11147. Now that we are here, we might as well learn how to log the data that was fetched from DRAM.
  11148. Fist we determine the expected bytes from the <<disas,disassembly>>:
  11149. ....
  11150. ./disas --arch aarch64 --userland userland/arch/aarch64/freestanding/linux/hello.S _start
  11151. ....
  11152. which shows us the initial instruction encodings near the entry point `_start`:
  11153. ....
  11154. 0x0000000000400078 <+0>: 20 00 80 d2 mov x0, #0x1 // #1
  11155. 0x000000000040007c <+4>: e1 00 00 10 adr x1, 0x400098 <msg>
  11156. ....
  11157. Now, TODO :-) The `DRAM` logs don't contain data. Maybe this can be done with https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/mem/comm_monitor.hh#L55[`CommMonitor`], but it is no exposed on fs.py
  11158. ====== TimingSimpleCPU analysis #6
  11159. Schedules `DRAMCtrl::processNextReqEvent` through:
  11160. ....
  11161. EventManager::schedule
  11162. DRAMCtrl::addToReadQueue
  11163. DRAMCtrl::recvTimingReq
  11164. DRAMCtrl::MemoryPort::recvTimingReq
  11165. TimingRequestProtocol::sendReq
  11166. MasterPort::sendTimingReq
  11167. CoherentXBar::recvTimingReq
  11168. CoherentXBar::CoherentXBarSlavePort::recvTimingReq
  11169. TimingRequestProtocol::sendReq
  11170. MasterPort::sendTimingReq
  11171. TimingSimpleCPU::sendFetch
  11172. TimingSimpleCPU::FetchTranslation::finish
  11173. ArmISA::TLB::translateComplete
  11174. ArmISA::TLB::translateTiming
  11175. ArmISA::TLB::translateTiming
  11176. TimingSimpleCPU::fetch
  11177. ....
  11178. The event loop has started, and magic initialization schedulings are not happening anymore: now every event is being scheduled from another event:
  11179. From the trace, we see that we are already running from the event queue under `TimingSimpleCPU::fetch` as expected.
  11180. From the backtrace we see the tortuous path that the data request takes, going through:
  11181. * `ArmISA::TLB`
  11182. * `CoherentXBar`
  11183. * `DRAMCtrl`
  11184. This matches the `config.ini` system image, since we see that the request goes through the `CoherentXBar` before reaching memory, like all other CPU memory accesses, see also: <<gem5-crossbar-interconnect>>.
  11185. The scheduling happens at frame `DRAMCtrl::addToReadQueue`:
  11186. ....
  11187. // If we are not already scheduled to get a request out of the
  11188. // queue, do so now
  11189. if (!nextReqEvent.scheduled()) {
  11190. DPRINTF(DRAM, "Request scheduled immediately\n");
  11191. schedule(nextReqEvent, curTick());
  11192. }
  11193. ....
  11194. From this we deduce that the DRAM has a request queue of some sort, and that the fetch:
  11195. * has added a read request to that queue
  11196. * and has made a future request to read from the queue
  11197. The signature of the function is:
  11198. ....
  11199. DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
  11200. ....
  11201. where `PacketPtr` is of `class `Packet`, and so clearly the packet is coming from above.
  11202. From:
  11203. ....
  11204. p/x *pkt
  11205. ....
  11206. we see:
  11207. ....
  11208. addr = 0x78
  11209. ....
  11210. which from <<timingsimplecpu-analysis-5>> we know is the physical address of the ELF entry point.
  11211. Communication goes through certain components via the `class Port` interface, e.g. at `TimingSimpleCPU::sendFetch` a call is made to send the packet forward:
  11212. ....
  11213. icachePort.sendTimingReq(ifetch_pkt)
  11214. ....
  11215. which ends up calling:
  11216. ....
  11217. peer->recvTimingReq(pkt);
  11218. ....
  11219. to reach the receiving side:
  11220. ....
  11221. CoherentXBar::CoherentXBarSlavePort::recvTimingReq
  11222. ....
  11223. Ports are also used to connect the XBar and the DRAM.
  11224. We will then see that at <<timingsimplecpu-analysis-20>> a reply packet will come back through the port interface down to the icache port, and only then does the decoding and execution happen.
  11225. ====== TimingSimpleCPU analysis #7
  11226. Schedules `BaseXBar::Layer::releaseLayer` through:
  11227. ....
  11228. EventManager::schedule
  11229. BaseXBar::Layer<SlavePort, MasterPort>::occupyLayer
  11230. BaseXBar::Layer<SlavePort, MasterPort>::succeededTiming
  11231. CoherentXBar::recvTimingReq
  11232. CoherentXBar::CoherentXBarSlavePort::recvTimingReq
  11233. TimingRequestProtocol::sendReq
  11234. MasterPort::sendTimingReq
  11235. TimingSimpleCPU::sendFetch
  11236. TimingSimpleCPU::FetchTranslation::finish
  11237. ArmISA::TLB::translateComplete
  11238. ArmISA::TLB::translateTiming
  11239. ArmISA::TLB::translateTiming
  11240. TimingSimpleCPU::fetch
  11241. ....
  11242. which schedules a `SimpleMemory::release`.
  11243. ====== TimingSimpleCPU analysis #8
  11244. Executes `DRAMCtrl::processNextReqEvent`.
  11245. ====== TimingSimpleCPU analysis #9
  11246. Schedules `DRAMCtrl::Rank::processActivateEvent` through:
  11247. ....
  11248. EventManager::schedule
  11249. DRAMCtrl::activateBank
  11250. DRAMCtrl::doDRAMAccess
  11251. DRAMCtrl::processNextReqEvent
  11252. ....
  11253. ====== TimingSimpleCPU analysis #10
  11254. Schedules `DRAMCtrl::processRespondEvent` through:
  11255. ....
  11256. EventManager::schedule
  11257. DRAMCtrl::processNextReqEvent
  11258. ....
  11259. ====== TimingSimpleCPU analysis #11
  11260. Schedules `DRAMCtrl::processNextReqEvent` through:
  11261. ....
  11262. EventManager::schedule
  11263. DRAMCtrl::processNextReqEvent
  11264. ....
  11265. ====== TimingSimpleCPU analysis #12
  11266. Executes `DRAMCtrl::Rank::processActivateEvent`.
  11267. which schedules:
  11268. ====== TimingSimpleCPU analysis #13
  11269. Schedules `DRAMCtrl::Rank::processPowerEvent` through:
  11270. ....
  11271. EventManager::schedule
  11272. DRAMCtrl::Rank::schedulePowerEvent
  11273. DRAMCtrl::Rank::processActivateEvent
  11274. ....
  11275. ====== TimingSimpleCPU analysis #14
  11276. Executes `DRAMCtrl::Rank::processPowerEvent`.
  11277. This it must just be some power statistics stuff, as it does not schedule anything else.
  11278. ====== TimingSimpleCPU analysis #15
  11279. Executes `BaseXBar::Layer<SrcType, DstType>::releaseLayer`.
  11280. ====== TimingSimpleCPU analysis #16
  11281. Executes `DRAMCtrl::processNextReqEvent()`.
  11282. ====== TimingSimpleCPU analysis #17
  11283. Executes `DRAMCtrl::processRespondEvent()`.
  11284. ====== TimingSimpleCPU analysis #18
  11285. Schedules `PacketQueue::processSendEvent()` through:
  11286. ....
  11287. PacketQueue::schedSendEvent
  11288. PacketQueue::schedSendTiming
  11289. QueuedSlavePort::schedTimingResp
  11290. DRAMCtrl::accessAndRespond
  11291. DRAMCtrl::processRespondEvent
  11292. ....
  11293. ====== TimingSimpleCPU analysis #19
  11294. Executes `PacketQueue::processSendEvent()`.
  11295. ====== TimingSimpleCPU analysis #20
  11296. Schedules `PacketQueue::processSendEvent` through:
  11297. ....
  11298. EventManager::schedule
  11299. PacketQueue::schedSendEvent
  11300. PacketQueue::schedSendTiming
  11301. QueuedSlavePort::schedTimingResp
  11302. CoherentXBar::recvTimingResp
  11303. CoherentXBar::CoherentXBarMasterPort::recvTimingResp
  11304. TimingResponseProtocol::sendResp
  11305. SlavePort::sendTimingResp
  11306. RespPacketQueue::sendTiming
  11307. PacketQueue::sendDeferredPacket
  11308. PacketQueue::processSendEvent
  11309. ....
  11310. From this backtrace, we see that this event is happening as the fetch reply packet finally comes back from DRAM.
  11311. ====== TimingSimpleCPU analysis #21
  11312. Schedules `BaseXBar::Layer<SrcType, DstType>::releaseLayer` through:
  11313. ....
  11314. EventManager::schedule
  11315. BaseXBar::Layer<MasterPort, SlavePort>::occupyLayer
  11316. BaseXBar::Layer<MasterPort, SlavePort>::succeededTiming
  11317. CoherentXBar::recvTimingResp
  11318. CoherentXBar::CoherentXBarMasterPort::recvTimingResp
  11319. TimingResponseProtocol::sendResp
  11320. SlavePort::sendTimingResp
  11321. RespPacketQueue::sendTiming
  11322. PacketQueue::sendDeferredPacket
  11323. PacketQueue::processSendEvent
  11324. ....
  11325. ====== TimingSimpleCPU analysis #22
  11326. Executes `BaseXBar::Layer<SrcType, DstType>::releaseLayer`.
  11327. ====== TimingSimpleCPU analysis #23
  11328. Executes `PacketQueue::processSendEvent`.
  11329. ====== TimingSimpleCPU analysis #24
  11330. Schedules `TimingSimpleCPU::IcachePort::ITickEvent::process()` through:
  11331. ....
  11332. EventManager::schedule
  11333. TimingSimpleCPU::TimingCPUPort::TickEvent::schedule
  11334. TimingSimpleCPU::IcachePort::recvTimingResp
  11335. TimingResponseProtocol::sendResp
  11336. SlavePort::sendTimingResp
  11337. RespPacketQueue::sendTiming
  11338. PacketQueue::sendDeferredPacket
  11339. PacketQueue::processSendEvent
  11340. ....
  11341. ====== TimingSimpleCPU analysis #25
  11342. Executes `TimingSimpleCPU::IcachePort::ITickEvent::process()`.
  11343. This custom `process` then calls `TimingSimpleCPU::completeIfetch(PacketPtr pkt)`, and that finally executes the very first instruction:
  11344. ....
  11345. 77000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  11346. ....
  11347. The end of this instruction must be setting things up in a way that can continue the PC walk loop, and by looking at the source and traces, it is clearly from: `TimingSimpleCPU::advanceInst` which calls `TimingSimpleCPU::fetch`.
  11348. And `TimingSimpleCPU::fetch` is the very thing we did in this simulation at <<timingsimplecpu-analysis-0>>!!! OMG, that's the loop.
  11349. ====== TimingSimpleCPU analysis #26
  11350. Schedules `DRAMCtrl::processNextReqEvent` through:
  11351. ....
  11352. EventManager::schedule
  11353. DRAMCtrl::addToReadQueue
  11354. DRAMCtrl::recvTimingReq
  11355. DRAMCtrl::MemoryPort::recvTimingReq
  11356. TimingRequestProtocol::sendReq
  11357. MasterPort::sendTimingReq
  11358. CoherentXBar::recvTimingReq
  11359. CoherentXBar::CoherentXBarSlavePort::recvTimingReq
  11360. TimingRequestProtocol::sendReq
  11361. MasterPort::sendTimingReq
  11362. TimingSimpleCPU::sendFetch
  11363. TimingSimpleCPU::FetchTranslation::finish
  11364. ArmISA::TLB::translateComplete
  11365. ArmISA::TLB::translateTiming
  11366. ArmISA::TLB::translateTiming
  11367. TimingSimpleCPU::fetch
  11368. TimingSimpleCPU::advanceInst
  11369. TimingSimpleCPU::completeIfetch
  11370. TimingSimpleCPU::IcachePort::ITickEvent::process
  11371. ....
  11372. ====== TimingSimpleCPU analysis #27
  11373. Schedules `BaseXBar::Layer<SrcType, DstType>::releaseLayer` through:
  11374. ....
  11375. EventManager::schedule
  11376. BaseXBar::Layer<SlavePort, MasterPort>::occupyLayer
  11377. BaseXBar::Layer<SlavePort, MasterPort>::succeededTiming
  11378. CoherentXBar::recvTimingReq
  11379. CoherentXBar::CoherentXBarSlavePort::recvTimingReq
  11380. TimingRequestProtocol::sendReq
  11381. MasterPort::sendTimingReq
  11382. TimingSimpleCPU::sendFetch
  11383. TimingSimpleCPU::FetchTranslation::finish
  11384. ArmISA::TLB::translateComplete
  11385. ArmISA::TLB::translateTiming
  11386. ArmISA::TLB::translateTiming
  11387. TimingSimpleCPU::fetch
  11388. TimingSimpleCPU::advanceInst
  11389. TimingSimpleCPU::completeIfetch
  11390. TimingSimpleCPU::IcachePort::ITickEvent::process
  11391. ....
  11392. ====== TimingSimpleCPU analysis #28
  11393. Execute `DRAMCtrl::processNextReqEvent`.
  11394. ====== TimingSimpleCPU analysis #29
  11395. Schedule `DRAMCtrl::processRespondEvent()`.
  11396. ====== TimingSimpleCPU analysis: LDR stall
  11397. One important thing we want to check now, is how the memory reads are going to make the processor stall in the middle of an instruction.
  11398. This is also discussed at: <<gem5-execute-vs-initiateacc-vs-completeacc>>.
  11399. Since we were using a simple CPU without a pipeline, the data memory access stall everything: there is no further progress until memory comes back.
  11400. For that, we can GDB to the `TimingSimpleCPU::completeIfetch` of the first LDR done in our test program.
  11401. By doing that, we see that this time at:
  11402. ....
  11403. if (curStaticInst && curStaticInst->isMemRef()) {
  11404. // load or store: just send to dcache
  11405. Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
  11406. if (_status == BaseSimpleCPU::Running) {
  11407. }
  11408. } else if (curStaticInst) {
  11409. // non-memory instruction: execute completely now
  11410. Fault fault = curStaticInst->execute(&t_info, traceData);
  11411. ....
  11412. * `+curStaticInst->isMemRef()+` is true, and there is no instruction `execute` call in that part of the branch, only for instructions that don't touch memory
  11413. * `_status` is `BaseSimpleCPU::Status::DcacheWaitResponse` and `advanceInst` is not yet called
  11414. We can verify that `execute` never happens by putting a breakpoint on `ArmISAInst::LDRXL64_LIT::execute` which never gets called.
  11415. Therefore, we conclude that `initiateAcc` is what actually starts the memory request.
  11416. Later on, when the memory access completes the event calls `TimingSimpleCPU::completeDataAccess` which calls `ArmISAInst::LDRXL64_LIT::completeAcc`, which sets the register value to what was read from memory.
  11417. More memory event details can be seen at: <<gem5-functional-vs-atomic-vs-timing-memory-requests>>.
  11418. The following is the region of interest of the event log:
  11419. ....
  11420. 175000: Event: Event_40: Timing CPU icache tick 40 executed @ 175000
  11421. 175000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 175000
  11422. 175000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 60 scheduled @ 176000
  11423. 175000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 executed @ 175000
  11424. 175000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 10 scheduled @ 193750
  11425. 175000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 175000
  11426. 175000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 executed @ 175000
  11427. 176000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 60 executed @ 176000
  11428. 193750: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 10 executed @ 193750
  11429. 193750: Event: system.mem_ctrls.port-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 8 scheduled @ 221750
  11430. 221750: Event: system.mem_ctrls.port-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 8 executed @ 221750
  11431. 221750: Event: system.membus.slave[2]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 66 scheduled @ 224000
  11432. 221750: Event: system.membus.respLayer2.wrapped_function_event: EventFunctionWrapped 67 scheduled @ 224000
  11433. 224000: Event: system.membus.respLayer2.wrapped_function_event: EventFunctionWrapped 67 executed @ 224000
  11434. 224000: Event: system.membus.slave[2]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 66 executed @ 224000
  11435. 224000: Event: Event_42: Timing CPU dcache tick 42 scheduled @ 224000
  11436. 224000: Event: Event_42: Timing CPU dcache tick 42 executed @ 224000
  11437. 175000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : ldr w2, #4194464 : MemRead : D=0x0000000000000006 A=0x4000a0 flags=(IsInteger|IsMemRef|IsLoad)
  11438. ....
  11439. We first find it by looking for the `ExecEnable` of LDR.
  11440. Then, we go up to the previous `Timing CPU icache tick` event, which from the analysis of previous instruction traces, we know is where the instruction execution starts, the LDR instruction fetch is done by then!
  11441. Next, several events happen as the data request must be percolating through the memory system, it must be very similar to the instruction fetches. TODO analyze event function names.
  11442. Finally, at last we reach
  11443. ....
  11444. 224000: Event: Event_42: Timing CPU dcache tick 42 executed @ 224000
  11445. 175000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : ldr w2, #4194464 : MemRead : D=0x0000000000000006 A=0x4000a0 flags=(IsInteger|IsMemRef|IsLoad)
  11446. ....
  11447. from which we guess:
  11448. * `224000`: this is the time that the data request finally returned, and at which execute gets called
  11449. * `175000`: the log finally prints at the end of execution, but it does not show the actual time that things finished, but rather the time that the ifetch finished, which happened in the past
  11450. ===== gem5 event queue TimingSimpleCPU syscall emulation freestanding example analysis with caches
  11451. Let's just add `--caches` to <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis>> to see if things go any faster, and add `Cache` to `--trace` as in:
  11452. ....
  11453. --trace Cache,Event,ExecAll,-ExecSymbol,FmtFlag
  11454. ....
  11455. The resulting trace is:
  11456. ....
  11457. #0 0: Event: system.cpu.wrapped_function_event: EventFunctionWrapped 43 scheduled @ 0
  11458. #2 0: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 14 scheduled @ 7786250
  11459. #3 0: Event: system.mem_ctrls_1.wrapped_function_event: EventFunctionWrapped 20 scheduled @ 7786250
  11460. #4 0: Event: Event_84: generic 84 scheduled @ 0
  11461. #5 0: Event: Event_84: generic 84 rescheduled @ 18446744073709551615
  11462. #6 0: Event: system.cpu.wrapped_function_event: EventFunctionWrapped 43 executed @ 0
  11463. #7 0: Cache: system.cpu.icache: access for ReadReq [78:7b] IF miss
  11464. #8 0: Event: system.cpu.icache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 59 scheduled @ 1000
  11465. #9 1000: Event: system.cpu.icache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 59 executed @ 1000
  11466. #10 1000: Cache: system.cpu.icache: sendMSHRQueuePacket: MSHR ReadReq [78:7b] IF
  11467. #12 1000: Cache: system.cpu.icache: createMissPacket: created ReadCleanReq [40:7f] IF from ReadReq [78:7b] IF
  11468. #13 1000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 1000
  11469. #14 1000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 70 scheduled @ 2000
  11470. #15 1000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 executed @ 1000
  11471. #16 1000: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 12 scheduled @ 1000
  11472. #17 1000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 10 scheduled @ 46250
  11473. #18 1000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 scheduled @ 5000
  11474. #19 1000: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 12 executed @ 1000
  11475. #20 1000: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 15 scheduled @ 1000
  11476. #22 1000: Event: system.mem_ctrls_0.wrapped_function_event: EventFunctionWrapped 15 executed @ 1000
  11477. #23 2000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 70 executed @ 2000
  11478. #24 5000: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 9 executed @ 5000
  11479. #25 46250: Event: system.mem_ctrls.wrapped_function_event: EventFunctionWrapped 10 executed @ 46250
  11480. #26 46250: Event: system.mem_ctrls.port-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 8 scheduled @ 74250
  11481. #27 74250: Event: system.mem_ctrls.port-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 8 executed @ 74250
  11482. #28 74250: Event: system.membus.slave[1]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 74 scheduled @ 77000
  11483. #29 74250: Event: system.membus.respLayer1.wrapped_function_event: EventFunctionWrapped 75 scheduled @ 80000
  11484. #30 77000: Event: system.membus.slave[1]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 74 executed @ 77000
  11485. #32 77000: Cache: system.cpu.icache: recvTimingResp: Handling response ReadResp [40:7f] IF
  11486. #33 77000: Cache: system.cpu.icache: Block for addr 0x40 being updated in Cache
  11487. #34 77000: Cache: system.cpu.icache: Block addr 0x40 (ns) moving from state 0 to state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x1 way: 0
  11488. #35 77000: Event: system.cpu.icache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 57 scheduled @ 78000
  11489. #36 78000: Event: system.cpu.icache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 57 executed @ 78000
  11490. #37 78000: Event: Event_40: Timing CPU icache tick 40 scheduled @ 78000
  11491. #38 78000: Event: Event_40: Timing CPU icache tick 40 executed @ 78000
  11492. #39 78000: ExecEnable: system.cpu: A0 T0 : 0x400078 : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  11493. #40 78000: Cache: system.cpu.icache: access for ReadReq [7c:7f] IF hit state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x1 way: 0
  11494. #42 78000: Event: system.cpu.icache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 57 scheduled @ 83000
  11495. #43 80000: Event: system.membus.respLayer1.wrapped_function_event: EventFunctionWrapped 75 executed @ 80000
  11496. #44 83000: Event: system.cpu.icache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 57 executed @ 83000
  11497. #45 83000: Event: Event_40: Timing CPU icache tick 40 scheduled @ 83000
  11498. #46 83000: Event: Event_40: Timing CPU icache tick 40 executed @ 83000
  11499. #47 83000: ExecEnable: system.cpu: A0 T0 : 0x40007c : adr x1, #28 : IntAlu : D=0x0000000000400098 flags=(IsInteger)
  11500. #48 83000: Event: system.cpu.icache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 59 scheduled @ 84000
  11501. [...]
  11502. 191000: Event: Event_85: generic 85 scheduled @ 191000
  11503. 191000: Event: Event_85: generic 85 executed @ 191000
  11504. ....
  11505. So yes, `--caches` does work here, leading to a runtime of 191000 rather than 469000 without caches!
  11506. Notably, we now see that very little time passed between the first and second instructions which are marked with `ExecEnable` in #39 and #47, presumably because rather than going out all the way to the DRAM system the event chain stops right at the `icache.cpu_side` when a hit happens, which must have been the case for the second instruction, which is just adjacent to the first one.
  11507. It is also interested to look into the generated <<gem5-config-ini,`config.dot.svg`>> to compare it to the one without caches: xref:config-dot-svg-timingsimplecpu[xrefstyle=full]. With caches: xref:config-dot-svg-timingsimplecpu-caches[xrefstyle=full].
  11508. We can see from there, that we now have `icache` and `dcache` elements inside the CPU block, and that the CPU `icache` and `dcache` ports go through the caches to the `SystemXBar` rather than being directly connected as before.
  11509. It is worth noting that the caches do not affect the `ArmITB` and `ArmDTB` <<arm-paging,TLBs>>, since those are already caches themselves.
  11510. [[config-dot-svg-timingsimplecpu-caches]]
  11511. .`config.dot.svg` for a TimingSimpleCPU with caches.
  11512. image::{cirosantilli-media-base}gem5_config_TimingSimpleCPU_caches_12c917de54145d2d50260035ba7fa614e25317a3.svg?sanitize=true[height=600]
  11513. We can break down the events between the instructions as follows.
  11514. First, based on <<timingsimplecpu-analysis-5>>, we `b TimingSimpleCPU::fetch` to see how the initial magically scheduled fetch, and necessarily cache miss, work:
  11515. .....
  11516. EventManager::schedule
  11517. PacketQueue::schedSendEvent
  11518. BaseCache::CacheMasterPort::schedSendEvent
  11519. BaseCache::schedMemSideSendEvent
  11520. BaseCache::allocateMissBuffer
  11521. BaseCache::handleTimingReqMiss
  11522. Cache::handleTimingReqMiss
  11523. BaseCache::recvTimingReq
  11524. Cache::recvTimingReq
  11525. BaseCache::CpuSidePort::recvTimingReq
  11526. TimingRequestProtocol::sendReq
  11527. MasterPort::sendTimingReq
  11528. TimingSimpleCPU::sendFetch
  11529. TimingSimpleCPU::FetchTranslation::finish
  11530. ArmISA::TLB::translateComplete
  11531. ArmISA::TLB::translateTiming
  11532. ArmISA::TLB::translateTiming
  11533. TimingSimpleCPU::fetch
  11534. .....
  11535. By comparing this to the uncached access at <<timingsimplecpu-analysis-25>>, we see that this one does not reach the `CoherentXBar` at all: the cache must be scheduling an event in the future to model a delay between the cache request and XBar communication.
  11536. A quick source structural view shows that the source for <<gem5-ruby-build,non-Ruby caches>> such as the ones from this example are located under:
  11537. ....
  11538. src/mem/cache
  11539. ....
  11540. and the following simple class hierarchy:
  11541. * `BaseCache`
  11542. ** `Cache`
  11543. ** `NoncoherentCache`
  11544. Next, we fast forward to `#39` with `b TimingSimpleCPU::IcachePort::ITickEvent::process` which as we knows from previous sections, is the event that executes instructions, and therefore leaves us at the start of the second instruction.
  11545. Then, we `b EventManager::schedule` to see what that schedules:
  11546. ....
  11547. EventManager::schedule
  11548. PacketQueue::schedSendEvent
  11549. PacketQueue::schedSendTiming
  11550. QueuedSlavePort::schedTimingResp
  11551. BaseCache::handleTimingReqHit
  11552. Cache::handleTimingReqHit
  11553. BaseCache::recvTimingReq
  11554. Cache::recvTimingReq
  11555. BaseCache::CpuSidePort::recvTimingReq
  11556. TimingRequestProtocol::sendReq
  11557. MasterPort::sendTimingReq
  11558. TimingSimpleCPU::sendFetch
  11559. TimingSimpleCPU::FetchTranslation::finish
  11560. ArmISA::TLB::translateComplete
  11561. ArmISA::TLB::translateTiming
  11562. ArmISA::TLB::translateTiming
  11563. TimingSimpleCPU::fetch
  11564. TimingSimpleCPU::advanceInst
  11565. TimingSimpleCPU::completeIfetch
  11566. TimingSimpleCPU::IcachePort::ITickEvent::process
  11567. ....
  11568. By comparing this trace from the this cache hit and the previous cache miss, we see that https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/mem/cache/base.cc#L337[`BaseCache::recvTimingReq`] decides between either: `Cache::handleTimingReqHit` and `Cache::handleTimingReqMiss`, and from there we see that the key function that decides if the block is present is https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/mem/cache/base.cc#L1033[`BaseCache::access`].
  11569. We can see access behaviour at on the log lines, e.g.:
  11570. ....
  11571. #7 0: Cache: system.cpu.icache: access for ReadReq [78:7b] IF miss
  11572. #40 78000: Cache: system.cpu.icache: access for ReadReq [7c:7f] IF hit state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x1 way: 0
  11573. ....
  11574. which makes sense since from <<timingsimplecpu-analysis-5>> we know that the physical address of the initial instruction is 0x78, and 4 bytes are read for each instruction, so the second instruction access is at 0x7c.
  11575. The hit line also shows the precise cache state `E` from the MOESI protocol: <<what-is-the-coherency-protocol-implemented-by-the-classic-cache-system-in-gem5>>.
  11576. The other log lines are also very clear, e.g. for the miss we see the following lines:
  11577. ....
  11578. #10 1000: Cache: system.cpu.icache: sendMSHRQueuePacket: MSHR ReadReq [78:7b] IF
  11579. #12 1000: Cache: system.cpu.icache: createMissPacket: created ReadCleanReq [40:7f] IF from ReadReq [78:7b] IF
  11580. #32 77000: Cache: system.cpu.icache: recvTimingResp: Handling response ReadResp [40:7f] IF
  11581. #33 77000: Cache: system.cpu.icache: Block for addr 0x40 being updated in Cache
  11582. #34 77000: Cache: system.cpu.icache: Block addr 0x40 (ns) moving from state 0 to state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x1 way: 0
  11583. ....
  11584. This shows us that the cache miss fills the cache line 40:7f, so we deduce that the cache block size is 0x40 == 64 bytes. The second address only barely hit at the last bytes of the block!
  11585. It also informs us that the cache moved to `E` (from the initial `I`) state since a memory read was done.
  11586. We can confirm this with `--trace DRAM` which shows:
  11587. ....
  11588. 1000: DRAM: system.mem_ctrls: recvTimingReq: request ReadCleanReq addr 64 size 64
  11589. ....
  11590. Contrast this with the non `--cache` version seen at <<timingsimplecpu-analysis-5>> in which DRAM only actually reads the 4 required bytes.
  11591. The only cryptic thing about the messages is the `IF` flag, but good computer architects would have guessed it correctly that it is "instruction fetch" and https://github.com/gem5/gem5/blob/fa70478413e4650d0058cbfe81fd5ce362101994/src/mem/packet.cc#L372[src/mem/packet.cc] confirms:
  11592. ....
  11593. void
  11594. Packet::print(std::ostream &o, const int verbosity,
  11595. const std::string &prefix) const
  11596. {
  11597. ccprintf(o, "%s%s [%x:%x]%s%s%s%s%s%s", prefix, cmdString(),
  11598. getAddr(), getAddr() + getSize() - 1,
  11599. req->isSecure() ? " (s)" : "",
  11600. req->isInstFetch() ? " IF" : "",
  11601. req->isUncacheable() ? " UC" : "",
  11602. isExpressSnoop() ? " ES" : "",
  11603. req->isToPOC() ? " PoC" : "",
  11604. req->isToPOU() ? " PoU" : "");
  11605. }
  11606. ....
  11607. Another interesting observation of running with `--trace Cache,DRAM,XBar` is that between the execution of both instructions, there is a `Cache` event, but no `DRAM` or `XBar` events:
  11608. ....
  11609. 78000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 flags=(IsInteger)
  11610. 78000: Cache: system.cpu.icache: access for ReadReq [7c:7f] IF hit state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x1 way: 0
  11611. 83000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : adr x1, #28 : IntAlu : D=0x0000000000400098 flags=(IsInteger)
  11612. ....
  11613. which is further consistent with the cache hit idea: no traffic goes down to the DRAM nor crossbar.
  11614. This block size parameter can be seen set on the <<gem5-config-ini>> file:
  11615. ....
  11616. [system]
  11617. cache_line_size=64
  11618. ....
  11619. so it is runtime configurable. The other key cache parameters can be seen further down in the config:
  11620. ....
  11621. [system.cpu.dcache]
  11622. assoc=2
  11623. size=65536
  11624. [system.cpu.dcache.replacement_policy]
  11625. type=LRURP
  11626. [system.cpu.dcache.tags.indexing_policy]
  11627. type=SetAssociative
  11628. ....
  11629. so we understand that by default the classic cache:
  11630. * is 2-way https://en.wikipedia.org/wiki/CPU_cache#Two-way_set_associative_cache
  11631. * has 16KiB total size
  11632. * uses LRURP https://en.wikipedia.org/wiki/Cache_replacement_policies[replacement policy]. LRU is a well known policy, "LRU RP" seems to simply stand for "LRU Replacement Policy". Other policies can be seen under: https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/mem/cache/replacement_policies/[src/mem/cache/replacement_policies/]
  11633. At:
  11634. ....
  11635. #7 0: Cache: system.cpu.icache: access for ReadReq [78:7b] IF miss
  11636. #8 0: Event: system.cpu.icache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 59 scheduled @ 1000
  11637. #9 1000: Event: system.cpu.icache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 59 executed @ 1000
  11638. #10 1000: Cache: system.cpu.icache: sendMSHRQueuePacket: MSHR ReadReq [78:7b] IF
  11639. #12 1000: Cache: system.cpu.icache: createMissPacket: created ReadCleanReq [40:7f] IF from ReadReq [78:7b] IF
  11640. ....
  11641. we can briefly see the <<gem5-mshr>> doing its thing.
  11642. At time 0, the CPU icache wants to read, so it creates a <<gem5-packet,packet>> that reads 4 bytes only (`[78:7b]`) for the instruction, and that goes into the MSHR, to be treated in a future event.
  11643. At 1000, the future event is executed, and so it reads the original packet from the MSHR, and uses that to create a new request `[40:7f]` which gets forwarded.
  11644. ====== What is the coherency protocol implemented by the classic cache system in gem5?
  11645. <<moesi>>: https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/mem/cache/cache_blk.hh#L352
  11646. The actual representation is done via separate state bits: https://github.com/gem5/gem5/blob/9fc9c67b4242c03f165951775be5cd0812f2a705/src/mem/cache/cache_blk.hh#L66 and MOESI appears explicitly only on the pretty printing.
  11647. This pretty printing appears for example in the `--trace Cache` lines as shown at <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches>> and with a few more transitions visible at xref:gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus[xrefstyle=full].
  11648. ===== gem5 event queue AtomicSimpleCPU syscall emulation freestanding example analysis with caches and multiple CPUs
  11649. It would be amazing to analyze a simple example with interconnect packets possibly invalidating caches of other CPUs.
  11650. To observe it we could create one well controlled workload with instructions that flush memory, and run it on two CPUs.
  11651. If we don't use such instructions that flush memory, we would only see the interconnect at work when caches run out.
  11652. For this study, we will use the same CLI as <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis>> but with multiple CPUs and a multithreaded which shares a variable across threads.
  11653. We can use link:userland/c/atomic.c[] (see also <<c-multithreading>>) at LKMC 7c01b29f1ee7da878c7cc9cb4565f3f3cf516a92 and gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1 was with as in <<detailed-gem5-analysis-of-how-data-races-happen>>:
  11654. ....
  11655. ./run \
  11656. --arch aarch64 \
  11657. --cli-args '2 10' \
  11658. --cpus 3 \
  11659. --emulator gem5 \
  11660. --trace FmtFlag,Cache,DRAM,ExecAll,XBar \
  11661. --userland userland/c/atomic.c \
  11662. -- \
  11663. --caches \
  11664. ;
  11665. ....
  11666. The <<gem5-config-dot,`config.dot.svg`>> now looks like this but with 3 CPUs instead of 2:
  11667. [[config-dot-svg-timingsimplecpu-caches-2-cpus]]
  11668. .`config.dot.svg` for a system with two TimingSimpleCPU with caches.
  11669. image::{cirosantilli-media-base}gem5_config_TimingSimpleCPU_caches_2_CPUs_12c917de54145d2d50260035ba7fa614e25317a3.svg?sanitize=true[height=600]
  11670. Once again we focus on the shared function region `my_thread_main` which is where the interesting cross core memory collisions will be happening.
  11671. As a maybe-not-so-interesting, we have a look at the very first `my_thread_main` icache hit points:
  11672. ....
  11673. 93946000: Cache: system.cpu1.icache: access for ReadReq [8b0:8b3] IF miss
  11674. 93946000: Cache: system.cpu1.icache: createMissPacket: created ReadCleanReq [880:8bf] IF from ReadReq [8b0:8b3] IF
  11675. 93946000: Cache: system.cpu1.icache: handleAtomicReqMiss: Sending an atomic ReadCleanReq [880:8bf] IF
  11676. 93946000: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[5] packet ReadCleanReq [880:8bf] IF
  11677. 93946000: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[5] packet ReadCleanReq [880:8bf] IF SF size: 1 lat: 1
  11678. 93946000: Cache: system.cpu0.icache: handleSnoop: snoop hit for ReadCleanReq [880:8bf] IF, old state is state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x22 way: 0
  11679. 93946000: Cache: system.cpu0.icache: new state is state: 5 (S) valid: 1 writable: 0 readable: 1 dirty: 0 | tag: 0 set: 0x22 way: 0
  11680. 93946000: DRAM: system.mem_ctrls: recvAtomic: ReadCleanReq 0x880
  11681. 93946000: Cache: system.cpu1.icache: handleAtomicReqMiss: Receive response: ReadResp [880:8bf] IF in state 0
  11682. 93946000: Cache: system.cpu1.icache: Block addr 0x880 (ns) moving from state 0 to state: 5 (S) valid: 1 writable: 0 readable: 1 dirty: 0 | tag: 0 set: 0x22 way: 0
  11683. 93946000: ExecEnable: system.cpu1: A0 T0 : @my_thread_main : sub sp, sp, #48 : IntAlu : D=0x0000003fffd6b9a0 flags=(IsInteger)
  11684. 93946500: Cache: system.cpu1.icache: access for ReadReq [8b4:8b7] IF hit state: 5 (S) valid: 1 writable: 0 readable: 1 dirty: 0 | tag: 0 set: 0x22 way: 0
  11685. 93946500: Cache: system.cpu1.dcache: access for WriteReq [a19a8:a19af] hit state: f (M) valid: 1 writable: 1 readable: 1 dirty: 1 | tag: 0x14 set: 0x66 way: 0
  11686. 93946500: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+4 : str x0, [sp, #8] : MemWrite : D=0x0000007ffffefc70 A=0x3fffd6b9a8 flags=(IsInteger|IsMemRef|IsStore)
  11687. ....
  11688. Now that we know how to read cache logs from <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches>>, it is easier to understand what happened:
  11689. * the physical address for `my_thread_main` is at 0x8b0, which gets requested is a miss, since it is the first time CPU1 goes near that region, since CPU1 was previously executing in standard library code far from our text segment
  11690. * CPU0 already has has that cache line (0x880) in its cache at <<what-is-the-coherency-protocol-implemented-by-the-classic-cache-system-in-gem5,state E of MOESI>>, so it snoops and moves to S. We can look up the logs to see exactly where CPU0 had previously read that address:
  11691. +
  11692. ....
  11693. 59135500: Cache: system.cpu0.icache: Block addr 0x880 (ns) moving from state 0 to state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x22 way: 0
  11694. 59135500: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[1] packet WritebackClean [8880:88bf]
  11695. 59135500: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[1] packet WritebackClean [8880:88bf] SF size: 0 lat: 1
  11696. 59135500: DRAM: system.mem_ctrls: recvAtomic: WritebackClean 0x8880
  11697. 59135500: ExecEnable: system.cpu0: A0 T0 : @frame_dummy : stp
  11698. ....
  11699. * the request does touch RAM, it does not get served by the other cache directly. CPU1 is now also at state S for the block
  11700. * the second cache request from CPU1 is 4 bytes further ahead 0x8b4, and this time it is of course a hit.
  11701. +
  11702. Since this is an STR, it also does a dcache access, to 0xA19A8 in this case near its stack SP, and it is a hit, which is not surprising, since basically stack accesses are the very first thing any C code does, and there must be some setup code running on CPU1 before `my_thread_main`.
  11703. Now let's look for the incremented integer address that is shared across threads. We know from <<detailed-gem5-analysis-of-how-data-races-happen>> that the read happens at `my_thread_main+36`, so searching for he first occurrence:
  11704. ....
  11705. 93952500: Cache: system.cpu1.icache: access for ReadReq [8d4:8d7] IF hit state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x23 way: 0
  11706. 93952500: Cache: system.cpu1.dcache: access for ReadReq [2060:2063] miss
  11707. 93952500: Cache: system.cpu1.dcache: createMissPacket: created ReadSharedReq [2040:207f] from ReadReq [2060:2063]
  11708. 93952500: Cache: system.cpu1.dcache: handleAtomicReqMiss: Sending an atomic ReadSharedReq [2040:207f]
  11709. 93952500: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[6] packet ReadSharedReq [2040:207f]
  11710. 93952500: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[6] packet ReadSharedReq [2040:207f] SF size: 0 lat: 1
  11711. 93952500: DRAM: system.mem_ctrls: recvAtomic: ReadSharedReq 0x2040
  11712. 93952500: Cache: system.cpu1.dcache: handleAtomicReqMiss: Receive response: ReadResp [2040:207f] in state 0
  11713. 93952500: Cache: system.cpu1.dcache: Block addr 0x2040 (ns) moving from state 0 to state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x81 way: 0
  11714. 93952500: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000000 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  11715. ....
  11716. so we determine its physical address of 0x2060. It was a miss, and then it went into E.
  11717. So we look ahead to the following accesses to that physical address, before CPU2 reaches that point of the code and starts making requests as well.
  11718. First there is the STR for the first LDR which is of course a hit:
  11719. ....
  11720. 93954500: Cache: system.cpu1.dcache: access for WriteReq [2060:2063] hit state: 7 (E) valid: 1 writable: 1 readable: 1 dirty: 0 | tag: 0 set: 0x81 way: 0
  11721. 93954500: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+52 : str x1, [x0] : MemWrite : D=0x0000000000000001 A=0x411060 flags=(IsInteger|IsMemRef|IsStore)
  11722. ....
  11723. If found the line in E, so we presume that it moves it to M. Then the second read confirms that it was in M:
  11724. ....
  11725. 93964500: Cache: system.cpu1.dcache: access for ReadReq [2060:2063] hit state: f (M) valid: 1 writable: 1 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11726. 93964500: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000001 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  11727. ....
  11728. and so on.
  11729. Now let's jump to when CPU2 starts making requests.
  11730. The first time this happens is on its first LDR at:
  11731. ....
  11732. 94058500: Cache: system.cpu2.dcache: access for ReadReq [2060:2063] miss
  11733. 94058500: Cache: system.cpu2.dcache: createMissPacket: created ReadSharedReq [2040:207f] from ReadReq [2060:2063]
  11734. 94058500: Cache: system.cpu2.dcache: handleAtomicReqMiss: Sending an atomic ReadSharedReq [2040:207f]
  11735. 94058500: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[10] packet ReadSharedReq [2040:207f]
  11736. 94058500: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[10] packet ReadSharedReq [2040:207f] SF size: 1 lat: 1
  11737. 94058500: Cache: system.cpu1.dcache: handleSnoop: snoop hit for ReadSharedReq [2040:207f], old state is state: f (M) valid: 1 writable: 1 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11738. 94058500: Cache: system.cpu1.dcache: new state is state: d (O) valid: 1 writable: 0 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11739. 94058500: CoherentXBar: system.membus: recvAtomicBackdoor: Not forwarding ReadSharedReq [2040:207f]
  11740. 94058500: Cache: system.cpu2.dcache: handleAtomicReqMiss: Receive response: ReadResp [2040:207f] in state 0
  11741. 94058500: Cache: system.cpu2.dcache: Block addr 0x2040 (ns) moving from state 0 to state: 5 (S) valid: 1 writable: 0 readable: 1 dirty: 0 | tag: 0 set: 0x81 way: 0
  11742. 94058500: ExecEnable: system.cpu2: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000009 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  11743. ....
  11744. and from this we see:
  11745. * CPU1 moves from M to O
  11746. * CPU2 moves from I to S
  11747. It also appears that no DRAM was accessed since there are no logs for it, so did the XBar get the value directly from the other cache? TODO: why did the earlier `93946000: DRAM` read happened then, since CPU0 had the line when CPU1 asked for it?
  11748. The above log sequence also makes it clear that it is the XBar that maintains coherency: it appears that the CPU2 caches tells the XBar what it is doing, and then the XBar tells other caches on other CPUs about it, which leads CPU1 to move to O.
  11749. Then CPU1 hits its LDR on O:
  11750. ....
  11751. 94060500: Cache: system.cpu1.dcache: access for ReadReq [2060:2063] hit state: d (O) valid: 1 writable: 0 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11752. 94060500: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000009 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  11753. ....
  11754. and then CPU2 writes moving to M and moving CPU1 to I:
  11755. ....
  11756. 94060500: Cache: system.cpu2.dcache: access for WriteReq [2060:2063] hit state: 5 (S) valid: 1 writable: 0 readable: 1 dirty: 0 | tag: 0 set: 0x81 way: 0
  11757. 94060500: Cache: system.cpu2.dcache: createMissPacket: created UpgradeReq [2040:207f] from WriteReq [2060:2063]
  11758. 94060500: Cache: system.cpu2.dcache: handleAtomicReqMiss: Sending an atomic UpgradeReq [2040:207f]
  11759. 94060500: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[10] packet UpgradeReq [2040:207f]
  11760. 94060500: CoherentXBar: system.membus: recvAtomicBackdoor: src system.membus.slave[10] packet UpgradeReq [2040:207f] SF size: 1 lat: 1
  11761. 94060500: Cache: system.cpu1.dcache: handleSnoop: snoop hit for UpgradeReq [2040:207f], old state is state: d (O) valid: 1 writable: 0 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11762. 94060500: Cache: system.cpu1.dcache: new state is state: 0 (I) valid: 0 writable: 0 readable: 0 dirty: 0 | tag: 0xffffffffffffffff set: 0x81 way: 0
  11763. 94060500: CoherentXBar: system.membus: recvAtomicBackdoor: Not forwarding UpgradeReq [2040:207f]
  11764. 94060500: Cache: system.cpu2.dcache: handleAtomicReqMiss: Receive response: UpgradeResp [2040:207f] in state 5
  11765. 94060500: Cache: system.cpu2.dcache: Block addr 0x2040 (ns) moving from state 5 to state: f (M) valid: 1 writable: 1 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11766. 94060500: ExecEnable: system.cpu2: A0 T0 : @my_thread_main+52 : str x1, [x0] : MemWrite : D=0x000000000000000a A=0x411060 flags=(IsInteger|IsMemRef|IsStore)
  11767. ....
  11768. and so on, they just keep fighting over that address and changing one another's state.
  11769. ===== gem5 event queue TimingSimpleCPU syscall emulation freestanding example analysis with caches and multiple CPUs
  11770. Like <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>> but with <<gem5-timingsimplecpu>> and link:userland/c/atomic/aarch64_add.c[]:
  11771. ....
  11772. ./build-userland --arch aarch64 --optimization-level 3 --userland-build-id o3
  11773. ./run \
  11774. --arch aarch64 \
  11775. --cli-args '2 1000' \
  11776. --cpus 3 \
  11777. --emulator gem5 \
  11778. --trace FmtFlag,CacheAll,DRAM,Event,ExecAll,SimpleCPU,XBar \
  11779. --userland userland/c/atomic/aarch64_add.c \
  11780. --userland-build-id o3 \
  11781. -- \
  11782. --caches \
  11783. --cpu-type TimingSimpleCPU \
  11784. ;
  11785. ....
  11786. This is arguably the best experiment to study the <<gem5-crossbar-interconnect>>.
  11787. We increase the loop count to 100 loops because 100 did not show memory conflicts. The output is:
  11788. ....
  11789. expect 200
  11790. global 147
  11791. ....
  11792. Let's double check what it compiles to with <<disas>>:
  11793. ....
  11794. ./disas --arch aarch64 --userland userland/c/atomic/aarch64_add.c --userland-build-id o3 my_thread_main
  11795. ....
  11796. which contains:
  11797. ....
  11798. 0x0000000000400a70 <+0>: 03 00 40 f9 ldr x3, [x0]
  11799. 0x0000000000400a74 <+4>: 63 01 00 b4 cbz x3, 0x400aa0 <my_thread_main+48>
  11800. 0x0000000000400a78 <+8>: 82 00 00 d0 adrp x2, 0x412000 <malloc@got.plt>
  11801. 0x0000000000400a7c <+12>: 42 a0 01 91 add x2, x2, #0x68
  11802. 0x0000000000400a80 <+16>: 00 00 80 d2 mov x0, #0x0 // #0
  11803. 0x0000000000400a84 <+20>: 1f 20 03 d5 nop
  11804. 0x0000000000400a88 <+24>: 41 00 40 f9 ldr x1, [x2]
  11805. 0x0000000000400a8c <+28>: 21 04 00 91 add x1, x1, #0x1
  11806. 0x0000000000400a90 <+32>: 41 00 00 f9 str x1, [x2]
  11807. 0x0000000000400a94 <+36>: 00 04 00 91 add x0, x0, #0x1
  11808. 0x0000000000400a98 <+40>: 7f 00 00 eb cmp x3, x0
  11809. 0x0000000000400a9c <+44>: 68 ff ff 54 b.hi 0x400a88 <my_thread_main+24> // b.pmore
  11810. 0x0000000000400aa0 <+48>: 00 00 80 52 mov w0, #0x0 // #0
  11811. 0x0000000000400aa4 <+52>: c0 03 5f d6 ret
  11812. ....
  11813. Grepping the logs with `grep '@my_thread_main\+24` shows where the first non-atomic interleaves happen at:
  11814. ....
  11815. [many other CPU1 hits]
  11816. 471199000: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+24 : ldr x1, [x2] : MemRead : D=0x000000000000002e A=0x412068 flags=(IsInteger|IsMemRef|IsLoad)
  11817. 471207000: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+24 : ldr x1, [x2] : MemRead : D=0x000000000000002f A=0x412068 flags=(IsInteger|IsMemRef|IsLoad)
  11818. 471202000: ExecEnable: system.cpu2: A0 T0 : @my_thread_main+24 : ldr x1, [x2] : MemRead : D=0x000000000000002f A=0x412068 flags=(IsInteger|IsMemRef|IsLoad)
  11819. 471239000: ExecEnable: system.cpu2: A0 T0 : @my_thread_main+24 : ldr x1, [x2] : MemRead : D=0x0000000000000030 A=0x412068 flags=(IsInteger|IsMemRef|IsLoad)
  11820. 471228000: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+24 : ldr x1, [x2] : MemRead : D=0x0000000000000030 A=0x412068 flags=(IsInteger|IsMemRef|IsLoad)
  11821. 471269000: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+24 : ldr x1, [x2] : MemRead : D=0x0000000000000031 A=0x412068 flags=(IsInteger|IsMemRef|IsLoad)
  11822. ....
  11823. after a long string of cpu1 hits, since CPU1 was forked first and therefore had more time to run that operation.
  11824. From those and logs around we deduce that:
  11825. * the shared address of interest is 0x412068
  11826. * the physical address is 0x2068
  11827. * it fits into the cache line for 0x2040:0x207f
  11828. With that guide, we look at the fuller logs around that region of interest. With start at the first ifetch that CPU2 does for our LDR of interest at 0x400a88:
  11829. ....
  11830. 471201000: SimpleCPU: system.cpu2: Fetch
  11831. 471201000: SimpleCPU: system.cpu2: Translating address 0x400a88
  11832. ....
  11833. Things get a bit interleaved with CPU1, but soon afterwards we see the CPU2 make its memory request to the cache:
  11834. ....
  11835. 471202000: Event: Event_134: Timing CPU icache tick 134 executed @ 471202000
  11836. 471202000: SimpleCPU: system.cpu2: Complete ICache Fetch for addr 0xa88
  11837. 471202000: Cache: system.cpu2.dcache: access for ReadReq [2068:206f] D=c879334bb1550000 num=266073 miss
  11838. 471202000: CachePort: system.cpu2.dcache.mem_side: Scheduling send event at 471203000
  11839. 471202000: Event: system.cpu2.dcache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 140 scheduled @ 471203000
  11840. ....
  11841. Before the request moves on, some CPU1 action happens: a CPU1 is sending its data out! It hit the cache, and now we confirm that the cache is in <<moesi,state: M>> as expected, since CPU1 had already been previously writting repeatedly to that address:
  11842. ....
  11843. 471202000: Event: Event_87: Timing CPU icache tick 87 executed @ 471202000
  11844. 471202000: SimpleCPU: system.cpu1: Complete ICache Fetch for addr 0xa90
  11845. 471202000: Cache: system.cpu1.dcache: access for WriteReq [2068:206f] D=2f00000000000000 num=266074 hit state: f (M) valid: 1 writable: 1 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11846. 471202000: CacheVerbose: system.cpu1.dcache: satisfyRequest for WriteReq [2068:206f] D=2f00000000000000 num=266074 (write)
  11847. 471202000: Event: system.cpu1.dcache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 91 scheduled @ 471203000
  11848. ....
  11849. Immediately afterwards, CPU1 gets its reply from the cache, which is fast as that was a hit, and its STR finishes:
  11850. ....
  11851. 471203000: Event: system.cpu1.dcache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 91 executed @ 471203000
  11852. 471203000: SimpleCPU: system.cpu1.dcache_port: Received load/store response 0x2068
  11853. 471203000: Event: Event_89: Timing CPU dcache tick 89 scheduled @ 471203000
  11854. 471203000: Event: Event_89: Timing CPU dcache tick 89 executed @ 471203000
  11855. 471202000: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+32 : str x1, [x2] : MemWrite : D=0x000000000000002f A=0x412068 flags=(IsInteger|IsMemRef|IsStore)
  11856. ....
  11857. Now we approach the crux of this example: cpu2 dcache decides to forward its read request:
  11858. ....
  11859. 471203000: Event: system.cpu2.dcache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 140 executed @ 471203000
  11860. 471203000: Cache: system.cpu2.dcache: sendMSHRQueuePacket: MSHR ReadReq [2068:206f] D=c879334bb1550000 num=266073
  11861. 471203000: Cache: system.cpu2.dcache: createMissPacket: created ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076 from ReadReq [2068:206f] D=c879334bb1550000 num=266073
  11862. ....
  11863. Here, CPU2 dcache finally forwards to the XBar its request via the <<gem5-mshr>> mechanism as in <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches>>
  11864. `createMissPacket` creates a new packet for the cache request with a different type: `ReadSharedReq` instead of the original `ReadReq`, and then it sends that packet into <<gem5-crossbar-interconnect,`CoherentXBar`>>:
  11865. ....
  11866. 471203000: CoherentXBar: system.membus: recvTimingReq: src system.membus.slave[10] packet ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076
  11867. 471203000: SnoopFilter: system.membus.snoop_filter: lookupRequest: src system.membus.slave[10] packet ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076
  11868. 471203000: SnoopFilter: system.membus.snoop_filter: lookupRequest: SF value 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000
  11869. 471203000: SnoopFilter: system.membus.snoop_filter: lookupRequest: new SF value 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000
  11870. 471203000: CoherentXBar: system.membus: recvTimingReq: src system.membus.slave[10] packet ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076 SF size: 1 lat: 1
  11871. 471203000: CoherentXBar: system.membus: forwardTiming for ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076
  11872. ....
  11873. The XBar receives the request, and notices that CPU1 cares about it, because obviously it has that line from previous writes, so the XBar forwards the exact same request to the CPU1 dcache:
  11874. ....
  11875. 471203000: CacheVerbose: system.cpu1.dcache: recvTimingSnoopReq: for ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076
  11876. 471203000: CacheVerbose: system.cpu1.dcache: handleSnoop: for ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076
  11877. 471203000: Cache: system.cpu1.dcache: handleSnoop: snoop hit for ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076, old state is state: f (M) valid: 1 writable: 1 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11878. 471203000: Cache: system.cpu1.dcache: new state is state: d (O) valid: 1 writable: 0 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11879. 471203000: Cache: system.cpu1.dcache: doTimingSupplyResponse: for ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076
  11880. 471203000: CacheVerbose: system.cpu1.dcache: doTimingSupplyResponse: created response: ReadResp [2040:207f] D=700640000000000070064000000000000000000000000000000000000000000000000000000000002f0000000000000000000000000000000000000000000000 num=266078 tick: 471212000
  11881. 471203000: Event: system.cpu1.dcache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 94 scheduled @ 471212000
  11882. 471203000: CoherentXBar: system.membus: recvTimingReq: Not forwarding ReadSharedReq [2040:207f] D=40cfe14bb15500005b323036383a323036665d20443d63383739333334626231353530303030206e756d3d32363630373300000000016d6973730a0000000000 num=266076
  11883. ....
  11884. and from this we see that this read request from CPU2 made a cache from CPU1 go <<moesi,from M to O>>! <<cache-coherence>> is being maintained!
  11885. Furthermore, it also suggests that now CPU1 is going to supply the response to CPU2 directly from its cache, and the memory request will be suppressed! As mentioned in lecture notes from <<cache-coherence>>, we know that this is one of the ways that cache coherence may be maintained in MOESI-like protocols.
  11886. After this point, CPU1 continues to go around the loop. After a few instructions we don't care about, we once again reach the LDR:
  11887. ....
  11888. 471207000: SimpleCPU: system.cpu1: Complete ICache Fetch for addr 0xa88
  11889. 471207000: Cache: system.cpu1.dcache: access for ReadReq [2068:206f] D=c879334bb1550000 num=266082 hit state: d (O) valid: 1 writable: 0 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11890. 471207000: Event: system.cpu1.dcache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 91 scheduled @ 471208000
  11891. 471208000: Event: system.cpu1.dcache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 91 executed @ 471208000
  11892. 471208000: SimpleCPU: system.cpu1.dcache_port: Received load/store response 0x2068
  11893. 471208000: Event: Event_89: Timing CPU dcache tick 89 scheduled @ 471208000
  11894. 471208000: Event: Event_89: Timing CPU dcache tick 89 executed @ 471208000
  11895. 471207000: ExecEnable: system.cpu1: A0 T0 : @my_thread_main+24 : ldr x1, [x2] : MemRead : D=0x000000000000002f A=0x412068 flags=(IsInteger|IsMemRef|IsLoad)
  11896. ....
  11897. but it is immediately satisfied since the line is already in `O`, and nothing needs to be sent out to the bus since it's a read.
  11898. Then the add 1 runs entirely from cache of course, and then CPU1 starts its STR:
  11899. ....
  11900. 471210000: Event: Event_87: Timing CPU icache tick 87 executed @ 471210000
  11901. 471210000: SimpleCPU: system.cpu1: Complete ICache Fetch for addr 0xa90
  11902. 471210000: Cache: system.cpu1.dcache: access for WriteReq [2068:206f] D=3000000000000000 num=266085 hit state: d (O) valid: 1 writable: 0 readable: 1 dirty: 1 | tag: 0 set: 0x81 way: 0
  11903. 471210000: CachePort: system.cpu1.dcache.mem_side: Scheduling send event at 471211000
  11904. 471210000: Event: system.cpu1.dcache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 93 scheduled @ 471211000
  11905. ....
  11906. In parallel, the CPU1 snoop response to the CPU2 LDR that had been previously sent reaches the XBar:
  11907. ....
  11908. 471212000: Event: system.cpu1.dcache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 94 executed @ 471212000
  11909. 471212000: CoherentXBar: system.membus: recvTimingSnoopResp: src system.membus.slave[6] packet ReadResp [2040:207f] D=700640000000000070064000000000000000000000000000000000000000000000000000000000002f0000000000000000000000000000000000000000000000 num=266078
  11910. 471212000: SnoopFilter: system.membus.snoop_filter: updateSnoopResponse: rsp system.membus.slave[6] req system.membus.slave[10] packet ReadResp [2040:207f] D=700640000000000070064000000000000000000000000000000000000000000000000000000000002f0000000000000000000000000000000000000000000000 num=266078
  11911. 471212000: SnoopFilter: system.membus.snoop_filter: updateSnoopResponse: old SF value 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000
  11912. 471212000: SnoopFilter: system.membus.snoop_filter: updateSnoopResponse: new SF value 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101000
  11913. 471212000: CoherentXBar: system.membus: recvTimingSnoopResp: src system.membus.slave[6] packet ReadResp [2040:207f] D=700640000000000070064000000000000000000000000000000000000000000000000000000000002f0000000000000000000000000000000000000000000000 num=266078 FWD RESP
  11914. 471212000: Event: system.membus.slave[10]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 186 scheduled @ 471214000
  11915. 471212000: Event: system.membus.respLayer10.wrapped_function_event: EventFunctionWrapped 187 scheduled @ 471217000
  11916. 471212000: BaseXBar: system.membus.respLayer10: The crossbar layer is now busy from tick 471212000 to 471217000
  11917. ....
  11918. We know that it is the same one based on the packet `num=` match.
  11919. And just after that, by coincidence, the CPU1 STR write request also starts going to the XBar:
  11920. ....
  11921. 471212001: Event: system.cpu1.dcache.mem_side-MemSidePort.wrapped_function_event: EventFunctionWrapped 93 executed @ 471212001
  11922. 471212001: Cache: system.cpu1.dcache: sendMSHRQueuePacket: MSHR WriteReq [2068:206f] D=3000000000000000 num=266085
  11923. 471212001: Cache: system.cpu1.dcache: createMissPacket: created UpgradeReq [2040:207f] D= num=266086 from WriteReq [2068:206f] D=3000000000000000 num=266085
  11924. 471212001: CoherentXBar: system.membus: recvTimingReq: src system.membus.slave[6] packet UpgradeReq [2040:207f] D= num=266086
  11925. 471212001: SnoopFilter: system.membus.snoop_filter: lookupRequest: src system.membus.slave[6] packet UpgradeReq [2040:207f] D= num=266086
  11926. 471212001: SnoopFilter: system.membus.snoop_filter: lookupRequest: SF value 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101000
  11927. 471212001: SnoopFilter: system.membus.snoop_filter: lookupRequest: new SF value 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101000
  11928. 471212001: CoherentXBar: system.membus: recvTimingReq: src system.membus.slave[6] packet UpgradeReq [2040:207f] D= num=266086 SF size: 1 lat: 1
  11929. 471212001: CoherentXBar: system.membus: forwardTiming for UpgradeReq [2040:207f] D= num=266086
  11930. 471212001: CacheVerbose: system.cpu2.dcache: recvTimingSnoopReq: for UpgradeReq [2040:207f] D= num=266086
  11931. 471212001: Cache: global: handleSnoop for UpgradeReq [2040:207f] D= num=266086
  11932. 471212001: CacheVerbose: system.cpu2.dcache: handleSnoop: for UpgradeReq [2040:207f] D= num=266086
  11933. 471212001: CacheVerbose: system.cpu2.dcache: handleSnoop: snoop miss for UpgradeReq [2040:207f] D= num=266086
  11934. ....
  11935. This time, we can see that the `WriteReq` gets turned into an `UpgradeReq` by the cache.
  11936. It does not however change the CPU2 cacheline state, because the CPU2 cache is not yet valid line because LDR reply still hasn't come back! We see on the source code:
  11937. ....
  11938. Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
  11939. bool is_deferred, bool pending_inval)
  11940. {
  11941. } else if (!blk_valid) {
  11942. DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
  11943. pkt->print());
  11944. ....
  11945. At last, the CPU1 snoop reply reaches the CPU2 dcache with the (now old `2f`) data:
  11946. ....
  11947. 471214000: Event: system.membus.reqLayer0.wrapped_function_event: EventFunctionWrapped 164 executed @ 471214000
  11948. 471214000: Event: system.membus.slave[10]-RespPacketQueue.wrapped_function_event: EventFunctionWrapped 186 executed @ 471214000
  11949. 471214000: Cache: system.cpu2.dcache: recvTimingResp: Handling response ReadResp [2040:207f] D=700640000000000070064000000000000000000000000000000000000000000000000000000000002f0000000000000000000000000000000000000000000000 num=266078
  11950. 471214000: Cache: system.cpu2.dcache: Block for addr 0x2040 being updated in Cache
  11951. 471214000: CacheRepl: system.cpu2.dcache: Replacement victim: state: 0 (I) valid: 0 writable: 0 readable: 0 dirty: 0 | tag: 0xffffffffffffffff set: 0x81 way: 0
  11952. 471214000: Cache: system.cpu2.dcache: Block addr 0x2040 (ns) moving from state 0 to state: 5 (S) valid: 1 writable: 0 readable: 1 dirty: 0 | tag: 0 set: 0x81 way: 0
  11953. ....
  11954. On the above, we see that this initially moves the cache to S state.
  11955. However, remember that after CPU2 started its LDR, CPU1 did an STR, and that STR was already snooped by CPU2 above? Well, the MSHR or the cache had noted that down, and now it proceeds to invalidate the line:
  11956. ....
  11957. 471214000: Cache: system.cpu2.dcache: serviceMSHRTargets: updated cmd to ReadRespWithInvalidate [2068:206f] D=2f00000000000000 num=266073
  11958. 471214000: Event: system.cpu2.dcache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 138 scheduled @ 471215000
  11959. 471214000: Cache: system.cpu2.dcache: processing deferred snoop...
  11960. 471214000: CacheVerbose: system.cpu2.dcache: handleSnoop: for UpgradeReq [2040:207f] D= num=266087
  11961. 471214000: Cache: system.cpu2.dcache: handleSnoop: snoop hit for UpgradeReq [2040:207f] D= num=266087, old state is state: 5 (S) valid: 1 writable: 0 readable: 1 dirty: 0 | tag: 0 set: 0x81 way: 0
  11962. 471214000: Cache: system.cpu2.dcache: new state is state: 0 (I) valid: 0 writable: 0 readable: 0 dirty: 0 | tag: 0xffffffffffffffff set: 0x81 way: 0
  11963. 471214000: CacheVerbose: system.cpu2.dcache: recvTimingResp: Leaving with ReadResp [2040:207f] D=700640000000000070064000000000000000000000000000000000000000000000000000000000002f0000000000000000000000000000000000000000000000 num=266078
  11964. ....
  11965. It is a bit funny, but we see that at the same time, both the response arrived with the data, and the cache gets invalidated with a delay. The MSHR kept track of that for us. On the above logs, actually `Cache: global: handleSnoop` is the line in question.
  11966. And at long long last, the CPU2 LDR finishes:
  11967. ....
  11968. 471215000: Event: system.cpu2.dcache.cpu_side-CpuSidePort.wrapped_function_event: EventFunctionWrapped 138 executed @ 471215000
  11969. 471215000: SimpleCPU: system.cpu2.dcache_port: Received load/store response 0x2068
  11970. 471215000: Event: Event_136: Timing CPU dcache tick 136 scheduled @ 471215000
  11971. 471215000: Event: Event_136: Timing CPU dcache tick 136 executed @ 471215000
  11972. 471202000: ExecEnable: system.cpu2: A0 T0 : @my_thread_main+24 : ldr x1, [x2] : MemRead : D=0x000000000000002f A=0x412068 flags=(IsInteger|IsMemRef|IsLoad)
  11973. ....
  11974. We note therefore that no DRAM access was involved, one cache services the other directly!
  11975. Tested on LKMC 4f82f79be7b0717c12924f4c9b7c4f46f8f18e2f + 1, gem5 3ca404da175a66e0b958165ad75eb5f54cb5e772 with a hack to add packet IDs and data to `Packet::print`.
  11976. ===== gem5 event queue TimingSimpleCPU syscall emulation freestanding example analysis with caches and multiple CPUs and Ruby
  11977. Now let's do the exact same we did for <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus>>, but with <<gem5-ruby-build,Ruby>> rather than the classic system and TimingSimpleCPU (atomic does not work with Ruby)
  11978. Since we have fully understood coherency in that previous example, it should now be easier to understand what is going on with Ruby:
  11979. ....
  11980. ./run \
  11981. --arch aarch64 \
  11982. --cli-args '2 10' \
  11983. --cpus 3 \
  11984. --emulator gem5 \
  11985. --trace FmtFlag,DRAM,ExecAll,Ruby \
  11986. --userland userland/c/atomic.c \
  11987. -- \
  11988. --cpu-type TimingSimpleCPU \
  11989. --ruby \
  11990. ;
  11991. ....
  11992. Note that now the `--trace Cache,XBar` flags have no effect, since Ruby replaces those classic memory model components entirely with the Ruby version, so we enable the `Ruby` flag version instead. Note however that this flag is very verbose and produces about 10x more output than the classic memory experiment.
  11993. Also remember that ARM's default Ruby protocol is `'MOESI_CMP_directory'`.
  11994. First we note that the output of the experiment is the same:
  11995. ....
  11996. atomic 20
  11997. non-atomic 19
  11998. ....
  11999. TODO
  12000. ===== gem5 event queue MinorCPU syscall emulation freestanding example analysis
  12001. The events <<gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis,for the Atomic CPU>> were pretty simple: basically just ticks.
  12002. But as we venture into <<gem5-cpu-types,more complex CPU models>> such as `MinorCPU`, the events get much more complex and interesting.
  12003. The memory system system part must be similar to that of `TimingSimpleCPU` that we previously studied <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis>>: the main thing we want to see is how the CPU pipeline speeds up execution by preventing some memory stalls.
  12004. The <<gem5-config-ini,`config.dot.svg`>> also indicates that: everything is exactly as in <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches>>, except that the CPU is a `MinorCPU` instead of `TimingSimpleCPU`, and the `--caches` are now mandatory:
  12005. ....
  12006. ./run \
  12007. --arch aarch64 \
  12008. --emulator gem5 \
  12009. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  12010. --trace FmtFlag,Cache,Event,ExecAll,Minor \
  12011. --trace-stdout \
  12012. -- \
  12013. --cpu-type MinorCPU \
  12014. --caches \
  12015. ;
  12016. ....
  12017. and here's a handy link to the source: link:userland/arch/aarch64/freestanding/linux/hello.S[].
  12018. On LKMC ce3ea9faea95daf46dea80d4236a30a0891c3ca5 gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1 we see the following.
  12019. First there is a missed instruction fetch for the initial entry address which we know from <<gem5-event-queue-timingsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches>> is the virtual address 0x400078 which maps to physical 0x78:
  12020. ....
  12021. 500: Cache: system.cpu.icache: access for ReadReq [40:7f] IF miss
  12022. ....
  12023. The memory request comes back later on at:
  12024. ....
  12025. 77000: Cache: system.cpu.icache: recvTimingResp: Handling response ReadResp [40:7f] IF
  12026. ....
  12027. and soon after the CPU also ifetches across the barrier:
  12028. ....
  12029. 79000: Cache: system.cpu.icache: access for ReadReq [80:bf] IF miss
  12030. ....
  12031. TODO why? We have 0x78 and 0x7c, and those should be it since we <<gem5-functional-units,are dual issue>>, right? Is this prefetching at work?
  12032. Later on we see the first instruction, our <<arm-mov-instruction,MOVZ>>, was decoded:
  12033. ....
  12034. 80000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/1/1.1 pc: 0x400078 (movz) to FU: 0
  12035. ....
  12036. and that issue succeeds, because the functional unit 0 (FU 0) is an `IntAlu` as shown at <<gem5-functional-units>>:
  12037. ....
  12038. 80000: MinorExecute: system.cpu.execute: Issuing inst: 0/1.1/1/1.1 pc: 0x400078 (movz) into FU 0
  12039. ....
  12040. At the very same tick, the second instruction is also decoded, our <<arm-adr-instruction,ADR>>:
  12041. ....
  12042. 80000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/1/2.2 pc: 0x40007c (adr) to FU: 0
  12043. 80000: MinorExecute: system.cpu.execute: Can't issue as FU: 0 is already busy
  12044. 80000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/1/2.2 pc: 0x40007c (adr) to FU: 1
  12045. 80000: MinorExecute: system.cpu.execute: Issuing inst: 0/1.1/1/2.2 pc: 0x40007c (adr) into FU 1
  12046. ....
  12047. This is also an `IntAlu` instruction, and it can't run on FU 0 because the first instruction is already running there. But to our luck, FU 1 is also an `IntAlu` unit, and so it runs there.
  12048. Crap, those Minor logs should say what `OpClass` each instruction is, that would make things clearer.
  12049. TODO what is that `0/1.1/1/1.1` notation that shows up everywhere? Must be important, let's look at the source.
  12050. Soon after (3 ticks later, so guessing due to `opLat=3`?), the execution appears to be over already since we see the `ExecAll` come through, which generally happens at the very end:
  12051. ....
  12052. 81500: MinorExecute: system.cpu.execute: Attempting to commit [tid:0]
  12053. 81500: MinorExecute: system.cpu.execute: Committing micro-ops for interrupt[tid:0]
  12054. 81500: MinorExecute: system.cpu.execute: Trying to commit canCommitInsts: 1
  12055. 81500: MinorExecute: system.cpu.execute: Trying to commit from FUs
  12056. 81500: MinorExecute: global: ExecContext setting PC: (0x400078=>0x40007c).(0=>1)
  12057. 81500: MinorExecute: system.cpu.execute: Committing inst: 0/1.1/1/1.1 pc: 0x400078 (movz)
  12058. 81500: MinorExecute: system.cpu.execute: Unstalling 0 for inst 0/1.1/1/1.1
  12059. 81500: MinorExecute: system.cpu.execute: Completed inst: 0/1.1/1/1.1 pc: 0x400078 (movz)
  12060. 81500: MinorScoreboard: system.cpu.execute.scoreboard0: Clearing inst: 0/1.1/1/1.1 pc: 0x400078 (movz) regIndex: 0 final numResults: 0
  12061. 81500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #1, #0 : IntAlu : D=0x0000000000000001 FetchSeq=1 CPSeq=1 flags=(IsInteger)
  12062. 81500: MinorExecute: system.cpu.execute: Trying to commit canCommitInsts: 1
  12063. 81500: MinorExecute: system.cpu.execute: Trying to commit from FUs
  12064. 81500: MinorExecute: global: ExecContext setting PC: (0x40007c=>0x400080).(0=>1)
  12065. 81500: MinorExecute: system.cpu.execute: Committing inst: 0/1.1/1/2.2 pc: 0x40007c (adr)
  12066. 81500: MinorExecute: system.cpu.execute: Unstalling 1 for inst 0/1.1/1/2.2
  12067. 81500: MinorExecute: system.cpu.execute: Completed inst: 0/1.1/1/2.2 pc: 0x40007c (adr)
  12068. 81500: MinorScoreboard: system.cpu.execute.scoreboard0: Clearing inst: 0/1.1/1/2.2 pc: 0x40007c (adr) regIndex: 1 final numResults: 0
  12069. 81500: MinorExecute: system.cpu.execute: Reached inst commit limit
  12070. 81500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : adr x1, #28 : IntAlu : D=0x0000000000400098 FetchSeq=2 CPSeq=2 flags=(IsInteger)
  12071. ....
  12072. The ifetch for the third instruction returns at:
  12073. ....
  12074. 129000: Cache: system.cpu.icache: recvTimingResp: Handling response ReadResp [80:bf] IF
  12075. ....
  12076. so now we are ready to run the third and fourth instructions of the program:
  12077. ....
  12078. ldr x2, =len
  12079. mov x8, 64
  12080. ....
  12081. The <<arm-ldr-instruction,LDR>> goes all the way down to FU 6 which is the memory one:
  12082. ....
  12083. 132000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/2/3.3 pc: 0x400080 (ldr) to FU: 0
  12084. 132000: MinorExecute: system.cpu.execute: Can't issue as FU: 0 isn't capable
  12085. 132000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/2/3.3 pc: 0x400080 (ldr) to FU: 1
  12086. 132000: MinorExecute: system.cpu.execute: Can't issue as FU: 1 isn't capable
  12087. 132000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/2/3.3 pc: 0x400080 (ldr) to FU: 2
  12088. 132000: MinorExecute: system.cpu.execute: Can't issue as FU: 2 isn't capable
  12089. 132000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/2/3.3 pc: 0x400080 (ldr) to FU: 3
  12090. 132000: MinorExecute: system.cpu.execute: Can't issue as FU: 3 isn't capable
  12091. 132000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/2/3.3 pc: 0x400080 (ldr) to FU: 4
  12092. 132000: MinorExecute: system.cpu.execute: Can't issue as FU: 4 isn't capable
  12093. 132000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/2/3.3 pc: 0x400080 (ldr) to FU: 5
  12094. 132000: MinorExecute: system.cpu.execute: Can't issue as FU: 5 isn't capable
  12095. 132000: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/2/3.3 pc: 0x400080 (ldr) to FU: 6
  12096. 132000: MinorExecute: system.cpu.execute: Issuing inst: 0/1.1/2/3.3 pc: 0x400080 (ldr) into FU 6
  12097. ....
  12098. and then the MOV issue follows soon afterwards (TODO why not at the same time like for the previous pair?):
  12099. ....
  12100. 132500: MinorExecute: system.cpu.execute: Trying to issue inst: 0/1.1/2/4.4 pc: 0x400084 (movz) to FU: 0
  12101. 132500: MinorExecute: system.cpu.execute: Issuing inst: 0/1.1/2/4.4 pc: 0x400084 (movz) into FU 0
  12102. ....
  12103. ====== gem5 event queue MinorCPU syscall emulation freestanding example analysis: hazard
  12104. TODO like <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-hazard>> but with the hazard.
  12105. ===== gem5 event queue DerivO3CPU syscall emulation freestanding example analysis
  12106. Like <<gem5-event-queue-minorcpu-syscall-emulation-freestanding-example-analysis>> but even more complex since for the <<gem5-derivo3cpu>>!
  12107. The key new <<gem5-tracing,debug flag>> is `O3CPUAll`:
  12108. ....
  12109. ./run \
  12110. --arch aarch64 \
  12111. --emulator gem5 \
  12112. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  12113. --trace FmtFlag,Cache,Event,ExecAll,O3CPUAll \
  12114. --trace-stdout \
  12115. -- \
  12116. --cpu-type DerivO3CPU \
  12117. --caches \
  12118. ;
  12119. ....
  12120. The output is huge and contains about 7 thousand lines!!!
  12121. This section and children are tested at LKMC 144a552cf926ea630ef9eadbb22b79fe2468c456.
  12122. ====== gem5 event queue DerivO3CPU syscall emulation freestanding example analysis: hazardless
  12123. Let's have a look at the arguably simplest example link:userland/arch/aarch64/freestanding/linux/hazardless.S[].
  12124. First let's start with a <<gem5-util-o3-pipeview-py-o3-pipeline-viewer>> visualization:
  12125. [[hazardless-o3-pipeline]]
  12126. ----
  12127. // f = fetch, d = decode, n = rename, p = dispatch, i = issue, c = complete, r = retire
  12128. timeline tick pc.upc disasm seq_num
  12129. [.ic.r........................................................................fdn]-( 40000) 0x00400078.0 movz x0, #0, #0 [ 1]
  12130. [.ic.r........................................................................fdn]-( 40000) 0x0040007c.0 movz x1, #1, #0 [ 2]
  12131. [....................fdn.ic.r....................................................]-( 120000) 0x00400080.0 movz x2, #2, #0 [ 3]
  12132. [....................fdn.ic.r....................................................]-( 120000) 0x00400084.0 movz x3, #3, #0 [ 4]
  12133. [....................fdn.ic.r....................................................]-( 120000) 0x00400088.0 movz x4, #4, #0 [ 5]
  12134. [....................fdn.ic.r....................................................]-( 120000) 0x0040008c.0 movz x5, #5, #0 [ 6]
  12135. [....................fdn.ic.r....................................................]-( 120000) 0x00400090.0 movz x6, #6, #0 [ 7]
  12136. [....................fdn.ic.r....................................................]-( 120000) 0x00400094.0 movz x7, #7, #0 [ 8]
  12137. [....................fdn.pic.r...................................................]-( 120000) 0x00400098.0 movz x8, #8, #0 [ 9]
  12138. [....................fdn.pic.r...................................................]-( 120000) 0x0040009c.0 movz x9, #9, #0 [ 10]
  12139. [.....................fdn.ic.r...................................................]-( 120000) 0x004000a0.0 movz x10, #10, #0 [ 11]
  12140. [.....................fdn.ic.r...................................................]-( 120000) 0x004000a4.0 movz x11, #11, #0 [ 12]
  12141. [.....................fdn.ic.r...................................................]-( 120000) 0x004000a8.0 movz x12, #12, #0 [ 13]
  12142. [.....................fdn.ic.r...................................................]-( 120000) 0x004000ac.0 movz x13, #13, #0 [ 14]
  12143. [.....................fdn.pic.r..................................................]-( 120000) 0x004000b0.0 movz x14, #14, #0 [ 15]
  12144. [.....................fdn.pic.r..................................................]-( 120000) 0x004000b4.0 movz x15, #15, #0 [ 16]
  12145. [.....................fdn.pic.r..................................................]-( 120000) 0x004000b8.0 movz x16, #16, #0 [ 17]
  12146. [.....................fdn.pic.r..................................................]-( 120000) 0x004000bc.0 movz x17, #17, #0 [ 18]
  12147. [............................................fdn.ic.r............................]-( 160000) 0x004000c0.0 movz x18, #18, #0 [ 19]
  12148. [............................................fdn.ic.r............................]-( 160000) 0x004000c4.0 movz x19, #19, #0 [ 20]
  12149. [............................................fdn.ic.r............................]-( 160000) 0x004000c8.0 movz x20, #20, #0 [ 21]
  12150. [............................................fdn.ic.r............................]-( 160000) 0x004000cc.0 movz x21, #21, #0 [ 22]
  12151. [............................................fdn.ic.r............................]-( 160000) 0x004000d0.0 movz x22, #22, #0 [ 23]
  12152. [............................................fdn.ic.r............................]-( 160000) 0x004000d4.0 movz x23, #23, #0 [ 24]
  12153. [............................................fdn.pic.r...........................]-( 160000) 0x004000d8.0 movz x24, #24, #0 [ 25]
  12154. [............................................fdn.pic.r...........................]-( 160000) 0x004000dc.0 movz x25, #25, #0 [ 26]
  12155. [.............................................fdn.ic.r...........................]-( 160000) 0x004000e0.0 movz x26, #26, #0 [ 27]
  12156. [.............................................fdn.ic.r...........................]-( 160000) 0x004000e4.0 movz x27, #27, #0 [ 28]
  12157. [.............................................fdn.ic.r...........................]-( 160000) 0x004000e8.0 movz x28, #28, #0 [ 29]
  12158. [.............................................fdn.ic.r...........................]-( 160000) 0x004000ec.0 movz x29, #29, #0 [ 30]
  12159. [.............................................fdn.pic.r..........................]-( 160000) 0x004000f0.0 movz x0, #0, #0 [ 31]
  12160. [.............................................fdn.pic.r..........................]-( 160000) 0x004000f4.0 movz x1, #1, #0 [ 32]
  12161. [.............................................fdn.pic.r..........................]-( 160000) 0x004000f8.0 movz x2, #2, #0 [ 33]
  12162. [.............................................fdn.pic.r..........................]-( 160000) 0x004000fc.0 movz x3, #3, #0 [ 34]
  12163. ----
  12164. The first of instructions has only two instructions because the first instruction is at address 0x400078, so only two instructions fit on that cache line, as the next cache line starts at 0x400080!
  12165. The initial `fdn` on top middle is likely bugged out, did it wrap around? But the rest makes sense.
  12166. From this, we clearly see that up to 8 instructions can be issued concurrently, which matches the default width values we had seen at <<gem5-derivo3cpu>>.
  12167. For example, we can clearly see how:
  12168. * `movz x2` through to `movz x9` start running at the exact same time. TODO why does `mov x7` do `fdn.ic.r` while `mov x8` do `fdn.ic.r`? How are they different?
  12169. * `movz x10` through `movz x17` then starts running one step later. This second chunk is fully pipelined with the first instruction pack
  12170. * then comes a pause while the next fetch comes back. This group of 16 instructions took up the entire 64-byte cacheline that had been read
  12171. First we can have a look at `ExecEnable` to get an initial ideal of how many instructions are run at one time:
  12172. ....
  12173. 78500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 FetchSeq=1 CPSeq=1 flags=(IsInteger)
  12174. 78500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+4 : movz x1, #1, #0 : IntAlu : D=0x0000000000000001 FetchSeq=2 CPSeq=2 flags=(IsInteger)
  12175. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : movz x2, #2, #0 : IntAlu : D=0x0000000000000002 FetchSeq=3 CPSeq=3 flags=(IsInteger)
  12176. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x3, #3, #0 : IntAlu : D=0x0000000000000003 FetchSeq=4 CPSeq=4 flags=(IsInteger)
  12177. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+16 : movz x4, #4, #0 : IntAlu : D=0x0000000000000004 FetchSeq=5 CPSeq=5 flags=(IsInteger)
  12178. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+20 : movz x5, #5, #0 : IntAlu : D=0x0000000000000005 FetchSeq=6 CPSeq=6 flags=(IsInteger)
  12179. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+24 : movz x6, #6, #0 : IntAlu : D=0x0000000000000006 FetchSeq=7 CPSeq=7 flags=(IsInteger)
  12180. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+28 : movz x7, #7, #0 : IntAlu : D=0x0000000000000007 FetchSeq=8 CPSeq=8 flags=(IsInteger)
  12181. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+32 : movz x8, #8, #0 : IntAlu : D=0x0000000000000008 FetchSeq=9 CPSeq=9 flags=(IsInteger)
  12182. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+36 : movz x9, #9, #0 : IntAlu : D=0x0000000000000009 FetchSeq=10 CPSeq=10 flags=(IsInteger)
  12183. 130500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+40 : movz x10, #10, #0 : IntAlu : D=0x000000000000000a FetchSeq=11 CPSeq=11 flags=(IsInteger)
  12184. 130500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+44 : movz x11, #11, #0 : IntAlu : D=0x000000000000000b FetchSeq=12 CPSeq=12 flags=(IsInteger)
  12185. 130500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+48 : movz x12, #12, #0 : IntAlu : D=0x000000000000000c FetchSeq=13 CPSeq=13 flags=(IsInteger)
  12186. 130500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+52 : movz x13, #13, #0 : IntAlu : D=0x000000000000000d FetchSeq=14 CPSeq=14 flags=(IsInteger)
  12187. 130500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+56 : movz x14, #14, #0 : IntAlu : D=0x000000000000000e FetchSeq=15 CPSeq=15 flags=(IsInteger)
  12188. 130500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+60 : movz x15, #15, #0 : IntAlu : D=0x000000000000000f FetchSeq=16 CPSeq=16 flags=(IsInteger)
  12189. 130500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+64 : movz x16, #16, #0 : IntAlu : D=0x0000000000000010 FetchSeq=17 CPSeq=17 flags=(IsInteger)
  12190. 130500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+68 : movz x17, #17, #0 : IntAlu : D=0x0000000000000011 FetchSeq=18 CPSeq=18 flags=(IsInteger)
  12191. ....
  12192. This suggests 8, but remember that `ExecEnable` shows issue time labels, which do not coincide necessarily with commit times. As we saw in the pipeline viewer above, instructions 9 and 10 have one extra stage.
  12193. After the initial two execs from the first cache line, the full commit log chunk around the first group of six `ExecEnable`s looks like:
  12194. ....
  12195. 133500: Commit: system.cpu.commit: Getting instructions from Rename stage.
  12196. 133500: Commit: system.cpu.commit: Trying to commit instructions in the ROB.
  12197. 133500: Commit: system.cpu.commit: Trying to commit head instruction, [tid:0] [sn:3]
  12198. 133500: Commit: system.cpu.commit: [tid:0] [sn:3] Committing instruction with PC (0x400080=>0x400084).(0=>1)
  12199. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+8 : movz x2, #2, #0 : IntAlu : D=0x0000000000000002 FetchSeq=3 CPSeq=3 flags=(IsInteger)
  12200. 133500: ROB: system.cpu.rob: [tid:0] Retiring head instruction, instruction PC (0x400080=>0x400084).(0=>1), [sn:3]
  12201. 133500: O3CPU: system.cpu: Removing committed instruction [tid:0] PC (0x400080=>0x400084).(0=>1) [sn:3]
  12202. 133500: Commit: system.cpu.commit: Trying to commit head instruction, [tid:0] [sn:4]
  12203. 133500: Commit: system.cpu.commit: [tid:0] [sn:4] Committing instruction with PC (0x400084=>0x400088).(0=>1)
  12204. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+12 : movz x3, #3, #0 : IntAlu : D=0x0000000000000003 FetchSeq=4 CPSeq=4 flags=(IsInteger)
  12205. 133500: ROB: system.cpu.rob: [tid:0] Retiring head instruction, instruction PC (0x400084=>0x400088).(0=>1), [sn:4]
  12206. 133500: O3CPU: system.cpu: Removing committed instruction [tid:0] PC (0x400084=>0x400088).(0=>1) [sn:4]
  12207. 133500: Commit: system.cpu.commit: Trying to commit head instruction, [tid:0] [sn:5]
  12208. 133500: Commit: system.cpu.commit: [tid:0] [sn:5] Committing instruction with PC (0x400088=>0x40008c).(0=>1)
  12209. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+16 : movz x4, #4, #0 : IntAlu : D=0x0000000000000004 FetchSeq=5 CPSeq=5 flags=(IsInteger)
  12210. 133500: ROB: system.cpu.rob: [tid:0] Retiring head instruction, instruction PC (0x400088=>0x40008c).(0=>1), [sn:5]
  12211. 133500: O3CPU: system.cpu: Removing committed instruction [tid:0] PC (0x400088=>0x40008c).(0=>1) [sn:5]
  12212. 133500: Commit: system.cpu.commit: Trying to commit head instruction, [tid:0] [sn:6]
  12213. 133500: Commit: system.cpu.commit: [tid:0] [sn:6] Committing instruction with PC (0x40008c=>0x400090).(0=>1)
  12214. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+20 : movz x5, #5, #0 : IntAlu : D=0x0000000000000005 FetchSeq=6 CPSeq=6 flags=(IsInteger)
  12215. 133500: ROB: system.cpu.rob: [tid:0] Retiring head instruction, instruction PC (0x40008c=>0x400090).(0=>1), [sn:6]
  12216. 133500: O3CPU: system.cpu: Removing committed instruction [tid:0] PC (0x40008c=>0x400090).(0=>1) [sn:6]
  12217. 133500: Commit: system.cpu.commit: Trying to commit head instruction, [tid:0] [sn:7]
  12218. 133500: Commit: system.cpu.commit: [tid:0] [sn:7] Committing instruction with PC (0x400090=>0x400094).(0=>1)
  12219. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+24 : movz x6, #6, #0 : IntAlu : D=0x0000000000000006 FetchSeq=7 CPSeq=7 flags=(IsInteger)
  12220. 133500: ROB: system.cpu.rob: [tid:0] Retiring head instruction, instruction PC (0x400090=>0x400094).(0=>1), [sn:7]
  12221. 133500: O3CPU: system.cpu: Removing committed instruction [tid:0] PC (0x400090=>0x400094).(0=>1) [sn:7]
  12222. 133500: Commit: system.cpu.commit: Trying to commit head instruction, [tid:0] [sn:8]
  12223. 133500: Commit: system.cpu.commit: [tid:0] [sn:8] Committing instruction with PC (0x400094=>0x400098).(0=>1)
  12224. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+28 : movz x7, #7, #0 : IntAlu : D=0x0000000000000007 FetchSeq=8 CPSeq=8 flags=(IsInteger)
  12225. 133500: ROB: system.cpu.rob: [tid:0] Retiring head instruction, instruction PC (0x400094=>0x400098).(0=>1), [sn:8]
  12226. 133500: O3CPU: system.cpu: Removing committed instruction [tid:0] PC (0x400094=>0x400098).(0=>1) [sn:8]
  12227. 133500: Commit: system.cpu.commit: [tid:0] Marking PC (0x400098=>0x40009c).(0=>1), [sn:9] ready within ROB.
  12228. 133500: Commit: system.cpu.commit: [tid:0] Marking PC (0x40009c=>0x4000a0).(0=>1), [sn:10] ready within ROB.
  12229. 133500: Commit: system.cpu.commit: [tid:0] Marking PC (0x4000a0=>0x4000a4).(0=>1), [sn:11] ready within ROB.
  12230. 133500: Commit: system.cpu.commit: [tid:0] Marking PC (0x4000a4=>0x4000a8).(0=>1), [sn:12] ready within ROB.
  12231. 133500: Commit: system.cpu.commit: [tid:0] Marking PC (0x4000a8=>0x4000ac).(0=>1), [sn:13] ready within ROB.
  12232. 133500: Commit: system.cpu.commit: [tid:0] Marking PC (0x4000ac=>0x4000b0).(0=>1), [sn:14] ready within ROB.
  12233. 133500: Commit: system.cpu.commit: [tid:0] Instruction [sn:9] PC (0x400098=>0x40009c).(0=>1) is head of ROB and ready to commit
  12234. 133500: Commit: system.cpu.commit: [tid:0] ROB has 10 insts & 182 free entries.
  12235. ....
  12236. `ROB` stands for <<re-order-buffer>>.
  12237. `0x400080=>0x400084` is an old/new PC address of the first committed instruction.
  12238. Another thing we can do, it to try to follow one of the instructions back as it goes through the pipeline. Searching for example for the address `0x400080`, we find:
  12239. The first mention of the address happens when is the fetch of the two initial instructions completes. TODO not sure why it doesn't just also fetch the next cache line at the same time:
  12240. ....
  12241. FullO3CPU: Ticking main, FullO3CPU.
  12242. 78500: Fetch: system.cpu.fetch: Running stage.
  12243. 78500: Fetch: system.cpu.fetch: Attempting to fetch from [tid:0]
  12244. 78500: Fetch: system.cpu.fetch: [tid:0] Icache miss is complete.
  12245. 78500: Fetch: system.cpu.fetch: [tid:0] Adding instructions to queue to decode.
  12246. 78500: DynInst: global: DynInst: [sn:1] Instruction created. Instcount for system.cpu = 1
  12247. 78500: Fetch: system.cpu.fetch: [tid:0] Instruction PC 0x400078 (0) created [sn:1].
  12248. 78500: Fetch: system.cpu.fetch: [tid:0] Instruction is: movz x0, #0, #0
  12249. 78500: Fetch: system.cpu.fetch: [tid:0] Fetch queue entry created (1/32).
  12250. 78500: DynInst: global: DynInst: [sn:2] Instruction created. Instcount for system.cpu = 2
  12251. 78500: Fetch: system.cpu.fetch: [tid:0] Instruction PC 0x40007c (0) created [sn:2].
  12252. 78500: Fetch: system.cpu.fetch: [tid:0] Instruction is: movz x1, #1, #0
  12253. 78500: Fetch: system.cpu.fetch: [tid:0] Fetch queue entry created (2/32).
  12254. 78500: Fetch: system.cpu.fetch: [tid:0] Issuing a pipelined I-cache access, starting at PC (0x400080=>0x400084).(0=>1).
  12255. 78500: Fetch: system.cpu.fetch: [tid:0] Fetching cache line 0x400080 for addr 0x400080
  12256. ....
  12257. so we observe that the first two instructions arrived, and the CPU noticed that 0x400080 hasn't been fetched yet.
  12258. Then for several cycles that follow, the fetch stage just says that it is blocked on data returning:
  12259. ....
  12260. FullO3CPU: Ticking main, FullO3CPU.
  12261. 79000: Fetch: system.cpu.fetch: Running stage.
  12262. 79000: Fetch: system.cpu.fetch: There are no more threads available to fetch from.
  12263. 79000: Fetch: system.cpu.fetch: [tid:0] Fetch is waiting cache response!
  12264. ....
  12265. At the same time, the execution of the initial 2 instructions progresses through the pipeline.
  12266. These progress up until:
  12267. ....
  12268. 88000: O3CPU: system.cpu: Idle!
  12269. ....
  12270. at which point there are no more events scheduled besides waiting for the second cache line to come back.
  12271. After this, some time passes without events, and the next tick happens when the fetch data returns:
  12272. ....
  12273. FullO3CPU: Ticking main, FullO3CPU.
  12274. 130000: Fetch: system.cpu.fetch: Running stage.
  12275. 130000: Fetch: system.cpu.fetch: Attempting to fetch from [tid:0]
  12276. 130000: Fetch: system.cpu.fetch: [tid:0] Icache miss is complete.
  12277. 130000: Fetch: system.cpu.fetch: [tid:0] Adding instructions to queue to decode.
  12278. 130000: DynInst: global: DynInst: [sn:3] Instruction created. Instcount for system.cpu = 1
  12279. 130000: Fetch: system.cpu.fetch: [tid:0] Instruction PC 0x400080 (0) created [sn:3].
  12280. 130000: Fetch: system.cpu.fetch: [tid:0] Instruction is: movz x2, #2, #0
  12281. 130000: Fetch: system.cpu.fetch: [tid:0] Fetch queue entry created (1/32).
  12282. 130000: DynInst: global: DynInst: [sn:4] Instruction created. Instcount for system.cpu = 2
  12283. 130000: Fetch: system.cpu.fetch: [tid:0] Instruction PC 0x400084 (0) created [sn:4].
  12284. 130000: Fetch: system.cpu.fetch: [tid:0] Instruction is: movz x3, #3, #0
  12285. 130000: Fetch: system.cpu.fetch: [tid:0] Fetch queue entry created (2/32).
  12286. 130000: DynInst: global: DynInst: [sn:5] Instruction created. Instcount for system.cpu = 3
  12287. ....
  12288. ====== gem5 event queue DerivO3CPU syscall emulation freestanding example analysis: hazard
  12289. Now let's do the same as in <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-hazardless>> but with a hazard: link:userland/arch/aarch64/freestanding/linux/hazard.S[].
  12290. ....
  12291. // f = fetch, d = decode, n = rename, p = dispatch, i = issue, c = complete, r = retire
  12292. timeline tick pc.upc disasm seq_num
  12293. [.ic.r........................................................................fdn]-( 40000) 0x00400078.0 movz x0, #0, #0 [ 1]
  12294. [.ic.r........................................................................fdn]-( 40000) 0x0040007c.0 movz x1, #1, #0 [ 2]
  12295. [....................fdn.ic.r....................................................]-( 120000) 0x00400080.0 movz x2, #2, #0 [ 3]
  12296. [....................fdn.pic.r...................................................]-( 120000) 0x00400084.0 add x3, x2, #1 [ 4]
  12297. [....................fdn.ic..r...................................................]-( 120000) 0x00400088.0 movz x4, #4, #0 [ 5]
  12298. [....................fdn.ic..r...................................................]-( 120000) 0x0040008c.0 movz x5, #5, #0 [ 6]
  12299. [....................fdn.ic..r...................................................]-( 120000) 0x00400090.0 movz x6, #6, #0 [ 7]
  12300. [....................fdn.ic..r...................................................]-( 120000) 0x00400094.0 movz x7, #7, #0 [ 8]
  12301. [....................fdn.ic..r...................................................]-( 120000) 0x00400098.0 movz x8, #8, #0 [ 9]
  12302. [....................fdn.pic.r...................................................]-( 120000) 0x0040009c.0 movz x9, #9, #0 [ 10]
  12303. [.....................fdn.ic.r...................................................]-( 120000) 0x004000a0.0 movz x10, #10, #0 [ 11]
  12304. [.....................fdn.ic..r..................................................]-( 120000) 0x004000a4.0 movz x11, #11, #0 [ 12]
  12305. [.....................fdn.ic..r..................................................]-( 120000) 0x004000a8.0 movz x12, #12, #0 [ 13]
  12306. [.....................fdn.ic..r..................................................]-( 120000) 0x004000ac.0 movz x13, #13, #0 [ 14]
  12307. [.....................fdn.pic.r..................................................]-( 120000) 0x004000b0.0 movz x14, #14, #0 [ 15]
  12308. [.....................fdn.pic.r..................................................]-( 120000) 0x004000b4.0 movz x15, #15, #0 [ 16]
  12309. [.....................fdn.pic.r..................................................]-( 120000) 0x004000b8.0 movz x16, #16, #0 [ 17]
  12310. [.....................fdn.pic.r..................................................]-( 120000) 0x004000bc.0 movz x17, #17, #0 [ 18]
  12311. [............................................fdn.ic.r............................]-( 160000) 0x004000c0.0 movz x18, #18, #0 [ 19]
  12312. [............................................fdn.ic.r............................]-( 160000) 0x004000c4.0 movz x19, #19, #0 [ 20]
  12313. [............................................fdn.ic.r............................]-( 160000) 0x004000c8.0 movz x20, #20, #0 [ 21]
  12314. [............................................fdn.ic.r............................]-( 160000) 0x004000cc.0 movz x21, #21, #0 [ 22]
  12315. [............................................fdn.ic.r............................]-( 160000) 0x004000d0.0 movz x22, #22, #0 [ 23]
  12316. [............................................fdn.ic.r............................]-( 160000) 0x004000d4.0 movz x23, #23, #0 [ 24]
  12317. [............................................fdn.pic.r...........................]-( 160000) 0x004000d8.0 movz x24, #24, #0 [ 25]
  12318. [............................................fdn.pic.r...........................]-( 160000) 0x004000dc.0 movz x25, #25, #0 [ 26]
  12319. [.............................................fdn.ic.r...........................]-( 160000) 0x004000e0.0 movz x0, #0, #0 [ 27]
  12320. [.............................................fdn.ic.r...........................]-( 160000) 0x004000e4.0 movz x8, #93, #0 [ 28]
  12321. ....
  12322. TODO understand how the hazard happens in detail.
  12323. ====== gem5 event queue DerivO3CPU syscall emulation freestanding example analysis: hazard4
  12324. Like <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-hazard>> but a hazard of depth 4: link:userland/arch/aarch64/freestanding/linux/hazard.S[].
  12325. ....
  12326. // f = fetch, d = decode, n = rename, p = dispatch, i = issue, c = complete, r = retire
  12327. timeline tick pc.upc disasm seq_num
  12328. [.ic.r........................................................................fdn]-( 40000) 0x00400078.0 movz x0, #0, #0 [ 1]
  12329. [.ic.r........................................................................fdn]-( 40000) 0x0040007c.0 movz x1, #1, #0 [ 2]
  12330. [....................fdn.ic.r....................................................]-( 120000) 0x00400080.0 movz x2, #2, #0 [ 3]
  12331. [....................fdn.pic.r...................................................]-( 120000) 0x00400084.0 add x3, x2, #1 [ 4]
  12332. [....................fdn.p.ic.r..................................................]-( 120000) 0x00400088.0 add x4, x3, #1 [ 5]
  12333. [....................fdn.p..ic.r.................................................]-( 120000) 0x0040008c.0 add x5, x4, #1 [ 6]
  12334. [....................fdn.p...ic.r................................................]-( 120000) 0x00400090.0 add x6, x5, #1 [ 7]
  12335. [....................fdn.ic.....r................................................]-( 120000) 0x00400094.0 movz x7, #7, #0 [ 8]
  12336. [....................fdn.ic.....r................................................]-( 120000) 0x00400098.0 movz x8, #8, #0 [ 9]
  12337. [....................fdn.ic.....r................................................]-( 120000) 0x0040009c.0 movz x9, #9, #0 [ 10]
  12338. [.....................fdn.ic....r................................................]-( 120000) 0x004000a0.0 movz x10, #10, #0 [ 11]
  12339. [.....................fdn.ic....r................................................]-( 120000) 0x004000a4.0 movz x11, #11, #0 [ 12]
  12340. [.....................fdn.ic....r................................................]-( 120000) 0x004000a8.0 movz x12, #12, #0 [ 13]
  12341. [.....................fdn.ic....r................................................]-( 120000) 0x004000ac.0 movz x13, #13, #0 [ 14]
  12342. [.....................fdn.ic.....r...............................................]-( 120000) 0x004000b0.0 movz x14, #14, #0 [ 15]
  12343. [.....................fdn.pic....r...............................................]-( 120000) 0x004000b4.0 movz x15, #15, #0 [ 16]
  12344. [.....................fdn.pic....r...............................................]-( 120000) 0x004000b8.0 movz x16, #16, #0 [ 17]
  12345. [.....................fdn.pic....r...............................................]-( 120000) 0x004000bc.0 movz x17, #17, #0 [ 18]
  12346. [............................................fdn.ic.r............................]-( 160000) 0x004000c0.0 movz x18, #18, #0 [ 19]
  12347. [............................................fdn.ic.r............................]-( 160000) 0x004000c4.0 movz x19, #19, #0 [ 20]
  12348. [............................................fdn.ic.r............................]-( 160000) 0x004000c8.0 movz x20, #20, #0 [ 21]
  12349. [............................................fdn.ic.r............................]-( 160000) 0x004000cc.0 movz x21, #21, #0 [ 22]
  12350. [............................................fdn.ic.r............................]-( 160000) 0x004000d0.0 movz x22, #22, #0 [ 23]
  12351. [............................................fdn.ic.r............................]-( 160000) 0x004000d4.0 movz x23, #23, #0 [ 24]
  12352. [............................................fdn.pic.r...........................]-( 160000) 0x004000d8.0 movz x24, #24, #0 [ 25]
  12353. [............................................fdn.pic.r...........................]-( 160000) 0x004000dc.0 movz x25, #25, #0 [ 26]
  12354. [.............................................fdn.ic.r...........................]-( 160000) 0x004000e0.0 movz x0, #0, #0 [ 27]
  12355. [.............................................fdn.ic.r...........................]-( 160000) 0x004000e4.0 movz x8, #93, #0 [ 28]
  12356. ....
  12357. ====== gem5 event queue DerivO3CPU syscall emulation freestanding example analysis: stall
  12358. Like <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-hazard>> but now with an LDR stall: link:userland/arch/aarch64/freestanding/linux/stall.S[].
  12359. We can see here that:
  12360. * the addition of a data section entry changed our previous address setup a bit, the entry point was now 0x004000b0 which fits 4 instructions in the cacheline instead of 2
  12361. * the <<arm-ldr-instruction,LDR>> happens to be the fourth instruction, so it takes a long time to retire. The time is about 40k ticks, which is about the same time it takes for the instruction fetch as expected.
  12362. * fetch does not continue past the LDR, and so nothing is gained in this particular example, since the next instructions haven't been fetched from memory yet!
  12363. ....
  12364. // f = fetch, d = decode, n = rename, p = dispatch, i = issue, c = complete, r = retire
  12365. timeline tick pc.upc disasm seq_num
  12366. [.ic.r........................................................................fdn]-( 40000) 0x004000b0.0 movz x0, #0, #0 [ 1]
  12367. [.ic.r........................................................................fdn]-( 40000) 0x004000b4.0 movz x1, #1, #0 [ 2]
  12368. [.ic.r........................................................................fdn]-( 40000) 0x004000b8.0 adr x2, #65780 [ 3]
  12369. [.............................................................................fdn]-( 40000) 0x004000bc.0 ldr x3, [x2] [ 4]
  12370. [.pic............................................................................]-( 80000) ...
  12371. [................................r...............................................]-( 120000) ...
  12372. [....................fdn.ic......r...............................................]-( 120000) 0x004000c0.0 movz x4, #4, #0 [ 5]
  12373. [....................fdn.ic......r...............................................]-( 120000) 0x004000c4.0 movz x5, #5, #0 [ 6]
  12374. [....................fdn.ic......r...............................................]-( 120000) 0x004000c8.0 movz x6, #6, #0 [ 7]
  12375. [....................fdn.ic......r...............................................]-( 120000) 0x004000cc.0 movz x7, #7, #0 [ 8]
  12376. [....................fdn.ic......r...............................................]-( 120000) 0x004000d0.0 movz x8, #8, #0 [ 9]
  12377. [....................fdn.ic......r...............................................]-( 120000) 0x004000d4.0 movz x9, #9, #0 [ 10]
  12378. [....................fdn.pic.....r...............................................]-( 120000) 0x004000d8.0 movz x10, #10, #0 [ 11]
  12379. [....................fdn.pic......r..............................................]-( 120000) 0x004000dc.0 movz x11, #11, #0 [ 12]
  12380. [.....................fdn.ic......r..............................................]-( 120000) 0x004000e0.0 movz x12, #12, #0 [ 13]
  12381. [.....................fdn.ic......r..............................................]-( 120000) 0x004000e4.0 movz x13, #13, #0 [ 14]
  12382. [.....................fdn.ic......r..............................................]-( 120000) 0x004000e8.0 movz x14, #14, #0 [ 15]
  12383. [.....................fdn.ic......r..............................................]-( 120000) 0x004000ec.0 movz x15, #15, #0 [ 16]
  12384. [.....................fdn.pic.....r..............................................]-( 120000) 0x004000f0.0 movz x16, #16, #0 [ 17]
  12385. [.....................fdn.pic.....r..............................................]-( 120000) 0x004000f4.0 movz x17, #17, #0 [ 18]
  12386. [.....................fdn.pic.....r..............................................]-( 120000) 0x004000f8.0 movz x18, #18, #0 [ 19]
  12387. [.....................fdn.pic......r.............................................]-( 120000) 0x004000fc.0 movz x19, #19, #0 [ 20]
  12388. ....
  12389. [[gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-stall-gain]]
  12390. ====== gem5 event queue DerivO3CPU syscall emulation freestanding example analysis: stall_gain
  12391. Like <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-stall>> but now with an LDR stall: link:userland/arch/aarch64/freestanding/linux/stall_gain.S[].
  12392. So in this case we see that there were actual potential gains, since the `movz x11` started running immediately. We just stopped at `movz x20` because a new ifetch was needed.
  12393. ....
  12394. // f = fetch, d = decode, n = rename, p = dispatch, i = issue, c = complete, r = retire
  12395. timeline tick pc.upc disasm seq_num
  12396. [.ic.r........................................................................fdn]-( 40000) 0x004000b0.0 movz x0, #0, #0 [ 1]
  12397. [.ic.r........................................................................fdn]-( 40000) 0x004000b4.0 movz x1, #1, #0 [ 2]
  12398. [.ic.r........................................................................fdn]-( 40000) 0x004000b8.0 movz x2, #4, #0 [ 3]
  12399. [.ic.r........................................................................fdn]-( 40000) 0x004000bc.0 movz x3, #5, #0 [ 4]
  12400. [....................fdn.ic.r....................................................]-( 120000) 0x004000c0.0 adr x4, #65772 [ 5]
  12401. [....................fdn.pic.....................................................]-( 120000) 0x004000c4.0 ldr x5, [x4] [ 6]
  12402. [........................................................r.......................]-( 160000) ...
  12403. [....................fdn.ic......................................................]-( 120000) 0x004000c8.0 movz x6, #6, #0 [ 7]
  12404. [........................................................r.......................]-( 160000) ...
  12405. [....................fdn.ic......................................................]-( 120000) 0x004000cc.0 movz x7, #7, #0 [ 8]
  12406. [........................................................r.......................]-( 160000) ...
  12407. [....................fdn.ic......................................................]-( 120000) 0x004000d0.0 movz x8, #8, #0 [ 9]
  12408. [........................................................r.......................]-( 160000) ...
  12409. [....................fdn.ic......................................................]-( 120000) 0x004000d4.0 movz x9, #9, #0 [ 10]
  12410. [........................................................r.......................]-( 160000) ...
  12411. [....................fdn.ic......................................................]-( 120000) 0x004000d8.0 movz x10, #10, #0 [ 11]
  12412. [........................................................r.......................]-( 160000) ...
  12413. [....................fdn.pic.....................................................]-( 120000) 0x004000dc.0 movz x11, #11, #0 [ 12]
  12414. [........................................................r.......................]-( 160000) ...
  12415. [.....................fdn.ic.....................................................]-( 120000) 0x004000e0.0 movz x12, #12, #0 [ 13]
  12416. [........................................................r.......................]-( 160000) ...
  12417. [.....................fdn.ic.....................................................]-( 120000) 0x004000e4.0 movz x13, #13, #0 [ 14]
  12418. [.........................................................r......................]-( 160000) ...
  12419. [.....................fdn.ic.....................................................]-( 120000) 0x004000e8.0 movz x14, #14, #0 [ 15]
  12420. [.........................................................r......................]-( 160000) ...
  12421. [.....................fdn.ic.....................................................]-( 120000) 0x004000ec.0 movz x15, #15, #0 [ 16]
  12422. [.........................................................r......................]-( 160000) ...
  12423. [.....................fdn.ic.....................................................]-( 120000) 0x004000f0.0 movz x16, #16, #0 [ 17]
  12424. [.........................................................r......................]-( 160000) ...
  12425. [.....................fdn.pic....................................................]-( 120000) 0x004000f4.0 movz x17, #17, #0 [ 18]
  12426. [.........................................................r......................]-( 160000) ...
  12427. [.....................fdn.pic....................................................]-( 120000) 0x004000f8.0 movz x18, #18, #0 [ 19]
  12428. [.........................................................r......................]-( 160000) ...
  12429. [.....................fdn.pic....................................................]-( 120000) 0x004000fc.0 movz x19, #19, #0 [ 20]
  12430. [.........................................................r......................]-( 160000) ...
  12431. [............................................fdn.ic.......r......................]-( 160000) 0x00400100.0 movz x20, #20, #0 [ 21]
  12432. [............................................fdn.ic........r.....................]-( 160000) 0x00400104.0 movz x21, #21, #0 [ 22]
  12433. [............................................fdn.ic........r.....................]-( 160000) 0x00400108.0 movz x22, #22, #0 [ 23]
  12434. [............................................fdn.ic........r.....................]-( 160000) 0x0040010c.0 movz x23, #23, #0 [ 24]
  12435. [............................................fdn.ic........r.....................]-( 160000) 0x00400110.0 movz x24, #24, #0 [ 25]
  12436. [............................................fdn.ic........r.....................]-( 160000) 0x00400114.0 movz x25, #25, #0 [ 26]
  12437. [............................................fdn.pic.......r.....................]-( 160000) 0x00400118.0 movz x26, #26, #0 [ 27]
  12438. [............................................fdn.pic.......r.....................]-( 160000) 0x0040011c.0 movz x27, #27, #0 [ 28]
  12439. [.............................................fdn.ic.......r.....................]-( 160000) 0x00400120.0 movz x28, #28, #0 [ 29]
  12440. [.............................................fdn.ic........r....................]-( 160000) 0x00400124.0 movz x29, #29, #0 [ 30]
  12441. [.............................................fdn.ic........r....................]-( 160000) 0x00400128.0 movz x0, #0, #0 [ 31]
  12442. [.............................................fdn.ic........r....................]-( 160000) 0x0040012c.0 movz x1, #1, #0 [ 32]
  12443. [.............................................fdn.pic.......r....................]-( 160000) 0x00400130.0 movz x2, #2, #0 [ 33]
  12444. [.............................................fdn.pic.......r....................]-( 160000) 0x00400134.0 movz x3, #3, #0 [ 34]
  12445. [.............................................fdn.pic.......r....................]-( 160000) 0x00400138.0 movz x4, #4, #0 [ 35]
  12446. [.............................................fdn.pic.......r....................]-( 160000) 0x0040013c.0 movz x5, #5, #0 [ 36]
  12447. ....
  12448. We now also understand the graph better from lines such as this:
  12449. ....
  12450. [....................fdn.pic.....................................................]-( 120000) 0x004000c4.0 ldr x5, [x4] [ 6]
  12451. [........................................................r.......................]-( 160000) ...
  12452. [....................fdn.ic......................................................]-( 120000) 0x004000c8.0 movz x6, #6, #0 [ 7]
  12453. [........................................................r.......................]-( 160000) ...
  12454. ....
  12455. We see that extra lines are drawn (the `160000 ... lines` here) whenever something stalls for a period longer than the width of the visualisation.
  12456. Things are still relatively readable because the wrapping aligns them with events that actually happened on that line directly e.g. `160000) 0x00400100.0 movz x20, #20, #0.`.
  12457. But from this we kind of see the need for: <<gem5-konata-o3-pipeline-viewer>>.
  12458. [[gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-stall-hazard4]]
  12459. ====== gem5 event queue DerivO3CPU syscall emulation freestanding example analysis: stall_hazard4
  12460. Like <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-stall-gain>> but now with some dependencies after the LDR: link:userland/arch/aarch64/freestanding/linux/stall_hazard4.S[].
  12461. So in this case the `ic` of dependencies like `add x6, x5, #1` have to wait until the LDR is finished:
  12462. ....
  12463. // f = fetch, d = decode, n = rename, p = dispatch, i = issue, c = complete, r = retire
  12464. timeline tick pc.upc disasm seq_num
  12465. [.ic.r........................................................................fdn]-( 40000) 0x004000b0.0 movz x0, #0, #0 [ 1]
  12466. [.ic.r........................................................................fdn]-( 40000) 0x004000b4.0 movz x1, #1, #0 [ 2]
  12467. [.ic.r........................................................................fdn]-( 40000) 0x004000b8.0 movz x2, #4, #0 [ 3]
  12468. [.ic.r........................................................................fdn]-( 40000) 0x004000bc.0 movz x3, #5, #0 [ 4]
  12469. [....................fdn.ic.r....................................................]-( 120000) 0x004000c0.0 adr x4, #65772 [ 5]
  12470. [....................fdn.pic.....................................................]-( 120000) 0x004000c4.0 ldr x5, [x4] [ 6]
  12471. [........................................................r.......................]-( 160000) ...
  12472. [....................fdn.p.......................................................]-( 120000) 0x004000c8.0 add x6, x5, #1 [ 7]
  12473. [......................................................ic.r......................]-( 160000) ...
  12474. [....................fdn.p.......................................................]-( 120000) 0x004000cc.0 add x7, x6, #1 [ 8]
  12475. [.......................................................ic.r.....................]-( 160000) ...
  12476. [....................fdn.p.......................................................]-( 120000) 0x004000d0.0 add x8, x7, #1 [ 9]
  12477. [........................................................ic.r....................]-( 160000) ...
  12478. [....................fdn.p.......................................................]-( 120000) 0x004000d4.0 add x9, x8, #1 [ 10]
  12479. [.........................................................ic.r...................]-( 160000) ...
  12480. [....................fdn.ic......................................................]-( 120000) 0x004000d8.0 movz x10, #10, #0 [ 11]
  12481. [............................................................r...................]-( 160000) ...
  12482. [....................fdn.ic......................................................]-( 120000) 0x004000dc.0 movz x11, #11, #0 [ 12]
  12483. [............................................................r...................]-( 160000) ...
  12484. [.....................fdn.ic.....................................................]-( 120000) 0x004000e0.0 movz x12, #12, #0 [ 13]
  12485. [............................................................r...................]-( 160000) ...
  12486. [.....................fdn.ic.....................................................]-( 120000) 0x004000e4.0 movz x13, #13, #0 [ 14]
  12487. [............................................................r...................]-( 160000) ...
  12488. [.....................fdn.ic.....................................................]-( 120000) 0x004000e8.0 movz x14, #14, #0 [ 15]
  12489. [............................................................r...................]-( 160000) ...
  12490. [.....................fdn.ic.....................................................]-( 120000) 0x004000ec.0 movz x15, #15, #0 [ 16]
  12491. [............................................................r...................]-( 160000) ...
  12492. [.....................fdn.ic.....................................................]-( 120000) 0x004000f0.0 movz x16, #16, #0 [ 17]
  12493. [............................................................r...................]-( 160000) ...
  12494. [.....................fdn.ic.....................................................]-( 120000) 0x004000f4.0 movz x17, #17, #0 [ 18]
  12495. [.............................................................r..................]-( 160000) ...
  12496. [.....................fdn.pic....................................................]-( 120000) 0x004000f8.0 movz x18, #18, #0 [ 19]
  12497. [.............................................................r..................]-( 160000) ...
  12498. [.....................fdn.pic....................................................]-( 120000) 0x004000fc.0 movz x19, #19, #0 [ 20]
  12499. [.............................................................r..................]-( 160000) ...
  12500. [............................................fdn.ic...........r..................]-( 160000) 0x00400100.0 movz x20, #20, #0 [ 21]
  12501. [............................................fdn.ic...........r..................]-( 160000) 0x00400104.0 movz x21, #21, #0 [ 22]
  12502. [............................................fdn.ic...........r..................]-( 160000) 0x00400108.0 movz x22, #22, #0 [ 23]
  12503. [............................................fdn.ic...........r..................]-( 160000) 0x0040010c.0 movz x23, #23, #0 [ 24]
  12504. [............................................fdn.ic...........r..................]-( 160000) 0x00400110.0 movz x24, #24, #0 [ 25]
  12505. [............................................fdn.ic............r.................]-( 160000) 0x00400114.0 movz x25, #25, #0 [ 26]
  12506. [............................................fdn.pic...........r.................]-( 160000) 0x00400118.0 movz x26, #26, #0 [ 27]
  12507. [............................................fdn.pic...........r.................]-( 160000) 0x0040011c.0 movz x27, #27, #0 [ 28]
  12508. [.............................................fdn.ic...........r.................]-( 160000) 0x00400120.0 movz x28, #28, #0 [ 29]
  12509. [.............................................fdn.ic...........r.................]-( 160000) 0x00400124.0 movz x29, #29, #0 [ 30]
  12510. [.............................................fdn.ic...........r.................]-( 160000) 0x00400128.0 movz x0, #0, #0 [ 31]
  12511. [.............................................fdn.ic...........r.................]-( 160000) 0x0040012c.0 movz x1, #1, #0 [ 32]
  12512. [.............................................fdn.pic..........r.................]-( 160000) 0x00400130.0 movz x2, #2, #0 [ 33]
  12513. [.............................................fdn.pic...........r................]-( 160000) 0x00400134.0 movz x3, #3, #0 [ 34]
  12514. [.............................................fdn.pic...........r................]-( 160000) 0x00400138.0 movz x4, #4, #0 [ 35]
  12515. [.............................................fdn.pic...........r................]-( 160000) 0x0040013c.0 movz x5, #5, #0 [ 36]
  12516. ....
  12517. ====== gem5 event queue DerivO3CPU syscall emulation freestanding example analysis: speculative
  12518. Now let's try to see some <<speculative-execution>> in action with link:userland/arch/aarch64/freestanding/linux/speculative.S[].
  12519. That program is setup such that the branch is not taken if an extra CLI argument is passed with `--cli-args`.
  12520. We purposefully set things up so that speculation will be running from the icache so we can see what is going on more clearly without ifetch stalls.
  12521. Without an extra CLI argument (the branch is taken):
  12522. ....
  12523. // f = fetch, d = decode, n = rename, p = dispatch, i = issue, c = complete, r = retire
  12524. timeline tick pc.upc disasm seq_num
  12525. [.............................................................................fdn]-( 40000) 0x00400078.0 ldr x0, [sp] [ 1]
  12526. [.ic.............................................................................]-( 80000) ...
  12527. [................................r...............................................]-( 120000) ...
  12528. [.............................................................................fdn]-( 40000) 0x0040007c.0 movz x1, #1, #0 [ 2]
  12529. [.ic.............................................................................]-( 80000) ...
  12530. [................................r...............................................]-( 120000) ...
  12531. [....................fdn.ic......r...............................................]-( 120000) 0x00400080.0 movz x2, #2, #0 [ 3]
  12532. [....................fdn.ic......r...............................................]-( 120000) 0x00400084.0 movz x3, #3, #0 [ 4]
  12533. [....................fdn.ic......r...............................................]-( 120000) 0x00400088.0 movz x4, #4, #0 [ 5]
  12534. [....................fdn.ic......r...............................................]-( 120000) 0x0040008c.0 movz x5, #5, #0 [ 6]
  12535. [....................fdn.ic......r...............................................]-( 120000) 0x00400090.0 movz x6, #6, #0 [ 7]
  12536. [....................fdn.p.....ic..r.............................................]-( 120000) 0x00400094.0 subs x0, #2 [ 8]
  12537. [....................fdn.ic........r.............................................]-( 120000) 0x00400098.0 movz x0, #3, #0 [ 9]
  12538. [....................fdn.p......ic.r.............................................]-( 120000) 0x0040009c.0 b.lt 0x400080 [ 10]
  12539. [=====================fdn=ic=====================================================]-( 120000) 0x004000a0.0 -----movz x10, #10, #0 [ 11]
  12540. [=====================fdn=ic=====================================================]-( 120000) 0x004000a4.0 -----movz x11, #11, #0 [ 12]
  12541. [=====================fdn=ic=====================================================]-( 120000) 0x004000a8.0 -----movz x12, #12, #0 [ 13]
  12542. [=====================fdn=ic=====================================================]-( 120000) 0x004000ac.0 -----movz x13, #13, #0 [ 14]
  12543. [=====================fdn=ic=====================================================]-( 120000) 0x004000b0.0 -----movz x14, #14, #0 [ 15]
  12544. [=====================fdn=ic=====================================================]-( 120000) 0x004000b4.0 -----movz x15, #15, #0 [ 16]
  12545. [=====================fdn=pic====================================================]-( 120000) 0x004000b8.0 -----movz x16, #16, #0 [ 17]
  12546. [=====================fdn=pic====================================================]-( 120000) 0x004000bc.0 -----movz x17, #17, #0 [ 18]
  12547. [.....................................fdn.ic.r...................................]-( 120000) 0x00400080.0 movz x2, #2, #0 [ 19]
  12548. [.....................................fdn.ic.r...................................]-( 120000) 0x00400084.0 movz x3, #3, #0 [ 20]
  12549. [.....................................fdn.ic.r...................................]-( 120000) 0x00400088.0 movz x4, #4, #0 [ 21]
  12550. [.....................................fdn.ic.r...................................]-( 120000) 0x0040008c.0 movz x5, #5, #0 [ 22]
  12551. [.....................................fdn.ic.r...................................]-( 120000) 0x00400090.0 movz x6, #6, #0 [ 23]
  12552. [.....................................fdn.pic.r..................................]-( 120000) 0x00400098.0 movz x0, #3, #0 [ 25]
  12553. [.....................................fdn.pic.r..................................]-( 120000) 0x0040009c.0 b.lt 0x400080 [ 26]
  12554. [......................................fdn.ic.r..................................]-( 120000) 0x004000a0.0 movz x10, #10, #0 [ 27]
  12555. [......................................fdn.ic.r..................................]-( 120000) 0x004000a4.0 movz x11, #11, #0 [ 28]
  12556. [......................................fdn.ic.r..................................]-( 120000) 0x004000a8.0 movz x12, #12, #0 [ 29]
  12557. [......................................fdn.ic.r..................................]-( 120000) 0x004000ac.0 movz x13, #13, #0 [ 30]
  12558. [......................................fdn.pic.r.................................]-( 120000) 0x004000b0.0 movz x14, #14, #0 [ 31]
  12559. [......................................fdn.pic.r.................................]-( 120000) 0x004000b4.0 movz x15, #15, #0 [ 32]
  12560. [......................................fdn.pic.r.................................]-( 120000) 0x004000b8.0 movz x16, #16, #0 [ 33]
  12561. [......................................fdn.pic.r.................................]-( 120000) 0x004000bc.0 movz x17, #17, #0 [ 34]
  12562. [.............................................fdn.ic.r...........................]-( 160000) 0x004000c0.0 movz x0, #0, #0 [ 35]
  12563. [.............................................fdn.ic.r...........................]-( 160000) 0x004000c4.0 movz x8, #93, #0 [ 36]
  12564. ....
  12565. So here we see that the CPU mispredicted! After the <<arm-branch-instructions,BLT instruction>>, the CPU continued to run `movz x10`, assuming that the branch would not be taken.
  12566. Then, at time 120000, the LDR data came back, after the wrong prediction had already been fully executed.
  12567. The CPU then noticed that it mispredicted, and so it started again from the correct branch target `movz x2`, and the instructions that were thrown away are marked as `=====` in the timeline.
  12568. We can also see some <<branch-predictor>> log lines in the `O3CPUAll` log:
  12569. ....
  12570. 130000: Fetch: system.cpu.fetch: [tid:0] [sn:10] Branch at PC 0x40009c predicted to be not taken
  12571. 130000: Fetch: system.cpu.fetch: [tid:0] [sn:10] Branch at PC 0x40009c predicted to go to (0x4000a0=>0x4000a4).(0=>1)
  12572. 131500: Commit: system.cpu.commit: [tid:10] [sn:0] Inserting PC (0x40009c=>0x4000a0).(0=>1) into ROB.
  12573. 131500: ROB: system.cpu.rob: Adding inst PC (0x40009c=>0x4000a0).(0=>1) to the ROB.
  12574. 131500: ROB: system.cpu.rob: [tid:0] Now has 10 instructions.
  12575. 132000: IEW: system.cpu.iew: [tid:0] Issue: Adding PC (0x40009c=>0x4000a0).(0=>1) [sn:10] [tid:0] to IQ.
  12576. 132000: IQ: system.cpu.iq: Adding instruction [sn:10] PC (0x40009c=>0x4000a0).(0=>1) to the IQ.
  12577. 132000: IQ: system.cpu.iq: Instruction PC (0x40009c=>0x4000a0).(0=>1) has src reg 6 (CCRegClass) that is being added to the dependency chain.
  12578. 132000: IQ: system.cpu.iq: Instruction PC (0x40009c=>0x4000a0).(0=>1) has src reg 8 (CCRegClass) that is being added to the dependency chain.
  12579. 132000: IQ: system.cpu.iq: Instruction PC (0x40009c=>0x4000a0).(0=>1) has src reg 7 (CCRegClass) that is being added to the dependency chain.
  12580. 135500: IQ: system.cpu.iq: Waking up a dependent instruction, [sn:10] PC (0x40009c=>0x4000a0).(0=>1).
  12581. 135500: IQ: global: [sn:10] has 1 ready out of 3 sources. RTI 0)
  12582. 135500: IQ: system.cpu.iq: Waking any dependents on register 7 (CCRegClass).
  12583. 135500: IQ: system.cpu.iq: Waking up a dependent instruction, [sn:10] PC (0x40009c=>0x4000a0).(0=>1).
  12584. 135500: IQ: global: [sn:10] has 2 ready out of 3 sources. RTI 0)
  12585. 135500: IQ: system.cpu.iq: Waking any dependents on register 8 (CCRegClass).
  12586. 135500: IQ: system.cpu.iq: Waking up a dependent instruction, [sn:10] PC (0x40009c=>0x4000a0).(0=>1).
  12587. 135500: IQ: global: [sn:10] has 3 ready out of 3 sources. RTI 0)
  12588. 135500: IQ: system.cpu.iq: Instruction is ready to issue, putting it onto the ready list, PC (0x40009c=>0x4000a0).(0=>1) opclass:1 [sn:10].
  12589. 135500: IEW: system.cpu.iew: Setting Destination Register 6 (CCRegClass)
  12590. 135500: Scoreboard: system.cpu.scoreboard: Setting reg 6 (CCRegClass) as ready
  12591. 135500: IEW: system.cpu.iew: Setting Destination Register 7 (CCRegClass)
  12592. 135500: Scoreboard: system.cpu.scoreboard: Setting reg 7 (CCRegClass) as ready
  12593. 135500: IEW: system.cpu.iew: Setting Destination Register 8 (CCRegClass)
  12594. 135500: Scoreboard: system.cpu.scoreboard: Setting reg 8 (CCRegClass) as ready
  12595. 135500: IQ: system.cpu.iq: Attempting to schedule ready instructions from the IQ.
  12596. 135500: IQ: system.cpu.iq: Thread 0: Issuing instruction PC (0x40009c=>0x4000a0).(0=>1) [sn:10]
  12597. 136000: IEW: system.cpu.iew: Execute: Processing PC (0x40009c=>0x4000a0).(0=>1), [tid:0] [sn:10].
  12598. 136000: IEW: global: RegFile: Access to cc register 6, has data 0x2
  12599. 136000: IEW: global: RegFile: Access to cc register 8, has data 0
  12600. 136000: IEW: global: RegFile: Access to cc register 7, has data 0
  12601. 136000: IEW: system.cpu.iew: Current wb cycle: 0, width: 8, numInst: 0
  12602. wbActual:0
  12603. 136000: IEW: system.cpu.iew: [tid:0] [sn:10] Execute: Branch mispredict detected.
  12604. 136000: IEW: system.cpu.iew: [tid:0] [sn:10] Predicted target was PC: (0x4000a0=>0x4000a4).(0=>1)
  12605. 136000: IEW: system.cpu.iew: [tid:0] [sn:10] Execute: Redirecting fetch to PC: (0x40009c=>0x400080).(0=>1)
  12606. 136000: IEW: system.cpu.iew: [tid:0] [sn:10] Squashing from a specific instruction, PC: (0x40009c=>0x400080).(0=>1)
  12607. 136500: Commit: system.cpu.commit: [tid:0] Squashing due to branch mispred PC:0x40009c [sn:10]
  12608. 136500: Commit: system.cpu.commit: [tid:0] Redirecting to PC 0x400084
  12609. 136500: ROB: system.cpu.rob: Starting to squash within the ROB.
  12610. 136500: ROB: system.cpu.rob: [tid:0] Squashing instructions until [sn:10].
  12611. 136500: ROB: system.cpu.rob: [tid:0] Squashing instruction PC (0x4000bc=>0x4000c0).(0=>1), seq num 18.
  12612. 136500: ROB: system.cpu.rob: [tid:0] Squashing instruction PC (0x4000b8=>0x4000bc).(0=>1), seq num 17.
  12613. 136500: ROB: system.cpu.rob: [tid:0] Squashing instruction PC (0x4000b4=>0x4000b8).(0=>1), seq num 16.
  12614. 136500: ROB: system.cpu.rob: [tid:0] Squashing instruction PC (0x4000b0=>0x4000b4).(0=>1), seq num 15.
  12615. 136500: ROB: system.cpu.rob: [tid:0] Squashing instruction PC (0x4000ac=>0x4000b0).(0=>1), seq num 14.
  12616. 136500: ROB: system.cpu.rob: [tid:0] Squashing instruction PC (0x4000a8=>0x4000ac).(0=>1), seq num 13.
  12617. 136500: ROB: system.cpu.rob: [tid:0] Squashing instruction PC (0x4000a4=>0x4000a8).(0=>1), seq num 12.
  12618. 136500: ROB: system.cpu.rob: [tid:0] Squashing instruction PC (0x4000a0=>0x4000a4).(0=>1), seq num 11.
  12619. 136500: ROB: system.cpu.rob: [tid:0] Done squashing instructions.
  12620. 136500: Commit: system.cpu.commit: [tid:0] Marking PC (0x40009c=>0x400080).(0=>1), [sn:10] ready within ROB.
  12621. 137000: Commit: system.cpu.commit: [tid:0] [sn:10] Committing instruction with PC (0x40009c=>0x400080).(0=>1)
  12622. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+36 : b.lt 0x400080 : IntAlu : FetchSeq=10 CPSeq=10 flags=(IsControl|IsDirectControl|IsCondControl)
  12623. 137000: ROB: system.cpu.rob: [tid:0] Retiring head instruction, instruction PC (0x40009c=>0x400080).(0=>1), [sn:10]
  12624. 137000: O3CPU: system.cpu: Removing committed instruction [tid:0] PC (0x40009c=>0x400080).(0=>1) [sn:10]
  12625. 137000: Commit: system.cpu.commit: Trying to commit head instruction, [tid:0] [sn:11]
  12626. 137000: Commit: system.cpu.commit: Retiring squashed instruction from ROB.
  12627. 137000: Commit: system.cpu.commit: Trying to commit head instruction, [tid:0] [sn:10]
  12628. 137000: Commit: system.cpu.commit: [tid:0] [sn:10] Committing instruction with PC (0x40009c=>0x400080).(0=>1)
  12629. 130000: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+36 : b.lt 0x400080 : IntAlu : FetchSeq=10 CPSeq=10 flags=(IsControl|IsDirectControl|IsCondControl)
  12630. 138500: Fetch: system.cpu.fetch: [tid:0] [sn:26] Branch at PC 0x40009c predicted to be not taken
  12631. 138500: Fetch: system.cpu.fetch: [tid:0] [sn:26] Branch at PC 0x40009c predicted to go to (0x4000a0=>0x4000a4).(0=>1)
  12632. 142500: Commit: system.cpu.commit: [tid:0] [sn:26] Committing instruction with PC (0x40009c=>0x4000a0).(0=>1)
  12633. 138500: ExecEnable: system.cpu: A0 T0 : @asm_main_after_prologue+36 : b.lt 0x400080 : IntAlu : FetchSeq=26 CPSeq=18 flags=(IsControl|IsDirectControl|IsCondControl)
  12634. 142500: ROB: system.cpu.rob: [tid:0] Retiring head instruction, instruction PC (0x40009c=>0x4000a0).(0=>1), [sn:26]
  12635. ....
  12636. With an extra CLI (the branch is not taken):
  12637. ....
  12638. // f = fetch, d = decode, n = rename, p = dispatch, i = issue, c = complete, r = retire
  12639. timeline tick pc.upc disasm seq_num
  12640. [.............................................................................fdn]-( 40000) 0x00400078.0 ldr x0, [sp] [ 1]
  12641. [.ic.............................................................................]-( 80000) ...
  12642. [................................r...............................................]-( 120000) ...
  12643. [.............................................................................fdn]-( 40000) 0x0040007c.0 movz x1, #1, #0 [ 2]
  12644. [.ic.............................................................................]-( 80000) ...
  12645. [................................r...............................................]-( 120000) ...
  12646. [....................fdn.ic......r...............................................]-( 120000) 0x00400080.0 movz x2, #2, #0 [ 3]
  12647. [....................fdn.ic......r...............................................]-( 120000) 0x00400084.0 movz x3, #3, #0 [ 4]
  12648. [....................fdn.ic......r...............................................]-( 120000) 0x00400088.0 movz x4, #4, #0 [ 5]
  12649. [....................fdn.ic......r...............................................]-( 120000) 0x0040008c.0 movz x5, #5, #0 [ 6]
  12650. [....................fdn.ic......r...............................................]-( 120000) 0x00400090.0 movz x6, #6, #0 [ 7]
  12651. [....................fdn.ic.......r..............................................]-( 120000) 0x00400098.0 movz x0, #3, #0 [ 9]
  12652. [....................fdn.p......ic.r.............................................]-( 120000) 0x0040009c.0 b.lt 0x400080 [ 10]
  12653. [.....................fdn.ic.......r.............................................]-( 120000) 0x004000a0.0 movz x10, #10, #0 [ 11]
  12654. [.....................fdn.ic.......r.............................................]-( 120000) 0x004000a4.0 movz x11, #11, #0 [ 12]
  12655. [.....................fdn.ic.......r.............................................]-( 120000) 0x004000a8.0 movz x12, #12, #0 [ 13]
  12656. [.....................fdn.ic.......r.............................................]-( 120000) 0x004000ac.0 movz x13, #13, #0 [ 14]
  12657. [.....................fdn.ic.......r.............................................]-( 120000) 0x004000b0.0 movz x14, #14, #0 [ 15]
  12658. [.....................fdn.ic.......r.............................................]-( 120000) 0x004000b4.0 movz x15, #15, #0 [ 16]
  12659. [.....................fdn.pic......r.............................................]-( 120000) 0x004000b8.0 movz x16, #16, #0 [ 17]
  12660. [.....................fdn.pic.......r............................................]-( 120000) 0x004000bc.0 movz x17, #17, #0 [ 18]
  12661. [............................................fdn.ic.r............................]-( 160000) 0x004000c0.0 movz x0, #0, #0 [ 19]
  12662. [............................................fdn.ic.r............................]-( 160000) 0x004000c4.0 movz x8, #93, #0 [ 20]
  12663. ....
  12664. So this time the prediction was correct. Retire is delayed until the memory comes back, but we otherwise just kept running forward until hitting the next ifetch cache line.
  12665. ==== gem5 instruction definitions
  12666. This is one of the parts of gem5 that rely on semi-useless <<gem5-code-generation,code generation>> inside the `.isa` sublanguage.
  12667. Which is mostly Python, with some magic letters thrown in for good measure.
  12668. The class definitions get all dumped into one humongous C++ include file:
  12669. ....
  12670. build/ARM/arch/arm/generated/exec-ns.cc.inc
  12671. ....
  12672. That file defines the key methods of each instruction, e.g. the ARM immediate <<userland-assembly,ADD instruction>> has its `execute` method defined there:
  12673. ....
  12674. Fault AddImm::execute(
  12675. ExecContext *xc, Trace::InstRecord *traceData) const
  12676. ....
  12677. or for example the key methods of an <<arm-str-instruction,ARM 64-bit (X) STR with an immediate offset>> (`STR <Wt>, [<Xn|SP>], #<simm>`):
  12678. ....
  12679. Fault STRX64_IMM::execute(ExecContext *xc,
  12680. Trace::InstRecord *traceData) const
  12681. Fault STRX64_IMM::initiateAcc(ExecContext *xc,
  12682. Trace::InstRecord *traceData) const
  12683. Fault STRX64_IMM::completeAcc(PacketPtr pkt, ExecContext *xc,
  12684. Trace::InstRecord *traceData) const
  12685. {
  12686. return NoFault;
  12687. }
  12688. ....
  12689. We also notice that the key argument passed to those instructions is of type `ExecContext`, which is discussed further at: xref:gem5-execcontext[xrefstyle=full].
  12690. The file is an include so that compilation can be split up into chunks by the autogenerated includers
  12691. ....
  12692. build/ARM/arch/arm/generated/generic_cpu_1.cc
  12693. build/ARM/arch/arm/generated/generic_cpu_2.cc
  12694. ...
  12695. ....
  12696. via the `__SPLIT` macro as in:
  12697. ....
  12698. #include "exec-g.cc.inc"
  12699. #include "cpu/exec_context.hh"
  12700. #include "decoder.hh"
  12701. namespace ArmISAInst {
  12702. #define __SPLIT 1
  12703. #include "exec-ns.cc.inc"
  12704. }
  12705. ....
  12706. This is likely done to not overload the C++ compiler? But sure enough overloads IDEs and GDB which takes forever to load the source of any frames going through it.
  12707. We should split that file into one per class for the love of God.
  12708. The autogenerated instruction class declarations can be found at:
  12709. ....
  12710. build/ARM/arch/arm/generated/decoder-ns.hh.inc
  12711. ....
  12712. and the autogenerated bulk of the decoder:
  12713. ....
  12714. build/ARM/arch/arm/generated/decoder-ns.cc.inc
  12715. ....
  12716. which also happens to contain the constructor definitions of the instruction classes, e.g. for the ADD immediate because why not:
  12717. ....
  12718. AddImm::AddImm(ExtMachInst machInst,
  12719. IntRegIndex _dest,
  12720. IntRegIndex _op1,
  12721. uint32_t _imm,
  12722. bool _rotC)
  12723. ....
  12724. The above files get tied in the autogenerated:
  12725. ....
  12726. build/ARM/arch/arm/generated/decoder.hh
  12727. ....
  12728. which contains:
  12729. ....
  12730. #include "decoder-g.hh.inc"
  12731. namespace ArmISAInst {
  12732. #include "decoder-ns.hh.inc"
  12733. }
  12734. ....
  12735. Different instructions inherit form different classes, e.g. the ARM immediate ADD instruction is a `DataImmOp`:
  12736. ....
  12737. class AddImm : public DataImmOp
  12738. {
  12739. public:
  12740. // Constructor
  12741. AddImm(ExtMachInst machInst, IntRegIndex _dest,
  12742. IntRegIndex _op1, uint32_t _imm, bool _rotC=true);
  12743. Fault execute(ExecContext *, Trace::InstRecord *) const override;
  12744. };
  12745. ....
  12746. and STRX64_IMM is an `ArmISA::MemoryImm64`:
  12747. ....
  12748. class STRX64_IMM : public ArmISA::MemoryImm64
  12749. {
  12750. public:
  12751. /// Constructor.
  12752. STRX64_IMM(ExtMachInst machInst,
  12753. IntRegIndex _dest, IntRegIndex _base, int64_t _imm);
  12754. Fault execute(ExecContext *, Trace::InstRecord *) const override;
  12755. Fault initiateAcc(ExecContext *, Trace::InstRecord *) const override;
  12756. Fault completeAcc(PacketPtr, ExecContext *,
  12757. Trace::InstRecord *) const override;
  12758. void
  12759. annotateFault(ArmFault *fault) override
  12760. {
  12761. fault->annotate(ArmFault::SAS, 3);
  12762. fault->annotate(ArmFault::SSE, false);
  12763. fault->annotate(ArmFault::SRT, dest);
  12764. fault->annotate(ArmFault::SF, true);
  12765. fault->annotate(ArmFault::AR, false);
  12766. }
  12767. };
  12768. ....
  12769. but different memory instructions can have different base classes too e.g. <<arm-ldxr-and-stxr-instructions,STXR>>:
  12770. ....
  12771. class STXRX64 : public ArmISA::MemoryEx64
  12772. ....
  12773. A summarized class hierarchy for the above is:
  12774. * `StaticInst`
  12775. ** `ArmISA::ArmStaticInst`
  12776. *** `ArmISA::PredOp`
  12777. **** `ArmISA::DataImmOp`
  12778. ***** `ArmISA::AddImm`
  12779. **** `ArmISA::MightBeMicro64`
  12780. ***** ArmISA::Memory64
  12781. ****** `ArmISA::MemoryImm64`
  12782. ******* `ArmISA::MemoryEx64`
  12783. ******** `ArmISA::STXRX64`
  12784. Tested in gem5 b1623cb2087873f64197e503ab8894b5e4d4c7b4.
  12785. ===== gem5 `execute` vs `initiateAcc` vs `completeAcc`
  12786. These are the key methods defined in instruction definitions, so lets see when each one gets called and what they do more or less.
  12787. `execute` is the only one of the three that gets defined by "non-memory" instructions.
  12788. Memory instructions define all three.
  12789. The three methods are present in the base class `StaticInst`:
  12790. ....
  12791. virtual Fault execute(ExecContext *xc,
  12792. Trace::InstRecord *traceData) const = 0;
  12793. virtual Fault initiateAcc(ExecContext *xc,
  12794. Trace::InstRecord *traceData) const
  12795. {
  12796. panic("initiateAcc not defined!");
  12797. }
  12798. virtual Fault completeAcc(Packet *pkt, ExecContext *xc,
  12799. Trace::InstRecord *traceData) const
  12800. {
  12801. panic("completeAcc not defined!");
  12802. }
  12803. ....
  12804. so we see that all instructions must implement `execute`, while overriding `initiateAcc` and `completeAcc` are optional and only done by classes for which those might get called: memory instructions.
  12805. `execute` is what does the actual job for non-memory instructions (obviously, since it is the only one of the three methods that is defined as not `panic` for those).
  12806. Memory instructions however run either:
  12807. * `execute` in `AtomicSimpleCPU`: this does the entire memory access in one go
  12808. * `initiateAcc` + `completeAcc` in timing CPUs. `initiateAcc` is called when the instruction starts executing, and `completeAcc` is called when the memory fetch returns from the memory system.
  12809. This can be seen concretely in GDB from the analysis done at: <<timingsimplecpu-analysis-ldr-stall>> and for more memory details see <<gem5-functional-vs-atomic-vs-timing-memory-requests>>.
  12810. ====== gem5 `completeAcc`
  12811. `completeAcc` is boring on most simple store memory instructions, e.g. a simple STR:
  12812. ....
  12813. Fault STRX64_IMM::completeAcc(PacketPtr pkt, ExecContext *xc,
  12814. Trace::InstRecord *traceData) const
  12815. {
  12816. return NoFault;
  12817. }
  12818. ....
  12819. This is because the store does all of its job on `completeAcc` basically, creating the memory write request.
  12820. Loads however have non-trivial `completeAcc`, because now we have at the very least, to save the value read from memory into a CPU address.
  12821. Things are much more interesting however on more interesting loads, for example <<arm-ldxr-and-stxr-instructions,STXR>> (hand formatted here):
  12822. ....
  12823. Fault STXRX64::completeAcc(PacketPtr pkt, ExecContext *xc,
  12824. Trace::InstRecord *traceData) const {
  12825. Fault fault = NoFault;
  12826. uint64_t XResult = 0;
  12827. uint32_t SevMailbox = 0;
  12828. uint32_t LLSCLock = 0;
  12829. uint64_t writeResult = pkt->req->getExtraData();
  12830. XResult = !writeResult; SevMailbox = 1; LLSCLock = 0;
  12831. if (fault == NoFault) {
  12832. {
  12833. uint64_t final_val = XResult;
  12834. xc->setIntRegOperand(this, 0, (XResult) & mask(aarch64 ? 64 : 32));
  12835. if (traceData) { traceData->setData(final_val); }
  12836. }
  12837. xc->setMiscRegOperand(this, 1, SevMailbox);
  12838. if (traceData) { traceData->setData(SevMailbox); }
  12839. xc->setMiscRegOperand(this, 2, LLSCLock);
  12840. if (traceData) { traceData->setData(LLSCLock); }
  12841. }
  12842. return fault;
  12843. }
  12844. ....
  12845. From GDB on <<timingsimplecpu-analysis-ldr-stall>> we see that `completeAcc` gets called from `TimingSimpleCPU::completeDataAccess`.
  12846. ===== gem5 microops
  12847. Some gem5 instructions break down into multiple microops.
  12848. Microops are very similar to regular instructions, and show on the <<gem5-execall-trace-format>> since that flag implies `ExecMicro`.
  12849. On aarch64 for example, one of the simplest microoped instructions is <<armv8-aarch64-ldp-and-stp-instructions,STP>>, which does the relatively complex operation of storing two values to memory at once, and is therefore a good candidate for being broken down into microops. We can observe it when executing:
  12850. ....
  12851. ./run \
  12852. --arch arch64 \
  12853. --emulator gem5 \
  12854. --trace-insts-stdout \
  12855. --userland userland/arch/aarch64/freestanding/linux/disassembly_test.S \
  12856. ;
  12857. ....
  12858. which contains in gem5's broken-ish disassembly that the input:
  12859. ....
  12860. stp x1, x2 [x0, 16]
  12861. ....
  12862. generated the output:
  12863. ....
  12864. 16500: system.cpu: A0 T0 : @_start+108 : stp
  12865. 16500: system.cpu: A0 T0 : @_start+108. 0 : addxi_uop ureg0, x0, #16 : IntAlu : D=0x0000000000420010 flags=(IsInteger|IsMicroop|IsDelayedCommit|IsFirstMicroop)
  12866. 17000: system.cpu: A0 T0 : @_start+108. 1 : strxi_uop w1, [ureg0] : MemWrite : D=0x000000009abcdef0 A=0x420010 flags=(IsInteger|IsMemRef|IsStore|IsMicroop|IsDelayedCommit)
  12867. 17500: system.cpu: A0 T0 : @_start+108. 2 : strxi_uop w2, [ureg0, #8] : MemWrite : D=0x0000000000000002 A=0x420018 flags=(IsInteger|IsMemRef|IsStore|IsMicroop|IsLastMicroop)
  12868. ....
  12869. Where `@_start+108. 0`, `@_start+108. 1` and `@_start+108. 2` all happen at the same PC, and are therefore microops of STP.
  12870. From their names, which are of course not specified in the <<armarm8>>, we guess that:
  12871. * `addxi_uop`: adds 16
  12872. * `strxi_uop`: stores one of the two members of the pair, like a regular STR
  12873. From the gem5 source code, we see that STP is a `class LdpStp : public PairMemOp`, and then the constructor of `PairMemOp` sets up the microops depending on the exact type of LDP/STP:
  12874. ==== gem5 `ThreadContext` vs `ThreadState` vs `ExecContext` vs `Process`
  12875. These classes get used everywhere, and they have a somewhat convoluted relation with one another, so let's figure it out this mess.
  12876. None of those objects are <<gem5-python-c-interaction,SimObjects>>, so they must all belong to some higher SimObject.
  12877. This section and all children tested at gem5 b1623cb2087873f64197e503ab8894b5e4d4c7b4.
  12878. ===== gem5 `ThreadContext`
  12879. As we delve into more details below, we will reach the following conclusion: a `ThreadContext` represents on thread of a CPU with multiple <<hardware-threads>>.
  12880. We therefore we can have multiple `ThreadContext` for each <<gem5-cpu-types,`BaseCPU`>>.
  12881. `ThreadContext` is what gets passed in syscalls, e.g.:
  12882. src/sim/syscall_emul.hh
  12883. ....
  12884. template <class OS>
  12885. SyscallReturn
  12886. readFunc(SyscallDesc *desc, ThreadContext *tc,
  12887. int tgt_fd, Addr buf_ptr, int nbytes)
  12888. ....
  12889. The class hierarchy for `ThreadContext` looks like:
  12890. ....
  12891. ThreadContext
  12892. O3ThreadContext
  12893. SimpleThread
  12894. ....
  12895. where the gem5 MinorCPU also uses `SimpleThread`:
  12896. ....
  12897. /** Minor will use the SimpleThread state for now */
  12898. typedef SimpleThread MinorThread;
  12899. ....
  12900. It is a bit confusing, things would be much clearer if `SimpleThread` was called instead `SimpleThreadContext`!
  12901. `readIntReg` and other register access methods are some notable methods implemented in descendants, e.g. <<gem5-simplethread,`SimpleThread::readIntReg`>>.
  12902. Essentially all methods of the base `ThreadContext` are pure virtual.
  12903. ====== gem5 `SimpleThread`
  12904. `SimpleThread` storage defined on <<gem5-basesimplecpu,`BaseSimpleCPU`>> for simple CPUs like `AtomicSimpleCPU`:
  12905. ....
  12906. for (unsigned i = 0; i < numThreads; i++) {
  12907. if (FullSystem) {
  12908. thread = new SimpleThread(this, i, p->system,
  12909. p->itb, p->dtb, p->isa[i]);
  12910. } else {
  12911. thread = new SimpleThread(this, i, p->system, p->workload[i],
  12912. p->itb, p->dtb, p->isa[i]);
  12913. }
  12914. threadInfo.push_back(new SimpleExecContext(this, thread));
  12915. ThreadContext *tc = thread->getTC();
  12916. threadContexts.push_back(tc);
  12917. }
  12918. ....
  12919. and on `MinorCPU` for Minor:
  12920. ....
  12921. MinorCPU::MinorCPU(MinorCPUParams *params) :
  12922. BaseCPU(params),
  12923. threadPolicy(params->threadPolicy)
  12924. {
  12925. /* This is only written for one thread at the moment */
  12926. Minor::MinorThread *thread;
  12927. for (ThreadID i = 0; i < numThreads; i++) {
  12928. if (FullSystem) {
  12929. thread = new Minor::MinorThread(this, i, params->system,
  12930. params->itb, params->dtb, params->isa[i]);
  12931. thread->setStatus(ThreadContext::Halted);
  12932. } else {
  12933. thread = new Minor::MinorThread(this, i, params->system,
  12934. params->workload[i], params->itb, params->dtb,
  12935. params->isa[i]);
  12936. }
  12937. threads.push_back(thread);
  12938. ThreadContext *tc = thread->getTC();
  12939. threadContexts.push_back(tc);
  12940. }
  12941. ....
  12942. Those are used from <<gem5-execcontext>>.
  12943. From this we see that one CPU can have multiple threads, and that this is controlled from the Python:
  12944. ....
  12945. BaseCPU::BaseCPU(Params *p, bool is_checker)
  12946. : numThreads(p->numThreads)
  12947. ....
  12948. and since `SimpleThread` contains its registers, this must represent <<hardware-threads>>.
  12949. If we analyse `SimpleThread::readIntReg`, we see that the actual register data is contained inside `ThreadContext` descendants, e.g. in `SimpleThread`:
  12950. ....
  12951. RegVal
  12952. readIntReg(RegIndex reg_idx) const override
  12953. {
  12954. int flatIndex = isa->flattenIntIndex(reg_idx);
  12955. assert(flatIndex < TheISA::NumIntRegs);
  12956. uint64_t regVal(readIntRegFlat(flatIndex));
  12957. DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
  12958. reg_idx, flatIndex, regVal);
  12959. return regVal;
  12960. }
  12961. RegVal readIntRegFlat(RegIndex idx) const override { return intRegs[idx]; }
  12962. void
  12963. setIntRegFlat(RegIndex idx, RegVal val) override
  12964. {
  12965. intRegs[idx] = val;
  12966. }
  12967. std::array<RegVal, TheISA::NumIntRegs> intRegs;
  12968. ....
  12969. Another notable type of method contained in `Thread` context are methods that forward to <<gem5-threadstate>>.
  12970. ====== gem5 `O3ThreadContext`
  12971. Instantiation happens in the `FullO3CPU` constructor:
  12972. ....
  12973. FullO3CPU<Impl>::FullO3CPU(DerivO3CPUParams *params)
  12974. for (ThreadID tid = 0; tid < this->numThreads; ++tid) {
  12975. if (FullSystem) {
  12976. // SMT is not supported in FS mode yet.
  12977. assert(this->numThreads == 1);
  12978. this->thread[tid] = new Thread(this, 0, NULL);
  12979. // Setup the TC that will serve as the interface to the threads/CPU.
  12980. O3ThreadContext<Impl> *o3_tc = new O3ThreadContext<Impl>;
  12981. ....
  12982. and the SimObject `DerivO3CPU` is just a `FullO3CPU` instantiation:
  12983. ....
  12984. class DerivO3CPU : public FullO3CPU<O3CPUImpl>
  12985. ....
  12986. `O3ThreadContext` is a template class:
  12987. ....
  12988. template <class Impl>
  12989. class O3ThreadContext : public ThreadContext
  12990. ....
  12991. The only `Impl` used appears to be `O3CPUImpl`? This is explicitly instantiated in the source:
  12992. ....
  12993. template class O3ThreadContext<O3CPUImpl>;
  12994. ....
  12995. see also: https://stackoverflow.com/questions/64420547/in-gem5-how-do-i-know-the-specific-location-of-the-class/64423633#64423633
  12996. Unlike in `SimpleThread` however, `O3ThreadContext` does not contain the register data itself, e.g. `O3ThreadContext::readIntRegFlat` instead forwards to `cpu`:
  12997. ....
  12998. template <class Impl>
  12999. RegVal
  13000. O3ThreadContext<Impl>::readIntRegFlat(RegIndex reg_idx) const
  13001. {
  13002. return cpu->readArchIntReg(reg_idx, thread->threadId());
  13003. }
  13004. ....
  13005. where:
  13006. ....
  13007. typedef typename Impl::O3CPU O3CPU;
  13008. /** Pointer to the CPU. */
  13009. O3CPU *cpu;
  13010. ....
  13011. and:
  13012. ....
  13013. struct O3CPUImpl
  13014. {
  13015. /** The O3CPU type to be used. */
  13016. typedef FullO3CPU<O3CPUImpl> O3CPU;
  13017. ....
  13018. and at long last `FullO3CPU` contains the register values:
  13019. ....
  13020. template <class Impl>
  13021. RegVal
  13022. FullO3CPU<Impl>::readArchIntReg(int reg_idx, ThreadID tid)
  13023. {
  13024. intRegfileReads++;
  13025. PhysRegIdPtr phys_reg = commitRenameMap[tid].lookup(
  13026. RegId(IntRegClass, reg_idx));
  13027. return regFile.readIntReg(phys_reg);
  13028. }
  13029. ....
  13030. So we guess that this difference from `SimpleThread` is due to register renaming of the out of order implementation.
  13031. ===== gem5 `ThreadState`
  13032. Owned one per `ThreadContext`.
  13033. Many `ThreadContext` methods simply forward to `ThreadState` implementations.
  13034. <<gem5-simplethread,`SimpleThread`>> inherits from `ThreadState`, and forwards to it on several methods e.g.:
  13035. ....
  13036. int cpuId() const override { return ThreadState::cpuId(); }
  13037. uint32_t socketId() const override { return ThreadState::socketId(); }
  13038. int threadId() const override { return ThreadState::threadId(); }
  13039. void setThreadId(int id) override { ThreadState::setThreadId(id); }
  13040. ContextID contextId() const override { return ThreadState::contextId(); }
  13041. void setContextId(ContextID id) override { ThreadState::setContextId(id); }
  13042. ....
  13043. `O3ThreadContext` on the other hand contains an `O3ThreadState`:
  13044. ....
  13045. template <class Impl>
  13046. struct O3ThreadState : public ThreadState
  13047. ....
  13048. at:
  13049. ....
  13050. template <class Impl>
  13051. class O3ThreadContext : public ThreadContext
  13052. {
  13053. O3ThreadState<Impl> *thread
  13054. ContextID contextId() const override { return thread->contextId(); }
  13055. void setContextId(ContextID id) override { thread->setContextId(id); }
  13056. ....
  13057. ===== gem5 `ExecContext`
  13058. `ExecContext` gets used in <<gem5-instruction-definitions>>, e.g.:
  13059. ....
  13060. build/ARM/arch/arm/generated/exec-ns.cc.inc
  13061. ....
  13062. contains:
  13063. ....
  13064. Fault Mul::execute(
  13065. ExecContext *xc, Trace::InstRecord *traceData) const
  13066. ....
  13067. It contains methods to allow interacting with CPU state from inside instruction execution, notably reading and writing from/to registers.
  13068. For example, the ARM `mul` instruction uses `ExecContext` to read the input operands, multiply them, and write to the output:
  13069. ....
  13070. Fault Mul::execute(
  13071. ExecContext *xc, Trace::InstRecord *traceData) const
  13072. {
  13073. Fault fault = NoFault;
  13074. uint64_t resTemp = 0;
  13075. resTemp = resTemp;
  13076. uint32_t OptCondCodesNZ = 0;
  13077. uint32_t OptCondCodesC = 0;
  13078. uint32_t OptCondCodesV = 0;
  13079. uint32_t Reg0 = 0;
  13080. uint32_t Reg1 = 0;
  13081. uint32_t Reg2 = 0;
  13082. OptCondCodesNZ = xc->readCCRegOperand(this, 0);
  13083. OptCondCodesC = xc->readCCRegOperand(this, 1);
  13084. OptCondCodesV = xc->readCCRegOperand(this, 2);
  13085. Reg1 =
  13086. ((reg1 == PCReg) ? readPC(xc) : xc->readIntRegOperand(this, 3));
  13087. Reg2 =
  13088. ((reg2 == PCReg) ? readPC(xc) : xc->readIntRegOperand(this, 4));
  13089. if (testPredicate(OptCondCodesNZ, OptCondCodesC, OptCondCodesV, condCode)/*auto*/)
  13090. {
  13091. Reg0 = resTemp = Reg1 * Reg2;;
  13092. if (fault == NoFault) {
  13093. {
  13094. uint32_t final_val = Reg0;
  13095. ((reg0 == PCReg) ? setNextPC(xc, Reg0) : xc->setIntRegOperand(this, 0, Reg0));
  13096. if (traceData) { traceData->setData(final_val); }
  13097. };
  13098. }
  13099. } else {
  13100. xc->setPredicate(false);
  13101. }
  13102. return fault;
  13103. }
  13104. ....
  13105. `ExecContext` is however basically just a wrapper that forwards to other classes that actually contain the data in a microarchitectural neutral manner. For example, in `SimpleExecContext`:
  13106. ....
  13107. /** Reads an integer register. */
  13108. RegVal
  13109. readIntRegOperand(const StaticInst *si, int idx) override
  13110. {
  13111. numIntRegReads++;
  13112. const RegId& reg = si->srcRegIdx(idx);
  13113. assert(reg.isIntReg());
  13114. return thread->readIntReg(reg.index());
  13115. }
  13116. ....
  13117. So we see that this just does some register position bookkeeping needed for instruction execution, but the actual data comes from <<gem5-simplethread,`SimpleThread::readIntReg`>>, which is a specialization of <<gem5-threadcontext>>.
  13118. `ExecContext` is a fully virtual class. The hierarchy is:
  13119. * `ExecContext`
  13120. ** `SimpleExecContext`
  13121. ** `Minor::MinorExecContext`
  13122. ** `BaseDynInst`
  13123. *** `BaseO3DynInst`
  13124. If we follow `SimpleExecContext` creation for example, we see:
  13125. ....
  13126. class BaseSimpleCPU : public BaseCPU
  13127. {
  13128. std::vector<SimpleExecContext*> threadInfo;
  13129. ....
  13130. and:
  13131. ....
  13132. BaseSimpleCPU::BaseSimpleCPU(BaseSimpleCPUParams *p)
  13133. : BaseCPU(p),
  13134. curThread(0),
  13135. branchPred(p->branchPred),
  13136. traceData(NULL),
  13137. inst(),
  13138. _status(Idle)
  13139. {
  13140. SimpleThread *thread;
  13141. for (unsigned i = 0; i < numThreads; i++) {
  13142. if (FullSystem) {
  13143. thread = new SimpleThread(this, i, p->system,
  13144. p->itb, p->dtb, p->isa[i]);
  13145. } else {
  13146. thread = new SimpleThread(this, i, p->system, p->workload[i],
  13147. p->itb, p->dtb, p->isa[i]);
  13148. }
  13149. threadInfo.push_back(new SimpleExecContext(this, thread));
  13150. ThreadContext *tc = thread->getTC();
  13151. threadContexts.push_back(tc);
  13152. }
  13153. ....
  13154. therefore there is one `ExecContext` for each `ThreadContext`, and each `ExecContext` knows about its own `ThreadContext`.
  13155. This makes sense, since each `ThreadContext` represents one CPU register set, and therefore needs a separate `ExecContext` which allows instruction implementations to access those registers.
  13156. [[gem5-execcontext-readintregoperand-register-resolution]]
  13157. ====== gem5 `ExecContext::readIntRegOperand` register resolution
  13158. Let's have a look at how `ExecContext::readIntRegOperand` actually matches registers to decoded registers IDs, since it is not obvious.
  13159. Let's study a simple aarch64 register register addition:
  13160. ....
  13161. add x0, x1, x2
  13162. ....
  13163. which corresponds to the `AddXSReg` instruction (formatted and simplified):
  13164. ....
  13165. Fault AddXSReg::execute(ExecContext *xc, Trace::InstRecord *traceData) const {
  13166. uint64_t Op264 = 0;
  13167. uint64_t Dest64 = 0;
  13168. uint64_t Op164 = 0;
  13169. Op264 = ((xc->readIntRegOperand(this, 0)) & mask(intWidth));
  13170. Op164 = ((xc->readIntRegOperand(this, 1)) & mask(intWidth));
  13171. uint64_t secOp = shiftReg64(Op264, shiftAmt, shiftType, intWidth);
  13172. Dest64 = Op164 + secOp;
  13173. uint64_t final_val = Dest64;
  13174. xc->setIntRegOperand(this, 0, (Dest64) & mask(intWidth));
  13175. if (traceData) { traceData->setData(final_val); }
  13176. return NoFault;
  13177. }
  13178. ....
  13179. So what are those magic `0` and `1` constants on `xc->readIntRegOperand(this, 0)` and `xc->readIntRegOperand(this, 1)`?
  13180. First, we guess that they must be related to the reading of `x1` and `x2`, which are the inputs of the addition.
  13181. Next, we also guess that the `0` read must correspond to `x2`, since it later gets potentially shifted as mentioned at xref:arm-shift-suffixes[xrefstyle=full].
  13182. Let's also have a look at the decoder code that builds the instruction instance in `build/ARM/arch/arm/generated/decoder-ns.cc.inc`:
  13183. ....
  13184. ArmShiftType type =
  13185. (ArmShiftType)(uint8_t)bits(machInst, 23, 22);
  13186. if (type == ROR)
  13187. return new Unknown64(machInst);
  13188. uint8_t imm6 = bits(machInst, 15, 10);
  13189. if (!bits(machInst, 31) && bits(imm6, 5))
  13190. return new Unknown64(machInst);
  13191. IntRegIndex rd = (IntRegIndex)(uint8_t)bits(machInst, 4, 0);
  13192. IntRegIndex rdzr = makeZero(rd);
  13193. IntRegIndex rn = (IntRegIndex)(uint8_t)bits(machInst, 9, 5);
  13194. IntRegIndex rm = (IntRegIndex)(uint8_t)bits(machInst, 20, 16);
  13195. return new AddXSReg(machInst, rdzr, rn, rm, imm6, type);
  13196. ....
  13197. and the ARM instruction pseudocode from the <<armarm8>>:
  13198. ....
  13199. ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
  13200. ....
  13201. and the constructor:
  13202. ....
  13203. AddXSReg::AddXSReg(ExtMachInst machInst,
  13204. IntRegIndex _dest,
  13205. IntRegIndex _op1,
  13206. IntRegIndex _op2,
  13207. int32_t _shiftAmt,
  13208. ArmShiftType _shiftType
  13209. ) : DataXSRegOp("add", machInst, IntAluOp,
  13210. _dest, _op1, _op2, _shiftAmt, _shiftType) {
  13211. _numSrcRegs = 0;
  13212. _numDestRegs = 0;
  13213. _numFPDestRegs = 0;
  13214. _numVecDestRegs = 0;
  13215. _numVecElemDestRegs = 0;
  13216. _numVecPredDestRegs = 0;
  13217. _numIntDestRegs = 0;
  13218. _numCCDestRegs = 0;
  13219. _srcRegIdx[_numSrcRegs++] = RegId(IntRegClass, op2);
  13220. _destRegIdx[_numDestRegs++] = RegId(IntRegClass, dest);
  13221. _numIntDestRegs++;
  13222. _srcRegIdx[_numSrcRegs++] = RegId(IntRegClass, op1);
  13223. flags[IsInteger] = true;;
  13224. }
  13225. ....
  13226. where `RegId` is just a container class, and so the lines that we care about for now are:
  13227. ....
  13228. _srcRegIdx[_numSrcRegs++] = RegId(IntRegClass, op2);
  13229. _srcRegIdx[_numSrcRegs++] = RegId(IntRegClass, op1);
  13230. ....
  13231. which matches the guess we made earlier: `op2` is `0` and `op1` is `1` (`op1` and `op2` are the same as `_op1` and `_op2` which are set in the base constructor `DataXSRegOp`).
  13232. We also note that the register decodings (which the ARM spec says are `1` for `x1` and `2` for `x2`) are actually passed as enum `IntRegIndex`:
  13233. ....
  13234. IntRegIndex _op1,
  13235. IntRegIndex _op2,
  13236. ....
  13237. which are defined at `src/arch/arm/interegs.hh`:
  13238. ....
  13239. enum IntRegIndex
  13240. {
  13241. /* All the unique register indices. */
  13242. INTREG_R0,
  13243. INTREG_R1,
  13244. INTREG_R2,
  13245. ....
  13246. Then `SimpleExecContext::readIntRegOperand` does:
  13247. ....
  13248. /** Reads an integer register. */
  13249. RegVal
  13250. readIntRegOperand(const StaticInst *si, int idx) override
  13251. {
  13252. numIntRegReads++;
  13253. const RegId& reg = si->srcRegIdx(idx);
  13254. assert(reg.isIntReg());
  13255. return thread->readIntReg(reg.index());
  13256. }
  13257. ....
  13258. and:
  13259. ....
  13260. const RegId& srcRegIdx(int i) const { return _srcRegIdx[i]; }
  13261. ....
  13262. which is what is populated in the constructor.
  13263. Then, `RegIndex::index() { return regIdx; }` just returns the decoded register bytes, and now `SimpleThread::readIntReg`:
  13264. ....
  13265. RegVal readIntReg(RegIndex reg_idx) const override {
  13266. int flatIndex = isa->flattenIntIndex(reg_idx);
  13267. return readIntRegFlat(flatIndex);
  13268. }
  13269. ....
  13270. `readIntRegFlag` is what finally reads from the int register array:
  13271. ....
  13272. RegVal SimpleThreadContext::readIntRegFlat(RegIndex idx) const override { return intRegs[idx]; }
  13273. std::array<RegVal, TheISA::NumIntRegs> SimpleThreadContext::intRegs;
  13274. ....
  13275. and then there is the flattening magic at:
  13276. ....
  13277. int
  13278. flattenIntIndex(int reg) const
  13279. {
  13280. assert(reg >= 0);
  13281. if (reg < NUM_ARCH_INTREGS) {
  13282. return intRegMap[reg];
  13283. } else if (reg < NUM_INTREGS) {
  13284. return reg;
  13285. } else if (reg == INTREG_SPX) {
  13286. CPSR cpsr = miscRegs[MISCREG_CPSR];
  13287. ExceptionLevel el = opModeToEL(
  13288. (OperatingMode) (uint8_t) cpsr.mode);
  13289. if (!cpsr.sp && el != EL0)
  13290. return INTREG_SP0;
  13291. switch (el) {
  13292. case EL3:
  13293. return INTREG_SP3;
  13294. case EL2:
  13295. return INTREG_SP2;
  13296. case EL1:
  13297. return INTREG_SP1;
  13298. case EL0:
  13299. return INTREG_SP0;
  13300. default:
  13301. panic("Invalid exception level");
  13302. return 0; // Never happens.
  13303. }
  13304. } else {
  13305. return flattenIntRegModeIndex(reg);
  13306. }
  13307. }
  13308. ....
  13309. Then:
  13310. ....
  13311. NUM_ARCH_INTREGS = 32,
  13312. ....
  13313. so we undertand that this covers x0 to x31. `NUM_INTREGS` is also 32, so I'm a bit confused, that case is never reached.
  13314. ....
  13315. INTREG_SPX = NUM_INTREGS,
  13316. ....
  13317. SP is 32, but it is a bit more magic, since in ARM there is one SP per <<arm-exception-levels,exception level>> as mentioned at <<arm-sp0-vs-spx>>.
  13318. ....
  13319. INTREG_SPX = NUM_INTREGS
  13320. ....
  13321. We can also have a quick look at the `AddXImm` instruction which corresponds to a simple addition of an immediate as shown in link:userland/arch/aarch64/add.S[]:
  13322. ....
  13323. add x0, x1, 2
  13324. ....
  13325. Its <<gem5-execute-vs-initiateacc-vs-completeacc,`execute` method>> contains in `build/ARM/arch/arm/generated/exec-ns.cc.inc` (hand formatted and slightly simplified):
  13326. ....
  13327. Fault AddXImm::execute(ExecContext *xc, Trace::InstRecord *traceData) const {
  13328. uint64_t Dest64 = 0;
  13329. uint64_t Op164 = 0;
  13330. Op164 = ((xc->readIntRegOperand(this, 0)) & mask(intWidth));
  13331. Dest64 = Op164 + imm;
  13332. uint64_t final_val = Dest64;
  13333. xc->setIntRegOperand(this, 0, (Dest64) & mask(intWidth));
  13334. if (traceData) { traceData->setData(final_val); }
  13335. return NoFault;
  13336. }
  13337. ....
  13338. and `imm` is set directly on the constructor.
  13339. ===== gem5 `Process`
  13340. The `Process` class is used only for <<gem5-syscall-emulation-mode>>, and it represents a process like a Linux userland process, in addition to any further gem5 specific data needed to represent the process.
  13341. The first thing most syscall implementations do is to actually pull `Process` out of <<gem5-threadcontext>>, e.g.:
  13342. ....
  13343. template <class OS>
  13344. SyscallReturn
  13345. readFunc(SyscallDesc *desc, ThreadContext *tc,
  13346. int tgt_fd, Addr buf_ptr, int nbytes)
  13347. {
  13348. auto p = tc->getProcessPtr();
  13349. ....
  13350. For example, we can readily see from its interface that it contains several accessors for common process fields:
  13351. ....
  13352. inline uint64_t uid() { return _uid; }
  13353. inline uint64_t euid() { return _euid; }
  13354. inline uint64_t gid() { return _gid; }
  13355. inline uint64_t egid() { return _egid; }
  13356. ....
  13357. `Process` is a <<gem5-python-c-interaction,`SimObject`>>, and therefore produced directly in e.g. se.py.
  13358. se.py produces one process <<gem5-syscall-emulation-multiple-executables,per-executable given>>:
  13359. ....
  13360. workloads = options.cmd.split(';')
  13361. idx = 0
  13362. for wrkld in workloads:
  13363. process = Process(pid = 100 + idx)
  13364. ....
  13365. and those are placed in the `workload` property:
  13366. ....
  13367. for i in range(np):
  13368. if options.smt:
  13369. system.cpu[i].workload = multiprocesses
  13370. elif len(multiprocesses) == 1:
  13371. system.cpu[i].workload = multiprocesses[0]
  13372. else:
  13373. system.cpu[i].workload = multiprocesses[i]
  13374. ....
  13375. and finally each thread of a CPU gets assigned to a different such workload:
  13376. ....
  13377. BaseSimpleCPU::BaseSimpleCPU(BaseSimpleCPUParams *p)
  13378. : BaseCPU(p),
  13379. curThread(0),
  13380. branchPred(p->branchPred),
  13381. traceData(NULL),
  13382. inst(),
  13383. _status(Idle)
  13384. {
  13385. SimpleThread *thread;
  13386. for (unsigned i = 0; i < numThreads; i++) {
  13387. if (FullSystem) {
  13388. thread = new SimpleThread(this, i, p->system,
  13389. p->itb, p->dtb, p->isa[i]);
  13390. } else {
  13391. thread = new SimpleThread(this, i, p->system, p->workload[i],
  13392. p->itb, p->dtb, p->isa[i]);
  13393. }
  13394. threadInfo.push_back(new SimpleExecContext(this, thread));
  13395. ThreadContext *tc = thread->getTC();
  13396. threadContexts.push_back(tc);
  13397. }
  13398. ....
  13399. ==== gem5 functional units
  13400. Each instruction is marked with a class, and each class can execute in a given <<execution-unit,functional unit>>.
  13401. ===== gem5 `MinorCPU` default functional units
  13402. Which units are available is visible for example on the <<gem5-config-ini>> of a <<gem5-minorcpu>> run. Functional units are not present in simple CPUs like <<gem5-timingsimplecpu>>.
  13403. For example, on gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1, the `config.ini` of a minor run:
  13404. ....
  13405. ./run \
  13406. --arch aarch64 \
  13407. --emulator gem5 \
  13408. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  13409. --trace-insts-stdout \
  13410. -- \
  13411. --cpu-type MinorCPU \
  13412. --caches
  13413. ....
  13414. contains:
  13415. ....
  13416. [system.cpu]
  13417. type=MinorCPU
  13418. children=branchPred dcache dtb executeFuncUnits icache interrupts isa itb power_state tracer workload
  13419. executeInputWidth=2
  13420. executeIssueLimit=2
  13421. ....
  13422. Here also note the `executeInputWidth=2` and `executeIssueLimit=2` suggesting that this is a <<superscalar-processor,dual issue superscalar processor>>.
  13423. The `system.cpu` points to:
  13424. ....
  13425. [system.cpu.executeFuncUnits]
  13426. type=MinorFUPool
  13427. children=funcUnits0 funcUnits1 funcUnits2 funcUnits3 funcUnits4 funcUnits5 funcUnits6 funcUnits7
  13428. ....
  13429. and the two first units are in full:
  13430. ....
  13431. [system.cpu.executeFuncUnits.funcUnits0]
  13432. type=MinorFU
  13433. children=opClasses timings
  13434. opClasses=system.cpu.executeFuncUnits.funcUnits0.opClasses
  13435. opLat=3
  13436. [system.cpu.executeFuncUnits.funcUnits0.opClasses]
  13437. type=MinorOpClassSet
  13438. children=opClasses
  13439. [system.cpu.executeFuncUnits.funcUnits0.opClasses.opClasses]
  13440. type=MinorOpClass
  13441. opClass=IntAlu
  13442. ....
  13443. and:
  13444. ....
  13445. [system.cpu.executeFuncUnits.funcUnits1]
  13446. type=MinorFU
  13447. children=opClasses timings
  13448. opLat=3
  13449. [system.cpu.executeFuncUnits.funcUnits1.opClasses]
  13450. type=MinorOpClassSet
  13451. children=opClasses
  13452. opClasses=system.cpu.executeFuncUnits.funcUnits1.opClasses.opClasses
  13453. [system.cpu.executeFuncUnits.funcUnits1.opClasses.opClasses]
  13454. type=MinorOpClass
  13455. opClass=IntAlu
  13456. ....
  13457. So we understand that both:
  13458. * the first and second functional units are `IntAlu`, so doing integer arithmetic operations
  13459. * both have a latency of 3
  13460. * each functional unit can have a set of `opClass` with more than one type. Those first two units just happen to have a single type.
  13461. The full list is:
  13462. * 0, 1: `IntAlu`, `opLat=3`
  13463. * 2: `IntMult`, `opLat=3`
  13464. * 3: `IntDiv`, `opLat=9`. So we see that a more complex operation such as division has higher latency.
  13465. * 4: `FloatAdd`, `FloatCmp`, and a gazillion other floating point related things. `opLat=6`.
  13466. * 5: `SimdPredAlu`: TODO SVE-related? `opLat=3`
  13467. * 6: `MemRead`, `MemWrite`, `FloatMemRead`, `FloatMemWrite`. `opLat=1`
  13468. * 7: `IprAccess` (TODO), `InstPrefetch`
  13469. These are of course all specified in <<gem5-python-c-interaction,from the Python>> at `src/cpu/minor/MinorCPU.py`:
  13470. ....
  13471. class MinorDefaultFUPool(MinorFUPool):
  13472. funcUnits = [MinorDefaultIntFU(), MinorDefaultIntFU(),
  13473. MinorDefaultIntMulFU(), MinorDefaultIntDivFU(),
  13474. MinorDefaultFloatSimdFU(), MinorDefaultPredFU(),
  13475. MinorDefaultMemFU(), MinorDefaultMiscFU()]
  13476. ....
  13477. We then expect that each instruction has a certain `opClass` that determines on which unit it can run.
  13478. For example: `class AddImm`, which is what we get on a simple `add x1, x2, 0`, sets itself as an `IntAluOp` on the constructor as expected:
  13479. ....
  13480. AddImm::AddImm(ExtMachInst machInst,
  13481. IntRegIndex _dest,
  13482. IntRegIndex _op1,
  13483. uint32_t _imm,
  13484. bool _rotC)
  13485. : DataImmOp("add", machInst, IntAluOp,
  13486. _dest, _op1, _imm, _rotC)
  13487. ....
  13488. ===== gem5 DerivO3CPU default functional units
  13489. On gem5 3ca404da175a66e0b958165ad75eb5f54cb5e772, after running:
  13490. ....
  13491. ./run \
  13492. --arch aarch64 \
  13493. --emulator gem5 \
  13494. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  13495. --trace-insts-stdout \
  13496. -- \
  13497. --cpu-type Derivo3CPU \
  13498. --caches
  13499. ....
  13500. we see:
  13501. ....
  13502. [system.cpu]
  13503. type=DerivO3CPU
  13504. children=branchPred dcache dtb fuPool icache interrupts isa itb power_state tracer workload
  13505. ....
  13506. and following `fuPool`:
  13507. ....
  13508. [system.cpu.fuPool]
  13509. type=FUPool
  13510. children=FUList0 FUList1 FUList2 FUList3 FUList4 FUList5 FUList6 FUList7 FUList8 FUList9
  13511. ....
  13512. so for example `FUList0` is:
  13513. ....
  13514. [system.cpu.fuPool.FUList0]
  13515. type=FUDesc
  13516. children=opList
  13517. count=6
  13518. eventq_index=0
  13519. opList=system.cpu.fuPool.FUList0.opList
  13520. [system.cpu.fuPool.FUList0.opList]
  13521. type=OpDesc
  13522. eventq_index=0
  13523. opClass=IntAlu
  13524. opLat=1
  13525. pipelined=true
  13526. ....
  13527. and `FUList1`:
  13528. ....
  13529. [system.cpu.fuPool.FUList1.opList0]
  13530. type=OpDesc
  13531. eventq_index=0
  13532. opClass=IntMult
  13533. opLat=3
  13534. pipelined=true
  13535. [system.cpu.fuPool.FUList1.opList1]
  13536. type=OpDesc
  13537. eventq_index=0
  13538. opClass=IntDiv
  13539. opLat=20
  13540. pipelined=false
  13541. ....
  13542. So summarizing all units we have:
  13543. * 0, 1: `IntAlu` with `opLat=3`
  13544. * 2: `IntMult` with `opLat=3` and `IntDiv` with `opLat=20`
  13545. * 3: `FloatAdd`, `FloatCmp`, `FloatCvt` with `opLat=2`
  13546. * TODO lazy to finish the list :-)
  13547. ==== gem5 code generation
  13548. gem5 uses a ton of code generation, which makes the project horrendous:
  13549. * lots of magic happen on top of pybind11, which is already magic, to more automatically glue the C++ and Python worlds: <<gem5-python-c-interaction>>
  13550. * .isa code which describes most of the instructions: <<gem5-instruction-definitions>>
  13551. * <<gem5-ruby-build,Ruby>> for memory systems
  13552. To find files that are not symlinks use https://stackoverflow.com/questions/16303449/how-to-find-files-excluding-symbolic-links
  13553. ....
  13554. find build -type f
  13555. ....
  13556. To find the definition of generated code, do a:
  13557. ....
  13558. grep -I -r build/ 'code of interest'
  13559. ....
  13560. where:
  13561. * `-I`: ignore binray file matches on built objects
  13562. * `-r`: ignore symlinks due to <<why-are-all-c-symlinked-into-the-gem5-build-dir>> as explained at https://stackoverflow.com/questions/21738574/how-do-you-exclude-symlinks-in-a-grep
  13563. The code generation exists partly to support insanely generic cross ISA instructions mapping to one compute model, where it might be reasonable.
  13564. But it has been widely overused to insanity. It likely also exists partly because when the project started in 2003 C++ compilers weren't that good, so you couldn't rely on features like templates that much.
  13565. [[gem5-the-isa]]
  13566. ===== gem5 THE_ISA
  13567. Generated code at: `build/<ISA>/config/the_isa.hh` which e.g. for ARM contains:
  13568. ....
  13569. #ifndef __CONFIG_THE_ISA_HH__
  13570. #define __CONFIG_THE_ISA_HH__
  13571. #define ARM_ISA 1
  13572. #define MIPS_ISA 2
  13573. #define NULL_ISA 3
  13574. #define POWER_ISA 4
  13575. #define RISCV_ISA 5
  13576. #define SPARC_ISA 6
  13577. #define X86_ISA 7
  13578. enum class Arch {
  13579. ArmISA = ARM_ISA,
  13580. MipsISA = MIPS_ISA,
  13581. NullISA = NULL_ISA,
  13582. PowerISA = POWER_ISA,
  13583. RiscvISA = RISCV_ISA,
  13584. SparcISA = SPARC_ISA,
  13585. X86ISA = X86_ISA
  13586. };
  13587. #define THE_ISA ARM_ISA
  13588. #define TheISA ArmISA
  13589. #define THE_ISA_STR "arm"
  13590. #endif // __CONFIG_THE_ISA_HH__
  13591. ....
  13592. Generation code: `src/SConscript` at `def makeTheISA`.
  13593. Tested on gem5 b1623cb2087873f64197e503ab8894b5e4d4c7b4.
  13594. Bibliography: https://www.mail-archive.com/gem5-users@gem5.org/msg16989.html
  13595. ==== gem5 build system
  13596. [[m5-override-py-source]]
  13597. ===== M5_OVERRIDE_PY_SOURCE
  13598. https://stackoverflow.com/questions/52312070/how-to-modify-a-file-under-src-python-and-run-it-without-rebuilding-in-gem5
  13599. Running gem5 with the `M5_OVERRIDE_PY_SOURCE=true` environment variable allows you to modify a file under src/python and run it without rebuilding in gem5?
  13600. We set this environment variable by default in our link:run[] script.
  13601. How `M5_OVERRID_PY_SOURCE` works is shown at: <<gem5-m5-objects-module>>.
  13602. ===== gem5 build broken on recent compiler version
  13603. gem5 moves a bit slowly, and if your host compiler is very new, the gem5 build might be broken for it, e.g. this was the case for Ubuntu 19.10 with GCC 9 and gem5 62d75e7105fe172eb906d4f80f360ff8591d4178 from Dec 2019.
  13604. This happens mostly because GCC keeps getting more strict with warnings and gem5 uses `-Werror`.
  13605. The specific problem mentioned above was later fixed, but if it ever happens again, you can work around it by either by or by disabling `-Werror`:
  13606. ....
  13607. ./build-gem5 -- CCFLAGS=-Wno-error
  13608. ....
  13609. or by https://askubuntu.com/questions/466651/how-do-i-use-the-latest-gcc-on-ubuntu/1163021#1163021[installing an older compiler] and using it with something like:
  13610. ....
  13611. ./build-gem5 -- CC=gcc-8 CXX=g++-8
  13612. ....
  13613. ===== gem5 polymorphic ISA includes
  13614. E.g. `src/cpu/decode_cache.hh` includes:
  13615. ....
  13616. #include "arch/isa_traits.hh"
  13617. ....
  13618. which in turn is meant to refer to files of form:
  13619. ....
  13620. src/arch/<isa>/isa_traits.hh
  13621. ....
  13622. What happens is that the build system creates a file:
  13623. ....
  13624. build/ARM/arch/isa_traits.hh
  13625. ....
  13626. which contains just:
  13627. ....
  13628. #include "arch/arm/isa_traits.hh"
  13629. ....
  13630. and puts that in the `-I` include path during build.
  13631. It appears to be possible to deal with it using preprocessor macros, but it is ugly: https://stackoverflow.com/questions/3178946/using-define-to-include-another-file-in-c-c/3179218#3179218
  13632. In addition to the header polymorphism, gem5 also namespaces classes with `TheISA::`, e.g. in `src/cpu/decode_cache.hh`:
  13633. ....
  13634. Value items[TheISA::PageBytes];
  13635. ....
  13636. which is defined at:
  13637. ....
  13638. build/ARM/config/the_isa.hh
  13639. ....
  13640. as:
  13641. ....
  13642. #define TheISA ArmISA
  13643. ....
  13644. and forces already `arm/` specific headers to define their symbols under:
  13645. ....
  13646. namespace ArmISA
  13647. ....
  13648. so I don't see the point of this pattern, why not just us `PageBytes` directly? Looks like a documentation mechanism to indicate that a certain symbol is ISA specific.
  13649. Tested in gem5 2a242c5f59a54bc6b8953f82486f7e6fe0aa9b3d.
  13650. ===== Why are all C++ symlinked into the gem5 build dir?
  13651. Upstream request: https://gem5.atlassian.net/browse/GEM5-469
  13652. Some scons madness.
  13653. https://scons.org/doc/2.4.1/HTML/scons-user.html#idp1378838508 generates hard links by default.
  13654. Then the a5bc2291391b0497fdc60fdc960e07bcecebfb8f SConstruct use symlinks in a futile attempt to make things better for editors or build systems from the past century.
  13655. It was not possible to disable the symlinks automatically for the entire project when I last asked: https://stackoverflow.com/questions/53656787/how-to-set-disable-duplicate-0-for-all-scons-build-variants-without-repeating-th
  13656. The horrendous downsides of this are:
  13657. * it is basically impossible to setup an IDE properly with gem5: <<gem5-eclipse-configuration>>
  13658. * It is likely preventing <<ccache>> hits when building to different output paths, because it makes the `-I` includes point to different paths. This is especially important for <<gem5-ruby-build>>, which could have the exact same source files as the non-Ruby builds: https://stackoverflow.com/questions/60340271/can-ccache-handle-symlinks-to-the-same-input-source-file-as-hits
  13659. * when <<debug-the-emulator,debugging the emulator>>, it shows you directories inside the build directory rather than in the source tree
  13660. * it is harder to separate which files are <<gem5-code-generation,generated>> and which are in-tree when grepping for code generated definitions
  13661. == Gensim
  13662. https://gensim.org
  13663. Source at: https://github.com/gensim-project/gensim previously at: https://bitbucket.org/gensim/gensim
  13664. MIT licensed <<binary-translation>> simulator, so a bit like an MIT <<qemu>>.
  13665. Video showing it boot Linux fast: https://www.youtube.com/watch?v=aZXx17oYumc
  13666. Its name is unfortunately completely and totally overshadowed by an unrelated software with the sane name: https://radimrehurek.com/gensim/
  13667. TODO: advantages over QEMU. Like the name implies, they seem to have a nice ISA description language. From quick internals look, seems to generate LLVM intermediate language, which sound good.
  13668. Build on Ubuntu 20.04:
  13669. ....
  13670. git submodule update --init submodules/gensim
  13671. sudo apt install libantlr3c-dev
  13672. cd submodule/gensim
  13673. make
  13674. ....
  13675. First fails with:
  13676. ....
  13677. arm-none-eabi-gcc: error: unrecognized -march target: armv5
  13678. ....
  13679. Let's try just armv8, who cares about arvm5!!!
  13680. ....
  13681. mkdir build
  13682. cd build
  13683. cmake -DTESTING_ENABLED=FALSE -DCMAKE_BUILD_TYPE=DEBUGOPT ..
  13684. make -j`nproc` model-armv8
  13685. ....
  13686. Now fails as mentioned at https://bitbucket.org/gensim/gensim/issues/34/build-fails-with-unrecognised-intrinsic[]:
  13687. ....
  13688. terminate called after throwing an instance of 'std::logic_error'
  13689. what(): Unrecognised intrinsic: __builtin_abs64
  13690. Aborted (core dumped)
  13691. ....
  13692. Get the failing command with:
  13693. ....
  13694. make VERBOSE=1 model-armv8
  13695. ....
  13696. and we see some code generation step:
  13697. ....
  13698. cd /home/ciro/bak/git/linux-kernel-module-cheat/submodules/gensim/models/armv8 && \
  13699. /home/ciro/bak/git/linux-kernel-module-cheat/submodules/gensim/build/dist/bin/gensim \
  13700. -a /home/ciro/bak/git/linux-kernel-module-cheat/submodules/gensim/models/armv8/aarch64.ac \
  13701. -s module,arch,decode,disasm,ee_interp,ee_blockjit,jumpinfo,function,makefile \
  13702. -o decode.GenerateDotGraph=1,makefile.libtrace_path=/home/ciro/bak/git/linux-kernel-module-cheat/submodules/gensim/support/libtrace/inc,makefile.archsim_path=/home/ciro/bak/git/linux-kernel-module-cheat/submodules/gensim/archsim/inc,makefile.llvm_path=,makefile.Optimise=2,makefile.Debug=1 \
  13703. -t /home/ciro/bak/git/linux-kernel-module-cheat/submodules/gensim/build/models/armv8/output-aarch64/
  13704. ....
  13705. We can see an inclusion path:
  13706. ....
  13707. gensim/models/armv8/aarch64.ac
  13708. ac_isa("isa.ac");
  13709. gensim/models/armv8/isa.ac
  13710. ac_execute("execute.simd");
  13711. ....
  13712. and where `gensim/models/armv8/isa.ac` contains `__builtin_abs64` usages.
  13713. Rebuilding with `-DCMAKE_BUILD_TYPE=DEBUG` + GDB on `gensim` shows that the error comes from a call to `gci.GenerateExecuteBodyFor(body_str, *action);`, so it looks like there are some missing cases in `gensim/src/generators/GenCInterpreter/InterpreterNodeWalker.cpp` function `SSAIntrinsicStatementWalker::EmitFixedCode`, e.g. there should be one for `__builtin_abs64`.
  13714. This is completely broken academic code! They must be using an off-tree of part of the tool and forgot to commit.
  13715. == Buildroot
  13716. === Introduction to Buildroot
  13717. https://en.wikipedia.org/wiki/Buildroot[Buildroot] is a set of Make scripts that download and compile from source compatible versions of:
  13718. * GCC
  13719. * Linux kernel
  13720. * C standard library: Buildroot supports several implementations, see: xref:libc-choice[xrefstyle=full]
  13721. * https://en.wikipedia.org/wiki/BusyBox[BusyBox]: provides the shell and basic command line utilities
  13722. It therefore produces a pristine, blob-less, debuggable setup, where all moving parts are configured to work perfectly together.
  13723. Perhaps the awesomeness of Buildroot only sinks in once you notice that all it takes is 4 commands as explained at xref:buildroot-hello-world[xrefstyle=full].
  13724. The downsides of Buildroot are:
  13725. * the first build takes a while compared to downloading prebuilts, but it is well worth it
  13726. * the selection of software packages is relatively limited if compared to Debian.
  13727. +
  13728. In theory, any software can be packaged, and the Buildroot side is easy.
  13729. +
  13730. The hard part is dealing with crappy third party build systems and huge dependency chains.
  13731. * it is written in Make and Bash rather than Python like LKMC
  13732. * it downloads packages from upstream mirrors rather than having its own copy of them. Therefore, whenever https://github.com/cirosantilli/linux-kernel-module-cheat/issues/165[some random French research institute decides to break links, your build also breaks]. This is not acceptable. There are some mirroring options: https://risc-a-day.blogspot.com/2015/10/creating-local-mirror-for-buildroot.html but it's not on by default it seems, Buildroot has to have their own official and default mirror of everything.
  13733. This repo basically wraps around that, and tries to make everything even more awesome for kernel developers by adding the capability of seamlessly running the stuff you've built on emulators usually via `./run`.
  13734. This runnable part of selecting the command line options for different emulators and setups is to a large extent what https://en.wikipedia.org/wiki/Libvirt[Libvirt] does. But we feel that having both build and run on the same repository is the key.
  13735. As this repo develops however, we've started taking some of the build out of Buildroot, e.g. notably the <<buildroot-vanilla-kernel,Linux kernel>> to have more build flexibility and faster build startup times.
  13736. Therefore, more and more, this repo wants to take over everything that Buildroot does, and one day completely replace it to achieve emulation Nirvana, see e.g.:
  13737. * https://github.com/cirosantilli/linux-kernel-module-cheat/issues/116
  13738. * https://github.com/cirosantilli/linux-kernel-module-cheat/issues/117
  13739. === Custom Buildroot configs
  13740. We provide the following mechanisms:
  13741. * `./build-buildroot --config-fragment data/br2`: append the Buildroot configuration file `data/br2` to a single build. Must be passed every time you run `./build`. The format is the same as link:buildroot_config/default[].
  13742. * `./build-buildroot --config 'BR2_SOME_OPTION="myval"'`: append a single option to a single build.
  13743. For example, if you decide to <<enable-buildroot-compiler-optimizations>> after an initial build is finished, you must <<clean-the-build>> and rebuild:
  13744. ....
  13745. ./build-buildroot \
  13746. --config 'BR2_OPTIMIZE_3=y' \
  13747. --config 'BR2_PACKAGE_SAMPLE_PACKAGE=y' \
  13748. --
  13749. sample_package-dirclean \
  13750. sample_package-reconfigure \
  13751. ;
  13752. ....
  13753. as explained at: https://buildroot.org/downloads/manual/manual.html#rebuild-pkg
  13754. The clean is necessary because the source files didn't change, so `make` would just check the timestamps and not build anything.
  13755. You will then likely want to make those more permanent as explained at: xref:default-command-line-arguments[xrefstyle=full].
  13756. ==== Enable Buildroot compiler optimizations
  13757. If you are benchmarking compiled programs instead of hand written assembly, remember that we configure Buildroot to disable optimizations by default with:
  13758. ....
  13759. BR2_OPTIMIZE_0=y
  13760. ....
  13761. to improve the debugging experience.
  13762. You will likely want to change that to:
  13763. ....
  13764. BR2_OPTIMIZE_3=y
  13765. ....
  13766. Our link:buildroot_packages/sample_package[] package correctly forwards the Buildroot options to the build with `$(TARGET_CONFIGURE_OPTS)`, so you don't have to do any extra work.
  13767. Don't forget to do that if you are <<add-new-buildroot-packages,adding a new package>> with your own build system.
  13768. Then, you have two choices:
  13769. * if you already have a full `-O0` build, you can choose to rebuild just your package of interest to save some time as described at: xref:custom-buildroot-configs[xrefstyle=full]
  13770. +
  13771. ....
  13772. ./build-buildroot \
  13773. --config 'BR2_OPTIMIZE_3=y' \
  13774. --config 'BR2_PACKAGE_SAMPLE_PACKAGE=y' \
  13775. -- \
  13776. sample_package-dirclean \
  13777. sample_package-reconfigure \
  13778. ;
  13779. ....
  13780. +
  13781. However, this approach might not be representative since calls to an unoptimized libc and other libraries will have a negative performance impact.
  13782. +
  13783. Maybe you can get away with rebuilding libc, but I'm not sure that it will work properly.
  13784. +
  13785. Kernel-wise it should be fine though as mentioned at: xref:kernel-o0[xrefstyle=full]
  13786. * <<clean-the-build,clean the build>> and rebuild from scratch:
  13787. +
  13788. ....
  13789. mv out out~
  13790. ./build-buildroot --config 'BR2_OPTIMIZE_3=y'
  13791. ....
  13792. === Find Buildroot options with make menuconfig
  13793. `make menuconfig` is a convenient way to find Buildroot configurations:
  13794. ....
  13795. cd "$(./getvar buildroot_build_dir)"
  13796. make menuconfig
  13797. ....
  13798. Hit `/` and search for the settings.
  13799. Save and quit.
  13800. ....
  13801. diff -u .config.olg .config
  13802. ....
  13803. Then copy and paste the diff additions to link:buildroot_config/default[] to make them permanent.
  13804. === Change user
  13805. At startup, we login automatically as the `root` user.
  13806. If you want to switch to another user to test some permissions, we have already created an `user0` user through the link:user_table[] file, and you can just login as that user with:
  13807. ....
  13808. login user0
  13809. ....
  13810. and password:
  13811. ....
  13812. a
  13813. ....
  13814. Then test that the user changed with:
  13815. ....
  13816. id
  13817. ....
  13818. which gives:
  13819. ....
  13820. uid=1000(user0) gid=1000(user0) groups=1000(user0)
  13821. ....
  13822. ==== Login as a non-root user without password
  13823. Replace on `inittab`:
  13824. ....
  13825. ::respawn:-/bin/sh
  13826. ....
  13827. with:
  13828. ....
  13829. ::respawn:-/bin/login -f user0
  13830. ....
  13831. `-f` forces login without asking for the password.
  13832. === Add new files to the Buildroot image
  13833. These are your options:
  13834. * create a Buildroot package: <<add-new-buildroot-packages>>
  13835. +
  13836. This is the most general option, but the most laborious. No big deal if you copy our template however as shown in that section.
  13837. +
  13838. Handles any type of cross compilation, including multiple input sources.
  13839. * drop your files directly in <<rootfs-overlay>> and follow instructions from that section.
  13840. +
  13841. Files in that directory are directly copied to the image, so this is the best option for files that don't need to be compiled such as <<interpreted-languages>>.
  13842. +
  13843. You could also use this method to inject compiled binaries into the image for quick-and-dirty testing.
  13844. +
  13845. But it will be much more likely to work if you use our cross compiler with <<run-toolchain>> or <<getvar>>.
  13846. +
  13847. If you can't do that, at the very least make it statically with `-static` compiled to remove the possibility of binary mismatch with our dynamic glibc.
  13848. +
  13849. But things can still break if your random glibc is configured to work with a newer Linux kernel than ours.
  13850. +
  13851. It often just works even if they are not perfectly matched however, partly because the Linux kernel is highly <<update-the-linux-kernel,backwards compatible>>
  13852. * fork this repo and add new files to <<userland-content,userland/>> or <<kernel-modules,kernel_modules/>>
  13853. +
  13854. To add a simple executable that compiles from a single source file, like the dozens of examples that we have, you could just go this route.
  13855. +
  13856. This mechanisms bypasses having to create/modify Buildroot packages, and is very simple when you have a single input single output executable.
  13857. * <<9p>>. OK, this is not really adding to the image, but it is the most convenient way to quickly modify a binary on the host, cross compile, and test it out without rebooting.
  13858. Related threads:
  13859. * https://github.com/cirosantilli/linux-kernel-module-cheat/issues/22
  13860. * https://github.com/cirosantilli/linux-kernel-module-cheat/issues/50
  13861. ==== Add new Buildroot packages
  13862. First, see if you can't get away without actually adding a new package, for example:
  13863. * if you have a standalone C file with no dependencies besides the C standard library to be compiled with GCC, just add a new file under link:buildroot_packages/sample_package[] and you are done
  13864. * if you have a dependency on a library, first check if Buildroot doesn't have a package for it already with `ls buildroot/package`. If yes, just enable that package as explained at: xref:custom-buildroot-configs[xrefstyle=full]
  13865. If none of those methods are flexible enough for you, you can just fork or hack up link:buildroot_packages/sample_package[] the sample package to do what you want.
  13866. For how to use that package, see: xref:buildroot-packages-directory[xrefstyle=full].
  13867. Then iterate trying to do what you want and reading the manual until it works: https://buildroot.org/downloads/manual/manual.html
  13868. === Remove Buildroot packages
  13869. Once you've built a package in to the image, there is no easy way to remove it.
  13870. Documented at: https://github.com/buildroot/buildroot/blob/2017.08/docs/manual/rebuilding-packages.txt#L90[]
  13871. Also mentioned at: https://stackoverflow.com/questions/47320800/how-to-clean-only-target-in-buildroot
  13872. [[br2-target-rootfs-ext2-size]]
  13873. === BR2_TARGET_ROOTFS_EXT2_SIZE
  13874. When adding new large package to the Buildroot root filesystem, it may fail with the message:
  13875. ....
  13876. Maybe you need to increase the filesystem size (BR2_TARGET_ROOTFS_EXT2_SIZE)
  13877. ....
  13878. The solution is to simply add:
  13879. ....
  13880. ./build-buildroot --config 'BR2_TARGET_ROOTFS_EXT2_SIZE="512M"'
  13881. ....
  13882. where 512Mb is "large enough".
  13883. Note that dots cannot be used as in `1.5G`, so just use Megs as in `1500M` instead.
  13884. Unfortunately, TODO we don't have a perfect way to find the right value for `BR2_TARGET_ROOTFS_EXT2_SIZE`. One good heuristic is:
  13885. ....
  13886. du -hsx "$(./getvar --arch arm buildroot_target_dir)"
  13887. ....
  13888. Some promising ways to overcome this problem include:
  13889. * <<squashfs>>
  13890. TODO benchmark: would gem5 suffer a considerable disk read performance hit due to decompressing SquashFS?
  13891. * libguestfs: https://serverfault.com/questions/246835/convert-directory-to-qemu-kvm-virtual-disk-image/916697#916697[], in particular http://libguestfs.org/guestfish.1.html#vfs-minimum-size[`vfs-minimum-size`]
  13892. * use methods described at: xref:gem5-restore-new-script[xrefstyle=full] instead of putting builds on the root filesystem
  13893. Bibliography: https://stackoverflow.com/questions/49211241/is-there-a-way-to-automatically-detect-the-minimum-required-br2-target-rootfs-ex
  13894. ==== SquashFS
  13895. https://en.wikipedia.org/wiki/SquashFS[SquashFS] creation with `mksquashfs` does not take fixed sizes, and I have successfully booted from it, but it is readonly, which is unacceptable.
  13896. But then we could mount https://wiki.debian.org/ramfs[ramfs] on top of it with <<overlayfs>> to make it writable, but my attempts failed exactly as mentioned at <<overlayfs>>.
  13897. This is the exact unanswered question: https://unix.stackexchange.com/questions/343484/mounting-squashfs-image-with-read-write-overlay-for-rootfs
  13898. [[rpath]]
  13899. === Buildroot rebuild is slow when the root filesystem is large
  13900. Buildroot is not designed for large root filesystem images, and the rebuild becomes very slow when we add a large package to it.
  13901. This is due mainly to the `pkg-generic` `GLOBAL_INSTRUMENTATION_HOOKS` sanitation which go over the entire tree doing complex operations... I no like, in particular `check_bin_arch` and `check_host_rpath`
  13902. We have applied https://github.com/cirosantilli/buildroot/commit/983fe7910a73923a4331e7d576a1e93841d53812[983fe7910a73923a4331e7d576a1e93841d53812] to out Buildroot fork which removes part of the pain by not running:
  13903. ....
  13904. >>> Sanitizing RPATH in target tree
  13905. ....
  13906. which contributed to a large part of the slowness.
  13907. Test how Buildroot deals with many files with:
  13908. ....
  13909. ./build-buildroot \
  13910. --config 'BR2_PACKAGE_LKMC_MANY_FILES=y' \
  13911. -- \
  13912. lkmc_many_files-reconfigure \
  13913. |& \
  13914. ts -i '%.s' \
  13915. ;
  13916. ./build-buildroot |& ts -i '%.s'
  13917. ....
  13918. and notice how the second build, which does not rebuilt the package at all, still gets stuck in the `RPATH` check forever without our Buildroot patch.
  13919. === Report upstream bugs
  13920. When asking for help on upstream repositories outside of this repository, you will need to provide the commands that you are running in detail without referencing our scripts.
  13921. For example, QEMU developers will only want to see the final QEMU command that you are running.
  13922. For the configure and build, search for the `Building` and `Configuring` parts of the build log, then try to strip down all Buildroot related paths, to keep only options that seem to matter.
  13923. We make that easy by building commands as strings, and then echoing them before evaling.
  13924. So for example when you run:
  13925. ....
  13926. ./run --arch arm
  13927. ....
  13928. the very first stdout output of that script is the actual QEMU command that is being run.
  13929. The command is also saved to a file for convenience:
  13930. ....
  13931. cat "$(./getvar --arch arm run_cmd_file)"
  13932. ....
  13933. which you can manually modify and execute during your experiments later:
  13934. ....
  13935. vim "$(./getvar --arch arm run_cmd_file)"
  13936. ./"$(./getvar --arch arm run_cmd_file)"
  13937. ....
  13938. If you are not already on the master of the given component, you can do that neatly with <<build-variants>>.
  13939. E.g., to check if a QEMU bug is still present on `master`, you can do as explained at <<qemu-build-variants>>:
  13940. ....
  13941. git -C "$(./getvar qemu_source_dir)" checkout master
  13942. ./build-qemu --clean --qemu-build-id master
  13943. ./build-qemu --qemu-build-id master
  13944. git -C "$(./getvar qemu_source_dir)" checkout -
  13945. ./run --qemu-build-id master
  13946. ....
  13947. Then, you will also want to do a <<bisection>> to pinpoint the exact commit to blame, and CC that developer.
  13948. Finally, give the images you used save upstream developers' time as shown at: xref:release-zip[xrefstyle=full].
  13949. For Buildroot problems, you should wither provide the config you have:
  13950. ....
  13951. ./getvar buildroot_config_file
  13952. ....
  13953. or try to reproduce with a minimal config, see: https://github.com/cirosantilli/buildroot/tree/in-tree-package-master
  13954. === libc choice
  13955. Buildroot supports several libc implementations, including:
  13956. * https://en.wikipedia.org/wiki/GNU_C_Library[glibc]
  13957. * https://en.wikipedia.org/wiki/UClibc[uClibc]
  13958. We currently use glibc, which is selected by:
  13959. ....
  13960. BR2_TOOLCHAIN_BUILDROOT_GLIBC=y
  13961. ....
  13962. Ideally we would like to use uClibc, as it is more minimal and easier to understand, but unfortunately there are some very few packages that use some weird glibc extension that uClibc hasn't implemented yet, e.g.:
  13963. * <<selinux>>. Trivial unmerged fix at: http://lists.busybox.net/pipermail/buildroot/2017-July/197793.html just missing the uClibc option to expose `fts.h`...
  13964. * <<stress>>
  13965. The full list of unsupported packages can be found by grepping the Buildroot source:
  13966. ....
  13967. git -C "$(./getvar buildroot_source_dir)" grep 'depends on BR2_TOOLCHAIN_USES_GLIBC'
  13968. ....
  13969. One "downside" of glibc is that it exercises much more kernel functionality on its more bloated pre-main init, which breaks user mode C hello worlds more often, see: xref:user-mode-simulation-with-glibc[xrefstyle=full]. I quote "downside" because glibc is actually exposing emulator bugs which we should actually go and fix.
  13970. === Buildroot hello world
  13971. This repo doesn't do much more other than setting a bunch of Buildroot configurations and building it.
  13972. The minimal work you have to do to get QEMU to boot Buildroot from scratch is tiny if, about 4 commands!
  13973. Here are some good working commands for several ISAs:
  13974. * x86_64 https://unix.stackexchange.com/questions/44062/how-to-use-qemu-to-run-build-root-linux-images/543075#543075
  13975. ** x86_64 X11 https://unix.stackexchange.com/questions/70931/how-to-install-x11-on-my-own-linux-buildroot-system/306116#306116 Also mentioned at: xref:x11[xrefstyle=full].
  13976. * aarch64 https://stackoverflow.com/questions/47557262/how-to-download-the-torvalds-linux-kernel-master-recompile-it-and-boot-it-wi/49349237#49349237
  13977. ** aarch64 U-Boot: https://stackoverflow.com/questions/58028789/how-to-boot-linux-aarch64-with-u-boot-with-buildroot-on-qemu Also mentioned at: xref:u-boot[xrefsultye=full].
  13978. * arm https://stackoverflow.com/questions/38320066/how-to-run-linux-on-a-qemu-arm-versatile-machine/44099299#44099299
  13979. * PPC <https://stackoverflow.com/questions/48021127/build-powerpc-kernel-and-boot-powerpc-kernel-on-qemu/49349262#49349262> just work commands for PPC, comment on how to replace kernel
  13980. These can come in handy if you want to debug something in Buildroot itself and possibly report an upstream bug.
  13981. === Update the Buildroot toolchain
  13982. Users of this repo will often want to update the compilation toolchain to the latest version to get fresh new features like new ISA instructions.
  13983. Because the toolchain is so complex and tightly knitted with the rest of the system, this is more of an art than a science.
  13984. However, it is not something to be feared, and you will get there without help in most cases.
  13985. In this section we cover the most common cases.
  13986. ==== Update GCC: GCC supported by Buildroot
  13987. This is of course the simplest case.
  13988. You can quickly determine all the GCC versions supported by Buildroot by looking at:
  13989. ....
  13990. submodules/buildroot/package/gcc/Config.in.host
  13991. ....
  13992. For example, in Buildroot 2018.08, which was used at LKMC 5d10529c10ad8a4777b0bac1543320df0c89a1ce, the default toolchain was 7.3.0, and the latest supported one was 8.2.0.
  13993. To just upgrade the toolchain to 8.2.0, and rebuild some userland executables to later run them, we could do:
  13994. ....
  13995. cd submodules/gcc
  13996. git fetch up
  13997. git checkout -b lkmc-gcc-8_2_0-release gcc-8_2_0-release
  13998. git am ../buildroot/package/gcc/8.2.0/*
  13999. cd ../..
  14000. ./build-buildroot \
  14001. --arch aarch64 \
  14002. --buildroot-build-id gcc-8-2 \
  14003. --config 'BR2_GCC_VERSION_8_X=y' \
  14004. --config 'BR2_GCC_VERSION="8.2.0"' \
  14005. --no-all \
  14006. -- \
  14007. toolchain \
  14008. ;
  14009. ./build-userland \
  14010. --arch aarch64 \
  14011. --buildroot-build-id gcc-8-2 \
  14012. --out-rootfs-overlay-dir-prefix gcc-8-2 \
  14013. --userland-build-id gcc-8-2 \
  14014. ;
  14015. ./build-buildroot --arch aarch64
  14016. ....
  14017. where the `toolchain` Buildroot target builds only Buildroot: https://stackoverflow.com/questions/44521150/buildroot-install-and-build-the-toolchain-only
  14018. Note that this setup did not overwrite any of our default Buildroot due to careful namespacing with our `gcc-8-2` prefix!
  14019. Now you can either run the executables on <<user-mode-simulation>> with:
  14020. ....
  14021. ./run --arch aarch64 --userland userland/c/hello.c --userland-build-id gcc-8-2
  14022. ....
  14023. or in full system with:
  14024. ....
  14025. ./run --arch aarch64 --eval-after './gcc-8-2/c/hello.out'
  14026. ....
  14027. where the `gcc-8-2` prefix was added by `--out-rootfs-overlay-dir-prefix`.
  14028. <<arm-sve>> support was only added to GCC 8 and can be enabled with the flag: `-march=armv8.2-a+sve`.
  14029. We already even had a C SVE test in-tree, but it was disabled because the old toolchain does not support it.
  14030. So once the new GCC 8 toolchain was built, we can first enable that test by editing the <<path-properties>> file to not skip C SVE tests anymore:
  14031. ....
  14032. #os.path.splitext(self.path_components[-1])[1] == '.c' and self['arm_sve']
  14033. ....
  14034. and then rebuild run one of the experiments from <<change-arm-sve-vector-length-in-emulators>>:
  14035. ....
  14036. ./build-userland \
  14037. --arch aarch64 \
  14038. --buildroot-build-id gcc-8-2 \
  14039. --force-rebuild \
  14040. --march=armv8.2-a+sve \
  14041. --out-rootfs-overlay-dir-prefix gcc-8-2 \
  14042. --static \
  14043. --userland-build-id gcc-8-2 \
  14044. ;
  14045. ./run \
  14046. --arch aarch64 \
  14047. --userland userland/arch/aarch64/inline_asm/sve_addvl.c \
  14048. --userland-build-id gcc-8-2 \
  14049. --static \
  14050. --gem5-worktree master \
  14051. -- \
  14052. --param 'system.cpu[:].isa[:].sve_vl_se = 4' \
  14053. ....
  14054. Bibliography:
  14055. * https://github.com/cirosantilli/linux-kernel-module-cheat/issues/87
  14056. ==== Update GCC: GCC not supported by Buildroot
  14057. Now it gets fun, but well, guess what, we will try to do the same as xref:update-gcc-gcc-supported-by-buildroot[xrefstyle=full] but:
  14058. * pick the Buildroot version that comes closest to the GCC you want
  14059. * if any `git am` patches don't apply, skip them
  14060. Now, if things fail, you can try:
  14061. * if the GCC version is supported by a newer Buildroot version:
  14062. ** quick and dirty: see what they are doing differently there, and patch it in here
  14063. ** golden star: upgrade our default Buildroot, <<test-this-repo,test it well>>, and send a pull request!
  14064. * otherwise: OK, go and patch Buildroot, time to become a Buildroot dev
  14065. Known setups:
  14066. * Buildroot 2018.08:
  14067. ** GCC 8.3.0: OK
  14068. ** GCC 9.2.0: KO https://github.com/cirosantilli/linux-kernel-module-cheat/issues/97
  14069. === Buildroot vanilla kernel
  14070. By default, our build system uses link:build-linux[], and the Buildroot kernel build is disabled: https://stackoverflow.com/questions/52231793/can-buildroot-build-the-root-filesystem-without-building-the-linux-kernel
  14071. There are however some cases where we want that ability, e.g.: <<kernel-modules-buildroot-package>> and <<benchmark-linux-kernel-boot>>.
  14072. The build of the kernel can be enabled with the `--build-kernel` option of link:build-buildroot[].
  14073. For example, to build the kernel and then boot it you could do:
  14074. ....
  14075. ./build-buildroot --arch aarch64 --build-linux
  14076. ./run --arch aarch64 --linux-exec "$(./getvar --arch aarch64 TODO)/vmlinux"
  14077. ....
  14078. TODO: fails on LKMC d53ffcff18aa26d24ea34b86fb80e4a5694378dch with "ERROR: No hash found for linux-4.19.16.tar.xz": https://github.com/cirosantilli/linux-kernel-module-cheat/issues/115
  14079. Note that this kernel is not configured at all by LKMC, and there is no support to do that currently: the Buildroot default kernel configs for a target are used unchanged, e.g. `make qemu_aarch64_virt_defconfig`,see also; <<buildroot-kernel-config>>.
  14080. Therefore, this kernel might be missing certain key capabilities, e.g. filesystem support required to boot.
  14081. == Userland content
  14082. This section documents our test and educational userland content, such as <<c>>, <<cpp>> and <<posix>> examples, present mostly under link:userland/[].
  14083. Getting started at: xref:userland-setup[xrefstyle=full]
  14084. Userland assembly content is located at: xref:userland-assembly[xrefstyle=full]. It was split from this section basically because we were hitting the HTML `h6` limit, stupid web :-)
  14085. This content makes up the bulk of the link:userland/[] directory.
  14086. The quickest way to run the arch agnostic examples, which comprise the majority of the examples, is natively as shown at: xref:userland-setup-getting-started-natively[xrefstyle=full]
  14087. This section was originally moved in here from: https://github.com/cirosantilli/cpp-cheat
  14088. === build-userland
  14089. link:build-userland[]
  14090. Build <<userland-content,userland programs>>.
  14091. Build all with:
  14092. ....
  14093. ./build-userland
  14094. ....
  14095. or build only those under e.g. `userland/c` with:
  14096. ....
  14097. ./build-userland userland/c
  14098. ....
  14099. The executables are not automatically added to the Buildroot image, you must follow the command with a `./build-buildroot` command as in:
  14100. ....
  14101. ./build-userland
  14102. ./build-buildroot
  14103. ....
  14104. Remember that certain executables have specific requirements, e.g.:
  14105. * link:userland/arch/[] programs only build if the target arch matches
  14106. * link:userland/libs[] directory require the `--package` option <<userland-libs-directory>>
  14107. Default: build all examples that have their package dependencies met, e.g.:
  14108. * an OpenBLAS example can only be built if the target root filesystem has the OpenBLAS libraries and headers installed, which you must inform with --package
  14109. === C
  14110. Programs under link:userland/c/[] are examples of https://en.wikipedia.org/wiki/ANSI_C[ANSI C] programming:
  14111. * link:userland/c/empty.c[]
  14112. * link:userland/c/hello.c[]
  14113. * `main` and environment
  14114. ** link:userland/c/return0.c[]
  14115. ** link:userland/c/return1.c[]
  14116. ** link:userland/c/return2.c[]
  14117. ** link:userland/c/exit0.c[]
  14118. ** link:userland/c/exit1.c[]
  14119. ** link:userland/c/exit2.c[]
  14120. ** link:userland/c/command_line_arguments.c[]: print one command line argument per line using `argc` and `argv`.
  14121. +
  14122. Good sanity check for user mode: <<qemu-user-mode-getting-started>>
  14123. * Standard library
  14124. ** `assert.h`
  14125. *** link:userland/c/assert_fail.c[]
  14126. ** `stdlib.h`
  14127. *** exit
  14128. **** link:userland/c/abort.c[]
  14129. ** `stdio.h`
  14130. *** link:userland/c/getchar.c[]
  14131. *** link:userland/c/snprintf.c[]
  14132. *** link:userland/c/stderr.c[]
  14133. *** File IO
  14134. **** link:userland/c/file_write_read.c[]
  14135. ***** link:userland/c/cat.c[]: a quick and dirty `cat` implementation for interactive <<user-mode-simulation>> tests
  14136. **** link:userland/linux/open_o_tmpfile.c[]: https://stackoverflow.com/questions/4508998/what-is-an-anonymous-inode-in-linux/44388030#44388030
  14137. ** `time.h`
  14138. *** link:userland/c/timespec_get.c[] `timespec_get` is a C11 for `clock_gettime` http://stackoverflow.com/questions/361363/how-to-measure-time-in-milliseconds-using-ansi-c/36095407#36095407
  14139. +
  14140. Vs `clock()`: http://stackoverflow.com/questions/12392278/measure-time-in-linux-getrusage-vs-clock-gettime-vs-clock-vs-gettimeofday
  14141. * Fun
  14142. ** link:userland/c/loop.c[]
  14143. ==== malloc
  14144. Allocate memory! Vs using the stack: https://stackoverflow.com/questions/4584089/what-is-the-function-of-the-push-pop-instructions-used-on-registers-in-x86-ass/33583134#33583134
  14145. link:userland/c/malloc.c[]: `malloc` hello world: allocate two ints and use them.
  14146. Linux 5.1 / glibc 2.29 implements it with the <<mmap,`mmap` system call>>.
  14147. `malloc` leads to the infinite joys of <<memory-leaks>>.
  14148. ===== malloc implementation
  14149. TODO: the exact answer is going to be hard.
  14150. But at least let's verify that large `malloc` calls use the `mmap` syscall with:
  14151. ....
  14152. strace -x ./c/malloc_size.out 0x100000 2>&1 | grep mmap | tail -n 1
  14153. strace -x ./c/malloc_size.out 0x200000 2>&1 | grep mmap | tail -n 1
  14154. strace -x ./c/malloc_size.out 0x400000 2>&1 | grep mmap | tail -n 1
  14155. ....
  14156. Source: link:userland/c/malloc_size.c[].
  14157. From this we sese that the last `mmap` calls are:
  14158. ....
  14159. mmap(NULL, 1052672, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7ffff7ef2000
  14160. mmap(NULL, 2101248, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7ffff7271000
  14161. mmap(NULL, 4198400, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7ffff7071000
  14162. ....
  14163. which in hex are:
  14164. ....
  14165. printf '%x\n' 1052672
  14166. # 101000
  14167. printf '%x\n' 2101248
  14168. # 201000
  14169. printf '%x\n' 4198400
  14170. # 401000
  14171. ....
  14172. so we figured out the pattern: those 1, 2, and 4 MiB mallocs are mmaping N + 0x1000 bytes.
  14173. ===== malloc maximum size
  14174. General overview at: https://stackoverflow.com/questions/2798330/maximum-memory-which-malloc-can-allocate
  14175. See also:
  14176. * https://stackoverflow.com/questions/13127855/what-is-the-size-limit-for-mmap
  14177. * https://stackoverflow.com/questions/7504139/malloc-allocates-memory-more-than-ram
  14178. From <<memory-size>> and `./run --help`, we see that at we set the emulator memory by default to 256MB. Let's see how much Linux allows us to malloc.
  14179. Then from <<malloc-implementation>> we see that `malloc` is implemented with `mmap`. Therefore, let's simplify the problam and try to understand what is the larges mmap we can do first. This way we can ignore how glibc implements malloc for now.
  14180. In Linux, the maximum `mmap` value in controlled by:
  14181. ....
  14182. cat /proc/sys/vm/overcommit_memory
  14183. ....
  14184. which is documented in `man proc`.
  14185. The default value is `0`, which I can't find a precise documentation for. `2` is precisely documented but I'm lazy to do all calculations. So let's just verify `0` vs `1` by trying to `mmap` 1GiB of memory:
  14186. ....
  14187. echo 0 > /proc/sys/vm/overcommit_memory
  14188. ./linux/mmap_anonymous.out 0x40000000
  14189. echo 1 > /proc/sys/vm/overcommit_memory
  14190. ./linux/mmap_anonymous.out 0x40000000
  14191. ....
  14192. Source: link:userland/linux/mmap_anonymous.c[]
  14193. With `0`, we get a failure:
  14194. ....
  14195. mmap: Cannot allocate memory
  14196. ....
  14197. but with `1` the allocation works.
  14198. We are allowed to allocate more than the actual memory + swap because the memory is only virtual, as explained at: https://stackoverflow.com/questions/7880784/what-is-rss-and-vsz-in-linux-memory-management/57453334#57453334
  14199. If we start using the pages, the OOM killer would sooner or later step in and kill our process: <<linux-out-of-memory-killer>>.
  14200. ====== Linux out-of-memory killer
  14201. We can observe the OOM in LKMC 1e969e832f66cb5a72d12d57c53fb09e9721d589 which defaults to 256MiB of memory with:
  14202. ....
  14203. echo 1 > /proc/sys/vm/overcommit_memory
  14204. ./linux/mmap_anonymous_touch.out 0x40000000 0x8000000
  14205. ....
  14206. This first allows memory overcommit so to that the program can mmap 1GiB, 4x more than total RAM without failing as mentioned at <<malloc-maximum-size>>.
  14207. It then walks over every page and writes a value in it to ensure that it is used.
  14208. A <<fork-bomb>> is another example that can trigger the OOM killer.
  14209. Algorithm used by the OOM: https://unix.stackexchange.com/questions/153585/how-does-the-oom-killer-decide-which-process-to-kill-first
  14210. ==== C multithreading
  14211. Added in C11!
  14212. Bibliography:
  14213. * <<userland-multithreading>>
  14214. * https://stackoverflow.com/questions/3908031/how-to-multithread-c-code/52453354#52453354
  14215. ===== atomic.c
  14216. * link:userland/c/atomic.c[]
  14217. * link:userland/c/atomic/[]: files in this directory use the same technique as <<atomic-cpp>>, i.e. with one special case per file.
  14218. +
  14219. Maybe link:userland/c/atomic.c[] should be deprecated in favor of those more minimal ones.
  14220. +
  14221. This was added because C++-pre main is too bloated, especially when we turn one a gazillion <<gem5>> logs, it makes me want to cry.
  14222. +
  14223. And we want a single operation per test rather than to as in `atomic.c` because when using gem5 we want absolute control over the microbenchmark.
  14224. Demonstrates `atomic_int` and `thrd_create`.
  14225. <<disas,Disassembly with GDB>> at LKMC 619fef4b04bddc4a5a38aec5e207dd4d5a25d206 + 1:
  14226. ....
  14227. ./disas --arch aarch64 --userland userland/c/atomic.c my_thread_main
  14228. ....
  14229. shows on ARM:
  14230. ....
  14231. 16 ++cnt;
  14232. 0x00000000004008cc <+28>: 80 00 00 b0 adrp x0, 0x411000 <malloc@got.plt>
  14233. 0x00000000004008d0 <+32>: 00 80 01 91 add x0, x0, #0x60
  14234. 0x00000000004008d4 <+36>: 00 00 40 b9 ldr w0, [x0]
  14235. 0x00000000004008d8 <+40>: 01 04 00 11 add w1, w0, #0x1
  14236. 0x00000000004008dc <+44>: 80 00 00 b0 adrp x0, 0x411000 <malloc@got.plt>
  14237. 0x00000000004008e0 <+48>: 00 80 01 91 add x0, x0, #0x60
  14238. 0x00000000004008e4 <+52>: 01 00 00 b9 str w1, [x0]
  14239. 17 ++acnt;
  14240. 0x00000000004008e8 <+56>: 20 00 80 52 mov w0, #0x1 // #1
  14241. 0x00000000004008ec <+60>: e0 1b 00 b9 str w0, [sp, #24]
  14242. 0x00000000004008f0 <+64>: e0 1b 40 b9 ldr w0, [sp, #24]
  14243. 0x00000000004008f4 <+68>: e2 03 00 2a mov w2, w0
  14244. 0x00000000004008f8 <+72>: 80 00 00 b0 adrp x0, 0x411000 <malloc@got.plt>
  14245. 0x00000000004008fc <+76>: 00 70 01 91 add x0, x0, #0x5c
  14246. 0x0000000000400900 <+80>: 03 00 e2 b8 ldaddal w2, w3, [x0]
  14247. 0x0000000000400904 <+84>: 61 00 02 0b add w1, w3, w2
  14248. 0x0000000000400908 <+88>: e0 03 01 2a mov w0, w1
  14249. 0x000000000040090c <+92>: e0 1f 00 b9 str w0, [sp, #28]
  14250. ....
  14251. so:
  14252. * the atomic increment uses <<arm-lse,`ldadd`>>
  14253. * the non-atomic increment just does LDR, ADD, STR: <<arm-lse,`ldadd`>>
  14254. With `-O3`:
  14255. ....
  14256. 16 ++cnt;
  14257. 0x0000000000400a00 <+32>: 60 00 40 b9 ldr w0, [x3]
  14258. 0x0000000000400a04 <+36>: 00 04 00 11 add w0, w0, #0x1
  14259. 0x0000000000400a08 <+40>: 60 00 00 b9 str w0, [x3]
  14260. 17 ++acnt;
  14261. 0x0000000000400a0c <+44>: 20 00 80 52 mov w0, #0x1 // #1
  14262. 0x0000000000400a10 <+48>: 40 00 e0 b8 ldaddal w0, w0, [x2]
  14263. ....
  14264. so the situation is the same but without all the horrible stack noise.
  14265. ==== GCC C extensions
  14266. ===== C empty struct
  14267. Example: link:userland/gcc/empty_struct.c[]
  14268. Documentation: https://gcc.gnu.org/onlinedocs/gcc-8.2.0/gcc/Empty-Structures.html#Empty-Structures
  14269. Question: https://stackoverflow.com/questions/24685399/c-empty-struct-what-does-this-mean-do
  14270. ===== OpenMP
  14271. GCC implements the <<OpenMP>> threading implementation: https://stackoverflow.com/questions/3949901/pthreads-vs-openmp
  14272. Example: link:userland/gcc/openmp.c[]
  14273. The implementation is built into GCC itself. It is enabled at GCC compile time by `BR2_GCC_ENABLE_OPENMP=y` on Buildroot, and at program compile time by `-fopenmp`.
  14274. It seems to be easier to use for compute parallelism and more language agnostic than POSIX threads.
  14275. pthreads are more versatile though and allow for a superset of OpenMP.
  14276. The implementation lives under `libgomp` in the GCC tree, and is documented at: https://gcc.gnu.org/onlinedocs/libgomp/
  14277. `strace` shows that OpenMP makes `clone()` syscalls in Linux. TODO: does it actually call `pthread_` functions, or does it make syscalls directly? Or in other words, can it work on <<freestanding-programs>>? A quick grep shows many references to pthreads.
  14278. [[cpp]]
  14279. === C++
  14280. Programs under link:userland/cpp/[] are examples of https://en.wikipedia.org/wiki/C%2B%2B#Standardization[ISO C] programming.
  14281. * link:userland/cpp/empty.cpp[]
  14282. * link:userland/cpp/hello.cpp[]
  14283. * iostream
  14284. ** link:userland/cpp/copyfmt.cpp[]: `std::copyfmt` restores stream state, see also: https://stackoverflow.com/questions/12560291/set-back-default-floating-point-print-precision-in-c/53673686#53673686
  14285. * fstream
  14286. ** link:userland/cpp/file_write_read.cpp[]
  14287. ** link:userland/cpp/temporary_directory.cpp[]: illustrates `std::filesystem::temp_directory_path` and answers https://stackoverflow.com/questions/3379956/how-to-create-a-temporary-directory-in-c/58454949#58454949
  14288. * random
  14289. ** link:userland/cpp/random.cpp[]
  14290. * containers
  14291. ** associative
  14292. *** link:userland/cpp/set.cpp[]: `std::set` contains unique keys
  14293. *** link:userland/cpp/map.cpp[]: `std::map`
  14294. *** link:userland/cpp/multimap.cpp[]: `std::multimap`
  14295. ** <<algorithms>> contains a benchmark comparison of different c++ containers
  14296. [[cpp-classes]]
  14297. ==== C++ classes
  14298. [[cpp-constructor]]
  14299. ===== C++ constructor
  14300. * link:userland/cpp/initializer_list_constructor.cpp[]: documents stuff like `std::vector<int> v{0, 1};` and `std::initializer_list`
  14301. * link:userland/cpp/most_vexing_parse.cpp[]: the most vexing parse is a famous constructor vs function declaration syntax gotcha!
  14302. ** https://en.wikipedia.org/wiki/Most_vexing_parse
  14303. ** http://stackoverflow.com/questions/180172/default-constructor-with-empty-brackets
  14304. * `virtual` and polymorphism
  14305. ** link:userland/cpp/virtual.cpp[]
  14306. [[cpp-rule-of-five]]
  14307. ====== C++ rule of five
  14308. link:userland/cpp/rule_of_five.cpp[]
  14309. Output Ubuntu 20.04 GCC 9.3:
  14310. ....
  14311. constructor?
  14312. constructor
  14313. copy?
  14314. constructor
  14315. copy
  14316. copy assignment?
  14317. constructor
  14318. copy assignment
  14319. constructor
  14320. copy
  14321. move assignment
  14322. destructor
  14323. move?
  14324. constructor
  14325. move?
  14326. constructor
  14327. constructor
  14328. move assignment
  14329. destructor
  14330. a bunch of destructors?
  14331. destructor
  14332. destructor
  14333. destructor
  14334. destructor
  14335. destructor
  14336. ....
  14337. https://en.cppreference.com/w/cpp/language/rule_of_three
  14338. [[cpp-standards]]
  14339. ==== C++ standards
  14340. Like for C, you have to pay for the standards... insane. So we just use the closest free drafts instead.
  14341. https://stackoverflow.com/questions/81656/where-do-i-find-the-current-c-or-c-standard-documents
  14342. [[cpp-initialization-types]]
  14343. ==== C++ initialization types
  14344. OMG this is hell, understand when primitive variables are initialized or not:
  14345. * https://stackoverflow.com/questions/3127454/how-do-c-class-members-get-initialized-if-i-dont-do-it-explicitly
  14346. * https://blog.tartanllama.xyz/initialization-is-bonkers/
  14347. Intuition:
  14348. * direct initialization: a constructor called explicitly with at least one argument: https://en.cppreference.com/w/cpp/language/direct_initialization
  14349. * default initialization: does not initialize primitive types: https://en.cppreference.com/w/cpp/language/default_initialization
  14350. * value initialization: maybe initializes primitive types: https://en.cppreference.com/w/cpp/language/value_initialization
  14351. * zero initialization: initializes primitive types
  14352. Good rule:
  14353. * initialize every single variable explicitly to prevent the risk of having uninitialized variables due to programmer error (which is easy to get wrong due to insane rules)
  14354. * if you don't define your own default constructor, always `= delete` it instead. This prevents the possibility that variables will be assigned twice due to zero initialization
  14355. [[cpp-multithreading]]
  14356. ==== C++ multithreading
  14357. * https://en.cppreference.com/w/cpp/header/thread[`<thread>`]
  14358. ** link:userland/cpp/count.cpp[] Exemplifies: `std::this_thread::sleep_for`
  14359. ** link:userland/cpp/thread_hardware_concurrency.cpp[] `std::thread::hardware_concurrency`
  14360. ** link:userland/cpp/thread_get_id.cpp[] `std::thread::get_id`
  14361. ** link:userland/cpp/thread_return_value.cpp[]: how to return a value from a thread
  14362. * https://en.cppreference.com/w/cpp/header/atomic[`<atomic>`]: <<cpp17>> 32 "Atomic operations library"
  14363. ===== atomic.cpp
  14364. link:userland/cpp/atomic/[]
  14365. C version at: <<atomic-c>>.
  14366. In this set of examples, we exemplify various synchronization mechanisms, including assembly specific ones, by using the convenience of C++ multithreading:
  14367. * link:userland/cpp/atomic/main.hpp[]: contains all the code which is then specialized in separated `.cpp` files with macros
  14368. * link:userland/cpp/atomic/aarch64_add.cpp[]: non synchronized aarch64 inline assembly
  14369. * link:userland/cpp/atomic/aarch64_ldaxr_stlxr.cpp[]: see: <<arm-ldxr-and-stxr-instructions>>
  14370. * link:userland/cpp/atomic/aarch64_ldadd.cpp[]: synchronized aarch64 inline assembly with the <<arm-lse>> LDADD instruction
  14371. * link:userland/cpp/atomic/fail.cpp[]: non synchronized C++ operator `++`
  14372. * link:userland/cpp/atomic/mutex.cpp[]: synchronized `std::mutex`. `std;`
  14373. * link:userland/cpp/atomic/std_atomic.cpp[]: synchronized `std::atomic_ulong`
  14374. * link:userland/cpp/atomic/x86_64_inc.cpp[]: non synchronized x86_64 inline assembly
  14375. * link:userland/cpp/atomic/x86_64_lock_inc.cpp[]: synchronized x86_64 inline assembly with the <<x86-lock-prefix>>
  14376. All examples do exactly the same thing: span N threads and loop M times in each thread incrementing a global integer.
  14377. For inputs large enough, the non-synchronized examples are extremely likely to produce "wrong" results, for example on <<p51>> Ubuntu 19.10 <<userland-setup-getting-started-natively,native>> with 2 threads and 10000 loops:
  14378. ....
  14379. ./fail.out 2 10000
  14380. ....
  14381. we could get an output such as:
  14382. ....
  14383. expect 20000
  14384. global 12676
  14385. ....
  14386. The actual value is much smaller, because the threads have often overwritten one another with older values.
  14387. With <<optimization-level-of-a-build,`--optimization-level 3`>>, the result almost always equals that of a single thread, e.g.:
  14388. ....
  14389. ./build --optimization-level 3 --force-rebuild fail.cpp
  14390. ./fail.out 4 1000000
  14391. ....
  14392. usually gives:
  14393. ....
  14394. expect 40000
  14395. global 10000
  14396. ....
  14397. This is because now, instead of the horribly inefficient `-O0` assembly that reads `global` from memory every time, the code:
  14398. * reads `global` to a register
  14399. * increments the register
  14400. * at end the end, the resulting value of each thread gets written back, overwriting each other with the increment of each thread
  14401. The `-O0` code therefore mixes things up much more because it reads and write back to memory many many times.
  14402. This can be easily seen from the disassembly with:
  14403. ....
  14404. gdb -batch -ex "disassemble threadMain" fail.out
  14405. ....
  14406. which gives for `-O0`:
  14407. ....
  14408. 0x0000000000402656 <+0>: endbr64
  14409. 0x000000000040265a <+4>: push %rbp
  14410. 0x000000000040265b <+5>: mov %rsp,%rbp
  14411. 0x000000000040265e <+8>: movq $0x0,-0x8(%rbp)
  14412. 0x0000000000402666 <+16>: mov 0x5c2b(%rip),%rax # 0x408298 <niters>
  14413. 0x000000000040266d <+23>: cmp %rax,-0x8(%rbp)
  14414. 0x0000000000402671 <+27>: jae 0x40269b <threadMain()+69>
  14415. 0x0000000000402673 <+29>: mov 0x5c26(%rip),%rdx # 0x4082a0 <global>
  14416. 0x000000000040267a <+36>: mov -0x8(%rbp),%rax
  14417. 0x000000000040267e <+40>: mov %rax,-0x8(%rbp)
  14418. 0x0000000000402682 <+44>: mov 0x5c17(%rip),%rax # 0x4082a0 <global>
  14419. 0x0000000000402689 <+51>: add $0x1,%rax
  14420. 0x000000000040268d <+55>: mov %rax,0x5c0c(%rip) # 0x4082a0 <global>
  14421. 0x0000000000402694 <+62>: addq $0x1,-0x8(%rbp)
  14422. 0x0000000000402699 <+67>: jmp 0x402666 <threadMain()+16>
  14423. 0x000000000040269b <+69>: nop
  14424. 0x000000000040269c <+70>: pop %rbp
  14425. 0x000000000040269d <+71>: retq
  14426. ....
  14427. and for `-O3`:
  14428. ....
  14429. 0x00000000004017f0 <+0>: endbr64
  14430. 0x00000000004017f4 <+4>: mov 0x2a25(%rip),%rcx # 0x404220 <niters>
  14431. 0x00000000004017fb <+11>: test %rcx,%rcx
  14432. 0x00000000004017fe <+14>: je 0x401824 <threadMain()+52>
  14433. 0x0000000000401800 <+16>: mov 0x2a11(%rip),%rdx # 0x404218 <global>
  14434. 0x0000000000401807 <+23>: xor %eax,%eax
  14435. 0x0000000000401809 <+25>: nopl 0x0(%rax)
  14436. 0x0000000000401810 <+32>: add $0x1,%rax
  14437. 0x0000000000401814 <+36>: add $0x1,%rdx
  14438. 0x0000000000401818 <+40>: cmp %rcx,%rax
  14439. 0x000000000040181b <+43>: jb 0x401810 <threadMain()+32>
  14440. 0x000000000040181d <+45>: mov %rdx,0x29f4(%rip) # 0x404218 <global>
  14441. 0x0000000000401824 <+52>: retq
  14442. ....
  14443. We can now look into how `std::atomic` is implemented. In `-O3` the disassembly is:
  14444. ....
  14445. 0x0000000000401770 <+0>: endbr64
  14446. 0x0000000000401774 <+4>: cmpq $0x0,0x297c(%rip) # 0x4040f8 <niters>
  14447. 0x000000000040177c <+12>: je 0x401796 <threadMain()+38>
  14448. 0x000000000040177e <+14>: xor %eax,%eax
  14449. 0x0000000000401780 <+16>: lock addq $0x1,0x2967(%rip) # 0x4040f0 <global>
  14450. 0x0000000000401789 <+25>: add $0x1,%rax
  14451. 0x000000000040178d <+29>: cmp %rax,0x2964(%rip) # 0x4040f8 <niters>
  14452. 0x0000000000401794 <+36>: ja 0x401780 <threadMain()+16>
  14453. 0x0000000000401796 <+38>: retq
  14454. ....
  14455. so we clearly see that basically a `lock addq` is used to do an atomic read and write to memory every single time, just like in our other example link:userland/cpp/atomic/x86_64_lock_inc.cpp[].
  14456. This setup can also be used to benchmark different synchronization mechanisms. For example, `std::mutex` was about 1.5x slower with two cores than `std::atomic`, presumably because it relies on the <<futex-system-call,`futex` system call>> as can be seen from `strace -f -s999 -v` logs, while `std::atomic` uses just userland instructions: https://www.quora.com/How-does-std-atomic-work-in-C++11/answer/Ciro-Santilli Tested in `-O3` with:
  14457. ....
  14458. time ./std_atomic.out 4 100000000
  14459. time ./mutex.out 4 100000000
  14460. ....
  14461. Related examples:
  14462. * POSIX <<pthread-mutex>>
  14463. * C11 link:userland/c/atomic.c[] documented at <<c-multithreading>>
  14464. Bibliography:
  14465. * https://stackoverflow.com/questions/31978324/what-exactly-is-stdatomic/58904448#58904448 "What exactly is std::atomic?"
  14466. ====== Detailed gem5 analysis of how data races happen
  14467. The smallest data race we managed to come up as of LKMC 7c01b29f1ee7da878c7cc9cb4565f3f3cf516a92 and gem5 872cb227fdc0b4d60acc7840889d567a6936b6e1 was with link:userland/c/atomic.c[] (see also <<c-multithreading>>):
  14468. ....
  14469. ./run \
  14470. --arch aarch64 \
  14471. --cli-args '2 10' \
  14472. --cpus 3 \
  14473. --emulator gem5 \
  14474. --userland userland/c/atomic.c \
  14475. ;
  14476. ....
  14477. which outputs:
  14478. ....
  14479. atomic 20
  14480. non-atomic 19
  14481. ....
  14482. Note that that the system is very minimal, and doesn't even have caches, so I'm curious as to how this can happen at all.
  14483. So first we do a run with <<gem5-tracing,`--trace Exec`>> and look at the `my_thread_main` entries.
  14484. From there we see that first CPU1 enters the function, since it was spawned first.
  14485. Then for some time, both CPU1 and CPU2 are running at the same time.
  14486. Finally, CPU1 exists, then CPU2 runs alone for a while to finish its loops, and then CPU2 exits.
  14487. By greping the LDR data read from the log, we are able to easily spot the moment where things started to go wrong based on the `D=` data:
  14488. ....
  14489. grep -E 'my_thread_main\+36' trace.txt > trace-ldr.txt
  14490. ....
  14491. The `grep` output contains
  14492. ....
  14493. 94024500: system.cpu1: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000006 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14494. 94036500: system.cpu1: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000007 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14495. 94048500: system.cpu1: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000008 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14496. 94058500: system.cpu2: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000009 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14497. 94060500: system.cpu1: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000009 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14498. 94070500: system.cpu2: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x000000000000000a A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14499. 94082500: system.cpu2: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x000000000000000b A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14500. ....
  14501. and so se see that it is at `94058500` that things started going bad, since two consecutive loads from different CPUs read the same value `D=9`! Actually, things were not too bad afterwards because this was by coincidence the last CPU1 read, we would have missed many more increments if the number of iterations had been larger.
  14502. Now that we have the first bad time, let's look at the fuller disassembly to better understand what happens around that point.
  14503. ....
  14504. 94058500: system.cpu2: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000009 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14505. 94059000: system.cpu2: A0 T0 : @my_thread_main+40 : add w1, w0, #1 : IntAlu : D=0x000000000000000a flags=(IsInteger)
  14506. 94059000: system.cpu1: A0 T0 : @my_thread_main+120 : b.cc <my_thread_main+28> : IntAlu : flags=(IsControl|IsDirectControl|IsCondControl)
  14507. 94059500: system.cpu1: A0 T0 : @my_thread_main+28 : adrp x0, #69632 : IntAlu : D=0x0000000000411000 flags=(IsInteger)
  14508. 94059500: system.cpu2: A0 T0 : @my_thread_main+44 : adrp x0, #69632 : IntAlu : D=0x0000000000411000 flags=(IsInteger)
  14509. 94060000: system.cpu2: A0 T0 : @my_thread_main+48 : add x0, x0, #96 : IntAlu : D=0x0000000000411060 flags=(IsInteger)
  14510. 94060000: system.cpu1: A0 T0 : @my_thread_main+32 : add x0, x0, #96 : IntAlu : D=0x0000000000411060 flags=(IsInteger)
  14511. 94060500: system.cpu1: A0 T0 : @my_thread_main+36 : ldr x0, [x0] : MemRead : D=0x0000000000000009 A=0x411060 flags=(IsInteger|IsMemRef|IsLoad)
  14512. 94060500: system.cpu2: A0 T0 : @my_thread_main+52 : str x1, [x0] : MemWrite : D=0x000000000000000a A=0x411060 flags=(IsInteger|IsMemRef|IsStore)
  14513. ....
  14514. and from this, all becomes crystal clear:
  14515. * 94058500: CPU2 loads
  14516. * 94060500: CPU1 loads
  14517. * 94060500: CPU2 stores
  14518. so we see that CPU2 just happened to store after CPU1 loads.
  14519. We also understand why LDADD solves the race problem in AtomicSimpleCPU: it does the load and store in one single go!
  14520. [[cpp-memory-order]]
  14521. ===== C++ std::memory_order
  14522. https://stackoverflow.com/questions/12346487/what-do-each-memory-order-mean
  14523. TODO let's understand that fully one day.
  14524. This is the C++ version of the more general <<memory-consistency>> concept.
  14525. [[cpp-parallel-algorithms]]
  14526. ===== C++ parallel algorithms
  14527. https://stackoverflow.com/questions/51031060/are-c17-parallel-algorithms-implemented-already/55989883#55989883
  14528. link:userland/cpp/parallel_sort.cpp[]
  14529. [[cpp17]]
  14530. ===== C++17 N4659 standards draft
  14531. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
  14532. [[cpp-templates]]
  14533. ==== C++ templates
  14534. * link:userland/cpp/template.cpp[]: basic example
  14535. * link:userland/cpp/template_class_with_static_member.cpp[]: https://stackoverflow.com/questions/3229883/static-member-initialization-in-a-class-template
  14536. ===== SFINAE
  14537. https://en.cppreference.com/w/cpp/language/sfinae
  14538. Not possible to do the typecheck automatically without explicitly giving type constraints: https://stackoverflow.com/questions/53441832/sfinae-automatically-check-that-function-body-compiles-without-explicit-constrai
  14539. [[cpp-type-casting]]
  14540. ==== C++ type casting
  14541. link:userland/cpp/static_dynamic_reinterpret_cast.cpp[]
  14542. https://stackoverflow.com/questions/332030/when-should-static-cast-dynamic-cast-const-cast-and-reinterpret-cast-be-used/60414256#60414256
  14543. [[cpp-compile-time-magic]]
  14544. ==== C++ compile time magic
  14545. * link:userland/cpp/if_constexpr.cpp[]: C++17 `if constexpr`: https://stackoverflow.com/questions/12160765/if-else-at-compile-time-in-c/54647315#54647315
  14546. [[cpp-decltype]]
  14547. ===== C++ `decltype`
  14548. link:userland/cpp/decltype.cpp[]
  14549. C++11 keyword.
  14550. Replaces decltype with type of an expression at compile time.
  14551. More powerful than `auto` as you can use it in more places.
  14552. [[cpp-concepts]]
  14553. ==== C++ concepts
  14554. [[cpp-iterators]]
  14555. ===== C++ iterators
  14556. https://stackoverflow.com/questions/37031805/preparation-for-stditerator-being-deprecated/38103394
  14557. link:userland/cpp/custom_iterator.cpp[]: there is no way to easily define a nice custom iterator, you just have to wrap existing iterators and add a gazillion wrapper methods:
  14558. * https://stackoverflow.com/questions/8054273/how-to-implement-an-stl-style-iterator-and-avoid-common-pitfalls
  14559. * https://stackoverflow.com/questions/3582608/how-to-correctly-implement-custom-iterators-and-const-iterators
  14560. * https://stackoverflow.com/questions/6471019/can-should-i-inherit-from-an-stl-iterator
  14561. [[cpp-third-party-libraries]]
  14562. ==== C++ third-party libraries
  14563. Under: <<userland-libs-directory>>.
  14564. ===== Boost
  14565. link:https://++en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries)++[]
  14566. link:userland/libs/boost[]:
  14567. * link:userland/libs/boost/bimap.cpp[]
  14568. ===== GoogleTest
  14569. https://github.com/google/googletest
  14570. On Ubuntu 20.04, the package:
  14571. ....
  14572. sudo apt install googletest
  14573. ....
  14574. does not contain prebuilts, and it is intentional, it is incomprehensible:
  14575. * https://askubuntu.com/questions/97626/how-to-install-googletest/1295185#1295185
  14576. * https://askubuntu.com/questions/145887/why-no-library-files-installed-for-google-test
  14577. so you might as well just `git clone` and build the damned thing yourself:
  14578. ....
  14579. git submodule update --init submodules/googletest
  14580. cd submodules/googletest
  14581. mkdir build
  14582. cd build
  14583. cmake ..
  14584. make -j`nproc`
  14585. cd ../../userland/libs/googletest
  14586. ./build
  14587. ....
  14588. link:userland/libs/googletest[]:
  14589. * userland/libs/googletest/main.cpp[]
  14590. ===== HDF5
  14591. https://en.wikipedia.org/wiki/Hierarchical_Data_Format
  14592. Binary format to store data. TODO vs databases, notably SQLite: https://datascience.stackexchange.com/questions/262/hierarchical-data-format-what-are-the-advantages-compared-to-alternative-format
  14593. Examples:
  14594. * link:userland/libs/hdf5[]
  14595. * gem5 can dump statistics as HDF5: <<gem5-hdf5-statistics>>
  14596. === POSIX
  14597. Programs under link:userland/posix/[] are examples of POSIX C programming.
  14598. These links provide a clear overview of what POSIX is:
  14599. * https://stackoverflow.com/questions/1780599/what-is-the-meaning-of-posix/31865755#31865755
  14600. * https://unix.stackexchange.com/questions/11983/what-exactly-is-posix/220877#220877
  14601. ==== Environment variables
  14602. POSIX C example that prints all environment variables: link:userland/posix/environ.c[]
  14603. ==== unistd.h
  14604. * link:userland/posix/count.c[] illustrates `sleep()`
  14605. * link:userland/posix/count_to.c[] minor variation of link:userland/posix/count.c[]
  14606. ==== fork
  14607. POSIX' multiprocess API. Contrast with <<pthreads>> which are for threads.
  14608. Example: link:userland/posix/fork.c[]
  14609. Sample <<userland-setup-getting-started-natively,native userland output>> on Ubuntu 19.04 at 762cd8d601b7db06aa289c0fca7b40696299a868 + 1:
  14610. ....
  14611. before fork before fork pid=13038 ppid=4805
  14612. after fork after fork pid=13038 ppid=4805
  14613. after (pid == 0) after (pid == 0) pid=13038 ppid=4805
  14614. after fork after fork pid=13039 ppid=13038
  14615. inside (pid == 0) inside (pid == 0) pid=13039 ppid=13038
  14616. after wait after wait pid=13038 ppid=4805
  14617. fork() return = 13039
  14618. ....
  14619. Read the source comments and understand everything that is going on!
  14620. ===== getpid
  14621. The minimal interesting example is to use fork and observe different PIDs.
  14622. A more minimal test-like example without forking can be seen at: link:userland/posix/getpid.c[].
  14623. This example can for example be used used to play with: <<gem5-syscall-emulation-multiple-executables>>.
  14624. ===== Fork bomb
  14625. https://en.wikipedia.org/wiki/Fork_bomb
  14626. DANGER! Only run this on your host if you have saved all data you care about! Better run it inside an emulator! QEMU v4.0.0 <<user-mode-simulation,user mode>> is not safe enough either because it is very native does not limit guest memory, so it will still blow up the host!
  14627. So without further ado, let's rock with either:
  14628. ....
  14629. ./run --eval-after './posix/fork_bomb.out danger'
  14630. ./run --eval-after './fork_bomb.sh danger'
  14631. ....
  14632. Sources:
  14633. * link:userland/posix/fork_bomb.c[]
  14634. * link:rootfs_overlay/lkmc/fork_bomb.sh[]
  14635. Outcome for the C version on LKMC 762cd8d601b7db06aa289c0fca7b40696299a868 + 1: after a few seconds of an unresponsive shell, we get a visit form the <<linux-out-of-memory-killer>>, and the system is restored!
  14636. ==== pthreads
  14637. POSIX' multithreading API. Contrast with <<fork>> which is for processes.
  14638. This was for a looong time the only "portable" multithreading alternative, until <<cpp-multithreading,C++11 finally added threads>>, thus also extending the portability to Windows.
  14639. * link:userland/posix/pthread_self.c[]: the simplest example possible
  14640. * link:userland/posix/pthread_count.c[]: count an atomic varible across threads
  14641. * link:userland/posix/pthread_deadlock.c[]: purposefully create a deadlock to see what it looks like
  14642. * link:userland/posix/pthread_barrier.c[]: related: https://stackoverflow.com/questions/28663622/understanding-posix-barrier-mechanism
  14643. [[pthread-mutex]]
  14644. ===== pthread_mutex
  14645. link:userland/posix/pthread_count.c[] exemplifies the functions:
  14646. * `pthread_mutex_lock`
  14647. * pthread_mutex_unlock
  14648. That example that the same interface as: <<atomic-cpp>>.
  14649. There are no non-locking atomic types or atomic primitives in POSIX: http://stackoverflow.com/questions/1130018/unix-portable-atomic-operations
  14650. `pthread_mutex_lock` and `pthread_mutex_unlock` and many other pthread functions already enforce cross thread memory synchronization:
  14651. * https://stackoverflow.com/questions/78172/using-c-pthreads-do-shared-variables-need-to-be-volatile/58935671#58935671
  14652. * https://stackoverflow.com/questions/3208060/does-guarding-a-variable-with-a-pthread-mutex-guarantee-its-also-not-cached
  14653. * https://stackoverflow.com/questions/24137964/does-pthread-mutex-lock-contains-memory-fence-instruction
  14654. ==== sysconf
  14655. https://pubs.opengroup.org/onlinepubs/9699919799/functions/sysconf.html
  14656. Examples:
  14657. * link:userland/posix/sysconf.c[]
  14658. * link:userland/linux/sysconf.c[] showcases Linux extensions to POSIX
  14659. +
  14660. Note that this blows up on gem5 userland due to `NPROCESSORS_ONLN` however: https://gem5.atlassian.net/browse/GEM5-622
  14661. Get lots of info on the system configuration.
  14662. The constants can also be viewed accessed on my Ubuntu 18.04 host with:
  14663. ....
  14664. getconf -a
  14665. ....
  14666. `getconf` is also specified by POSIX at: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/getconf.html but not the `-a` option which shows all configurations.
  14667. Busybox 1.31.1 clearly states that `getconf` is not implemented however at `docs/posix_conformance.txt`:
  14668. ....
  14669. POSIX Tools not supported:
  14670. asa, at, batch, bc, c99, command, compress, csplit, ex, fc, file,
  14671. gencat, getconf, iconv, join, link, locale, localedef, lp, m4,
  14672. ....
  14673. ==== mmap
  14674. The mmap system call allows advanced memory operations.
  14675. mmap is notably used to implement the <<malloc,malloc ANSI C>> function, replacing the previously used break system call.
  14676. Linux adds has several POSIX extension flags to it.
  14677. [[mmap-map-anonymous]]
  14678. ===== mmap MAP_ANONYMOUS
  14679. Basic `mmap` example, do the same as link:userland/c/malloc.c[], but with `mmap`.
  14680. Example: link:userland/linux/mmap_anonymous.c[]
  14681. In POSIX 7 mmap always maps to a file.
  14682. If we add the MAP_ANONYMOUS Linux extension however, this is not required, and mmap can be used to allocate memory like malloc.
  14683. Answers: https://stackoverflow.com/questions/4779188/how-to-use-mmap-to-allocate-a-memory-in-heap
  14684. ===== mmap file
  14685. Memory mapped file example: link:userland/posix/mmap_file.c[]
  14686. The example creates a file, mmaps to it, writes to maped memory, and then closes the file.
  14687. We then read the file and confirm it was written to.
  14688. ===== brk
  14689. Previously <<posix>>, but was deprecated in favor of <<malloc>>
  14690. Example: link:userland/linux/brk.c[]
  14691. The example allocates two ints and uses them, and then deallocates back.
  14692. Bibliography: https://stackoverflow.com/questions/6988487/what-does-the-brk-system-call-do/31082353#31082353
  14693. ==== socket
  14694. A bit like `read` and `write`, but from / to the Internet!
  14695. * link:userland/posix/wget.c[] tiny `wget` re-implementation. See: https://stackoverflow.com/questions/11208299/how-to-make-an-http-get-request-in-c-without-libcurl/35680609#35680609
  14696. === Userland multithreading
  14697. The following sections are related to multithreading in userland:
  14698. * language topics:
  14699. ** <<c-multithreading>>
  14700. ** <<cpp-multithreading>>
  14701. ** <<pthreads>>
  14702. * ISA topics:
  14703. ** <<x86-thread-synchronization-primitives>>
  14704. ** <<arm-thread-synchronization-primitives>>
  14705. *** <<arm-ldxr-and-stxr-instructions>>
  14706. *** <<arm-lse>>
  14707. * emulator topics:
  14708. ** <<qemu-user-mode-multithreading>>
  14709. ** <<gem5-syscall-emulation-multithreading>>
  14710. === C debugging
  14711. Let's group the hard-to-debug undefined-behaviour-like stuff found in C / C+ here and how to tackle those problems.
  14712. ==== Stack smashing
  14713. https://stackoverflow.com/questions/1345670/stack-smashing-detected/51897264#51897264
  14714. Example:: link:userland/c/smash_stack.c[]
  14715. Leads to the dreadful "Stack smashing detected" message. Which is infinitely better than a silent break in any case.
  14716. We had also seen this error in our repository at: <<stack-smashing-detected-when-using-glibc>>.
  14717. ==== Memory leaks
  14718. How to debug: https://stackoverflow.com/questions/6261201/how-to-find-memory-leak-in-a-c-code-project/57877190#57877190
  14719. Example: link:userland/c/memory_leak.c[]
  14720. ==== Profiling userland programs
  14721. https://stackoverflow.com/questions/375913/how-can-i-profile-c-code-running-on-linux/60265409#60265409
  14722. OK, we have to learn this stuff.
  14723. Examples:
  14724. * link:userland/gcc/profile.c[]: simple profiling example, where certain calls of a certain function can dominate the runtime
  14725. === Interpreted languages
  14726. Maybe some day someone will use this setup to study the performance of interpreters.
  14727. ==== Python
  14728. link:rootfs_overlay/lkmc/python[]
  14729. Examples:
  14730. * link:rootfs_overlay/lkmc/python/hello.py[]: hello world
  14731. * `time`
  14732. ** link:rootfs_overlay/lkmc/python/count.py[]: count once every second
  14733. ** link:rootfs_overlay/lkmc/python/iter_method.py[]: how to implement `__iter__` on a class
  14734. ===== Python standard library
  14735. ====== Python unittest
  14736. link:rootfs_overlay/lkmc/python/unittest_find/[] contains examples to test how tests are found by `unittest` within directories. Related questions:
  14737. * https://stackoverflow.com/questions/1732438/how-do-i-run-all-python-unit-tests-in-a-directory
  14738. * https://stackoverflow.com/questions/46976256/recursive-unittest-discovery-with-python3-and-without-init-py-files
  14739. ====== Python relative imports
  14740. link:rootfs_overlay/lkmc/python/relative_import/[] contains examples to test how how to do relative imports in Python.
  14741. This subject is impossible to understand.
  14742. Related questions:
  14743. * https://stackoverflow.com/questions/16981921/relative-imports-in-python-3
  14744. * https://stackoverflow.com/questions/14132789/relative-imports-for-the-billionth-time
  14745. * https://stackoverflow.com/questions/21490860/relative-imports-with-unittest-in-python
  14746. * https://stackoverflow.com/questions/714063/importing-modules-from-parent-folder
  14747. ===== Build and install the interpreter
  14748. Buildroot has a Python package that can be added to the guest image:
  14749. ....
  14750. ./build-buildroot --config 'BR2_PACKAGE_PYTHON3=y'
  14751. ....
  14752. Usage from guest in full system:
  14753. ....
  14754. ./run
  14755. ....
  14756. and then from there get an interactive shell with:
  14757. ....
  14758. python3
  14759. ....
  14760. or run an example with:
  14761. ....
  14762. python3 python/hello.py
  14763. ....
  14764. or:
  14765. ....
  14766. ./python/hello.py
  14767. ....
  14768. <<user-mode-simulation>> interactive usage:
  14769. ....
  14770. ./run --userland "$(./getvar buildroot_target_dir)/usr/bin/python3"
  14771. ....
  14772. Non-interactive usage:
  14773. ....
  14774. ./run --userland "$(./getvar buildroot_target_dir)/usr/bin/python3" --cli-args rootfs_overlay/lkmc/python/hello.py
  14775. ....
  14776. ===== Python gem5 user mode simulation
  14777. At LKMC 50ac89b779363774325c81157ec8b9a6bdb50a2f gem5 390a74f59934b85d91489f8a563450d8321b602da:
  14778. ....
  14779. ./run \
  14780. --emulator gem5 \
  14781. --userland "$(buildroot_target_dir)/usr/bin/python3" \
  14782. --cli-args rootfs_overlay/lkmc/python/hello.py \
  14783. ;
  14784. ....
  14785. fails with:
  14786. ....
  14787. fatal: Syscall 318 out of range
  14788. ....
  14789. which corresponds to the glorious `inotify_rm_watch` syscall: https://github.com/torvalds/linux/blob/v5.4/arch/arm/tools/syscall.tbl#L335
  14790. and aarch64:
  14791. ....
  14792. ./run \
  14793. --arch aarch64 \
  14794. --emulator gem5 \
  14795. --userland "$(./getvar --arch aarch64 buildroot_target_dir)/usr/bin/python3" \
  14796. --cli-args rootfs_overlay/lkmc/python/hello.py \
  14797. ;
  14798. ....
  14799. fails with:
  14800. ....
  14801. fatal: syscall unused#278 (#278) unimplemented.
  14802. ....
  14803. which corresponds to the glorious `getrandom` syscall: https://github.com/torvalds/linux/blob/v4.17/include/uapi/asm-generic/unistd.h#L707
  14804. Bibliography:
  14805. * https://stackoverflow.com/questions/63999944/is-it-possible-to-run-python-code-in-gem5-syscall-emulation-mode
  14806. ===== Embedding Python in another application
  14807. Here we will add some better examples and explanations for: https://docs.python.org/3/extending/embedding.html#very-high-level-embedding
  14808. "Embedding Python" basically means calling the Python interpreter from C, and possibly passing values between the two.
  14809. These examples show to to embed the Python interpreter into a C/C++ application to interface between them
  14810. * link:userland/libs/python_embed/eval.c[]: this example simply does `eval` a Python string in C, and don't communicate any values between the two.
  14811. +
  14812. It could be used to call external commands that have external side effects, but it is not very exciting.
  14813. * link:userland/libs/python_embed/pure.c[]: this example actually defines some Python classes and functions from C, implementing those entirely in C.
  14814. +
  14815. The C program that defines those classes then instantiates the interpreter calls some regular Python code from it: link:userland/libs/python_embed/pure.py[]
  14816. +
  14817. The regular Python code can then use the native C classes as if they were defined in Python.
  14818. +
  14819. Finally, the Python returns values back to the C code that called the interpreter.
  14820. * link:userland/libs/python_embed/pure_cpp.cpp[]: C++ version of the above, the main goal of this example is to show how to interface with C++ classes.
  14821. +
  14822. See also: https://stackoverflow.com/questions/2200912/inheritance-in-python-c-extension/60436902#60436902
  14823. One notable user of Python embedding is the <<gem5>> simulator, see also: <<gem5-vs-qemu>>. gem5 embeds the Python interpreter in order to interpret scripts as seen from the CLI:
  14824. ....
  14825. build/ARM/gem5.opt configs/example/fs.py
  14826. ....
  14827. gem5 then runs that Python script, which instantiates C++ classes defined from Python, and then finally hands back control to the C++ runtime to run the actual simulation faster.
  14828. ===== pybind11
  14829. link:userland/libs/pybind11[]
  14830. https://stackoverflow.com/questions/145270/calling-c-c-from-python/60374990#60374990
  14831. pybind11 is amazingly easy to use. But it can also make your builds really slow:
  14832. * <<pybind11-accounts-for-50-of-gem5-build-time>>. As mentioned there, if pybind11 would split everything that can go into a cpp file from the hpp (i.e. everything except templates) that could already significantly reduce build times in certain cases. This is discussed upstream at: https://github.com/pybind/pybind11/issues/708
  14833. * https://discuss.pytorch.org/t/how-are-python-bindings-created/46453/2
  14834. ==== Node.js
  14835. link:rootfs_overlay/lkmc/nodejs[]
  14836. Host installation shown at: https://askubuntu.com/questions/594656/how-to-install-the-latest-versions-of-nodejs-and-npm/971612#971612
  14837. Build and install the interpreter in Buildroot with:
  14838. ....
  14839. ./build-buildroot --config 'BR2_PACKAGE_NODEJS=y'
  14840. ....
  14841. Everything is then the same as the <<python>> interpreter setup, except that the executable name is now `node`!
  14842. TODO: build broken as of LKMC 3c3deb14dc8d6511680595dc42cb627d5781746d + 1:
  14843. ....
  14844. ERROR: package host-nodejs installs executables without proper RPATH
  14845. ....
  14846. Examples:
  14847. * link:rootfs_overlay/lkmc/nodejs/hello.js[]: hello world
  14848. * String
  14849. ** link:rootfs_overlay/lkmc/nodejs/alphanumeric.js[]: https://stackoverflow.com/questions/4444477/how-to-tell-if-a-string-contains-a-certain-character-in-javascript/58359106#58359106
  14850. * `process`
  14851. ** link:rootfs_overlay/lkmc/nodejs/command_line_arguments.js[]
  14852. * `fs`
  14853. ** link:rootfs_overlay/lkmc/nodejs/file_write_read.js[]
  14854. ** link:rootfs_overlay/lkmc/nodejs/read_stdin_to_string.js[] Question: https://stackoverflow.com/questions/30441025/read-all-text-from-stdin-to-a-string
  14855. * `class`
  14856. ** link:rootfs_overlay/lkmc/nodejs/object_to_string.js[]: `util.inspect.custom` and `toString` override experiment: https://stackoverflow.com/questions/24902061/is-there-an-repr-equivalent-for-javascript/26698403#26698403
  14857. ** link:rootfs_overlay/lkmc/nodejs/object_to_json.js[]: `toJSON` examples
  14858. ** link:rootfs_overlay/lkmc/nodejs/static.js[]
  14859. * link:rootfs_overlay/lkmc/nodejs/http.js[]: `http` module to create a simple HTTP server: https://nodejs.org/api/http.html
  14860. * link:rootfs_overlay/lkmc/nodejs/esm[]: https://stackoverflow.com/questions/58384179/syntaxerror-cannot-use-import-statement-outside-a-module
  14861. ===== Node.js step debugging
  14862. Overviews:
  14863. * https://stackoverflow.com/questions/12641679/nodejs-a-step-by-step-debugger-for-nodejs/60018317#60018317
  14864. * https://stackoverflow.com/questions/1911015/how-do-i-debug-node-js-applications/52423980#52423980
  14865. Skip breaking on the first line every time: https://stackoverflow.com/questions/41153179/why-is-the-node-debugger-break-on-first-line-a-thing
  14866. Break at function or line: https://stackoverflow.com/questions/65493221/how-to-break-at-a-specific-function-or-line-with-the-node-js-node-inspect-comman/65493318#65493318
  14867. Show more context lines... https://stackoverflow.com/questions/64942914/how-to-increase-the-number-of-context-lines-shown-in-the-node-js-debugger-when-u
  14868. ===== NPM
  14869. https://en.wikipedia.org/wiki/Npm_(software)
  14870. Some sample packages can be found under: link:npm[].
  14871. Local testing of those packages can be done as shown at: https://stackoverflow.com/questions/59389027/how-to-interactively-test-the-executable-of-an-npm-node-js-package-during-develo
  14872. The packages will also be published to the NPM registry, so you can also play with them as:
  14873. ....
  14874. npm install cirosantilli-<directory-name>
  14875. ....
  14876. ====== NPM data-files
  14877. Illustrates how to add extra non-code data files to an NPM package, and then use those files at runtime.
  14878. https://stackoverflow.com/questions/31642477/how-to-publish-a-npm-package-with-distribution-files/59407033#59407033
  14879. ==== Java
  14880. link:rootfs_overlay/lkmc/java[]
  14881. No OpenJDK package as of 2018.08: https://stackoverflow.com/questions/28874150/buildroot-with-jamvm-2-0-for-java-8/59290927#59290927 partly because their build system is shit like the rest of the project's setup.
  14882. Unmerged patch at: http://lists.busybox.net/pipermail/buildroot/2018-February/213282.html
  14883. There is a JamVM package though https://en.wikipedia.org/wiki/JamVM which is something Android started before moving to Dalvik,
  14884. Maybe some day other <<android>> Java runtimes will also become compilable. Maybe, since Android is also shit.
  14885. === Algorithms
  14886. link:userland/algorithm[]
  14887. This is still work in progress and needs better automation, but is already a good sketch. Key missing features:
  14888. * actually check that outputs are correct in `./test`
  14889. * create a mechanism to run all or some selected hand coded inputs
  14890. * create a mechanism to run generated input
  14891. The idea was originally started at: https://github.com/cirosantilli/algorithm-cheat
  14892. The key idea is that input / output pairs are present in human readable files generated either:
  14893. * manually for small test inputs
  14894. * with a Python script for larger randomized tests
  14895. Test programs then:
  14896. * read input from sdtin
  14897. * produce output to stdout
  14898. so that we can compare the output to the expected one.
  14899. This way, tests can be reused across several implementations in different languages, emulating the many multi-language programming competition websites out there.
  14900. For example, for a <<userland-setup-getting-started-natively,native run>> we can can run a set / sorting test:
  14901. ....
  14902. cd userland/algorithm/set
  14903. ./build
  14904. # Run with a small hand written test.
  14905. ./std_set.out < test_data/8.i > tmp.raw
  14906. # Extract the output from the sorted stdout, which also
  14907. # contained some timing information.
  14908. ./parse_output output < tmp.raw > tmp.o
  14909. # Compare the output to the Expected one.
  14910. cmp tmp.o test_data/8.e
  14911. # Same but now with a large randomly generated input.
  14912. ./generate_io
  14913. ./std_set.out < tmp.i | ./parse_output output > tmp.o
  14914. cmp tmp.o tmp.e
  14915. ....
  14916. It is also possible to the algorithm tests normally from emulators in <<user-mode-simulation>> by setting stdin as explained at <<syscall-emulation-mode-program-stdin>>, e.g.:
  14917. ....
  14918. ./run --arch aarch64 -u userland/algorithm/set/std_set.cpp --stdin-file userland/algorithm/set/test_data/8.i
  14919. ....
  14920. Sources:
  14921. * link:userland/algorithm/set/generate_io[]
  14922. * link:userland/algorithm/set/main.hpp[]
  14923. * link:userland/algorithm/set/parse_output[]
  14924. * link:userland/algorithm/set/std_set.cpp[]
  14925. * link:userland/algorithm/set/test_data/8.e[]
  14926. * link:userland/algorithm/set/test_data/8.i[]
  14927. link:userland/algorithm/set/parse_output[] is needed because timing instrumentation measurements must be embedded in the program itself to allow:
  14928. * discounting the input reading / output writing operations from the actual "read / write to / from memory algorithm" itself
  14929. * measuring the evolution of the benchmark mid way, e.g. to see how the current container size affects insertion time: <<bst-vs-heap-vs-hashmap>>
  14930. The following are also interesting Buildroot libraries that we could benchmark:
  14931. * Armadillo `C++`: linear algebra
  14932. * fftw: Fourier transform
  14933. * Flann
  14934. * GSL: various
  14935. * liblinear
  14936. * libspacialindex
  14937. * libtommath
  14938. * qhull
  14939. These are good targets for <<gem5-run-benchmark,performance analysis with gem5>>, and there is some overlap between this section and <<benchmarks>>.
  14940. ==== BST vs heap vs hashmap
  14941. TODO: move benchmark graph from link:userland/cpp/bst_vs_heap_vs_hashmap.cpp[] to link:userland/algorithm/set[].
  14942. The following benchmark setup works both:
  14943. * on host through timers + https://stackoverflow.com/questions/51952471/why-do-i-get-a-constant-instead-of-logarithmic-curve-for-an-insert-time-benchmar/51953081#51953081[granule]
  14944. * gem5 with <<m5ops-instructions,dumpstats>>, which can get more precise results with `granule == 1`
  14945. It has been used to answer:
  14946. * BST vs heap: https://stackoverflow.com/questions/6147243/heap-vs-binary-search-tree-bst/29548834#29548834
  14947. * `std::set`: https://stackoverflow.com/questions/2558153/what-is-the-underlying-data-structure-of-a-stl-set-in-c/51944661#51944661
  14948. * `std::map`: https://stackoverflow.com/questions/18414579/what-data-structure-is-inside-stdmap-in-c/51945119#51945119
  14949. To benchmark on the host, we do:
  14950. ....
  14951. ./build-userland-in-tree \
  14952. --force-rebuild \
  14953. --optimization-level 3 \
  14954. ./userland/cpp/bst_vs_heap_vs_hashmap.cpp \
  14955. ;
  14956. ./userland/cpp/bst_vs_heap_vs_hashmap.out 10000000 10000 0 | tee bst_vs_heap_vs_hashmap.dat
  14957. gnuplot \
  14958. -e 'input_noext="bst_vs_heap_vs_hashmap"' \
  14959. -e 'heap_zoom_max=50' \
  14960. -e 'hashmap_zoom_max=400' \
  14961. ./bst-vs-heap-vs-hashmap.gnuplot \
  14962. ;
  14963. xdg-open bst_vs_heap_vs_hashmap.tmp.png
  14964. ....
  14965. The parameters `heap_zoom_max` and `hashmap_zoom_max` are chosen manually interactively to best showcase the regions of interest in those plots.
  14966. To benchmark on gem5, we first build the benchmark with <<m5ops-instructions>> enabled, and then we run it and extract the stats:
  14967. ....
  14968. ./build-userland \
  14969. --arch x86_64 \
  14970. --ccflags='-DLKMC_M5OPS_ENABLE=1' \
  14971. --force-rebuild userland/cpp/bst_vs_heap_vs_hashmap.cpp \
  14972. --optimization-level 3 \
  14973. ;
  14974. ./run \
  14975. --arch x86_64 \
  14976. --emulator gem5 \
  14977. --userland userland/cpp/bst_vs_heap_vs_hashmap.cpp \
  14978. --cli-args='100000 1 0' \
  14979. -- \
  14980. --cpu-type=DerivO3CPU \
  14981. --caches \
  14982. --l2cache \
  14983. --l1d_size=32kB \
  14984. --l1i_size=32kB \
  14985. --l2_size=256kB \
  14986. --l3_size=20MB \
  14987. ;
  14988. ./bst-vs-heap-vs-hashmap-gem5-stats --arch x86_64 | tee bst_vs_heap_vs_hashmap_gem5.dat
  14989. gnuplot \
  14990. -e 'input_noext="bst_vs_heap_vs_hashmap_gem5"' \
  14991. -e 'heap_zoom_max=500' \
  14992. -e 'hashmap_zoom_max=400' \
  14993. ./bst-vs-heap-vs-hashmap.gnuplot \
  14994. ;
  14995. xdg-open bst_vs_heap_vs_hashmap_gem5.tmp.png
  14996. ....
  14997. TODO: the gem5 simulation blows up on a tcmalloc allocation somewhere near 25k elements as of 3fdd83c2c58327d9714fa2347c724b78d7c05e2b + 1, likely linked to the extreme inefficiency of the stats collection?
  14998. The cache sizes were chosen to match the host <<p51>> to improve the comparison. Ideally we should also use the same standard library.
  14999. Note that this will take a long time, and will produce a humongous ~40Gb stats file as explained at: xref:gem5-only-dump-selected-stats[xrefstyle=full]
  15000. Sources:
  15001. * link:userland/cpp/bst_vs_heap_vs_hashmap.cpp[]
  15002. * link:bst-vs-heap-vs-hashmap-gem5-stats[]
  15003. * link:bst-vs-heap-vs-hashmap.gnuplot[]
  15004. ==== BLAS
  15005. Buildroot supports it, which makes everything just trivial:
  15006. ....
  15007. ./build-buildroot --config 'BR2_PACKAGE_OPENBLAS=y'
  15008. ./build-userland --package openblas -- userland/libs/openblas/hello.c
  15009. ./run --eval-after './libs/openblas/hello.out; echo $?'
  15010. ....
  15011. Outcome: the test passes:
  15012. ....
  15013. 0
  15014. ....
  15015. Source: link:userland/libs/openblas/hello.c[]
  15016. The test performs a general matrix multiplication:
  15017. ....
  15018. | 1.0 -3.0 | | 1.0 2.0 1.0 | | 0.5 0.5 0.5 | | 11.0 - 9.0 5.0 |
  15019. 1 * | 2.0 4.0 | * | -3.0 4.0 -1.0 | + 2 * | 0.5 0.5 0.5 | = | - 9.0 21.0 -1.0 |
  15020. | 1.0 -1.0 | | 0.5 0.5 0.5 | | 5.0 - 1.0 3.0 |
  15021. ....
  15022. This can be deduced from the Fortran interfaces at
  15023. ....
  15024. less "$(./getvar buildroot_build_build_dir)"/openblas-*/reference/dgemmf.f
  15025. ....
  15026. which we can map to our call as:
  15027. ....
  15028. C := alpha*op( A )*op( B ) + beta*C,
  15029. SUBROUTINE DGEMMF( TRANA, TRANB, M,N,K, ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  15030. cblas_dgemm( CblasColMajor, CblasNoTrans, CblasTrans,3,3,2 ,1, A,3, B,3, 2 ,C,3 );
  15031. ....
  15032. ==== Eigen
  15033. Header only linear algebra library with a mainline Buildroot package:
  15034. ....
  15035. ./build-buildroot --config 'BR2_PACKAGE_EIGEN=y'
  15036. ./build-userland --package eigen -- userland/libs/eigen/hello.cpp
  15037. ....
  15038. Just create an array and print it:
  15039. ....
  15040. ./run --eval-after './libs/eigen/hello.out'
  15041. ....
  15042. Output:
  15043. ....
  15044. 3 -1
  15045. 2.5 1.5
  15046. ....
  15047. Source: link:userland/libs/eigen/hello.cpp[]
  15048. This example just creates a matrix and prints it out.
  15049. Tested on: https://github.com/cirosantilli/linux-kernel-module-cheat/commit/a4bdcf102c068762bb1ef26c591fcf71e5907525[a4bdcf102c068762bb1ef26c591fcf71e5907525]
  15050. === Benchmarks
  15051. These are good targets for <<gem5-run-benchmark,performance analysis with gem5>>.
  15052. TODO also consider the following:
  15053. * http://www.cs.virginia.edu/stream/ref.html STREAM memory bandwidth benchmarks.
  15054. * https://github.com/kozyraki/stamp transactional memory benchmarks
  15055. ==== Microbenchmarks
  15056. It eventually has to come to that, hasn't it?
  15057. * link:userland/gcc/busy_loop.c[] described at <<c-busy-loop>>
  15058. Of course, there is a continuum between what is a "microbenchmark" and a "macrobechmark".
  15059. One would hope that every microbenchmark exercises a concentrated subset of part of an important macro benchmark, otherwise what's the point, right?
  15060. Also for parametrized "macro benchmark", you can always in theory reduce the problem size to be so small that it might be more appropriate to call it a micro benchmark.
  15061. So our working definition will be more of the type: "does it solve an understandable useful high level problem from start to end?".
  15062. If the answer is yes, then we call it a macro benchmark, otherwise micro.
  15063. Bibliography:
  15064. * https://stackoverflow.com/questions/2842695/what-is-microbenchmarking
  15065. [[userland-libs-directory]]
  15066. === userland/libs directory
  15067. Tests under link:userland/libs[] require certain optional libraries to be installed on the target, and are not built or tested by default, you must enable them with either:
  15068. ....
  15069. --package <package>
  15070. --package-all
  15071. ....
  15072. See for example <<blas>>. Since it is located under `userland/libs/openblas`, it will only build with either:
  15073. ....
  15074. ./build-userland --package openblas
  15075. ./build-userland --package-all
  15076. ....
  15077. As an exception, if you first `cd` directly into one of the directories and do a <<userland-setup-getting-started-natively,native host build>>, e.g.:
  15078. ....
  15079. sudo apt install libeigen3-dev
  15080. cd userland/libs/eigen
  15081. ./build
  15082. ....
  15083. then that library will be automatically enabled.
  15084. See also:
  15085. * <<cpp-third-party-libraries>>
  15086. === Userland content filename conventions
  15087. The following basenames should always refer to programs that do the same thing, but in different languages:
  15088. * `count`: count to infinity, sleep one second between each number
  15089. ** link:rootfs_overlay/lkmc/count.sh[]
  15090. ** link:rootfs_overlay/lkmc/python/count.py[]
  15091. ** link:userland/cpp/count.cpp[]
  15092. ** link:userland/posix/count.c[]
  15093. === Userland content bibliography
  15094. * The Linux Programming Interface by Michael Kerrisk https://www.amazon.co.uk/Linux-Programming-Interface-System-Handbook/dp/1593272200 Lots of open source POSIX examples: https://github.com/cirosantilli/linux-programming-interface-kerrisk
  15095. == Userland assembly
  15096. Programs under `userland/arch/<arch>/` are examples of userland assembly programming.
  15097. This section will document ISA agnostic concepts, and you should read it first.
  15098. ISA specifics are covered at:
  15099. * <<x86-userland-assembly>> under link:userland/arch/x86_64/[], originally migrated from: https://github.com/cirosantilli/x86-assembly-cheat
  15100. * <<arm-userland-assembly>> originally migrated from https://github.com/cirosantilli/arm-assembly-cheat under:
  15101. ** link:userland/arch/arm/[]
  15102. ** link:userland/arch/aarch64/[]
  15103. Like other userland programs, these programs can be run as explained at: xref:userland-setup[xrefstyle=full].
  15104. As a quick reminder, the fastest setups to get started are:
  15105. * <<userland-setup-getting-started-natively>> if your host can run the examples, e.g. x86 example on an x86 host:
  15106. * <<userland-setup-getting-started-with-prebuilt-toolchain-and-qemu-user-mode>> otherwise
  15107. However, as usual, it is saner to build your toolchain as explained at: xref:qemu-user-mode-getting-started[xrefstyle=full].
  15108. The first examples you should look into are:
  15109. * add
  15110. ** link:userland/arch/x86_64/add.S[]
  15111. ** link:userland/arch/arm/add.S[]
  15112. ** link:userland/arch/aarch64/add.S[]
  15113. * mov between register and memory
  15114. ** link:userland/arch/x86_64/mov.S[]
  15115. ** <<arm-mov-instruction>>
  15116. ** <<arm-load-and-store-instructions>>
  15117. * addressing modes
  15118. ** <<x86-addressing-modes>>
  15119. ** <<arm-addressing-modes>>
  15120. * registers, see: xref:assembly-registers[xrefstyle=full]
  15121. * jumping:
  15122. ** <<x86-control-transfer-instructions>>
  15123. ** <<arm-branch-instructions>>
  15124. * SIMD
  15125. ** <<x86-simd>>
  15126. ** <<arm-simd>>
  15127. The add examples in particular:
  15128. * introduce the basics of how a given assembly works: how many inputs / outputs, who is input and output, can it use memory or just registers, etc.
  15129. +
  15130. It is then a big copy paste for most other data instructions.
  15131. * verify that the venerable ADD instruction and our assertions are working
  15132. Now try to modify modify the x86_64 add program to see the assertion fail:
  15133. ....
  15134. LKMC_ASSERT_EQ(%rax, $4)
  15135. ....
  15136. because 1 + 2 tends to equal 3 instead of 4.
  15137. And then watch the assertion fail:
  15138. ....
  15139. ./build-userland
  15140. ./run --userland userland/arch/x86_64/add.S
  15141. ....
  15142. with error message:
  15143. ....
  15144. assert_eq_64 failed
  15145. val1 0x3
  15146. val2 0x4
  15147. error: asm_main returned 1 at line 8
  15148. ....
  15149. and notice how the error message gives both:
  15150. * the actual assembly source line number where the failing assert was
  15151. * the actual and expected values
  15152. Other infrastructure sanity checks that you might want to look into include:
  15153. * link:userland/arch/empty.S[]
  15154. * `LKMC_FAIL` tests
  15155. ** link:userland/arch/lkmc_assert_fail.S[]
  15156. * `LKMC_ASSERT_EQ` tests
  15157. ** link:userland/arch/x86_64/lkmc_assert_eq_fail.S[]
  15158. ** link:userland/arch/arm/lkmc_assert_eq_fail.S[]
  15159. ** link:userland/arch/aarch64/lkmc_assert_eq_fail.S[]
  15160. * `LKMC_ASSERT_MEMCMP` tests
  15161. ** link:userland/arch/x86_64/lkmc_assert_memcmp_fail.S[]
  15162. ** link:userland/arch/arm/lkmc_assert_memcmp_fail.S[]
  15163. ** link:userland/arch/aarch64/lkmc_assert_memcmp_fail.S[]
  15164. === Assembly registers
  15165. After seeing an <<userland-assembly,ADD hello world>>, you need to learn the general registers:
  15166. * x86, see: xref:x86-registers[xrefstyle=full]
  15167. * arm
  15168. ** link:userland/arch/arm/registers.S[]
  15169. * aarch64
  15170. ** link:userland/arch/aarch64/registers.S[]
  15171. ** link:userland/arch/aarch64/pc.S[]
  15172. Bibliography: <<armarm7>> A2.3 "ARM core registers".
  15173. ==== ARMv8 aarch64 x31 register
  15174. Example: link:userland/arch/aarch64/x31.S[]
  15175. There is no X31 name, and the encoding can have two different names depending on the instruction:
  15176. * XZR: zero register:
  15177. ** https://stackoverflow.com/questions/42788696/why-might-one-use-the-xzr-register-instead-of-the-literal-0-on-armv8
  15178. ** https://community.arm.com/processors/f/discussions/3185/wzr-xzr-register-s-purpose
  15179. * SP: stack pointer
  15180. To make things more confusing, some aliases can take either name, which makes them alias to different things, e.g. MOV accepts both:
  15181. ....
  15182. mov x0, sp
  15183. mov x0, xzr
  15184. ....
  15185. and the first one is an alias to ADD while the second an alias to <<arm-bitwise-instructions,ORR>>.
  15186. The difference is documented on a per instruction basis. Instructions that encode 31 as SP say:
  15187. ....
  15188. if d == 31 then
  15189. SP[] = result;
  15190. else
  15191. X[d] = result;
  15192. ....
  15193. And then those that don't say that, B1.2.1 "Registers in AArch64 state" implies the zero register:
  15194. ____
  15195. In instruction encodings, the value 0b11111 (31) is used to indicate the ZR (zero register). This
  15196. indicates that the argument takes the value zero, but does not indicate that the ZR is implemented
  15197. as a physical register.
  15198. ____
  15199. This is also described on <<armarm8>> C1.2.5 "Register names":
  15200. ____
  15201. There is no register named W31 or X31.
  15202. The name SP represents the stack pointer for 64-bit operands where an encoding of the value 31 in the
  15203. corresponding register field is interpreted as a read or write of the current stack pointer. When instructions
  15204. do not interpret this operand encoding as the stack pointer, use of the name SP is an error.
  15205. The name XZR represents the zero register for 64-bit operands where an encoding of the value 31 in the
  15206. corresponding register field is interpreted as returning zero when read or discarding the result when written.
  15207. When instructions do not interpret this operand encoding as the zero register, use of the name XZR is an error
  15208. ____
  15209. === Floating point assembly
  15210. Keep in mind that many ISAs started floating point as an optional thing, and it later got better integrated into the main CPU, side by side with SIMD.
  15211. For this reason, there are sometimes multiple ways to do floating point operations in each ISA.
  15212. Let's start as usual with floating point addition + register file:
  15213. * arm
  15214. ** <<arm-vadd-instruction>>
  15215. ** <<arm-vfp-registers>>
  15216. * aarch64
  15217. ** <<armv8-aarch64-fadd-instruction>>
  15218. ** <<armv8-aarch64-floating-point-registers>>
  15219. === SIMD assembly
  15220. Much like ADD for non-SIMD, start learning SIMD instructions by looking at the integer and floating point SIMD ADD instructions of each ISA:
  15221. * x86
  15222. ** <<x86-sse-data-transfer-instructions,ADDPD>>
  15223. ** <<x86-paddq-instruction>>
  15224. * arm
  15225. ** <<arm-vadd-instruction>>
  15226. * aarch64
  15227. ** <<armv8-aarch64-add-vector-instruction>>
  15228. ** <<armv8-aarch64-fadd-instruction>>
  15229. Then it is just a huge copy paste of infinite boring details:
  15230. * <<x86-simd>>
  15231. * <<arm-simd>>
  15232. To debug these instructions, you can see the register values in GDB with:
  15233. ....
  15234. info registers float
  15235. ....
  15236. or alternatively with register names (here the ARMv8 V0 register):
  15237. ....
  15238. print $v0
  15239. ....
  15240. as mentioned at:
  15241. * https://stackoverflow.com/questions/5429137/how-to-print-register-values-in-gdb/38036152#38036152
  15242. * https://reverseengineering.stackexchange.com/questions/8992/floating-point-registers-on-arm/20623#20623
  15243. Bibliography: https://stackoverflow.com/questions/1389712/getting-started-with-intel-x86-sse-simd-instructions/56409539#56409539
  15244. ==== FMA instruction
  15245. Fused multiply add:
  15246. * x86: xref:x86-fma[xrefstyle=full]
  15247. Bibliography:
  15248. * https://en.wikipedia.org/wiki/Multiply–accumulate_operation
  15249. * https://en.wikipedia.org/wiki/FMA_instruction_set
  15250. Particularly important numerical analysis instruction, that is used in particular for;
  15251. * Dot product
  15252. * Matrix multiplication
  15253. FMA is so important that <<ieee-754>> specifies it with single precision drop compared to a separate add and multiply!
  15254. Micro-op fun: https://stackoverflow.com/questions/28630864/how-is-fma-implemented
  15255. Historically, FMA instructions have been added relatively late to instruction sets.
  15256. === User vs system assembly
  15257. By "userland assembly", we mean "the parts of the ISA which can be freely used from userland".
  15258. Most ISAs are divided into a system and userland part, and to running the system part requires elevated privileges such as <<ring0>> in x86.
  15259. One big difference between both is that we can run userland assembly on <<userland-setup>>, which is easier to get running and debug.
  15260. In particular, most userland assembly examples link to the C standard library, see: xref:userland-assembly-c-standard-library[xrefstyle=full].
  15261. Userland assembly is generally simpler, and a pre-requisite for <<baremetal-setup>>.
  15262. System-land assembly cheats will be put under: xref:baremetal-setup[xrefstyle=full].
  15263. === Userland assembly C standard library
  15264. All examples except the <<freestanding-programs>> link to the C standard library.
  15265. This allows using the C standard library for IO, which is very convenient and portable across host OSes.
  15266. It also exposes other non-IO functionality that is very convenient such as `memcmp`.
  15267. The C standard library infrastructure is implemented in the common userland / baremetal source files:
  15268. * link:lkmc.c[]
  15269. * link:lkmc.h[]
  15270. * link:lkmc/aarch64.h[]
  15271. * link:lkmc/arm.h[]
  15272. * link:lkmc/x86_64.h[]
  15273. ==== Freestanding programs
  15274. Unlike most our other assembly examples, which use the C standard library for portability, examples under `freestanding/` directories don't link to the C standard library:
  15275. * link:userland/freestanding/[]: freestanding programs that work on any ISA
  15276. * link:userland/arch/x86_64/freestanding/[]
  15277. * link:userland/arch/arm/freestanding/[]
  15278. * link:userland/arch/aarch64/freestanding/[]
  15279. As a result, those examples cannot do IO portably, and so they make raw system calls and only be run on one given OS, e.g. <<linux-system-calls>>.
  15280. Such executables are called freestanding because they don't execute the glibc initialization code, but rather start directly on our custom hand written assembly.
  15281. In order to GDB step debug those executables, you will want to use `--no-continue`, e.g.:
  15282. ....
  15283. ./run --arch aarch64 --userland userland/arch/aarch64/freestanding/linux/hello.S --gdb-wait
  15284. ./run-gdb --arch aarch64 --no-continue --userland userland/arch/aarch64/freestanding/linux/hello.S
  15285. ....
  15286. or in one go with <<tmux>>:
  15287. ....
  15288. ./run \
  15289. --arch aarch64 \
  15290. --gdb-wait \
  15291. --tmux-args=--no-continue \
  15292. --userland userland/arch/aarch64/freestanding/linux/hello.S \
  15293. ;
  15294. ....
  15295. You are now left on the very first instruction of our tiny executable!
  15296. This is analogous to <<baremetal-gdb-step-debug,step debugging baremetal examples>>.
  15297. Related:
  15298. * https://stackoverflow.com/questions/4783404/is-main-really-start-of-a-c-program/64116561#64116561 "Is main() really start of a C++ program?"
  15299. * https://electronics.stackexchange.com/questions/258896/what-happens-before-main/404298#404298
  15300. * https://electronics.stackexchange.com/questions/55767/who-receives-the-value-returned-by-main[], more microcontroller focused, should entitled "how to quit a program in microcontroller"
  15301. * https://stackoverflow.com/questions/53570678/what-happens-before-main-in-c "What happens before main in C++?"
  15302. * https://www.quora.com/What-is-happening-before-the-main-function-is-called-in-C++-programming
  15303. * https://stackoverflow.com/questions/2053029/how-exactly-does-attribute-constructor-work
  15304. ===== nostartfiles programs
  15305. Assembly examples under `nostartfiles` directories can use the standard library, but they don't use the pre-`main` boilerplate and start directly at our explicitly given `_start`:
  15306. * link:userland/arch/x86_64/nostartfiles/[]
  15307. * link:userland/arch/aarch64/nostartfiles/[]
  15308. I'm not sure how much stdlib functionality is supposed to work without the pre-main stuff, but I guess we'll just have to find out!
  15309. Was going to ask the following markdown question, but I noticed half way that:
  15310. * without `-static`, I see a bunch of dynamic loader instructions, so not much is gained
  15311. * with `-static`, the program segfaults, including on the host with stack:
  15312. +
  15313. ....
  15314. #0 0x0000000000429625 in _IO_cleanup ()
  15315. #1 0x0000000000400c72 in __run_exit_handlers ()
  15316. #2 0x0000000000400caa in exit ()
  15317. #3 0x0000000000400a01 in _start () at exit.S:4
  15318. ....
  15319. so I didn't really have a good question.
  15320. The Markdown question that was almost asked:
  15321. ....
  15322. When working in emulators, I often want to keep my workloads as small as possible to more easily study instruction traces and reproduce bugs.
  15323. One of the ways I often want to do that, especially when doing [user mode simulations](https://wiki.debian.org/QemuUserEmulation), is by not running [the code that normally runs before main](https://stackoverflow.com/questions/53570678/what-happens-before-main-in-c) so that I can start directly in the instructions of interest that I control myself, which can be achieved with the `gcc -nostartfiles` option and by starting the program directly at `_start`.
  15324. Here is a tiny example that calls just `exit` from the C standard library:
  15325. main.S
  15326. ....
  15327. .global _start
  15328. _start:
  15329. mov $0, %rdi
  15330. call exit
  15331. ....
  15332. Compile and run with:
  15333. ....
  15334. gcc -ggdb3 -nostartfiles -static -o exit.out exit.S
  15335. qemu-x86_64 -d in_asm exit.out
  15336. ....
  15337. However, for programming convenience, and to potentially keep my examples more OS portable, I would like to avoid making raw system calls, which would of course work, by using C standard library functions instead.
  15338. But I'm afraid that some of those C standard library functions will fail in subtle ways because I have skipped required initialization steps that would normally happen before `main`.
  15339. Is it any easy to determine which functions I can use or not, in case there are any that I can't use?
  15340. ....
  15341. === GCC inline assembly
  15342. Examples under `arch/<arch>/c/` directories show to how use inline assembly from higher level languages such as C:
  15343. * x86_64
  15344. ** link:userland/arch/x86_64/inline_asm/inc.c[]
  15345. ** link:userland/arch/x86_64/inline_asm/add.c[]
  15346. ** link:userland/arch/x86_64/inline_asm/sqrt_x87.c[] Shows how to use the <<x86-x87-fpu-instructions>> from inline assembly. Bibliography: https://stackoverflow.com/questions/6514537/how-do-i-specify-immediate-floating-point-numbers-with-inline-assembly/52906126#52906126
  15347. * arm
  15348. ** link:userland/arch/arm/inline_asm/inc.c[]
  15349. ** link:userland/arch/arm/inline_asm/inc_memory.c[]
  15350. ** link:userland/arch/arm/inline_asm/inc_memory_global.c[]
  15351. ** link:userland/arch/arm/inline_asm/add.c[]
  15352. * aarch64
  15353. ** link:userland/arch/aarch64/inline_asm/earlyclobber.c[]
  15354. ** link:userland/arch/aarch64/inline_asm/inc.c[]
  15355. ** link:userland/arch/aarch64/inline_asm/inc_32.c[]: how to use 32-bit `w` registers in aarch64. We have to add `w` to the `%` as in `%w[io]` instead of `%[io]`
  15356. ** link:userland/arch/aarch64/inline_asm/multiline.cpp[]
  15357. ==== GCC inline assembly register variables
  15358. Used notably in some of the <<linux-system-calls>> setups:
  15359. * link:userland/arch/arm/inline_asm/reg_var.c[]
  15360. * link:userland/arch/aarch64/inline_asm/reg_var.c[]
  15361. * link:userland/arch/aarch64/inline_asm/reg_var_float.c[]
  15362. In x86, makes it possible to access variables not exposed with the one letter register constraints.
  15363. In arm, it is the only way to achieve this effect: https://stackoverflow.com/questions/10831792/how-to-use-specific-register-in-arm-inline-assembler
  15364. This feature notably useful for making system calls from C, see: xref:linux-system-calls[xrefstyle=full].
  15365. Documentation: https://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Explicit-Reg-Vars.html
  15366. ==== GCC inline assembly scratch registers
  15367. How to use temporary registers in inline assembly:
  15368. * x86_64
  15369. ** link:userland/arch/x86_64/inline_asm/scratch.c[]
  15370. ** link:userland/arch/x86_64/inline_asm/scratch_hardcode.c[]
  15371. Bibliography: https://stackoverflow.com/questions/6682733/gcc-prohibit-use-of-some-registers/54963829#54963829
  15372. ==== GCC inline assembly early-clobbers
  15373. An example of using the `&` early-clobber modifier: link:userland/arch/aarch64/earlyclobber.c
  15374. More details at: https://stackoverflow.com/questions/15819794/when-to-use-earlyclobber-constraint-in-extended-gcc-inline-assembly/54853663#54853663
  15375. The assertion may fail without it. It actually does fail in GCC 8.2.0.
  15376. ==== GCC inline assembly floating point ARM
  15377. Not documented as of GCC 8.2, but possible: https://stackoverflow.com/questions/53960240/armv8-floating-point-output-inline-assembly
  15378. * link:userland/arch/arm/inline_asm/inc_float.c[]
  15379. * link:userland/arch/aarch64/inline_asm/inc_float.c[]
  15380. ==== GCC intrinsics
  15381. Pre-existing C wrappers using inline assembly, this is what production programs should use instead of inline assembly for SIMD:
  15382. * x86_64
  15383. ** link:userland/arch/x86_64/intrinsics/paddq.c[]. Intrinsics version of link:userland/arch/x86_64/paddq.S[]
  15384. ** link:userland/arch/x86_64/intrinsics/addpd.c[]. Intrinsics version of link:userland/arch/x86_64/addpd.S[]
  15385. ===== GCC x86 intrinsics
  15386. Good official cheatsheet with all intrinsics and what they expand to: https://software.intel.com/sites/landingpage/IntrinsicsGuide
  15387. The functions use the the following naming convention:
  15388. ....
  15389. <vector_size>_<intrin_op>_<suffix>
  15390. ....
  15391. where:
  15392. * `<vector_size>`:
  15393. ** `mm`: 128-bit vectors (SSE)
  15394. ** `mm256`: 256-bit vectors (AVX and AVX2)
  15395. ** `mm512`: 512-bit vectors (AVX512)
  15396. * `<intrin_op>`: operation of the intrinsic function, e.g. add, sub, mul, etc.
  15397. * `<suffix>`: data type:
  15398. ** `ps`: 4 floats (Packed Single)
  15399. ** `pd`: 2 doubles (Packed Double)
  15400. ** `ss`: 1 float (Single Single), often the lowest order one
  15401. ** `sd`: 1 double (Single Double)
  15402. ** `si128`: 128-bits of integers of any size
  15403. ** `ep<int_type>` integer types, e.g.:
  15404. *** `epi32`: 32 bit signed integers
  15405. *** `epu16`: 16 bit unsigned integers
  15406. Data types:
  15407. * `__m128`: four floats
  15408. * `__m128d`: two doubles
  15409. * `__m128i`: integers: 8 x 16-bit, 4 x 32-bit, 2 x 64-bit
  15410. The headers to include are clarified at: https://stackoverflow.com/questions/11228855/header-files-for-x86-simd-intrinsics
  15411. ....
  15412. x86intrin.h everything
  15413. mmintrin.h MMX
  15414. xmmintrin.h SSE
  15415. emmintrin.h SSE2
  15416. pmmintrin.h SSE3
  15417. tmmintrin.h SSSE3
  15418. smmintrin.h SSE4.1
  15419. nmmintrin.h SSE4.2
  15420. ammintrin.h SSE4A
  15421. wmmintrin.h AES
  15422. immintrin.h AVX
  15423. zmmintrin.h AVX512
  15424. ....
  15425. Present in `gcc-7_3_0-release` tree at: `gcc/config/i386/x86intrin.h`.
  15426. Bibliography:
  15427. * https://www.cs.virginia.edu/~cr4bd/3330/S2018/simdref.html
  15428. * https://software.intel.com/en-us/articles/how-to-use-intrinsics
  15429. === Linux system calls
  15430. The following <<userland-setup>> programs illustrate how to make system calls:
  15431. * x86_64
  15432. ** link:userland/arch/x86_64/freestanding/linux/hello.S[]
  15433. ** link:userland/arch/x86_64/freestanding/linux/int_system_call.S[]
  15434. ** link:userland/arch/x86_64/inline_asm/freestanding/linux/hello.c[]: this shows how to do system calls from inline assembly without any C standard library helpers like `syscall`
  15435. ** link:userland/arch/x86_64/inline_asm/freestanding/linux/hello_regvar.c[]: same as link:userland/arch/x86_64/inline_asm/freestanding/linux/hello.c[] but using register variables instead of register constraints
  15436. * arm
  15437. ** link:userland/arch/arm/freestanding/linux/hello.S[]
  15438. ** link:userland/arch/arm/inline_asm/freestanding/linux/hello.c[]: there are no register constraints in ARM, so register variables are the most efficient way of storing variables in specific general purpose registers: https://stackoverflow.com/questions/3929442/how-to-specify-an-individual-register-as-constraint-in-arm-gcc-inline-assembly/54845046#54845046
  15439. * aarch64
  15440. ** link:userland/arch/aarch64/freestanding/linux/hello.S[]
  15441. ** link:userland/arch/aarch64/inline_asm/freestanding/linux/hello.c[]
  15442. ** link:userland/arch/aarch64/inline_asm/freestanding/linux/hello_clobbers.c[]
  15443. Determining the ARM syscall numbers:
  15444. * https://reverseengineering.stackexchange.com/questions/16917/arm64-syscalls-table
  15445. * arm: https://github.com/torvalds/linux/blob/v4.17/arch/arm/tools/syscall.tbl
  15446. * aarch64: https://github.com/torvalds/linux/blob/v4.17/include/uapi/asm-generic/unistd.h
  15447. Determining the ARM syscall interface:
  15448. * https://stackoverflow.com/questions/12946958/what-is-the-interface-for-arm-system-calls-and-where-is-it-defined-in-the-linux
  15449. * https://stackoverflow.com/questions/45742869/linux-syscall-conventions-for-armv8
  15450. Questions about the C inline assembly examples:
  15451. * x86_64: https://stackoverflow.com/questions/9506353/how-to-invoke-a-system-call-via-sysenter-in-inline-assembly/54956854#54956854
  15452. * ARM: https://stackoverflow.com/questions/21729497/doing-a-syscall-without-libc-using-arm-inline-assembly
  15453. ==== futex system call
  15454. This is how threads either:
  15455. * request the kernel to sleep until they are woken up by other threads
  15456. * request the kernel to wake up other threads that are waiting on a given futex
  15457. This syscall is rarely used on its own, and there isn't even a glibc wrapper for it: you almost always just want to use the <<pthreads>> or <<cpp-multithreading>> wrappers which use it for you to <<userland-mutex-implementation,implement higher level constructs like mutexes>>.
  15458. Futexes are bit complicated, because in order to achieve their efficiency, basically nothing is guaranteed: the wait might not wait, and the wakes might not wake.
  15459. So you are just basically forced to use atomic operations on the futex memory address in order to be sure of anything (we encourage you to try without :-)).
  15460. Minimal examples:
  15461. * link:lkmc/futex.h[]: our futex wrapper
  15462. * link:userland/linux/futex.c[]: minimal example. It:
  15463. ** first spawns a child
  15464. ** then sleeps for 1 second and wakes up the futex if anyone is sleeping on it
  15465. ** the child sleeps on the futex if it reaches that futex before the end of the parent's sleep (likely). If it did reach that `FUTEX_WAIT` there, it gets awoken by the parent.
  15466. +
  15467. So what you see is:
  15468. +
  15469. ....
  15470. main start
  15471. child start
  15472. [wait 1s]
  15473. parent after sleep
  15474. child after parent sleep
  15475. ....
  15476. ===== Userland mutex implementation
  15477. The best article to understand spinlocks is: https://eli.thegreenplace.net/2018/basics-of-futexes/
  15478. The example in `man futex` is also a must.
  15479. [[getcpu]]
  15480. ==== `getcpu` system call and the `sched_getaffinity` glibc wrapper
  15481. Examples:
  15482. * link:userland/linux/sched_getcpu.c[]
  15483. * link:userland/linux/getcpu.c[]: a wrapper close the the syscall that also returns the current NUMA node
  15484. * link:userland/linux/getcpu_syscall.c[]: the wrapper segfaults on error handling, so double checking with the real syscall: https://stackoverflow.com/questions/9260937/unix-socket-error-14-efault-bad-address/61879849#61879849
  15485. * link:userland/linux/sched_getcpu_barrier.c[]: this uses a barrier to ensure that gem5 will run each thread on one separate CPU
  15486. Returns the CPU that the process/thread is currently running on:
  15487. * https://stackoverflow.com/questions/491520/how-can-i-get-the-cpu-core-number-from-within-a-user-space-app-linux-c
  15488. * https://stackoverflow.com/questions/6026896/how-to-know-on-which-physical-processor-and-on-which-physical-core-my-code-is-ru/16574301#16574301
  15489. So when running a multicore program, we may see that each thread can be running on a different core.
  15490. The cores in which the process runs can be fixed with `sched_setaffinity` as shown at: link:userland/linux/sched_getaffinity.c[].
  15491. So when I run it with `main` thread + 4 threads on a 4 core CPUs:
  15492. ....
  15493. ./userland/linux/sched_getcpu.out 4
  15494. ....
  15495. I see random outputs like:
  15496. ....
  15497. 7
  15498. 2
  15499. 1
  15500. 5
  15501. ....
  15502. and:
  15503. ....
  15504. 5
  15505. 0
  15506. 2
  15507. 1
  15508. ....
  15509. Due to the way that <<gem5-syscall-emulation-multithreading>> however, the output is more deterministic in that case, see that section for further details.
  15510. [[perf-event-open]]
  15511. ==== `perf_event_open` system call
  15512. link:userland/linux/perf_event_open.c[]
  15513. On ARM, `perf_event_open` uses the <<arm-pmu>>. The mapping between kernel events and ARM PMU events can be found at: https://github.com/cirosantilli/linux/blob/v5.9/arch/arm64/kernel/perf_event.c
  15514. Bibliography:
  15515. * `man perf_event_open`
  15516. * https://community.arm.com/developer/ip-products/system/b/embedded-blog/posts/using-the-arm-performance-monitor-unit-pmu-linux-driver
  15517. * instruction counts: https://stackoverflow.com/questions/13313510/quick-way-to-count-number-of-instructions-executed-in-a-c-program/64863392#64863392
  15518. * cycle counts:
  15519. ** https://stackoverflow.com/questions/13772567/how-to-get-the-cpu-cycle-count-in-x86-64-from-c/64898073#64898073
  15520. ** https://stackoverflow.com/questions/3830883/cpu-cycle-count-based-profiling-in-c-c-linux-x86-64/64898121#64898121
  15521. ** https://stackoverflow.com/questions/35923834/what-is-the-most-reliable-way-to-measure-the-number-of-cycles-of-my-program-in-c/64898206#64898206
  15522. ** https://unix.stackexchange.com/questions/352166/measure-exact-clock-cycles-for-a-c-assembly-program/620317#620317
  15523. ** https://stackoverflow.com/questions/8522140/linux-alternative-to-windows-high-resolution-performance-counter-api/64898303#64898303
  15524. * cache misses: https://stackoverflow.com/questions/10082517/simplest-tool-to-measure-c-program-cache-hit-miss-and-cpu-time-in-linux/64899613#64899613
  15525. === Linux calling conventions
  15526. A summary of results is shown at: xref:table-linux-calling-conventions[xrefstyle=full].
  15527. [[table-linux-calling-conventions]]
  15528. .Summary of Linux calling conventions for several architectures
  15529. [options="header"]
  15530. |===
  15531. |arch |arguments |return value |callee saved registers
  15532. |x86_64
  15533. |rdi, rsi, rdx, rcx, r8, r9, xmm0–7
  15534. |rax, rdx
  15535. |rbx, rbp, r12–r15
  15536. |arm
  15537. |r0-r3
  15538. |r0-r3
  15539. |r4-r11
  15540. |aarch64
  15541. |x0-x7
  15542. |x0-x7
  15543. |x19-x29
  15544. |===
  15545. [[x86-64-calling-convention]]
  15546. ==== x86_64 calling convention
  15547. Examples:
  15548. * link:lkmc/x86_64.h[] `ENTRY` and `EXIT`
  15549. One important catch is that the stack must always be aligned to 16-bits before making calls: https://stackoverflow.com/questions/56324948/why-does-calling-the-c-abort-function-from-an-x86-64-assembly-function-lead-to
  15550. Bibliography:
  15551. * https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI
  15552. * https://stackoverflow.com/questions/18024672/what-registers-are-preserved-through-a-linux-x86-64-function-call/55207335#55207335
  15553. ==== ARM calling convention
  15554. Call C standard library functions from assembly and vice versa.
  15555. * arm
  15556. ** link:lkmc/arm.h[] `ENTRY` and `EXIT`
  15557. ** link:userland/arch/arm/linux/c_from_asm.S[]
  15558. * aarch64
  15559. ** link:lkmc/aarch64.h[] `ENTRY` and `EXIT`
  15560. ** link:userland/arch/aarch64/inline_asm/linux/asm_from_c.c[]
  15561. ARM Architecture Procedure Call Standard (AAPCS) is the name that ARM Holdings gives to the calling convention.
  15562. Official specification: http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F_aapcs.pdf
  15563. Bibliography:
  15564. * https://en.wikipedia.org/wiki/Calling_convention#ARM_(A32) Wiki contains the master list as usual.
  15565. * https://stackoverflow.com/questions/8422287/calling-c-functions-from-arm-assembly
  15566. * https://stackoverflow.com/questions/261419/arm-to-c-calling-convention-registers-to-save
  15567. * https://stackoverflow.com/questions/10494848/arm-whats-the-difference-between-apcs-and-aapcs-abi
  15568. === GNU GAS assembler
  15569. https://en.wikipedia.org/wiki/GNU_Assembler[GNU GAS] is the default assembler used by GDB, and therefore it completely dominates in Linux.
  15570. The Linux kernel in particular uses GNU GAS assembly extensively for the arch specific parts under `arch/`.
  15571. ==== GNU GAS assembler comments
  15572. In this tutorial, we use exclusively C Preprocessor `/**/` comments because:
  15573. * they are the same for all archs
  15574. * we are already stuck to the C Preprocessor because GNU GAS macros are unusable so we need `#define`
  15575. * mixing `#` GNU GAS comments and `#define` is a bad idea ;-)
  15576. But just in case you want to suffer, see this full explanation of GNU GAS comments: https://stackoverflow.com/questions/15663280/how-to-make-the-gnu-assembler-use-a-slash-for-comments/51991349#51991349
  15577. Examples:
  15578. * link:userland/arch/arm/comments.S[]
  15579. * link:userland/arch/aarch64/comments.S[]
  15580. ==== GNU GAS assembler immediates
  15581. Summary:
  15582. * x86 always dollar `$` everywhere.
  15583. * ARM: can use either `#`, `$` or nothing depending on v7 vs v8 and <<gnu-gas-assembler-arm-unified-syntax,`.syntax unified`>>.
  15584. +
  15585. Fuller explanation at: https://stackoverflow.com/questions/21652884/is-the-hash-required-for-immediate-values-in-arm-assembly/51987780#51987780
  15586. Examples:
  15587. * link:userland/arch/arm/immediates.S[]
  15588. * link:userland/arch/aarch64/immediates.S[]
  15589. ==== GNU GAS assembler data sizes
  15590. Let's see how many bytes go into each data type:
  15591. * link:userland/arch/x86_64/gas_data_sizes.S[]
  15592. * link:userland/arch/arm/gas_data_sizes.S[]
  15593. * link:userland/arch/aarch64/gas_data_sizes.S[]
  15594. The results are shown at: xref:table-gas-data-sizes[xrefstyle=full].
  15595. [[table-gas-data-sizes]]
  15596. .Summary of GNU GAS assembler data sizes
  15597. [options="header"]
  15598. |===
  15599. |.byte |.word |.long |.quad |.octa
  15600. |x86
  15601. |1
  15602. |2
  15603. |4
  15604. |8
  15605. |16
  15606. |arm
  15607. |1
  15608. |4
  15609. |4
  15610. |8
  15611. |16
  15612. |aarch64
  15613. |1
  15614. |4
  15615. |4
  15616. |8
  15617. |16
  15618. |===
  15619. and also keep in mind that according to the manual:
  15620. * `.int` is the same as `.long`
  15621. * `.hword` is the same as `.short` which is usually the same as `.word`
  15622. Bibliography:
  15623. * https://sourceware.org/binutils/docs-2.32/as/Pseudo-Ops.html#Pseudo-Ops
  15624. * https://stackoverflow.com/questions/43005411/how-does-the-quad-directive-work-in-assembly/43006616
  15625. * https://gist.github.com/steakknife/d47d0b19a24817f48027
  15626. ===== GNU GAS assembler ARM specifics
  15627. ====== GNU GAS assembler ARM unified syntax
  15628. There are two types of ARMv7 assemblies:
  15629. * `.syntax divided`
  15630. * `.syntax unified`
  15631. They are very similar, but unified is the new and better one, which we use in this tutorial.
  15632. Unfortunately, for backwards compatibility, GNU AS 2.31.1 and GCC 8.2.0 still use `.syntax divided` by default.
  15633. The concept of unified assembly is mentioned in ARM's official assembler documentation: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0473c/BABJIHGJ.html and is often called Unified Assembly Language (UAL).
  15634. Some of the differences include:
  15635. * `#` is optional in unified syntax int literals, see <<gnu-gas-assembler-immediates>>
  15636. * many mnemonics changed:
  15637. ** most of them are condition code position changes, e.g. ANDSEQ vs ANDEQS: https://stackoverflow.com/questions/51184921/wierd-gcc-behaviour-with-arm-assembler-andseq-instruction
  15638. ** but there are some more drastic ones, e.g. SWI vs <<arm-svc-instruction,SVC>>: https://stackoverflow.com/questions/8459279/are-arm-instructuons-swi-and-svc-exactly-same-thing/54078731#54078731
  15639. * cannot have implicit destination with shift, see: xref:arm-shift-suffixes[xrefstyle=full]
  15640. ===== GNU GAS assembler ARM .n and .w suffixes
  15641. When reading disassembly, many instructions have either a `.n` or `.w` suffix.
  15642. `.n` means narrow, and stands for the <<arm-instruction-encodings,Thumb encoding>> of an instructions, while `.w` means wide and stands for the ARM encoding.
  15643. Bibliography: https://stackoverflow.com/questions/27147043/n-suffix-to-branch-instruction
  15644. ==== GNU GAS assembler char literals
  15645. link:userland/arch/x86_64/char_literals.S[]
  15646. https://stackoverflow.com/questions/33246811/how-to-use-character-literals-in-gnu-gas-to-replace-numbers
  15647. This syntax plays horribly with the C preprocessor:
  15648. ....
  15649. MACRO($'a)
  15650. ....
  15651. fails because cpp treats string and char literals magically.
  15652. === NOP instructions
  15653. * x86: link:userland/arch/x86_64/nop.S[NOP]
  15654. * ARM: xref:arm-nop-instruction[xrefstyle=full]
  15655. No OPeration.
  15656. Does nothing except take up one processor cycle and occupy some instruction memory.
  15657. Applications: https://stackoverflow.com/questions/234906/whats-the-purpose-of-the-nop-opcode
  15658. == x86 userland assembly
  15659. Arch agnostic infrastructure getting started at: xref:userland-assembly[xrefstyle=full].
  15660. === x86 registers
  15661. link:userland/arch/x86_64/registers.S
  15662. ....
  15663. |-----------------------------------------------|
  15664. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
  15665. |-----------------------------------------------|
  15666. | | | AH | AL |
  15667. |-----------------------------------------------|
  15668. | | | AX |
  15669. |-----------------------------------------------|
  15670. | | EAX |
  15671. |-----------------------------------------------|
  15672. | RAX |
  15673. |-----------------------------------------------|
  15674. ....
  15675. For the newer x86_64 registers, the naming convention is somewhat saner:
  15676. ....
  15677. |-----------------------------------------------|
  15678. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
  15679. |-----------------------------------------------|
  15680. | | |R12H |R12L |
  15681. |-----------------------------------------------|
  15682. | | | R12W |
  15683. |-----------------------------------------------|
  15684. | | R12D |
  15685. |-----------------------------------------------|
  15686. | R12 |
  15687. |-----------------------------------------------|
  15688. ....
  15689. Most of the 8 older x86 general purpose registers are not "really" general purpose in the sense that a few instructions magically use them without an explicit encoding. This is reflected in their names:
  15690. * RAX: Accumulator. The general place where you add, subtract and otherwise manipulate results in-place. Magic for example for <<x86-binary-arithmetic-instructions,MUL>>.
  15691. * RCX, RSI, RDI: Counter, Source and Destination. Used in <<x86-string-instructions>>
  15692. ==== x86 FLAGS registers
  15693. https://en.wikipedia.org/wiki/FLAGS_register
  15694. TODO: add some more info here. Just need a link placeholder for now.
  15695. === x86 addressing modes
  15696. Example: link:userland/arch/x86_64/address_modes.S[]
  15697. Several x86 instructions can calculate addresses of a complex form:
  15698. ....
  15699. s:a(b, c, d)
  15700. ....
  15701. which expands to:
  15702. ....
  15703. a + b + c * d
  15704. ....
  15705. Where the instruction encoding allows for:
  15706. * `a`: any 8 or 32-bit general purpose register
  15707. * `b`: any 32-bit general purpose register except ESP
  15708. * `c`: 1, 2, 4 or 8 (encoded in 2 SIB bits)
  15709. * `d`: immediate constant
  15710. * `s`: a segment register. Cannot be tested simply from userland, so we won't talk about them here. See: https://github.com/cirosantilli/x86-bare-metal-examples/blob/6606a2647d44bc14e6fd695c0ea2b6b7a5f04ca3/segment_registers_real_mode.S
  15711. The common compiler usage is:
  15712. * `a`: base pointer
  15713. * `b`: array offset
  15714. * `c` and `d`: struct offset
  15715. Bibliography:
  15716. * <<intel-manual-1>> 3.7.5 "Specifying an Offset"
  15717. * https://sourceware.org/binutils/docs-2.18/as/i386_002dMemory.html
  15718. === x86 data transfer instructions
  15719. 5.1.1 "Data Transfer Instructions"
  15720. * link:userland/arch/x86_64/lea.S[]: LEA
  15721. * Integer typecasts
  15722. ** link:userland/arch/x86_64/movzx.S[]: MOVZX
  15723. ** link:userland/arch/x86_64/movsx.S[]: MOVSX
  15724. * link:userland/arch/x86_64/bswap.S[]: BSWAP: convert between little endian and big endian
  15725. * link:userland/arch/x86_64/pushf.S[] PUSHF: <<x86-push-and-pop-instructions,push and pop>> the <<x86-flags-registers>> to / from the stack
  15726. ==== x86 exchange instructions
  15727. <<intel-manual-1>> 7.3.1.2 "Exchange Instructions":
  15728. * link:userland/arch/x86_64/xadd.S[] XADD: exchange and add. This is how C++ `<atomic>`'s' `++` is implemented in GCC 5.1. TODO: why is the exchange part needed?
  15729. * link:userland/arch/x86_64/xchg.S[] XCHG: exchange two values
  15730. TODO: concrete multi-thread <<gcc-inline-assembly>> examples of how all those instructions are normally used as synchronization primitives.
  15731. ===== x86 CMPXCHG instruction
  15732. link:userland/arch/x86_64/cmpxchg.S[]
  15733. CMPXCHG: compare and exchange. `cmpxchg a, b` does:
  15734. ....
  15735. if (RAX == b) {
  15736. ZF = 1
  15737. b = a
  15738. } else {
  15739. ZF = 0
  15740. RAX = b
  15741. }
  15742. ....
  15743. TODO application: https://stackoverflow.com/questions/6935442/x86-spinlock-using-cmpxchg
  15744. ==== x86 PUSH and POP instructions
  15745. link:userland/arch/x86_64/push.S[]
  15746. `push %rax` is basically equivalent to:
  15747. ....
  15748. sub $8, %rsp
  15749. mov %rax, (%rsp)
  15750. ....
  15751. and `pop %rax`:
  15752. ....
  15753. mov (%rsp), %rax
  15754. add $8, %rsp
  15755. ....
  15756. Why do those instructions exist at all vs MOV / ADD / SUB: https://stackoverflow.com/questions/4584089/what-is-the-function-of-push-pop-registers-in-x86-assembly/33583134#33583134
  15757. ==== x86 CQTO and CLTQ instructions
  15758. Examples:
  15759. * link:userland/arch/x86_64/cqto.S[] CQTO
  15760. * link:userland/arch/x86_64/cltq.S[] CLTQ
  15761. Instructions without E suffix: sign extend RAX into RDX:RAX.
  15762. Instructions E suffix: sign extend withing RAX itself.
  15763. Common combo with IDIV 32-bit, which takes the input from EDX:EAX: so you need to set up EDX before calling it.
  15764. Has some Intel vs AT&T name overload hell:
  15765. * https://stackoverflow.com/questions/6555094/what-does-cltq-do-in-assembly/45386217#45386217
  15766. * https://stackoverflow.com/questions/17170388/trying-to-understand-the-assembly-instruction-cltd-on-x86/50315201#50315201
  15767. * https://sourceware.org/binutils/docs/as/i386_002dMnemonics.html
  15768. GNU GAS accepts both syntaxes, see: xref:table-cqto-cltq[xrefstyle=full].
  15769. [[table-cqto-cltq]]
  15770. .CQTO and CLTQ family Intel vs AT&T
  15771. [options="header", cols="3*<"]
  15772. |===
  15773. |Intel |AT&T |From |To
  15774. |CBW
  15775. |CBTW
  15776. |AL
  15777. |AX
  15778. |CWDE
  15779. |CWTL
  15780. |AX
  15781. |EAX
  15782. |CWD
  15783. |CWTD
  15784. |AX
  15785. |DX:AX
  15786. |CDQ
  15787. |CLTD
  15788. |EAX
  15789. |EDX:EAX
  15790. |CDQE
  15791. |CLTQ
  15792. |EAX
  15793. |RAX
  15794. |CQO
  15795. |CQTO
  15796. |RAX
  15797. |RDX:RAX
  15798. |===
  15799. ==== x86 CMOVcc instructions
  15800. * link:userland/arch/x86_64/cmovcc.S[]: CMOVcc
  15801. mov if a condition is met:
  15802. ....
  15803. CMOVcc a, b
  15804. ....
  15805. Equals:
  15806. ....
  15807. if(flag) a = b
  15808. ....
  15809. where `cc` are the same flags as Jcc.
  15810. Vs jmp:
  15811. * https://stackoverflow.com/questions/14131096/why-is-a-conditional-move-not-vulnerable-for-branch-prediction-failure
  15812. * https://stackoverflow.com/questions/27136961/what-is-it-about-cmov-which-improves-cpu-pipeline-performance
  15813. * https://stackoverflow.com/questions/26154488/difference-between-conditional-instructions-cmov-and-jump-instructions
  15814. * https://stackoverflow.com/questions/6754454/speed-difference-between-if-else-and-ternary-operator-in-c?lq=1#comment8007791_6754495
  15815. Not necessarily faster because of branch prediction.
  15816. This is partly why the ternary `?` C operator exists: https://stackoverflow.com/questions/3565368/ternary-operator-vs-if-else
  15817. It is interesting to compare this with ARMv7 conditional execution: which is available for all instructions, as shown at: xref:arm-conditional-execution[xrefstyle=full].
  15818. === x86 binary arithmetic instructions
  15819. <<intel-manual-1>> 5.1.2 "Binary Arithmetic Instructions":
  15820. * link:userland/arch/x86_64/add.S[]: ADD
  15821. ** link:userland/arch/x86_64/inc.S[]: INC
  15822. ** link:userland/arch/x86_64/adc.S[]: ADC
  15823. * link:userland/arch/x86_64/sub.S[]: SUB
  15824. ** link:userland/arch/x86_64/dec.S[]: DEC
  15825. ** link:userland/arch/x86_64/sbb.S[]: SBB
  15826. * link:userland/arch/x86_64/mul.S[]: MUL
  15827. ** link:userland/arch/x86_64/neg.S[]: NEG
  15828. ** link:userland/arch/x86_64/imul.S[]: IMUL
  15829. * link:userland/arch/x86_64/div.S[]: DIV
  15830. ** link:userland/arch/x86_64/div_overflow.S[]: DIV overflow
  15831. ** link:userland/arch/x86_64/div_zero.S[]: DIV zero
  15832. ** link:userland/arch/x86_64/idiv.S[]: IDIV
  15833. * link:userland/arch/x86_64/cmp.S[]: CMP
  15834. === x86 logical instructions
  15835. <<intel-manual-1>> 5.1.4 "Logical Instructions"
  15836. * link:userland/arch/x86_64/and.S[]: AND
  15837. * link:userland/arch/x86_64/not.S[]: NOT
  15838. * link:userland/arch/x86_64/or.S[]: OR
  15839. * link:userland/arch/x86_64/xor.S[]: XOR
  15840. === x86 shift and rotate instructions
  15841. <<intel-manual-1>> 5.1.5 "Shift and Rotate Instructions"
  15842. * link:userland/arch/x86_64/shl.S[SHL and SHR]
  15843. +
  15844. SHift left or Right and insert 0.
  15845. +
  15846. CF == the bit that got shifted out.
  15847. +
  15848. Application: quick unsigned multiply and divide by powers of 2.
  15849. * link:userland/arch/x86_64/sal.S[SAL and SAR]
  15850. +
  15851. Application: signed multiply and divide by powers of 2.
  15852. +
  15853. Mnemonics: Shift Arithmetic Left and Right
  15854. +
  15855. Keeps the same sign on right shift.
  15856. +
  15857. Not directly exposed in C, for which signed shift is undetermined behavior, but does exist in Java via the `>>>` operator. C compilers can omit it however.
  15858. +
  15859. SHL and SAL are exactly the same and have the same encoding: https://stackoverflow.com/questions/8373415/difference-between-shl-and-sal-in-80x86/56621271#56621271
  15860. * link:userland/arch/x86_64/rol.S[]: ROL and ROR
  15861. +
  15862. Rotates the bit that is going out around to the other side.
  15863. * link:userland/arch/x86_64/rol.S[]: RCL and RCR
  15864. +
  15865. Like ROL and ROR, but insert the carry bit instead, which effectively generates a rotation of 8 + 1 bits. TODO application.
  15866. === x86 bit and byte instructions
  15867. <<intel-manual-1>> 5.1.6 "Bit and Byte Instructions"
  15868. * link:userland/arch/x86_64/bt.S[]: BT
  15869. +
  15870. Bit test: test if the Nth bit a bit of a register is set and store the result in the CF FLAG.
  15871. +
  15872. ....
  15873. CF = reg[N]
  15874. ....
  15875. * link:userland/arch/x86_64/btr.S[]: BTR
  15876. +
  15877. Do a BT and then set the bit to 0.
  15878. * link:userland/arch/x86_64/btc.S[]: BTC
  15879. +
  15880. Do a BT and then swap the value of the tested bit.
  15881. * link:userland/arch/x86_64/setcc.S[]: SETcc
  15882. +
  15883. Set a byte of a register to 0 or 1 depending on the cc condition.
  15884. +
  15885. Bibliography: https://stackoverflow.com/questions/1406783/how-to-read-and-write-x86-flags-registers-directly/30952577#30952577
  15886. * link:userland/arch/x86_64/popcnt.S[]: POPCNT
  15887. +
  15888. Count the number of 1 bits.
  15889. * link:userland/arch/x86_64/test.S[]: TEST
  15890. +
  15891. Like <<x86-binary-arithmetic-instructions,CMP>> but does AND instead of SUB:
  15892. +
  15893. ....
  15894. ZF = (!(X && Y)) ? 1 : 0
  15895. ....
  15896. === x86 control transfer instructions
  15897. <<intel-manual-1>> 5.1.7 "Control Transfer Instructions"
  15898. * link:userland/arch/x86_64/jmp.S[]: JMP
  15899. ** link:userland/arch/x86_64/jmp_indirect.S[]: JMP indirect
  15900. ==== x86 Jcc instructions
  15901. link:userland/arch/x86_64/jcc.S[]
  15902. Jump if certain conditions of the flags register are met.
  15903. Jcc includes the instructions:
  15904. * JZ, JNZ
  15905. ** JE, JNE: same as JZ, with two separate manual entries that say almost the same thing, lol: https://stackoverflow.com/questions/14267081/difference-between-je-jne-and-jz-jnz/14267662#14267662
  15906. * JG: greater than, signed
  15907. ** JA: Above: greater than, unsigned
  15908. * JL: less than, signed
  15909. ** JB below: less than, unsigned
  15910. * JC: carry
  15911. * JO: overflow
  15912. * JP: parity. Why it exists: https://stackoverflow.com/questions/25707130/what-is-the-purpose-of-the-parity-flag-on-a-cpu
  15913. * JPE: parity even
  15914. * JPO: parity odd
  15915. JG vs JA and JL vs JB:
  15916. * https://stackoverflow.com/questions/9617877/assembly-jg-jnle-jl-jnge-after-cmp/56613928#56613928
  15917. * https://stackoverflow.com/questions/20906639/difference-between-ja-and-jg-in-assembly
  15918. ==== x86 LOOP instruction
  15919. link:userland/arch/x86_64/loop.S[]
  15920. Vs <<x86-jcc-instructions,Jcc>>: https://stackoverflow.com/questions/6805692/x86-assembly-programming-loops-with-ecx-and-loop-instruction-versus-jmp-jcond Holy CISC!
  15921. ==== x86 string instructions
  15922. <<intel-manual-1>> 5.1.8 "String Instructions"
  15923. These instructions do some operation on an array item, and automatically update the index to the next item:
  15924. * First example explained in more detail
  15925. ** link:userland/arch/x86_64/stos.S[]: STOS: STOre String: store register to memory. STOSD is called STOSL in GNU GAS as usual: https://stackoverflow.com/questions/6211629/gcc-inline-assembly-error-no-such-instruction-stosd
  15926. * Further examples
  15927. ** link:userland/arch/x86_64/cmps.S[]: CMPS: CoMPare Strings: compare two values in memory with addresses given by RSI and RDI. Could be used to implement `memcmp`. Store the result in JZ as usual.
  15928. ** link:userland/arch/x86_64/lods.S[]: LODS: LOaD String: load from memory to register.
  15929. ** link:userland/arch/x86_64/movs.S[]: MOVS: MOV String: move from one memory to another with addresses given by RSI and RDI. Could be used to implement `memmov`.
  15930. ** link:userland/arch/x86_64/scas.S[]: SCAS: SCan String: compare memory to the value in a register. Could be used to implement `strchr`.
  15931. The RSI and RDI registers are actually named after these intructions! S is the source of string instructions, D is the destination of string instructions: https://stackoverflow.com/questions/1856320/purpose-of-esi-edi-registers
  15932. The direction of the index increment depends on the direction flag of the FLAGS register: 0 means forward and 1 means backward: https://stackoverflow.com/questions/9636691/what-are-cld-and-std-for-in-x86-assembly-language-what-does-df-do
  15933. These instructions were originally developed to speed up "string" operations such as those present in the `<string.h>` header of the C standard library.
  15934. However, as computer architecture evolved, those instructions might not offer considerable speedups anymore, and modern glibc such as 2.29 just uses <<x86-simd>> operations instead:, see also: https://stackoverflow.com/questions/33480999/how-can-the-rep-stosb-instruction-execute-faster-than-the-equivalent-loop
  15935. ===== x86 REP prefix
  15936. Example: link:userland/arch/x86_64/rep.S[]
  15937. Repeat a string instruction RCX times:
  15938. As the repetitions happen:
  15939. * RCX decreases, until it reaches 0
  15940. * RDI and RSI increase
  15941. The variants: REPZ, REPNZ (alias REPE, REPNE) repeat a given instruction until something happens.
  15942. REP and REPZ also additionally stop if the comparison operation they repeat fails.
  15943. * REP: INS, OUTS, MOVS, LODS, and STOS
  15944. * REPZ: CMPS and SCAS
  15945. ==== x86 ENTER and LEAVE instructions
  15946. link:userland/arch/x86_64/enter.S[]
  15947. These instructions were designed to allocate and deallocate function stack frames in the prologue and epilogue: https://stackoverflow.com/questions/5959890/enter-vs-push-ebp-mov-ebp-esp-sub-esp-imm-and-leave-vs-mov-esp-ebp
  15948. ENTER appears obsolete and is kept mostly for backwards compatibility. LEAVE is still emitted by some compilers.
  15949. ENTER A, B is basically equivalent to:
  15950. ....
  15951. push %rbp
  15952. mov %rsp, %rbp
  15953. sub %rsp, A
  15954. ....
  15955. which implies an allocation of:
  15956. * one dword to remember EBP
  15957. * A bytes for local function variables
  15958. I didn't have the patience to study the B parameter, and it does not seem to be used often: https://stackoverflow.com/questions/26323215/do-any-languages-compilers-utilize-the-x86-enter-instruction-with-a-nonzero-ne
  15959. LEAVE is equivalent to:
  15960. ....
  15961. mov %rbp, %rsp
  15962. pop %rbp
  15963. ....
  15964. which restores RSP and RBP to the values they had before the prologue.
  15965. === x86 miscellaneous instructions
  15966. <<intel-manual-1>> 5.1.13 "Miscellaneous Instructions"
  15967. NOP: xref:nop-instructions[xrefstyle=full]
  15968. === x86 random number generator instructions
  15969. <<intel-manual-1>> 5.1.15 Random Number Generator Instructions
  15970. Example: link:userland/arch/x86_64/rdrand.S[]: RDRAND
  15971. If you run that executable multiple times, it prints a random number every time to stdout.
  15972. RDRAND is a true random number generator!
  15973. This Intel engineer says its based on quantum effects: https://stackoverflow.com/questions/17616960/true-random-numbers-with-c11-and-rdrand/18004959#18004959
  15974. Generated some polemic when kernel devs wanted to use it as part of `/dev/random`, because it could be used as a cryptographic backdoor by Intel since it is a black box.
  15975. RDRAND sets the carry flag when data is ready so we must loop if the carry flag isn't set.
  15976. ==== x86 CPUID instruction
  15977. Example: link:userland/arch/x86_64/cpuid.S[]
  15978. Fills EAX, EBX, ECX and EDX with CPU information.
  15979. The exact data to show depends on the value of EAX, and for a few cases instructions ECX. When it depends on ECX, it is called a sub-leaf. Out test program prints `eax == 0`.
  15980. On <<p51>> for example the output EAX, EBX, ECX and EDX are:
  15981. ....
  15982. 0x00000016
  15983. 0x756E6547
  15984. 0x6C65746E
  15985. 0x49656E69
  15986. ....
  15987. EBX and ECX are easy to interpret:
  15988. * EBX: 75 6e 65 47 == 'u', 'n', 'e', 'G' in ASCII
  15989. * ECX: 6C 65 74 6E == 'l', 'e', 't', 'n'
  15990. so we see the string `Genu ntel` which is a shorthand for "Genuine Intel". Ha, I wonder if they had serious CPU pirating problems in the past? :-)
  15991. Information available includes:
  15992. * vendor
  15993. * version
  15994. * features (mmx, simd, rdrand, etc.) <http://en.wikipedia.org/wiki/CPUID# EAX.3D1:_Processor_Info_and_Feature_Bits>
  15995. * caches
  15996. * tlbs http://en.wikipedia.org/wiki/Translation_lookaside_buffer
  15997. The cool thing about this instruction is that it allows you to check the CPU specs and take alternative actions based on that inside your program.
  15998. On Linux, the capacity part of this information is parsed and made available at `cat /proc/cpuinfo`. See: http://unix.stackexchange.com/questions/43539/what-do-the-flags-in-proc-cpuinfo-mean
  15999. There is also the `cpuinfo` command line tool that parses the CPUID instruction from the command line. Source: http://www.etallen.com/cpuid.html
  16000. === x86 x87 FPU instructions
  16001. <<intel-manual-1>> 5.2 "X87 FPU INSTRUCTIONS"
  16002. Old floating point unit that you should likely not use anymore, prefer instead the newer <<x86-simd>> instructions.
  16003. * FPU basic examples, start here
  16004. ** link:userland/arch/x86_64/fadd.S[] FADD. The x76 FPU works on a stack of floating point numbers.
  16005. ** link:userland/arch/x86_64/faddp.S[] FADDP. Instructions with the P suffix also Pop the stack. This is often what you want for most computations, where the intermediate results don't matter.
  16006. ** link:userland/arch/x86_64/fldl_literal.S[] FLDL literal. It does not seem possible to either https://stackoverflow.com/questions/6514537/how-do-i-specify-immediate-floating-point-numbers-with-inline-assembly
  16007. *** load floating point immediates into x86 x87 FPU registers
  16008. *** encode floating point literals in x86 instructions, including MOV
  16009. * Bulk instructions
  16010. ** link:userland/arch/x86_64/fabs.S[] FABS: absolute value: `ST0 = |ST0|`
  16011. ** link:userland/arch/x86_64/fchs.S[] FCHS: change sign: `ST0 = -ST0`
  16012. ** link:userland/arch/x86_64/fild.S[] FILD: Integer Load. Convert integer to float.
  16013. ** link:userland/arch/x86_64/fld1.S[] FLD1: Push 1.0 to ST0. CISC!
  16014. ** link:userland/arch/x86_64/fldz.S[] FLDZ: Push 0.0 to ST0.
  16015. ** link:userland/arch/x86_64/fscale.S[] FSCALE: `ST0 = ST0 * 2 ^ RoundTowardZero(ST1)`
  16016. ** link:userland/arch/x86_64/fsqrt.S[] FSQRT: square root
  16017. ** link:userland/arch/x86_64/fxch.S[] FXCH: swap ST0 and another register
  16018. The ST0-ST7 x87 FPU registers are actually 80-bits wide, this can be seen from GDB with:
  16019. ....
  16020. i r st0 st1
  16021. ....
  16022. By counting the number of hex digits, we have 20 digits instead of 16!
  16023. Instructions such as FLDL convert standard <<ieee-754>> 64-bit values from memory into this custom 80-bit format.
  16024. * https://stackoverflow.com/questions/3206101/extended-80-bit-double-floating-point-in-x87-not-sse2-we-dont-miss-it
  16025. * https://en.wikipedia.org/wiki/Extended_precision#x86_extended_precision_format
  16026. ==== x86 x87 FPU vs SIMD
  16027. https://stackoverflow.com/questions/1844669/benefits-of-x87-over-sse
  16028. Modern x86 has two main ways of doing floating point operations:
  16029. * <<x86-x87-fpu-instructions>>
  16030. * <<x86-simd>>
  16031. Advantages of FPU:
  16032. * present in old CPUs, while SSE2 is only required in x86-64
  16033. * contains some instructions no present in SSE, e.g. trigonometric
  16034. * higher precision: FPU holds 80 bit Intel extension, while SSE2 only does up to 64 bit operations despite having the 128-bit register
  16035. In GCC, you can choose between them with `-mfpmath=`.
  16036. === x86 SIMD
  16037. Parent section: xref:simd-assembly[xrefstyle=full]
  16038. History:
  16039. * https://en.wikipedia.org/wiki/MMX_(instruction_set)[MMX]: MultiMedia eXtension (unofficial name). 1997. MM0-MM7 64-bit registers.
  16040. * https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions[SSE]: Streaming SIMD Extensions. 1999. XMM0-XMM7 128-bit registers, XMM0-XMM15 for AMD in 64-bit mode.
  16041. * https://en.wikipedia.org/wiki/SSE2[SSE2]: 2004
  16042. * https://en.wikipedia.org/wiki/SSE3[SSE3]: 2006
  16043. * https://en.wikipedia.org/wiki/SSE4[SSE4]: 2006
  16044. * https://en.wikipedia.org/wiki/Advanced_Vector_Extensions[AVX]: Advanced Vector Extensions. 2011. YMM0–YMM15 256-bit registers in 64-bit mode. Extension of XMM.
  16045. * AVX2:2013
  16046. * AVX-512: 2016. 512-bit ZMM registers. Extension of YMM.
  16047. ==== x86 SSE instructions
  16048. <<intel-manual-1>> 5.5 "SSE INSTRUCTIONS"
  16049. ===== x86 SSE data transfer instructions
  16050. <<intel-manual-1>> 5.5.1.1 "SSE Data Transfer Instructions"
  16051. * link:userland/arch/x86_64/movaps.S[]: MOVAPS: move 4 x 32-bits between two XMM registeres or XMM registers and 16-byte aligned memory
  16052. * link:userland/arch/x86_64/movaps.S[]: MOVUPS: like MOVAPS but also works for unaligned memory
  16053. * link:userland/arch/x86_64/movss.S[]: MOVSS: move 32-bits between two XMM registeres or XMM registers and memory
  16054. ===== x86 SSE packed arithmetic instructions
  16055. <<intel-manual-1>> 5.5.1.2 "SSE Packed Arithmetic Instructions"
  16056. * link:userland/arch/x86_64/addpd.S[]: ADDPS, ADDPD: good first instruction to learn <<simd-assembly>>.
  16057. ===== x86 SSE conversion instructions
  16058. <<intel-manual-1>> 5.5.1.6 "SSE Conversion Instructions"
  16059. ==== x86 SSE2 instructions
  16060. <<intel-manual-1>> 5.6 "SSE2 INSTRUCTIONS"
  16061. * link:userland/arch/x86_64/cvttss2si.S[]: CVTTSS2SI: convert 32-bit floating point to 32-bit integer, store the result in a general purpose register. Round towards 0.
  16062. ===== x86 PADDQ instruction
  16063. link:userland/arch/x86_64/paddq.S[]: PADDQ, PADDL, PADDW, PADDB
  16064. Good first instruction to learn <<simd-assembly>>.
  16065. [[x86-fma]]
  16066. ==== x86 fused multiply add (FMA)
  16067. <<intel-manual-1>> 5.15 "FUSED-MULTIPLY-ADD (FMA)"
  16068. * link:userland/arch/x86_64/vfmadd132pd.S[]: VFMADD132PD: "Multiply packed double-precision floating-point values from xmm1 and xmm3/mem, add to xmm2 and put result in xmm1." TODO: but I don't understand the manual, experimentally on <<p51>> Ubuntu 19.04 host the result is stored in XMM2!
  16069. These instructions were not part of any SSEn set: they actually have a dedicated CPUID flag for it! It appears under `/proc/cpuinfo` as `fma`. They were introduced into AVX512F however.
  16070. They are also unusual for x86 instructions in that they take 3 operands, as you would intuitively expect from the definition of FMA.
  16071. === x86 system instructions
  16072. <<intel-manual-1>> 5.20 "SYSTEM INSTRUCTIONS"
  16073. ==== x86 RDTSC instruction
  16074. Sources:
  16075. * link:userland/arch/x86_64/rdtsc.S[]
  16076. * link:userland/arch/x86_64/intrinsics/rdtsc.c[]
  16077. Try running the programs multiple times, and watch the value increase, and then try to correlate it with `/proc/cpuinfo` frequency!
  16078. ....
  16079. while true; do sleep 1 && ./userland/arch/x86_64/rdtsc.out; done
  16080. ....
  16081. RDTSC stores its output to EDX:EAX, even in 64-bit mode, top bits are zeroed out.
  16082. TODO: review this section, make a more controlled userland experiment with <<m5ops>> instrumentation.
  16083. Let's have some fun and try to correlate the <<gem5-m5out-stats-txt-file>> `system.cpu.numCycles` cycle count with the https://en.wikipedia.org/wiki/Time_Stamp_Counter[x86 RDTSC instruction] that is supposed to do the same thing:
  16084. ....
  16085. ./build-userland userland/arch/x86_64/inline_asm/rdtsc.S
  16086. ./run --eval './arch/x86_64/rdtsc.out;m5 exit;' --emulator gem5
  16087. ./gem5-stat
  16088. ....
  16089. RDTSC outputs a cycle count which we compare with gem5's `gem5-stat`:
  16090. * `3828578153`: RDTSC
  16091. * `3830832635`: `gem5-stat`
  16092. which gives pretty close results, and serve as a nice sanity check that the cycle counter is coherent.
  16093. It is also nice to see that RDTSC is a bit smaller than the `stats.txt` value, since the latter also includes the exec syscall for `m5`.
  16094. Bibliography:
  16095. * https://en.wikipedia.org/wiki/Time_Stamp_Counter
  16096. * https://stackoverflow.com/questions/13772567/how-to-get-the-cpu-cycle-count-in-x86-64-from-c
  16097. * https://stackoverflow.com/questions/9887839/clock-cycle-count-wth-gcc/9887979
  16098. ===== x86 RDTSCP instruction
  16099. RDTSCP is like RDTSP, but it also stores the CPU ID into ECX: this is convenient because the value of RDTSC depends on which core we are currently on, so you often also want the core ID when you want the RDTSC.
  16100. Sources:
  16101. * link:userland/arch/x86_64/rdtscp.S[]
  16102. * link:userland/arch/x86_64/intrinsics/rdtscp.c[]
  16103. We can observe its operation with the good and old `taskset`, for example:
  16104. ....
  16105. taskset -c 0 ./userland/arch/x86_64/rdtscp.out | tail -n 1
  16106. taskset -c 1 ./userland/arch/x86_64/rdtscp.out | tail -n 1
  16107. ....
  16108. produces:
  16109. ....
  16110. 0x00000000
  16111. 0x00000001
  16112. ....
  16113. There is also the RDPID instruction that reads just the processor ID, but it appears to be very new for QEMU 4.0.0 or <<p51>>, as it fails with SIGILL on both.
  16114. Bibliography:
  16115. * ARM has an analogous <<arm-pmccntr-register>>
  16116. * https://stackoverflow.com/questions/22310028/is-there-an-x86-instruction-to-tell-which-core-the-instruction-is-being-run-on/56622112#56622112
  16117. === x86 thread synchronization primitives
  16118. ==== x86 LOCK prefix
  16119. Inline assembly example at: link:userland/cpp/atomic/x86_64_lock_inc.cpp[], see also: <<atomic-cpp>>.
  16120. Ensures that memory modifications are visible across all CPUs, which is fundamental for thread synchronization.
  16121. Apparently already automatically implied by some of the <<x86-exchange-instructions>>
  16122. Bibliography:
  16123. * https://stackoverflow.com/questions/8891067/what-does-the-lock-instruction-mean-in-x86-assembly/56803909#56803909
  16124. * https://stackoverflow.com/questions/980999/what-does-multicore-assembly-language-look-like/33651438#33651438
  16125. === x86 assembly bibliography
  16126. ==== x86 official bibliography
  16127. [[intel-manual]]
  16128. ===== Intel 64 and IA-32 Architectures Software Developer's Manuals
  16129. We are using the May 2019 version unless otherwise noted.
  16130. There are a few download forms at: https://software.intel.com/en-us/articles/intel-sdm
  16131. The single PDF one is useless however because it does not have a unified ToC nor inter Volume links, so I just download the 4-part one.
  16132. The Volumes are well split, so it is usually easy to guess where you should look into.
  16133. Also I can't find older versions on the website easily, so I just web archive everything.
  16134. [[intel-manual-1]]
  16135. ====== Intel 64 and IA-32 Architectures Software Developer's Manuals Volume 1
  16136. Userland basics: http://web.archive.org/web/20190606075544/https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
  16137. [[intel-manual-2]]
  16138. ====== Intel 64 and IA-32 Architectures Software Developer's Manuals Volume 2
  16139. Instruction list: http://web.archive.org/web/20190606075330/https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
  16140. [[intel-manual-3]]
  16141. ====== Intel 64 and IA-32 Architectures Software Developer's Manuals Volume 3
  16142. Kernel land: http://web.archive.org/web/20190606075534/https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
  16143. [[intel-manual-4]]
  16144. ====== Intel 64 and IA-32 Architectures Software Developer's Manuals Volume 4
  16145. Model specific extensions: http://web.archive.org/web/20190606075325/https://software.intel.com/sites/default/files/managed/22/0d/335592-sdm-vol-4.pdf
  16146. == ARM userland assembly
  16147. Arch general getting started at: xref:userland-assembly[xrefstyle=full].
  16148. Instructions here loosely grouped based on that of the <<armarm7>> Chapter A4 "The Instruction Sets".
  16149. We cover here mostly ARMv7, and then treat aarch64 differentially, since much of the ARMv7 userland is the same in aarch32.
  16150. === Introduction to the ARM architecture
  16151. The https://en.wikipedia.org/wiki/ARM_architecture[ARM architecture] is has been used on the vast majority of mobile phones in the 2010's, and on a large fraction of micro controllers.
  16152. It competes with <<x86-userland-assembly>> because its implementations are designed for low power consumption, which is a major requirement of the cell phone market.
  16153. ARM is generally considered a RISC instruction set, although there are some more complex instructions which would not generally be classified as purely RISC.
  16154. ARM is developed by the British funded company ARM Holdings: https://en.wikipedia.org/wiki/Arm_Holdings which originated as a joint venture between Acorn Computers, Apple and VLSI Technology in 1990.
  16155. ARM Holdings was bought by the Japanese giant SoftBank in 2016.
  16156. ==== ARMv8 vs ARMv7 vs AArch64 vs AArch32
  16157. ARMv7 is the older architecture described at: <<armarm7>>.
  16158. ARMv8 is the newer architecture ISA https://developer.arm.com/docs/den0024/latest/preface[released in 2013] and described at: <<armarm8>>. It can be in either of two states:
  16159. * <<aarch32>>
  16160. * aarch64
  16161. In the lose terminology of this repository:
  16162. * `arm` means basically AArch32
  16163. * `aarch64` means ARMv8 AArch64
  16164. ARMv8 has https://en.wikipedia.org/wiki/ARM_architecture#ARMv8-A[had several updates] since its release:
  16165. * v8.1: 2014
  16166. * v8.2: 2016
  16167. * v8.3: 2016
  16168. * v8.4: TODO
  16169. * v8.5: 2018
  16170. They are described at: <<armarm8>> A1.7 "ARMv8 architecture extensions".
  16171. ===== AArch32
  16172. 32-bit mode of operation of ARMv8.
  16173. Userland is highly / fully backwards compatible with ARMv7:
  16174. * https://stackoverflow.com/questions/42972096/armv8-backward-compatibility-with-armv7-snapdragon-820-vs-cortex-a15
  16175. * https://stackoverflow.com/questions/31848185/does-armv8-aarch32-mode-has-backward-compatible-with-armv4-armv5-or-armv6
  16176. For this reason, QEMU and GAS seems to enable both AArch32 and ARMv7 under `arm` rather than `aarch64`.
  16177. There are however some extensions over ARMv7, many of them are functionality that ARMv8 has and that designers decided to backport on AArch32 as well, e.g.:
  16178. * <<armv8-aarch32-vcvta-instruction>>
  16179. ===== AArch32 vs AArch64
  16180. A great summary of differences can be found at: https://en.wikipedia.org/wiki/ARM_architecture#AArch64_features
  16181. Some random ones:
  16182. * aarch32 has two encodings: Thumb and ARM: xref:arm-instruction-encodings[xrefstyle=full]
  16183. * in ARMv8, the stack can be enforced to 16-byte alignment: xref:armv8-aarch64-stack-alignment[xrefstyle=full]
  16184. ==== Free ARM implementations
  16185. The ARM instruction set is itself protected by patents / copyright / whatever, and you have to pay ARM Holdings a licence to implement it, even if you are creating your own custom Verilog code.
  16186. ARM has already sued people in the past for implementing ARM ISA: http://www.eetimes.com/author.asp?section_id=36&doc_id=1287452
  16187. http://semiengineering.com/an-alternative-to-x86-arm-architectures/ mentions that:
  16188. ____
  16189. Asanovic joked that the shortest unit of time is not the moment between a traffic light turning green in New York City and the cab driver behind the first vehicle blowing the horn; it’s someone announcing that they have created an open-source, ARM-compatible core and receiving a “cease and desist” letter from a law firm representing ARM.
  16190. ____
  16191. This licensing however does have the following fairness to it: ARM Holdings invents a lot of money in making a great open source software environment for the ARM ISA, so it is only natural that it should be able to get some money from hardware manufacturers for using their ISA.
  16192. Patents for very old ISAs however have expired, Amber is one implementation of those: https://en.wikipedia.org/wiki/Amber_%28processor_core%29 TODO does it have any application?
  16193. Generally, it is mostly large companies that implement the CPUs themselves. For example, the https://en.wikipedia.org/wiki/Apple_A12[Apple A12 chip], which is used in iPhones, has verilog designs:
  16194. ____
  16195. The A12 features an Apple-designed 64-bit ARMv8.3-A six-core CPU, with two high-performance cores running at 2.49 GHz called Vortex and four energy-efficient cores called Tempest.
  16196. ____
  16197. ARM designed CPUs however are mostly called `Coretx-A<id>`: https://en.wikipedia.org/wiki/List_of_applications_of_ARM_cores Vortex and Tempest are Apple designed ones.
  16198. Bibliography: https://www.quora.com/Why-is-it-that-you-need-a-license-from-ARM-to-design-an-ARM-CPU-How-are-the-instruction-sets-protected
  16199. ==== ARM instruction encodings
  16200. Understanding the basics of instruction encodings is fundamental to help you to remember what instructions do and why some things are possible or not, notably the <<arm-ldr-pseudo-instruction>> and the <<arm-adr-instruction,ADRP instruction>>.
  16201. aarch32 has two "instruction sets", which to look just like encodings.
  16202. The encodings are:
  16203. * A32: every instruction is 4 bytes long. Can encode every instruction.
  16204. * T32: most common instructions are 2 bytes long. Many others less common ones are 4 bytes long.
  16205. +
  16206. T stands for "Thumb", which is the original name for the technology, <<armarm8>> A1.3.2 "The ARM instruction sets" says:
  16207. +
  16208. ____
  16209. In previous documentation, these instruction sets were called the ARM and Thumb instruction sets
  16210. ____
  16211. +
  16212. See also: <<armarm8>> F2.1.3 "Instruction encodings".
  16213. Within each instruction set, there can be multiple encodings for a given function, and they are noted simply as:
  16214. * A1, A2, ...: A32 encodings
  16215. * T1, T2, ..m: T32 encodings
  16216. The state bit `PSTATE.T` determines if the processor is in thumb mode or not. <<armarm8>> says that this bit it can only be read from <<arm-bx-instruction>>
  16217. https://stackoverflow.com/questions/22660025/how-can-i-tell-if-i-am-in-arm-mode-or-thumb-mode-in-gdb
  16218. TODO: details: https://stackoverflow.com/questions/22660025/how-can-i-tell-if-i-am-in-arm-mode-or-thumb-mode-in-gdb says it is `0x20 & CPSR`.
  16219. This RISC-y mostly fixed instruction length design likely makes processor design easier and allows for certain optimizations, at the cost of slightly more complex assembly, as you can't encode 4 / 8 byte addresses in a single instruction. Totally worth it IMHO.
  16220. This design can be contrasted with x86, which has widely variable instruction length.
  16221. We can swap between A32 and T32 with the BX and BLX instructions: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.kui0100a/armasm_cihfddaf.htm puts it really nicely:
  16222. ____
  16223. * The BL and BLX instructions copy the address of the next instruction into lr (r14, the link register).
  16224. * The BX and BLX instructions can change the processor state from ARM to Thumb, or from Thumb to ARM.
  16225. ** BLX label always changes the state.
  16226. ** BX Rm and BLX Rm derive the target state from bit[0] of Rm:
  16227. *** if bit[0] of Rm is 0, the processor changes to, or remains in, ARM state
  16228. *** if bit[0] of Rm is 1, the processor changes to, or remains in, Thumb state.
  16229. The BXJ instruction changes the processor state to Jazelle.
  16230. ____
  16231. Bibliography:
  16232. * https://stackoverflow.com/questions/28669905/what-is-the-difference-between-the-arm-thumb-and-thumb-2-instruction-encodings
  16233. ===== ARM Thumb encoding
  16234. Thumb examples are available at:
  16235. * link:userland/arch/arm/thumb.S[]
  16236. * link:userland/arch/arm/freestanding/linux/hello_thumb.S[]
  16237. For both of them, we can check that we are in thumb from inside GDB with:
  16238. * `disassemble`, and observe that some of the instructions are only 2 bytes long instead of always 4 as in ARM
  16239. * `print $cpsr & 0x20` which is `1` on thumb and `0` otherwise
  16240. You should contrast those examples with similar non-thumb ones of course.
  16241. We also note that thumbness of those sources is determined solely by the `.thumb_func` directive, which implies that there must be some metadata to allow the linker to decide how that code should be called:
  16242. * for the freestanding example, this is determined by the first bit of the entry address ELF header as mentioned at: https://stackoverflow.com/questions/20369440/can-start-be-the-thumb-function/20374451#20374451
  16243. +
  16244. We verify that with:
  16245. +
  16246. ....
  16247. ./run-toolchain --arch arm readelf -- -h "$(./getvar --arch arm userland_build_dir)/arch/arm/freestanding/linux/hello_thumb.out"
  16248. ....
  16249. +
  16250. The Linux kernel must use that to decide put the CPU in thumb mode: that could be done simply with a regular BX.
  16251. * on the non-freestanding one, the linker uses some ELF metadata to decide that `main` is thumb and jumps to it appropriately: https://reverseengineering.stackexchange.com/questions/6080/how-to-detect-thumb-mode-in-arm-disassembly
  16252. +
  16253. TODO details. Does the linker then resolve thumbness with address relocation? Doesn't this imply that the compiler cannot generate BL (never changes) or BLX (always changes) across object files, only BX (target state controlled by lower bit)?
  16254. ===== ARM big endian mode
  16255. ARM can switch between big and little endian mode on the fly!
  16256. However, everyone only uses little endian, so the big endian ecosystem is not as supported.
  16257. TODO is there any advantage of using big endian?
  16258. Here Peter mentions that QEMU does "support" big endian in theory, but that there are no machines for it not sure what that implies: https://stackoverflow.com/questions/41571643/emulatin-big-endian-arm-system-with-qemu
  16259. We can try it out quickly in user mode with:
  16260. ....
  16261. touch userland/arch/aarch64/freestanding/linux/hello.S
  16262. ./build-userland --arch aarch64 --ccflags=-mbig-endian userland/arch/aarch64/freestanding/linux/hello.S
  16263. ./run --arch aarch64 --userland userland/arch/aarch64/freestanding/linux/hello.S
  16264. ....
  16265. and it fails with:
  16266. ....
  16267. Invalid ELF image for this architecture
  16268. ....
  16269. From this we can guess that the big endian metadata is actually stored in the <<elf>> file, and confirm that with:
  16270. ....
  16271. ./run-toolchain \
  16272. --arch aarch64 \
  16273. readelf \
  16274. -- \
  16275. --file-header "$(./getvar --arch aarch64 userland_build_dir)/arch/aarch64/freestanding/linux/hello.out" \
  16276. ;
  16277. ....
  16278. which contains:
  16279. ....
  16280. Data: 2's complement, big endian
  16281. ....
  16282. instead of the default:
  16283. ....
  16284. Data: 2's complement, little endian
  16285. ....
  16286. TODO does the Linux kernel support running big endian executables? I tried after building the big endian executable:
  16287. ....
  16288. ./build-buildroot --arch aarch64
  16289. ./run --arch aarch64 --eval-after ./arch/aarch64/freestanding/linux/hello.out
  16290. ....
  16291. but that failed with:
  16292. ....
  16293. /lkmc/arch/aarch64/freestanding/linux/hello.out: line 1: ELF@x@0@8@: not found
  16294. /lkmc/arch/aarch64/freestanding/linux/hello.out: line 2: @@: not found
  16295. /lkmc/arch/aarch64/freestanding/linux/hello.out: line 3: syntax error: unexpected ")"
  16296. ....
  16297. TODO:
  16298. * can you compile the Linux kernel itself as big endian? Looks like yes since there is a https://github.com/torvalds/linux/blob/v5.1/arch/arm64/Kconfig#L791[`config CPU_BIG_ENDIAN`] See also: https://unix.stackexchange.com/questions/378829/getting-big-endian-linux-build-to-boot-on-arm-with-u-boot
  16299. * how can be is the endianess be checked and modified in the CPU?
  16300. === ARM branch instructions
  16301. ==== ARM B instruction
  16302. Unconditional branch.
  16303. Example: link:userland/arch/arm/b.S[]
  16304. The encoding stores PC offsets in 24 bits. The destination must be a multiple of 4, which is easy since all instructions are 4 bytes.
  16305. This allows for 26 bit long jumps, which is 64 MiB.
  16306. TODO: what to do if we want to jump longer than that?
  16307. ==== ARM BEQ instruction
  16308. Branch if equal based on the status registers.
  16309. Examples:
  16310. * link:userland/arch/arm/beq.S[].
  16311. * link:userland/arch/aarch64/beq.S[].
  16312. The family of instructions includes:
  16313. * BEQ: branch if equal
  16314. * BNE: branch if not equal
  16315. * BLE: less or equal
  16316. * BGE: greater or equal
  16317. * BLT: less than
  16318. * BGT: greater than
  16319. ==== ARM BL instruction
  16320. Branch with link, i.e. branch and store the return address on the RL register.
  16321. Example: link:userland/arch/arm/bl.S[]
  16322. This is the major way to make function calls.
  16323. The current ARM / Thumb mode is encoded in the least significant bit of lr.
  16324. ===== ARM BX instruction
  16325. See: xref:arm-thumb-encoding[xrefstyle=full]
  16326. ===== ARMv8 aarch64 ret instruction
  16327. Example: link:userland/arch/aarch64/ret.S[]
  16328. ARMv8 AArch64 only:
  16329. * there is no BX in AArch64 since no Thumb to worry about, so it is called just BR
  16330. * the RET instruction was added in addition to BR, with the following differences:
  16331. ** provides a hint that this is a function call return
  16332. ** has a default argument X30 if none is given. This is where BL puts the return value.
  16333. See also: https://stackoverflow.com/questions/32304646/arm-assembly-branch-to-address-inside-register-or-memory/54145818#54145818
  16334. ==== ARM CBZ instruction
  16335. Compare and branch if zero.
  16336. Example: link:userland/arch/aarch64/cbz.S[]
  16337. Only in ARMv8 and ARMv7 Thumb mode, not in armv7 ARM mode.
  16338. Very handy!
  16339. ==== ARM conditional execution
  16340. Weirdly, <<arm-b-instruction>> and family are not the only instructions that can execute conditionally on the flags: the same also applies to most instructions, e.g. ADD.
  16341. Example: link:userland/arch/arm/cond.S[]
  16342. Just add the usual `eq`, `ne`, etc. suffixes just as for B.
  16343. The list of all extensions is documented at <<armarm7>> "A8.3 Conditional execution".
  16344. === ARM load and store instructions
  16345. In ARM, there are only two instruction families that do memory access:
  16346. * <<arm-ldr-instruction>> to load from memory to registers
  16347. * <<arm-str-instruction>> to store from registers to memory
  16348. Everything else works on register and immediates.
  16349. This is part of the RISC-y beauty of the ARM instruction set, unlike x86 in which several operations can read from memory, and helps to predict how to optimize for a given CPU pipeline.
  16350. This kind of architecture is called a https://en.wikipedia.org/wiki/Load/store_architecture[Load/store architecture].
  16351. ==== ARM LDR instruction
  16352. ===== ARM LDR pseudo-instruction
  16353. LDR can be either a regular instruction that loads stuff into memory, or also a pseudo-instruction (assembler magic): http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0041c/Babbfdih.html
  16354. The pseudo instruction version is when an equal sign appears on one of the operators.
  16355. The LDR pseudo instruction can automatically create hidden variables in a place called the "literal pool", and load them from memory with PC relative loads.
  16356. Example: link:userland/arch/arm/ldr_pseudo.S[]
  16357. This is done basically because all instructions are 32-bit wide, and there is not enough space to encode 32-bit addresses in them.
  16358. Bibliography:
  16359. * https://stackoverflow.com/questions/37840754/what-does-an-equals-sign-on-the-right-side-of-a-ldr-instruction-in-arm-mean
  16360. * https://stackoverflow.com/questions/17214962/what-is-the-difference-between-label-equals-sign-and-label-brackets-in-ar
  16361. * https://stackoverflow.com/questions/14046686/why-use-ldr-over-mov-or-vice-versa-in-arm-assembly
  16362. ===== ARM addressing modes
  16363. Example: link:userland/arch/arm/address_modes.S[]
  16364. Load and store instructions can update the source register with the following modes:
  16365. * offset: add an offset, don't change the address register. Notation:
  16366. +
  16367. ....
  16368. ldr r1, [r0, 4]
  16369. ....
  16370. * pre-indexed: change the address register, and then use it modified. Notation:
  16371. +
  16372. ....
  16373. ldr r1, [r0, 4]!
  16374. ....
  16375. * post-indexed: use the address register unmodified, and then modify it. Notation:
  16376. +
  16377. ....
  16378. ldr r1, [r0], 4
  16379. ....
  16380. The offset itself can come from the following sources:
  16381. * immediate
  16382. * register
  16383. * scaled register: left shift the register and use that as an offset
  16384. The indexed modes are convenient to loop over arrays.
  16385. Bibliography: <<armarm7>>:
  16386. * A4.6.5 "Addressing modes"
  16387. * A8.5 "Memory accesses"
  16388. <<armarm8>>: C1.3.3 "Load/Store addressing modes"
  16389. ====== ARM loop over array
  16390. As an application of the post-indexed addressing mode, let's increment an array.
  16391. Example: link:userland/arch/arm/inc_array.S[]
  16392. ===== ARM LDRH and LDRB instructions
  16393. There are LDR variants that load less than full 4 bytes:
  16394. * link:userland/arch/arm/ldrb.S[]: load byte
  16395. * link:userland/arch/arm/ldrh.S[]: load half word
  16396. These also have signed and unsigned versions to either zero or one extend the result:
  16397. * link:userland/arch/aarch64/ldrsw.S[]: load byte and sign extend
  16398. ==== ARM STR instruction
  16399. Store from memory into registers.
  16400. Example: link:userland/arch/arm/str.S[]
  16401. Basically everything that applies to <<arm-ldr-instruction>> also applies here so we won't go into much detail.
  16402. ===== ARMv8 aarch64 STR instruction
  16403. PC-relative STR is not possible in aarch64.
  16404. For LDR it works <<arm-ldr-instruction,as in aarch32>>.
  16405. As a result, it is not possible to load from the literal pool for STR.
  16406. Example: link:userland/arch/aarch64/str.S[]
  16407. This can be seen from <<armarm8>> C3.2.1 "Load/Store register": LDR simply has on extra PC encoding that STR does not.
  16408. ===== ARMv8 aarch64 LDP and STP instructions
  16409. Push a pair of registers to the stack.
  16410. TODO minimal example. Currently used in `LKMC_PROLOGUE` at link:lkmc/aarch64.h[] since it is the main way to restore register state.
  16411. ====== ARMV8 aarch64 stack alignment
  16412. In ARMv8, the stack can be enforced to 16-byte alignment.
  16413. This is why the main way to push things to stack is with 8-byte pair pushes with the <<armv8-aarch64-ldp-and-stp-instructions>>.
  16414. <<armarm8-db>> C1.3.3 "Load/Store addressing modes" says:
  16415. ____
  16416. When stack alignment checking is enabled by system software and the base register is the SP, the current stack pointer must be initially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack Alignment fault. The offset does not have to be a multiple of 16 bytes unless the specific Load/Store instruction requires this. SP cannot be used as a register offset.
  16417. ____
  16418. <<armarm8-db>> C3.2 "Loads and stores" says:
  16419. ____
  16420. The additional control bits SCTLR_ELx.SA and SCTLR_EL1.SA0 control whether the stack pointer must be quadword aligned when used as a base register. See SP alignment checking on page D1-2164. Using a misaligned stack pointer generates an SP alignment fault exception.
  16421. ____
  16422. <<armarm8-db>> D1.8.2 "SP alignment checking" is then the main section.
  16423. TODO: what does the ABI say on this? Why don't I observe faults on QEMU as mentioned at: https://stackoverflow.com/questions/212466/what-is-a-bus-error/31877230#31877230
  16424. See also:
  16425. * https://stackoverflow.com/questions/38535738/does-aarch64-support-unaligned-access
  16426. ==== ARM LDMIA instruction
  16427. Pop values form stack into the register and optionally update the address register.
  16428. STMDB is the push version.
  16429. Example: link:userland/arch/arm/ldmia.S[]
  16430. The mnemonics stand for:
  16431. * STMDB: STore Multiple Decrement Before
  16432. * LDMIA: LoaD Multiple Increment After
  16433. Example: link:userland/arch/arm/push.S[]
  16434. PUSH and POP are just mnemonics STDMDB and LDMIA using the stack pointer SP as address register:
  16435. ....
  16436. stmdb sp!, reglist
  16437. ldmia sp!, reglist
  16438. ....
  16439. The `!` indicates that we want to update the register.
  16440. The registers are encoded as single bits inside the instruction: each bit represents one register.
  16441. As a consequence, the push order is fixed no matter how you write the assembly instruction: there is just not enough space to encode ordering.
  16442. AArch64 loses those instructions, likely because it was not possible anymore to encode all registers: https://stackoverflow.com/questions/27941220/push-lr-and-pop-lr-in-arm-arch64 and replaces them with the <<armv8-aarch64-ldp-and-stp-instructions>>
  16443. === ARM data processing instructions
  16444. Arithmetic:
  16445. * link:userland/arch/arm/mul.S[]: multiply
  16446. * link:userland/arch/arm/sub.S[]: subtract
  16447. * link:userland/arch/arm/rbit.S[]: reverse bit order
  16448. * link:userland/arch/arm/rev.S[]: reverse byte order
  16449. * link:userland/arch/arm/tst.S[]
  16450. ==== ARM CSET instruction
  16451. Example: link:userland/arch/aarch64/cset.S[]
  16452. Set a register conditionally depending on the condition flags:
  16453. ARMv8-only, likely because in ARMv8 you can't have conditional suffixes for every instruction.
  16454. ==== ARM bitwise instructions
  16455. * link:userland/arch/arm/and.S[] AND
  16456. * EOR: exclusive OR
  16457. * link:userland/arch/arm/orr.S[]: OR
  16458. * link:userland/arch/arm/clz.S[]: count leading zeroes
  16459. ===== ARM BIC instruction
  16460. Bitwise Bit Clear: clear some bits.
  16461. ....
  16462. dest = left & ~right
  16463. ....
  16464. Example: link:userland/arch/arm/bic.S[]
  16465. ===== ARM UBFM instruction
  16466. Unsigned Bitfield Move.
  16467. ____
  16468. copies any number of low-order bits from a source register into the same number of adjacent bits at any position in the destination register, with zeros in the upper and lower bits.
  16469. ____
  16470. Example: link:userland/arch/aarch64/ubfm.S[]
  16471. TODO: explain full behaviour. Very complicated. Has several simpler to understand aliases.
  16472. ====== ARM UBFX instruction
  16473. Alias for:
  16474. ....
  16475. UBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)
  16476. ....
  16477. Example: link:userland/arch/aarch64/ubfx.S[]
  16478. The operation:
  16479. ....
  16480. UBFX dest, src, lsb, width
  16481. ....
  16482. does:
  16483. ....
  16484. dest = (src & ((1 << width) - 1)) >> lsb;
  16485. ....
  16486. Bibliography: https://stackoverflow.com/questions/8366625/arm-bit-field-extract
  16487. ===== ARM BFM instruction
  16488. TODO: explain. Similar to <<arm-ubfm-instruction,UBFM>> but leave untouched bits unmodified.
  16489. ====== ARM BFI instruction
  16490. Examples:
  16491. * link:userland/arch/arm/bfi.S[]
  16492. * link:userland/arch/aarch64/bfi.S[]
  16493. Move the lower bits of source register into any position in the destination:
  16494. * ARMv8: an alias for <<arm-bfm-instruction>>
  16495. * ARMv7: a real instruction
  16496. ==== ARM MOV instruction
  16497. Move an immediate to a register, or a register to another register.
  16498. Cannot load from or to memory, since only the LDR and STR instruction families can do that in ARM as mentioned at: xref:arm-load-and-store-instructions[xrefstyle=full].
  16499. Example: link:userland/arch/arm/mov.S[]
  16500. Since every instruction <<arm-instruction-encodings,has a fixed 4 byte size>>, there is not enough space to encode arbitrary 32-bit immediates in a single instruction, since some of the bits are needed to actually encode the instruction itself.
  16501. The solutions to this problem are mentioned at:
  16502. * https://stackoverflow.com/questions/38689886/loading-32-bit-values-to-a-register-in-arm-assembly
  16503. * https://community.arm.com/processors/b/blog/posts/how-to-load-constants-in-assembly-for-arm-architecture
  16504. Summary of solutions:
  16505. * <<arm-movw-and-movt-instructions>>
  16506. * place it in memory. But then how to load the address, which is also a 32-bit value?
  16507. ** use pc-relative addressing if the memory is close enough
  16508. ** use <<arm-bitwise-instructions,ORR>> encodable shifted immediates
  16509. The blog article summarizes nicely which immediates can be encoded and the design rationale:
  16510. ____
  16511. An Operand 2 immediate must obey the following rule to fit in the instruction: an 8-bit value rotated right by an even number of bits between 0 and 30 (inclusive). This allows for constants such as 0xFF (0xFF rotated right by 0), 0xFF00 (0xFF rotated right by 24) or 0xF000000F (0xFF rotated right by 4).
  16512. In software - especially in languages like C - constants tend to be small. When they are not small they tend to be bit masks. Operand 2 immediates provide a reasonable compromise between constant coverage and encoding space; most common constants can be encoded directly.
  16513. ____
  16514. Assemblers however support magic memory allocations which may hide what is truly going on: https://stackoverflow.com/questions/14046686/why-use-ldr-over-mov-or-vice-versa-in-arm-assembly Always ask your friendly disassembly for a good confirmation.
  16515. ===== ARM movw and movt instructions
  16516. Set the higher or lower 16 bits of a register to an immediate in one go.
  16517. Example: link:userland/arch/arm/movw.S[]
  16518. The armv8 version analogue is <<armv8-aarch64-movk-instruction>>.
  16519. ===== ARMv8 aarch64 movk instruction
  16520. Fill a 64 bit register with 4 16-bit instructions one at a time.
  16521. Similar to <<arm-movw-and-movt-instructions>> in v7.
  16522. Example: link:userland/arch/aarch64/movk.S[]
  16523. Bibliography: https://stackoverflow.com/questions/27938768/moving-a-32-bit-constant-in-arm-arch64-register
  16524. ===== ARMv8 aarch64 movn instruction
  16525. Set 16-bits negated and the rest to `1`.
  16526. Example: link:userland/arch/aarch64/movn.S[]
  16527. ==== ARM data processing instruction suffixes
  16528. ===== ARM shift suffixes
  16529. Most data processing instructions can also optionally shift the second register operand.
  16530. Example: link:userland/arch/arm/shift.S[]
  16531. The shift types are:
  16532. * LSR and LFL: Logical Shift Right / Left. Insert zeroes.
  16533. * ROR: Rotate Right / Left. Wrap bits around.
  16534. * ASR: Arithmetic Shift Right. Keep sign.
  16535. Documented at: <<armarm7>> "A4.4.1 Standard data-processing instructions"
  16536. ===== ARM S suffix
  16537. Example: link:userland/arch/arm/s_suffix.S[]
  16538. The `S` suffix, present on most <<arm-data-processing-instructions>>, makes the instruction also set the Status register flags that control conditional jumps.
  16539. If the result of the operation is `0`, then it triggers BEQ, since comparison is a subtraction, with success on 0.
  16540. CMP sets the flags by default of course.
  16541. ==== ARM ADR instruction
  16542. Similar rationale to the <<arm-ldr-pseudo-instruction>>, allowing to easily store a PC-relative reachable address into a register in one go, to overcome the 4-byte fixed instruction size.
  16543. Examples:
  16544. * link:userland/arch/arm/adr.S[]
  16545. * link:userland/arch/aarch64/adr.S[]
  16546. * link:userland/arch/aarch64/adrp.S[]
  16547. More details: https://stackoverflow.com/questions/41906688/what-are-the-semantics-of-adrp-and-adrl-instructions-in-arm-assembly/54042899#54042899
  16548. ===== ARM ADRL instruction
  16549. See: xref:arm-adr-instruction[xrefstyle=full].
  16550. === ARM miscellaneous instructions
  16551. ==== ARM NOP instruction
  16552. Parent section: xref:nop-instructions[xrefstyle=full]
  16553. There are a few different ways to encode NOP, notably MOV a register into itself, and a dedicated miscellaneous instruction.
  16554. Example: link:userland/arch/arm/nop.S[]
  16555. Try disassembling the executable to see what the assembler is emitting:
  16556. ....
  16557. gdb-multiarch -batch -ex 'arch arm' -ex "file v7/nop.out" -ex "disassemble/rs asm_main_after_prologue"
  16558. ....
  16559. Bibliography: https://stackoverflow.com/questions/1875491/nop-for-iphone-binaries
  16560. ==== ARM UDF instruction
  16561. Guaranteed undefined! Therefore raise illegal instruction signal. Used by GCC `__builtin_trap` apparently: https://stackoverflow.com/questions/16081618/programmatically-cause-undefined-instruction-exception
  16562. * link:userland/arch/arm/udf.S[]
  16563. * link:userland/arch/aarch64/udf.S[]
  16564. Why GNU GAS 2.29 does not have a mnemonic for it in A64 because it is very recent: shows in <<armarm8-db>> but not `ca`.
  16565. ==== ARM system register instructions
  16566. Examples of using them can be found at: <<dump-regs>>
  16567. aarch64 only uses exactly 2 instructions:
  16568. * MRS: reads a system register to a regular register
  16569. * MSR: writes to the system register
  16570. aarch32 is a bit more messy due to older setups, we have both:
  16571. * MRS and MSR which are much like in aarch64
  16572. * coprocessor accesses:
  16573. ** MRC: reads a system register, C means coprocessor, which is how system registers were previously known as
  16574. ** MCR: write to the system register
  16575. ** MRRC: like MRC, but used for the system registers that are marked as 64-bit, and reads to two general purpose register
  16576. ** MCRR: write version of MCRR
  16577. TODO why both? For example, as mentioned at https://stackoverflow.com/questions/62920281/cross-compilng-c-program-for-armv8-a-in-linux-x86-64-system/62922677#62922677 a register that was accessed with MRC in armv7 can move to MRS in aarch64, as is the case for:
  16578. ....
  16579. mrs r0, ctr /* aarch32 */
  16580. mrc x0, ctr_el0 /* aarch64 */
  16581. ....
  16582. Other functionality has moved away from coprocessors into actual instructions, e.g. cache invalidation:
  16583. ....
  16584. /* aarch32: DCISW, Data Cache line Invalidate by Set/Way. */
  16585. mcr p15, 0, r5, c7, c6, 2
  16586. /* aarch64: moved to one of the DC instruction variants. */
  16587. dc isw
  16588. ....
  16589. <<armarm8-fa>> G1.19.4 "Background to the System register interface" says that only CP14 and CP15 are specified by the ISA:
  16590. ____
  16591. The interface to the System registers was originally defined as part of a generic coprocessor interface, that gave access to 15 coprocessors, CP0 - CP15. Of these, CP8 - CP15 were reserved for use by Arm, while CP0 - CP7 were available for IMPLEMENTATION DEFINED coprocessors.
  16592. ____
  16593. and the actual coprocessor registers are specified in Chapter G7 "AArch32 System Register Encoding" at:
  16594. * CP14: Table G7-1 "Mapping of (coproc ==0b1110) MCR, MRC, and MRRC instruction arguments to System registers"
  16595. * CP15: Table G7-3 "VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order."
  16596. The actual MRC assembly does not exactly match the order of that table, this is how you can decode it, sample MCR:
  16597. ....
  16598. mcr p15, 0, r5, c7, c6, 2
  16599. ....
  16600. what each part means:
  16601. ....
  16602. mcr p<coproc>, <opc1>, <src-dest-reg>, <CRn>, <CRm>, <opc2>
  16603. ....
  16604. ===== ARM system register encodings
  16605. Each aarch64 system register is specified in the encoding of <<arm-system-register-instructions>> by 5 integer numbers:
  16606. * `op0`
  16607. * `op1`
  16608. * `CRn`
  16609. * `CRm`
  16610. * `op2`
  16611. The encodings are given on large tables in <<armarm8-fa>> Chapter D12 "AArch64 System Register Encoding".
  16612. As shown in link:baremetal/arch/aarch64/dump_regs.c[] as of LKMC 4e05b00d23c73cc4d3b83be94affdb6f28008d99, you can use the encoding parameters directly in GNU GAS assembly:
  16613. ....
  16614. uint32_t id_isar6_el1;
  16615. __asm__ ("mrs %0, s3_0_c0_c2_7" : "=r" (id_isar6_el1) : :);
  16616. LKMC_DUMP_SYSTEM_REGS_PRINTF("ID_ISAR6_EL1 0x%" PRIX32 "\n", id_isar6_el1);
  16617. ....
  16618. This can be useful to refer to new system registers which your older version of GNU GAS version does not yet have a name for.
  16619. The Linux kernel also uses explicit sysreg encoding extensively since it is of course a very early user of many new system registers, this is done at https://github.com/torvalds/linux/blob/v5.4/arch/arm64/include/asm/sysreg.h[`arch/arm64/include/asm/sysreg.h` in Linux v5.4].
  16620. === ARM SIMD
  16621. Parent section: xref:simd-assembly[xrefstyle=full]
  16622. ==== ARM VFP
  16623. The name for the ARMv7 and AArch32 floating point and SIMD instructions / registers.
  16624. Vector Floating Point extension.
  16625. TODO I think it was optional in ARMv7, find quote.
  16626. VFP has several revisions, named as VFPv1, VFPv2, etc. TODO: announcement dates.
  16627. As mentioned at: https://stackoverflow.com/questions/37790029/what-is-difference-between-arm64-and-armhf/48954012#48954012 the Linux kernel shows those capabilities in `/proc/cpuinfo` with flags such as `vfp`, `vfpv3` and others, see:
  16628. * https://github.com/torvalds/linux/blob/v4.18/arch/arm/kernel/setup.c#L1199
  16629. * https://github.com/torvalds/linux/blob/v4.18/arch/arm64/kernel/cpuinfo.c#L95
  16630. When a certain version of VFP is present on a CPU, the compiler prefix typically contains the `hf` characters which stands for Hard Float, e.g.: `arm-linux-gnueabihf`. This means that the compiler will emit VFP instructions instead of just using software implementations.
  16631. Bibliography:
  16632. * <<armarm7>> Appendix D6 "Common VFP Subarchitecture Specification". It is not part of the ISA, but just an extension. TODO: that spec does not seem to have the instructions documented, and instruction like VMOV just live with the main instructions. Is VMOV part of VFP?
  16633. * https://mindplusplus.wordpress.com/2013/06/25/arm-vfp-vector-programming-part-1-introduction/
  16634. * https://en.wikipedia.org/wiki/ARM_architecture#Floating-point_(VFP)
  16635. ===== ARM VFP registers
  16636. TODO example
  16637. <<armarm8>> E1.3.1 "The SIMD and floating-point register file" Figure E1-1 "SIMD and floating-point register file, AArch32 operation":
  16638. ....
  16639. +-----+-----+-----+
  16640. | S0 | | |
  16641. +-----+ D0 + |
  16642. | S1 | | |
  16643. +-----+-----+ Q0 |
  16644. | S2 | | |
  16645. +-----+ D1 + |
  16646. | S3 | | |
  16647. +-----+-----+-----+
  16648. | S4 | | |
  16649. +-----+ D2 + |
  16650. | S5 | | |
  16651. +-----+-----+ Q1 |
  16652. | S6 | | |
  16653. +-----+ D3 + |
  16654. | S7 | | |
  16655. +-----+-----+-----+
  16656. ....
  16657. Note how Sn is weirdly packed inside Dn, and Dn weirdly packed inside Qn, likely for historical reasons.
  16658. And you can't access the higher bytes at D16 or greater with Sn.
  16659. ===== ARM VADD instruction
  16660. * link:userland/arch/arm/vadd_scalar.S[]: see also: xref:floating-point-assembly[xrefstyle=full]
  16661. * link:userland/arch/arm/vadd_vector.S[]: see also: xref:simd-assembly[xrefstyle=full]
  16662. ===== ARM VCVT instruction
  16663. Example: link:userland/arch/arm/vcvt.S[]
  16664. Convert between integers and floating point.
  16665. <<armarm7>> on rounding:
  16666. ____
  16667. The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-point operation uses the Round to Nearest rounding mode.
  16668. ____
  16669. Notice how the opcode takes two types.
  16670. E.g., in our 32-bit float to 32-bit unsigned example we use:
  16671. ....
  16672. vld1.32.f32
  16673. ....
  16674. ====== ARM VCVTR instruction
  16675. Example: link:userland/arch/arm/vcvtr.S[]
  16676. Like <<arm-vcvt-instruction>>, but the rounding mode is selected by the FPSCR.RMode field.
  16677. Selecting rounding mode explicitly per instruction was apparently not possible in ARMv7, but was made possible in <<aarch32>> e.g. with <<armv8-aarch32-vcvta-instruction>>.
  16678. Rounding mode selection is exposed in the ANSI C standard through https://en.cppreference.com/w/c/numeric/fenv/feround[`fesetround`].
  16679. TODO: is the initial rounding mode specified by the ELF standard? Could not find a reference.
  16680. ====== ARMv8 AArch32 VCVTA instruction
  16681. Example: link:userland/arch/arm/vcvt.S[]
  16682. Added in ARMv8 <<aarch32>> only, not present in ARMv7.
  16683. In ARMv7, to use a non-round-to-zero rounding mode, you had to set the rounding mode with FPSCR and use the R version of the instruction e.g. <<arm-vcvtr-instruction>>.
  16684. Now in AArch32 it is possible to do it explicitly per-instruction.
  16685. Also there was no ties to away mode in ARMv7. This mode does not exist in C99 either.
  16686. ==== ARMv8 Advanced SIMD and floating-point support
  16687. The <<armarm8>> specifies floating point and SIMD support in the main architecture at A1.5 "Advanced SIMD and floating-point support".
  16688. The feature is often refered to simply as "SIMD&FP" throughout the manual.
  16689. The Linux kernel shows `/proc/cpuinfo` compatibility as `neon`, which is yet another intermediate name that came up at some point, see: xref:arm-neon[xrefstyle=full].
  16690. Vs <<arm-vfp>>: https://stackoverflow.com/questions/4097034/arm-cortex-a8-whats-the-difference-between-vfp-and-neon
  16691. ===== ARMv8 floating point availability
  16692. Support is semi-mandatory. <<armarm8>> A1.5 "Advanced SIMD and floating-point support":
  16693. ____
  16694. ARMv8 can support the following levels of support for Advanced SIMD and floating-point instructions:
  16695. - Full SIMD and floating-point support without exception trapping.
  16696. - Full SIMD and floating-point support with exception trapping.
  16697. - No floating-point or SIMD support. This option is licensed only for implementations targeting specialized markets.
  16698. Note: All systems that support standard operating systems with rich application environments provide hardware
  16699. support for Advanced SIMD and floating-point. It is a requirement of the ARM Procedure Call Standard for
  16700. AArch64, see Procedure Call Standard for the ARM 64-bit Architecture.
  16701. ____
  16702. Therefore it is in theory optional, but highly available.
  16703. This is unlike ARMv7, where floating point is completely optional through <<arm-vfp>>.
  16704. ===== ARM NEON
  16705. Just an informal name for the "Advanced SIMD instructions"? Very confusing.
  16706. <<armarm8>> F2.9 "Additional information about Advanced SIMD and floating-point instructions" says:
  16707. ____
  16708. The Advanced SIMD architecture, its associated implementations, and supporting software, are commonly referred to as NEON technology.
  16709. ____
  16710. https://developer.arm.com/technologies/neon mentions that is is present on both ARMv7 and ARMv8:
  16711. ____
  16712. NEON technology was introduced to the Armv7-A and Armv7-R profiles. It is also now an extension to the Armv8-A and Armv8-R profiles.
  16713. ____
  16714. ==== ARMv8 AArch64 floating point registers
  16715. TODO example.
  16716. <<armarm8>> B1.2.1 "Registers in AArch64 state" describes the registers:
  16717. ____
  16718. 32 SIMD&FP registers, V0 to V31. Each register can be accessed as:
  16719. * A 128-bit register named Q0 to Q31.
  16720. * A 64-bit register named D0 to D31.
  16721. * A 32-bit register named S0 to S31.
  16722. * A 16-bit register named H0 to H31.
  16723. * An 8-bit register named B0 to B31.
  16724. ____
  16725. Notice how Sn is very different between v7 <<arm-vfp-registers>> and v8! In v7 it goes across Dn, and in v8 inside each Dn:
  16726. ....
  16727. 128 64 32 16 8 0
  16728. +---------------------------+-------------------+-------+---+---+
  16729. | Vn |
  16730. +---------------------------------------------------------------+
  16731. | Qn |
  16732. +---------------------------+-----------------------------------+
  16733. | Dn |
  16734. +-----------------------------------+
  16735. | Sn |
  16736. +---------------+
  16737. | Hn |
  16738. +-------+
  16739. |Bn |
  16740. +---+
  16741. ....
  16742. ===== ARMv8 aarch64 add vector instruction
  16743. link:userland/arch/aarch64/add_vector.S[]
  16744. Good first instruction to learn SIMD: <<simd-assembly>>.
  16745. ===== ARMv8 aarch64 FADD instruction
  16746. * link:userland/arch/aarch64/fadd_vector.S[]: see also: xref:simd-assembly[xrefstyle=full]
  16747. * link:userland/arch/aarch64/fadd_scalar.S[]: see also: xref:floating-point-assembly[xrefstyle=full]
  16748. ====== ARM FADD vs VADD
  16749. It is very confusing, but FADDS and FADDD in Aarch32 are <<gnu-gas-assembler-arm-unified-syntax,pre-UAL>> for `vadd.f32` and `vadd.f64` which we use in this tutorial, see: xref:arm-vadd-instruction[xrefstyle=full]
  16750. The same goes for most ARMv7 mnemonics: `f*` is old, and `v*` is the newer better syntax.
  16751. But then, in ARMv8, they decided to use <<armv8-aarch64-fadd-instruction>> as the main floating point add name, and get rid of VADD!
  16752. Also keep in mind that fused multiply add is FMADD.
  16753. Examples at: xref:simd-assembly[xrefstyle=full]
  16754. ===== ARMv8 aarch64 LD2 instruction
  16755. Example: link:userland/arch/aarch64/ld2.S[]
  16756. We can load multiple vectors interleaved from memory in one single instruction!
  16757. This is why the `ldN` instructions take an argument list denoted by `{}` for the registers, much like armv7 <<arm-ldmia-instruction>>.
  16758. There are analogous LD3 and LD4 instruction.
  16759. ==== ARM SIMD bibliography
  16760. * GNU GAS tests under https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=tree;f=gas/testsuite/gas/aarch64;hb=00f223631fa9803b783515a2f667f86997e2cdbe[`gas/testsuite/gas/aarch64`]
  16761. * https://stackoverflow.com/questions/2851421/is-there-a-good-reference-for-arm-neon-intrinsics
  16762. * assembly optimized libraries:
  16763. ** https://github.com/projectNe10/Ne10
  16764. ==== ARM SVE
  16765. Scalable Vector Extension.
  16766. Examples:
  16767. * link:userland/arch/aarch64/sve.S[]
  16768. To understand it, the first thing you have to look at is the execution example at Fig 1 of: https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf
  16769. aarch64 only, newer than <<arm-neon>>.
  16770. It is called Scalable because it does not specify the vector width! Therefore we don't have to worry about new vector width instructions every few years! Hurray!
  16771. The instructions then allow:
  16772. * incrementing loop index by the vector length without explicitly hardcoding it
  16773. * when the last loop is reached, extra bytes that are not multiples of the vector length get automatically masked out by the predicate register, and have no effect
  16774. Added to QEMU in 3.0.0 and gem5 in 2019 Q3.
  16775. TODO announcement date. Possibly 2017: https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf There is also a 2016 mention: https://community.arm.com/tools/hpc/b/hpc/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
  16776. The Linux kernel shows `/proc/cpuinfo` compatibility as `sve`.
  16777. Official spec: https://developer.arm.com/docs/100891/latest/sve-overview/introducing-sve
  16778. SVE support is indicated by `ID_AA64PFR0_EL1.SVE` which is dumped from link:baremetal/arch/aarch64/dump_regs.c[].
  16779. Using SVE normally requires setting the CPACR_EL1.FPEN and ZEN bits, which as as of lkmc 29fd625f3fda79f5e0ee6cac43517ba74340d513 + 1 we also enable in our <<baremetal-bootloaders>>, see also: <<aarch64-baremetal-neon-setup>>.
  16780. ===== ARM SVE VADDL instruction
  16781. Get the SVE vector length. The following programs do that and print it to stdout:
  16782. * link:userland/arch/aarch64/inline_asm/sve_addvl.c[]
  16783. * link:userland/arch/aarch64/sve_addvl.S[]
  16784. ===== Change ARM SVE vector length in emulators
  16785. gem5 covered at: https://stackoverflow.com/questions/57692765/how-to-change-the-gem5-arm-sve-vector-length
  16786. It is fun to observe this directly with the <<arm-sve-vaddl-instruction>> in SE:
  16787. ....
  16788. ./run --arch aarch64 --userland userland/arch/aarch64/sve_addvl.S --emulator gem5 -- --param 'system.cpu[:].isa[:].sve_vl_se = 1'
  16789. ./run --arch aarch64 --userland userland/arch/aarch64/sve_addvl.S --emulator gem5 -- --param 'system.cpu[:].isa[:].sve_vl_se = 2'
  16790. ./run --arch aarch64 --userland userland/arch/aarch64/sve_addvl.S --emulator gem5 -- --param 'system.cpu[:].isa[:].sve_vl_se = 4'
  16791. ....
  16792. which consecutively:
  16793. ....
  16794. 0x0000000000000080
  16795. 0x0000000000000100
  16796. 0x0000000000000200
  16797. ....
  16798. which are multiples of 128.
  16799. TODO how to set it on QEMU at runtime? As of LKMC 37b93ecfbb5a1fcbd0c631dd0b42c5b9f2f8a89a + 1 QEMU outputs:
  16800. ....
  16801. 0x0000000000000800
  16802. ....
  16803. ===== SVE bibliography
  16804. * https://www.rico.cat/files/ICS18-gem5-sve-tutorial.pdf step by step of a complete code execution examples, the best initial tutorial so far
  16805. * https://static.docs.arm.com/dui0965/c/DUI0965C_scalable_vector_extension_guide.pdf
  16806. * https://developer.arm.com/products/software-development-tools/hpc/documentation/writing-inline-sve-assembly quick inlining guide
  16807. ====== SVE spec
  16808. <<armarm8>> A1.7 "ARMv8 architecture extensions" says:
  16809. ____
  16810. SVE is an optional extension to ARMv8.2. That is, SVE requires the implementation of ARMv8.2.
  16811. ____
  16812. A1.7.8 "The Scalable Vector Extension (SVE)": then says that only changes to the existing registers are described in that manual, and that you should look instead at the "ARM Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for ARMv8-A."
  16813. We then download the zip from: https://developer.arm.com/docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a and it contains the PDF: `DDI0584A_d_SVE_supp_armv8A.pdf` which we use here.
  16814. That document then describes the SVE instructions and registers.
  16815. === ARM thread synchronization primitives
  16816. Parent section: <<userland-multithreading>>.
  16817. ==== ARM LDXR and STXR instructions
  16818. Parent section: <<atomic-cpp>>
  16819. link:userland/cpp/atomic/aarch64_ldaxr_stlxr.cpp[]
  16820. LDXR and STXR vs LDAXR and STLXR: https://stackoverflow.com/questions/21535058/arm64-ldxr-stxr-vs-ldaxr-stlxr TODO understand better and example.
  16821. LDXR and STXR for a so-called "Load-link/store-conditional" (LLSC) pattern: https://en.wikipedia.org/wiki/Load-link/store-conditional which appears in many RISC ISAs.
  16822. This pattern makes it such that basically:
  16823. * LDXR marks an address for exclusive access by the current CPU
  16824. * STXR:
  16825. ** marks the address as not being exclusive to other CPUs that may have done LDXR before
  16826. ** loads fine if the address is still marked as exclusive, and stores 0 on a third register for success
  16827. ** fails to load if the address is not, and stores 1 on the third register for failure
  16828. In case of failure, we just have to loop back to just before the LDXR and try again.
  16829. This is therefore basically a spinlock and should only be used to cover very short critical sections such as atomic increments.
  16830. C++ `std::atomic` uses this for increments before v8.1 <<arm-lse>>: https://stackoverflow.com/questions/56810/how-do-i-start-threads-in-plain-c/52453291#52453291
  16831. [[arm-lse]]
  16832. ==== ARM Large System Extensions (LSE)
  16833. Set of atomic and synchronization primitives added in <<armv8-1-architecture-extension>>.
  16834. Documented at <<armarm8-db>> "ARMv8.1-LSE, ARMv8.1 Large System Extensions"
  16835. * LDADD: link:userland/cpp/atomic/aarch64_ldadd.cpp[], see also: <<atomic-cpp>>. Kernel inspiration: https://github.com/torvalds/linux/blob/v5.4/arch/arm64/include/asm/atomic_lse.h#L56
  16836. Bibliography:
  16837. * https://preshing.com/20120710/memory-barriers-are-like-source-control-operations/
  16838. === ARMv8 architecture extensions
  16839. ==== ARMv8.1 architecture extension
  16840. <<armarm8-db>> A1.7.3 "The ARMv8.1 architecture extension"
  16841. * <<arm-lse>>
  16842. === ARM PMU
  16843. The PMU (Performance Monitor Unit) is an unit in the ARM CPU that counts performance events of interest. These can be used to benchmark, and sometimes debug, code running on ARM CPUs.
  16844. It is documented at <<armarm8-fa>> Chapter D7 "The Performance Monitors Extension">
  16845. The <<linux-kernel>> exposes some (all?) of those events through the arch-agnostic <<perf-event-open>> system call.
  16846. Exposing the PMU to Linux v5.9.2 requires a <<dtb-files,DTB>> entry of type:
  16847. ....
  16848. pmu {
  16849. compatible = "arm,armv8-pmuv3";
  16850. interrupts = <0x01 0x04 0xf04>;
  16851. };
  16852. ....
  16853. and if sucessful, a boot message shows:
  16854. ....
  16855. <6>[ 0.044391] hw perfevents: enabled with armv8_pmuv3 PMU driver, 32 counters available
  16856. ....
  16857. The PMU is exposed through <<arm-system-register-instructions>>, with registers that start with the prefix `PM*`.
  16858. <6>[ 0.044391] hw perfevents: enabled with armv8_pmuv3 PMU driver, 32 counters available
  16859. <<armarm8-fa>> D7.11.3 "Common event numbers" gives the available standardized events. Address space is also reverved for vendor extensions. For example, from it we see that the instruction count is documented at:
  16860. ____
  16861. 0x0008, INST_RETIRED, Instruction architecturally executed
  16862. The counter increments for every architecturally executed instruction.
  16863. ____
  16864. where "architecturally executed" is a reference to the possibility of <<out-of-order-execution>> in the implementation, which leads to some instructions being executed speculatively, but not have any side effects in the end.
  16865. Bibliography: https://community.arm.com/developer/ip-products/system/b/embedded-blog/posts/using-the-arm-performance-monitor-unit-pmu-linux-driver
  16866. ==== ARM PMCCNTR register
  16867. TODO We didn't manage to find a working ARM analogue to <<x86-rdtsc-instruction>>: link:kernel_modules/pmccntr.c[] is oopsing, and even it if weren't, it likely won't give the cycle count since boot since it needs to be activate before it starts counting anything:
  16868. * https://stackoverflow.com/questions/40454157/is-there-an-equivalent-instruction-to-rdtsc-in-arm
  16869. * https://stackoverflow.com/questions/31620375/arm-cortex-a7-returning-pmccntr-0-in-kernel-mode-and-illegal-instruction-in-u/31649809#31649809
  16870. * https://blog.regehr.org/archives/794
  16871. === ARM assembly bibliography
  16872. ==== ARM non-official bibliography
  16873. Good getting started tutorials:
  16874. * http://www.davespace.co.uk/arm/introduction-to-arm/
  16875. * https://azeria-labs.com/writing-arm-assembly-part-1/
  16876. * https://thinkingeek.com/arm-assembler-raspberry-pi/
  16877. * http://bob.cs.sonoma.edu/IntroCompOrg-RPi/app-make.html
  16878. ==== ARM official bibliography
  16879. The official manuals were stored in http://infocenter.arm.com but as of 2017 they started to slowly move to https://developer.arm.com[].
  16880. Each revision of a document has a "ARM DDI" unique document identifier.
  16881. The "ARM Architecture Reference Manuals" are the official canonical ISA documentation document. In this repository, we always reference the following revisions:
  16882. Bibliography: https://www.quora.com/Where-can-I-find-the-official-documentation-of-ARM-instruction-set-architectures-ISAs
  16883. [[armarm7]]
  16884. ===== ARMv7 architecture reference manual
  16885. https://developer.arm.com/products/architecture/a-profile/docs/ddi0406/latest/arm-architecture-reference-manual-armv7-a-and-armv7-r-edition
  16886. The official comprehensive ARMv7 reference.
  16887. We use by default: DDI 0406C.d: https://static.docs.arm.com/ddi0406/cd/DDI0406C_d_armv7ar_arm.pdf
  16888. [[armarm8]]
  16889. ===== ARMv8 architecture reference manual
  16890. https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
  16891. Latest version: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
  16892. Versions are determined by two letteres in lexicographical order, e.g.:
  16893. * a
  16894. * af
  16895. * aj
  16896. * aj
  16897. * b
  16898. * ba
  16899. * bb
  16900. * ca
  16901. The link: https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf is the `ca` version for example.
  16902. The official comprehensive ARMv8 reference.
  16903. ISA quick references can be found in some places:
  16904. * https://web.archive.org/web/20161009122630/http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
  16905. [[armarm8-db]]
  16906. ===== ARMv8 architecture reference manual db
  16907. https://static.docs.arm.com/ddi0487/db/DDI0487D_b_armv8_arm.pdf
  16908. [[armarm8-fa]]
  16909. ===== ARMv8 architecture reference manual db
  16910. https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf
  16911. [[armv8-programmers-guide]]
  16912. ===== Programmer's Guide for ARMv8-A
  16913. https://static.docs.arm.com/den0024/a/DEN0024A_v8_architecture_PG.pdf
  16914. A more terse human readable introduction to the ARM architecture than the reference manuals.
  16915. Does not have as many assembly code examples as you'd hope however...
  16916. Latest version at: https://developer.arm.com/docs/den0024/latest/preface
  16917. ===== Arm A64 Instruction Set Architecture: Future Architecture Technologies in the A architecture profile Documentation
  16918. https://developer.arm.com/docs/ddi0602/b
  16919. This page contains the documentation of architecture features that were publicly announced but haven't been merged into the main spec yet.
  16920. ===== ARM processor documentation
  16921. ARM also releases documentation specific to each given processor.
  16922. This adds extra details to the more portable <<armarm8>> ISA documentation.
  16923. For every processor, there are basically two key documents:
  16924. * technical reference manual, e.g.: <<arm-cortex-a77-trm>>
  16925. * software optimization guide, e.g.: <<arm-cortex-a77-sog>>
  16926. +
  16927. This contains some approximate instruction latencies and pipeline properties.
  16928. [[arm-cortex15-trm]]
  16929. ====== ARM Cortex-A15 MPCore Processor Technical Reference Manual r4p0
  16930. http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/DDI0438I_cortex_a15_r4p0_trm.pdf
  16931. 2013.
  16932. [[arm-cortex-a77-trm]]
  16933. ===== Arm Cortex‑A77 Technical Reference Manual r1p1
  16934. https://static.docs.arm.com/101111/0101/arm_cortex_a77_trm_101111_0101_04_en.pdf
  16935. [[arm-cortex-a77-sog]]
  16936. ===== Arm Cortex‑A77 Software Optimization Guide r1p1
  16937. https://static.docs.arm.com/swog011050/c/Arm_Cortex-A77_Software_Optimization_Guide.pdf
  16938. == ELF
  16939. https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
  16940. This is the main format for executables, object files (`.o`) and shared libraries (`.so`) in Linux.
  16941. An introduction to the format can be found at: https://cirosantilli.com/elf-hello-world
  16942. == IEEE 754
  16943. https://en.wikipedia.org/wiki/IEEE_754
  16944. Examples:
  16945. * link:userland/arch/x86_64/ieee754.S[]
  16946. * link:lkmc/float.h[]. Bibliography: https://stackoverflow.com/questions/52905648/how-to-use-hexadecimal-floating-point-literals-in-gnu-gas/56818851#56818851
  16947. * https://stackoverflow.com/questions/8341395/what-is-a-subnormal-floating-point-number/53203428#53203428
  16948. * https://stackoverflow.com/questions/18118408/what-is-difference-between-quiet-nan-and-signaling-nan/55648118#55648118
  16949. * https://stackoverflow.com/questions/2618059/in-java-what-does-nan-mean/55673220#55673220
  16950. == Baremetal
  16951. Getting started at: xref:baremetal-setup[xrefstyle=full]
  16952. === Baremetal GDB step debug
  16953. GDB step debug works on baremetal exactly as it does on the Linux kernel, which is described at: xref:gdb[xrefstyle=full].
  16954. Except that is is even cooler here since we can easily control and understand every single instruction that is being run!
  16955. For example, on the first shell:
  16956. ....
  16957. ./run --arch arm --baremetal userland/c/hello.c --gdb-wait
  16958. ....
  16959. then on the second shell:
  16960. ....
  16961. ./run-gdb --arch arm --baremetal userland/c/hello.c -- main
  16962. ....
  16963. Or if you are a <<tmux,tmux pro>>, do everything in one go with:
  16964. ....
  16965. ./run --arch arm --baremetal userland/c/hello.c --gdb
  16966. ....
  16967. Alternatively, to start from the very first executed instruction of our tiny <<baremetal-bootloaders>>:
  16968. ....
  16969. ./run \
  16970. --arch arm \
  16971. --baremetal userland/c/hello.c \
  16972. --gdb-wait \
  16973. --tmux-args=--no-continue \
  16974. ;
  16975. ....
  16976. analogously to what is done for <<freestanding-programs>>.
  16977. Now you can just `stepi` to when jumping into main to go to the C code in link:userland/c/hello.c[].
  16978. This is specially interesting for the executables that don't use the bootloader from under `baremetal/arch/<arch>/no_bootloader/*.S`, e.g.:
  16979. ....
  16980. ./run \
  16981. --arch arm \
  16982. --baremetal baremetal/arch/arm/no_bootloader/semihost_exit.S \
  16983. --gdb-wait \
  16984. --tmux-args=--no-continue \
  16985. ;
  16986. ....
  16987. The cool thing about those examples is that you start at the very first instruction of your program, which gives more control.
  16988. Examples without bootloader are somewhat analogous to user mode <<freestanding-programs>>.
  16989. === Baremetal bootloaders
  16990. As can be seen from <<baremetal-gdb-step-debug>>, all examples under link:baremetal/[], with the exception of `baremetal/arch/<arch>/no_bootloader`, start from our tiny bootloaders:
  16991. * link:baremetal/lib/arm.S[]
  16992. * link:baremetal/lib/aarch64.S[]
  16993. Out simplistic bootloaders basically setup up just enough system state to allow calling:
  16994. * C functions such as `exit` from the assembly examples
  16995. * the `main` of C examples itself
  16996. The most important things that we setup in the bootloaders are:
  16997. * the stack pointer
  16998. * NEON: xref:aarch64-baremetal-neon-setup[xrefstyle=full]
  16999. * TODO: we don't do this currently but maybe we should setup BSS
  17000. The C functions that become available as a result are:
  17001. * Newlib functions implemented at link:baremetal/lib/syscalls.c[]
  17002. * `lkmc_` non-Newlib functions implemented at link:lkmc.c[]
  17003. It is not possible to call those C functions from the examples that don't use a bootloader.
  17004. For this reason, we tend to create examples with bootloaders, as it is easier to write them portably.
  17005. === Baremetal linker script
  17006. For things to work in baremetal, we often have to layout memory in specific ways.
  17007. Notably, since we start with <<arm-paging,paging>> disabled, there are more constraints on where memory can or cannot go.
  17008. Especially for C programs, this memory layout is specified by a "linker script", which is present at: link:baremetal/link.ld[]
  17009. Note how our linker script also exposes some symbols to C:
  17010. ....
  17011. lkmc_heap_low = .;
  17012. lkmc_heap_top = .;
  17013. ....
  17014. Those for example are required to implement `malloc` in Newlib. We can play with those variables more explicitly with link:baremetal/linker_variables.c[]:
  17015. ....
  17016. ./run --arch aarch64 --baremetal baremetal/linker_variables.c
  17017. ....
  17018. === Baremetal command line arguments
  17019. QEMU and gem5 currently supports baremetal CLI arguments!
  17020. You can see them in action e.g. with:
  17021. ....
  17022. ./run --arch aarch64 --baremetal userland/c/command_line_arguments.c --cli-args 'aa bb cc'
  17023. ./run --arch aarch64 --userland userland/c/command_line_arguments.c --cli-args 'aa bb cc'
  17024. ....
  17025. both of which output the exact same thing:
  17026. ....
  17027. aa
  17028. bb
  17029. cc
  17030. ....
  17031. This is implemented by parsing the command line arguments and placing them into memory where the code will find them.
  17032. This works by:
  17033. * fixing the `argc` and `argv` addresses in memory in the <<baremetal-linker-script>>
  17034. * the <<baremetal-bootloaders>> pass those addresses correctly to the call of `main`
  17035. * our Python scripts write the desired binary memory values to a file
  17036. * QEMU loads those files into memory with `-device loader`: https://github.com/qemu/qemu/blob/60905286cb5150de854e08279bca7dfc4b549e91/docs/generic-loader.txt
  17037. It is worth noting that e.g. ARM has a <<semihosting>> mechanism for loading CLI arguments through `SYS_GET_CMDLINE`, but our mechanism works in principle for any ISA.
  17038. ==== gem5 baremetal arm CLI args
  17039. Currently not supported, so we just hardcode argc 0 on the <<baremetal-bootloaders,arm baremetal bootloader>>.
  17040. I think we have to keep the CLI args below 32 GiB, otherwise argc cannot be correctly setup. But currently the gem5 text segment is exactly at 32 GiB, and we always place the CLI args higher in the <<baremetal-linker-script>>.
  17041. === Semihosting
  17042. Semihosting is a publicly documented interface specified by ARM Holdings that allows us to do some magic operations very useful in development, such as writting to the terminal or reading and writing host files.
  17043. It is documented at: https://developer.arm.com/docs/100863/latest/introduction
  17044. For example, all the following code make QEMU exit:
  17045. ....
  17046. ./run --arch arm --baremetal baremetal/arch/arm/semihost_exit.S
  17047. ./run --arch arm --baremetal baremetal/arch/arm/no_bootloader/semihost_exit.S
  17048. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/semihost_exit.S
  17049. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/no_bootloader/semihost_exit.S
  17050. ....
  17051. Sources:
  17052. * link:baremetal/arch/arm/semihost_exit.S[]
  17053. * link:baremetal/arch/arm/no_bootloader/semihost_exit.S[]
  17054. * link:baremetal/arch/aarch64/semihost_exit.S[]
  17055. * link:baremetal/arch/aarch64/no_bootloader/semihost_exit.S[]
  17056. That `arm` program program contains the code:
  17057. ....
  17058. mov r0, #0x18
  17059. ldr r1, =#0x20026
  17060. svc 0x00123456
  17061. ....
  17062. and we can see from the docs that `0x18` stands for the `SYS_EXIT` command.
  17063. This is also how we implement the `exit(0)` system call in C for QEMU, which is used for example at link:userland/c/exit0.c[] through the Newlib via the `_exit` function at link:baremetal/lib/syscalls.c[].
  17064. Other magic operations we can do with semihosting besides exiting the on the host include:
  17065. * read and write to host stdin and stdout
  17066. * read and write to host files
  17067. Alternatives exist for some semihosting operations, e.g.:
  17068. * UART IO for host stdin and stdout in both emulators and real hardware
  17069. * <<m5ops>> for <<gem5>>, e.g. `m5 exit` makes the emulator quit
  17070. The big advantage of semihosting is that it is standardized across all ARM boards, and therefore allows you to make a single image that does those magic operations instead of having to compile multiple images with different magic addresses.
  17071. The downside of semihosting is that it is ARM specific. TODO is it an open standard that other vendors can implement?
  17072. In QEMU, we enable semihosting with:
  17073. ....
  17074. -semihosting
  17075. ....
  17076. Newlib 9c84bfd47922aad4881f80243320422b621c95dc already has a semi-hosting implementation at:
  17077. ....
  17078. newlib/libc/sys/arm/syscalls.c
  17079. ....
  17080. TODO: how to use it? Possible through crosstool-NG? In the worst case we could just copy it.
  17081. Bibliography:
  17082. * https://stackoverflow.com/questions/31990487/how-to-cleanly-exit-qemu-after-executing-bare-metal-program-without-user-interve/40957928#40957928
  17083. * https://balau82.wordpress.com/2010/11/04/qemu-arm-semihosting/
  17084. ==== gem5 semihosting
  17085. For gem5, you need link:patches/manual/gem5-semihost.patch[]:
  17086. ....
  17087. patch -d "$(./getvar gem5_source_dir)" -p 1 < patches/manual/gem5-semihost.patch
  17088. ....
  17089. https://stackoverflow.com/questions/52475268/how-to-enable-arm-semihosting-in-gem5/52475269#52475269
  17090. === gem5 baremetal carriage return
  17091. TODO: our example is printing newlines without automatic carriage return `\r` as in:
  17092. ....
  17093. enter a character
  17094. got: a
  17095. ....
  17096. We use `m5term` by default, and if we try `telnet` instead:
  17097. ....
  17098. telnet localhost 3456
  17099. ....
  17100. it does add the carriage returns automatically.
  17101. === Baremetal host packaged toolchain
  17102. For `arm`, some baremetal examples compile fine with:
  17103. ....
  17104. sudo apt-get install gcc-arm-none-eabi qemu-system-arm
  17105. ./build-baremetal --arch arm --gcc-which host-baremetal
  17106. ./run --arch arm --baremetal userland/c/hello.c --qemu-which host
  17107. ....
  17108. However, there are as usual limitations to using prebuilts:
  17109. * certain examples fail to build with the Ubuntu packaged toolchain. E.g.: link:userland/c/exit0.c[] fails with:
  17110. +
  17111. ....
  17112. /usr/lib/gcc/arm-none-eabi/6.3.1/../../../arm-none-eabi/lib/libg.a(lib_a-fini.o): In function `__libc_fini_array':
  17113. /build/newlib-8gJlYR/newlib-2.4.0.20160527/build/arm-none-eabi/newlib/libc/misc/../../../../../newlib/libc/misc/fini.c:33: undefined reference to `_fini'
  17114. collect2: error: ld returned 1 exit status
  17115. ....
  17116. +
  17117. with the prebuilt toolchain, and I'm lazy to debug.
  17118. * there seems to to be no analogous `aarch64` Ubuntu package to `gcc-arm-none-eabi`: https://askubuntu.com/questions/1049249/is-there-a-package-with-the-aarch64-version-of-gcc-arm-none-eabi-for-bare-metal
  17119. [[baremetal-cpp]]
  17120. === Baremetal C++
  17121. Didn't get it working, traking at: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/119
  17122. === GDB builtin CPU simulator
  17123. It is incredible, but GDB also has a CPU simulator inside of it as documented at: https://sourceware.org/gdb/onlinedocs/gdb/Target-Commands.html
  17124. TODO: any advantage over QEMU? I doubt it, mostly using it as as toy for now:
  17125. Without running `./run`, do directly:
  17126. ....
  17127. ./run-gdb --arch arm --baremetal userland/c/hello.c --sim
  17128. ....
  17129. Then inside GDB:
  17130. ....
  17131. load
  17132. starti
  17133. ....
  17134. and now you can debug normally.
  17135. Enabled with the crosstool-NG configuration:
  17136. ....
  17137. CT_GDB_CROSS_SIM=y
  17138. ....
  17139. which by grepping crosstool-NG we can see does on GDB:
  17140. ....
  17141. ./configure --enable-sim
  17142. ....
  17143. Those are not set by default on `gdb-multiarch` in Ubuntu 16.04.
  17144. Bibliography:
  17145. * https://stackoverflow.com/questions/49470659/arm-none-eabi-gdb-undefined-target-command-sim
  17146. * http://cs107e.github.io/guides/gdb/
  17147. ==== GDB builtin CPU simulator userland
  17148. Since I had this compiled, I also decided to try it out on userland.
  17149. I was also able to run a freestanding Linux userland example on it: https://github.com/cirosantilli/arm-assembly-cheat/blob/cd232dcaf32c0ba6399b407e0b143d19b6ec15f4/v7/linux/hello.S
  17150. It just ignores the <<arm-svc-instruction>> however, and does not forward syscalls to the host like QEMU does.
  17151. Then I tried a glibc example: https://github.com/cirosantilli/arm-assembly-cheat/blob/cd232dcaf32c0ba6399b407e0b143d19b6ec15f4/v7/mov.S
  17152. First it wouldn't break, so I added `-static` to the `Makefile`, and then it started failing with:
  17153. ....
  17154. Unhandled v6 thumb insn
  17155. ....
  17156. Doing:
  17157. ....
  17158. help architecture
  17159. ....
  17160. shows ARM version up to `armv6`, so maybe `armv6` is not implemented?
  17161. === ARM baremetal
  17162. In this section we will focus on learning ARM architecture concepts that can only learnt on baremetal setups.
  17163. Userland information can be found at: https://github.com/cirosantilli/arm-assembly-cheat
  17164. ==== ARM exception levels
  17165. ARM exception levels are analogous to x86 <<ring0,rings>>.
  17166. The current EL can be determined by reading from certain registers, which we do with bit disassembly at:
  17167. ....
  17168. ./run --arch arm --baremetal userland/arch/arm/dump_regs.c
  17169. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/dump_regs.c
  17170. ....
  17171. The relevant bits are:
  17172. * arm: `CPSR.M`
  17173. * aarch64: `CurrentEl.EL`. This register is not accessible from EL0 for some weird reason however.
  17174. Sources:
  17175. * link:baremetal/arch/arm/dump_regs.c[]
  17176. * link:baremetal/arch/aarch64/dump_regs.c[]
  17177. The instructions that find the ARM EL are explained at: https://stackoverflow.com/questions/31787617/what-is-the-current-execution-mode-exception-level-etc
  17178. The lower ELs are not mandated by the architecture, and can be controlled through command line options in QEMU and gem5.
  17179. In QEMU, you can configure the lowest EL as explained at https://stackoverflow.com/questions/42824706/qemu-system-aarch64-entering-el1-when-emulating-a53-power-up
  17180. ....
  17181. ./run --arch arm --baremetal userland/arch/arm/dump_regs.c | grep CPSR.M
  17182. ./run --arch arm --baremetal userland/arch/arm/dump_regs.c -- -machine virtualization=on | grep CPSR.M
  17183. ./run --arch arm --baremetal userland/arch/arm/dump_regs.c -- -machine secure=on | grep CPSR.M
  17184. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/dump_regs.c | grep CurrentEL.EL
  17185. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/dump_regs.c -- -machine virtualization=on | grep CurrentEL.EL
  17186. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/dump_regs.c -- -machine secure=on | grep CurrentEL.EL
  17187. ....
  17188. outputs respectively:
  17189. ....
  17190. CPSR.M 0x3
  17191. CPSR.M 0x3
  17192. CPSR.M 0x3
  17193. CurrentEL.EL 0x1
  17194. CurrentEL.EL 0x2
  17195. CurrentEL.EL 0x3
  17196. ....
  17197. TODO: why is arm `CPSR.M` stuck at `0x3` which equals Supervisor mode?
  17198. In gem5, you can configure the lowest EL with:
  17199. ....
  17200. ./run --arch arm --baremetal userland/arch/arm/dump_regs.c --emulator gem5
  17201. grep CPSR.M "$(./getvar --arch arm --emulator gem5 gem5_guest_terminal_file)"
  17202. ./run --arch arm --baremetal userland/arch/arm/dump_regs.c --emulator gem5 -- --param 'system.have_virtualization = True'
  17203. grep CPSR.M "$(./getvar --arch arm --emulator gem5 gem5_guest_terminal_file)"
  17204. ./run --arch arm --baremetal userland/arch/arm/dump_regs.c --emulator gem5 -- --param 'system.have_security = True'
  17205. grep CPSR.M "$(./getvar --arch arm --emulator gem5 gem5_guest_terminal_file)"
  17206. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/dump_regs.c --emulator gem5
  17207. grep CurrentEL.EL "$(./getvar --arch aarch64 --emulator gem5 gem5_guest_terminal_file)"
  17208. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/dump_regs.c --emulator gem5 -- --param 'system.have_virtualization = True'
  17209. grep CurrentEL.EL "$(./getvar --arch aarch64 --emulator gem5 gem5_guest_terminal_file)"
  17210. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/dump_regs.c --emulator gem5 -- --param 'system.have_security = True'
  17211. grep CurrentEL.EL "$(./getvar --arch aarch64 --emulator gem5 gem5_guest_terminal_file)"
  17212. ....
  17213. output:
  17214. ....
  17215. CPSR.M 0x3
  17216. CPSR.M 0xA
  17217. CPSR.M 0x3
  17218. CurrentEL.EL 0x1
  17219. CurrentEL.EL 0x2
  17220. CurrentEL.EL 0x3
  17221. ....
  17222. TODO: the call:
  17223. ....
  17224. ./run --arch arm --baremetal userland/arch/arm/dump_regs.c --emulator gem5 -- --param 'system.have_virtualization = True'
  17225. ....
  17226. started failing with an exception since https://github.com/cirosantilli/linux-kernel-module-cheat/commit/add6eedb76636b8f443b815c6b2dd160afdb7ff4 at the instruction:
  17227. ....
  17228. vmsr fpexc, r0
  17229. ....
  17230. in link:baremetal/lib/arm.S[]. That patch however enables SIMD in baremetal, which I feel is more important.
  17231. According to <<armarm7>>, access to that register is controlled by other registers `NSACR.{CP11, CP10}` and `HCPTR` so those must be turned off, but I'm lazy to investigate now, even just trying to dump those registers in link:userland/arch/arm/dump_regs.c[] also leads to exceptions...
  17232. ===== ARM change exception level
  17233. TODO. Create a minimal runnable example of going into EL0 and jumping to EL1.
  17234. ===== ARM SP0 vs SPx
  17235. See <<armarm8-db>> D1.6.2 "The stack pointer registers".
  17236. There is one SP per <<arm-exception-levels,exception level>>.
  17237. This can also be seen clearly on the analysis at <<gem5-execcontext-readintregoperand-register-resolution>>.
  17238. TODO create a minimal runnable example.
  17239. TODO: how to select to use SP0 in an exception handler?
  17240. ==== ARM SVC instruction
  17241. This is the most basic example of exception handling we have.
  17242. We a handler for SVC, do an SVC, and observe that the handler got called and returned from C and assembly:
  17243. ....
  17244. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/svc.c
  17245. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/svc_asm.S
  17246. ....
  17247. Sources:
  17248. * link:baremetal/arch/aarch64/svc.c[]
  17249. * link:baremetal/arch/aarch64/svc_asm.S[]
  17250. Sample output for the C one:
  17251. ....
  17252. DAIF 0x3C0
  17253. SPSEL 0x1
  17254. VBAR_EL1 0x40000800
  17255. after_svc 0x4000209c
  17256. lkmc_vector_trap_handler
  17257. exc_type 0x11
  17258. exc_type is LKMC_VECTOR_SYNC_SPX
  17259. ESR 0x5600ABCD
  17260. ESR.EC 0x15
  17261. ESR.EC.ISS.imm16 0xABCD
  17262. SP 0x4200C510
  17263. ELR 0x4000209C
  17264. SPSR 0x600003C5
  17265. x0 0x0
  17266. x1 0x1
  17267. x2 0x15
  17268. x3 0x15
  17269. x4 0x4000A178
  17270. x5 0xFFFFFFF6
  17271. x6 0x4200C390
  17272. x7 0x78
  17273. x8 0x1
  17274. x9 0x14
  17275. x10 0x0
  17276. x11 0x0
  17277. x12 0x0
  17278. x13 0x0
  17279. x14 0x0
  17280. x15 0x0
  17281. x16 0x0
  17282. x17 0x0
  17283. x18 0x0
  17284. x19 0x0
  17285. x20 0x0
  17286. x21 0x0
  17287. x22 0x0
  17288. x23 0x0
  17289. x24 0x0
  17290. x25 0x0
  17291. x26 0x0
  17292. x27 0x0
  17293. x28 0x0
  17294. x29 0x4200C510
  17295. x30 0x40002064
  17296. ....
  17297. The C code does an:
  17298. ....
  17299. svc 0xABCD
  17300. ....
  17301. and the value 0xABCD appears at the bottom of <<arm-esr-register>>:
  17302. ....
  17303. ESR 0x5600ABCD
  17304. ESR.EC 0x15
  17305. ESR.EC.ISS.imm16 0xABCD
  17306. ....
  17307. The other important register is the <<arm-elr-register>>, which contains the return address after the exception.
  17308. From the output, we can see that it matches the value as obtained by taking the address of a label placed just after the SVC:
  17309. ....
  17310. after_svc 0x4000209c
  17311. ELR 0x4000209C
  17312. ....
  17313. Both QEMU and gem5 are able to trace interrupts in addition to instructions, and it is instructive to enable both and have a look at the traces.
  17314. With <<qemu-d-tracing>>:
  17315. ....
  17316. ./run \
  17317. --arch aarch64 \
  17318. --baremetal baremetal/arch/aarch64/svc.c \
  17319. -- -d in_asm,int \
  17320. ;
  17321. ....
  17322. the output at 8f73910dd1fc1fa6dc6904ae406b7598cdcd96d7 contains:
  17323. ....
  17324. ----------------
  17325. IN: main
  17326. 0x40002098: d41579a1 svc #0xabcd
  17327. Taking exception 2 [SVC]
  17328. ...from EL1 to EL1
  17329. ...with ESR 0x15/0x5600abcd
  17330. ...with ELR 0x4000209c
  17331. ...to EL1 PC 0x40000a00 PSTATE 0x3c5
  17332. ----------------
  17333. IN:
  17334. 0x40000a00: 14000225 b #0x40001294
  17335. ----------------
  17336. IN:
  17337. 0x40001294: a9bf7bfd stp x29, x30, [sp, #-0x10]!
  17338. 0x40001298: a9bf73fb stp x27, x28, [sp, #-0x10]!
  17339. 0x4000129c: a9bf6bf9 stp x25, x26, [sp, #-0x10]!
  17340. 0x400012a0: a9bf63f7 stp x23, x24, [sp, #-0x10]!
  17341. 0x400012a4: a9bf5bf5 stp x21, x22, [sp, #-0x10]!
  17342. 0x400012a8: a9bf53f3 stp x19, x20, [sp, #-0x10]!
  17343. 0x400012ac: a9bf4bf1 stp x17, x18, [sp, #-0x10]!
  17344. 0x400012b0: a9bf43ef stp x15, x16, [sp, #-0x10]!
  17345. 0x400012b4: a9bf3bed stp x13, x14, [sp, #-0x10]!
  17346. 0x400012b8: a9bf33eb stp x11, x12, [sp, #-0x10]!
  17347. 0x400012bc: a9bf2be9 stp x9, x10, [sp, #-0x10]!
  17348. 0x400012c0: a9bf23e7 stp x7, x8, [sp, #-0x10]!
  17349. 0x400012c4: a9bf1be5 stp x5, x6, [sp, #-0x10]!
  17350. 0x400012c8: a9bf13e3 stp x3, x4, [sp, #-0x10]!
  17351. 0x400012cc: a9bf0be1 stp x1, x2, [sp, #-0x10]!
  17352. 0x400012d0: d5384015 mrs x21, spsr_el1
  17353. 0x400012d4: a9bf03f5 stp x21, x0, [sp, #-0x10]!
  17354. 0x400012d8: d5384035 mrs x21, elr_el1
  17355. 0x400012dc: a9bf57ff stp xzr, x21, [sp, #-0x10]!
  17356. 0x400012e0: d2800235 movz x21, #0x11
  17357. 0x400012e4: d5385216 mrs x22, esr_el1
  17358. 0x400012e8: a9bf5bf5 stp x21, x22, [sp, #-0x10]!
  17359. 0x400012ec: 910003f5 mov x21, sp
  17360. 0x400012f0: 910482b5 add x21, x21, #0x120
  17361. 0x400012f4: f9000bf5 str x21, [sp, #0x10]
  17362. 0x400012f8: 910003e0 mov x0, sp
  17363. 0x400012fc: 9400023f bl #0x40001bf8
  17364. ----------------
  17365. IN: lkmc_vector_trap_handler
  17366. 0x40001bf8: a9bd7bfd stp x29, x30, [sp, #-0x30]!
  17367. ....
  17368. And with <<gem5-tracing>>:
  17369. ....
  17370. ./run \
  17371. --arch aarch64 \
  17372. --baremetal baremetal/arch/aarch64/svc_asm.S \
  17373. --trace ExecAll,Faults \
  17374. --trace-stdout \
  17375. ;
  17376. ....
  17377. the output contains:
  17378. ....
  17379. 4000: system.cpu A0 T0 : @main+8 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  17380. 4000: Supervisor Call: Invoking Fault (AArch64 target EL):Supervisor Call cpsr:0x3c5 PC:0x80000808 elr:0x8000080c newVec: 0x80001200
  17381. 4500: system.cpu A0 T0 : @vector_table+512 : b <_curr_el_spx_sync> : IntAlu : flags=(IsControl|IsDirectControl|IsUncondControl)
  17382. ....
  17383. So we see in both cases that the:
  17384. * SVC is done
  17385. * an exception happens, and the PC jumps to address 0x40000a00. From our custom terminal prints further on, we see that this equals `VBAR_EL1 + 0x200`.
  17386. +
  17387. According to the format of the <<armv8-exception-vector-table-format>>, we see that the `+ 0x200` means that we are jumping in the Current EL with SPx.
  17388. +
  17389. This can also be deduced from the message `exc_type is LKMC_VECTOR_SYNC_SPX`: we just manually store a different integer for every exception vector type in our handler code to be able to tell what happened.
  17390. +
  17391. This is the one used because we are jumping <<arm-exception-levels,from EL1 to EL1>>.
  17392. +
  17393. We set VBAR_EL1 to that address ourselves <<baremetal-bootloaders,in the bootloader>>.
  17394. * at 0x40000a00 a `b #0x40001294` is done and then at 0x40001294 boilerplate preparation is done for lkmc_vector_trap_handler starting with several STP instructions.
  17395. +
  17396. We have coded both of those in our vector table macro madness. As of LKMC 8f73910dd1fc1fa6dc6904ae406b7598cdcd96d7, both come from link:lkmc/aarch64.h[]:
  17397. +
  17398. ** `b #0x40001294` comes from: `LKMC_VECTOR_ENTRY`
  17399. ** the STP come from: `LKMC_VECTOR_BUILD_TRAPFRAME`
  17400. +
  17401. We jump immediately from inside `LKMC_VECTOR_ENTRY` to `LKMC_VECTOR_BUILD_TRAPFRAME` because we can only use 0x80 bytes of instructions for each one before reaching the next handler, so we might as well get it over with by jumping into a memory region without those constraints.
  17402. +
  17403. TODO: why doesn't QEMU show our nice symbol names? gem5 shows them fine, and `nm` says they are there!
  17404. +
  17405. ....
  17406. 0000000040000800 T lkmc_vector_table
  17407. 0000000040001294 T lkmc_vector_build_trapframe_curr_el_spx_sync
  17408. ....
  17409. The exception return happens at the end of `lkmc_vector_trap_handler`:
  17410. ....
  17411. ----------------
  17412. IN: lkmc_vector_trap_handler
  17413. 0x40002000: d503201f nop
  17414. 0x40002004: a8c37bfd ldp x29, x30, [sp], #0x30
  17415. 0x40002008: d65f03c0 ret
  17416. ----------------
  17417. IN:
  17418. 0x40001300: 910043ff add sp, sp, #0x10
  17419. 0x40001304: a8c15bf5 ldp x21, x22, [sp], #0x10
  17420. 0x40001308: d5184036 msr elr_el1, x22
  17421. ----------------
  17422. IN:
  17423. 0x4000130c: a8c103f5 ldp x21, x0, [sp], #0x10
  17424. 0x40001310: d5184015 msr spsr_el1, x21
  17425. ----------------
  17426. IN:
  17427. 0x40001314: a8c10be1 ldp x1, x2, [sp], #0x10
  17428. 0x40001318: a8c113e3 ldp x3, x4, [sp], #0x10
  17429. 0x4000131c: a8c11be5 ldp x5, x6, [sp], #0x10
  17430. 0x40001320: a8c123e7 ldp x7, x8, [sp], #0x10
  17431. 0x40001324: a8c12be9 ldp x9, x10, [sp], #0x10
  17432. 0x40001328: a8c133eb ldp x11, x12, [sp], #0x10
  17433. 0x4000132c: a8c13bed ldp x13, x14, [sp], #0x10
  17434. 0x40001330: a8c143ef ldp x15, x16, [sp], #0x10
  17435. 0x40001334: a8c14bf1 ldp x17, x18, [sp], #0x10
  17436. 0x40001338: a8c153f3 ldp x19, x20, [sp], #0x10
  17437. 0x4000133c: a8c15bf5 ldp x21, x22, [sp], #0x10
  17438. 0x40001340: a8c163f7 ldp x23, x24, [sp], #0x10
  17439. 0x40001344: a8c16bf9 ldp x25, x26, [sp], #0x10
  17440. 0x40001348: a8c173fb ldp x27, x28, [sp], #0x10
  17441. 0x4000134c: a8c17bfd ldp x29, x30, [sp], #0x10
  17442. 0x40001350: d69f03e0 eret
  17443. Exception return from AArch64 EL1 to AArch64 EL1 PC 0x4000209c
  17444. ----------------
  17445. IN: main
  17446. 0x4000209c: d0000040 adrp x0, #0x4000c000
  17447. ....
  17448. which does an `eret` and jumps back to 0x4000209c, which is 4 bytes and therefore one instruction after where SVC was taken at 0x40002098.
  17449. On the terminal output, we observe the initial values of:
  17450. * DAIF: 0x3c0, i.e. 4 bits (6 to 9) set to 1, which means that exceptions are masked for each exception type: Synchronous, System error, IRQ and FIQ.
  17451. +
  17452. This reset value is defined by <<armarm8>> C5.2.2 "DAIF, Interrupt Mask Bits".
  17453. * SPSel: 0x1, which means: use SPx instead of SP0.
  17454. +
  17455. This reset value is defined by <<armarm8>> C5.2.16 "SPSel, Stack Pointer Select".
  17456. * VBAR_EL1: 0x0 holds the base address of the vector table
  17457. +
  17458. This reset value is defined UNKNOWN by <<armarm8>> D10.2.116 "VBAR_EL1, Vector Base Address Register (EL1)", so we must set it to something ourselves to have greater portability.
  17459. Bibliography:
  17460. * https://github.com/torvalds/linux/blob/v4.20/arch/arm64/kernel/entry.S#L430 this is where the kernel defines the vector table
  17461. * https://github.com/dwelch67/qemu_arm_samples/tree/07162ba087111e0df3f44fd857d1b4e82458a56d/swi01
  17462. * https://github.com/NienfengYao/armv8-bare-metal/blob/572c6f95880e70aa92fe9fed4b8ad7697082a764/vector.S#L168
  17463. * https://stackoverflow.com/questions/24162109/arm-assembly-code-and-svc-numbering/57064062#57064062
  17464. * https://stackoverflow.com/questions/44991264/armv8-exception-vectors-and-handling
  17465. ===== ARMv8 exception vector table format
  17466. The vector table format is described on <<armarm8>> Table D1-7 "Vector offsets from vector table base address".
  17467. A good representation of the format of the vector table can also be found at <<armv8-programmers-guide>> Table 10-2 "Vector table offsets from vector table base address".
  17468. The first part of the table contains: xref:table-armv8-vector-handlers[xrefstyle=full].
  17469. [[table-armv8-vector-handlers]]
  17470. .Summary of ARMv8 vector handlers
  17471. [options="header"]
  17472. |===
  17473. |Address |Exception type |Description
  17474. |VBAR_ELn + 0x000
  17475. |Synchronous
  17476. |Current EL with SP0
  17477. |VBAR_ELn + 0x080
  17478. |IRQ/vIRQ
  17479. |Current EL with SP0
  17480. |VBAR_ELn + 0x100
  17481. |FIQ/vFIQ
  17482. |Current EL with SP0
  17483. |VBAR_ELn + 0x180
  17484. |SError/vSError
  17485. |Current EL with SP0
  17486. |VBAR_ELn + 0x200
  17487. |Synchronous
  17488. |Current EL with SPx
  17489. |VBAR_ELn + 0x280
  17490. |IRQ/vIRQ
  17491. |Current EL with SPx
  17492. |VBAR_ELn + 0x300
  17493. |FIQ/vFIQ
  17494. |Current EL with SPx
  17495. |VBAR_ELn + 0x380
  17496. |SError/vSError
  17497. |Lower EL using AArch64
  17498. |VBAR_ELn + 0x400
  17499. |Synchronous
  17500. |Lower EL using AArch64
  17501. |VBAR_ELn + 0x480
  17502. |IRQ/vIRQ
  17503. |Lower EL using AArch64
  17504. |VBAR_ELn + 0x500
  17505. |FIQ/vFIQ
  17506. |Lower EL using AArch64
  17507. |VBAR_ELn + 0x580
  17508. |SError/vSError
  17509. |Lower EL using AArch64
  17510. |VBAR_ELn + 0x600
  17511. |Synchronous
  17512. |Lower EL using AArch32
  17513. |VBAR_ELn + 0x680
  17514. |IRQ/vIRQ
  17515. |Lower EL using AArch32
  17516. |VBAR_ELn + 0x700
  17517. |FIQ/vFIQ
  17518. |Lower EL using AArch32
  17519. |VBAR_ELn + 0x780
  17520. |SError/vSError
  17521. |Lower EL using AArch32
  17522. |===
  17523. and the following other parts are analogous, but referring to SPx and lower ELs.
  17524. Now, to fully understand this table, we need the following concepts:
  17525. * Synchronous: what happens for example when we do an <<arm-svc-instruction>>.
  17526. +
  17527. It is called synchronous because the CPU is generating it itself from an instruction, unlike an interrupt generated by a device like a keyboard, which ends up in an IRQ or FIQ
  17528. * IRQ: an example can be found at: <<arm-timer>>
  17529. * TODO FIQ vs IRQ
  17530. * TODO SError
  17531. * EL changes: <<arm-change-exception-level>>
  17532. * SP0 vs SPx: <<arm-sp0-vs-spx>>.
  17533. ===== ARM ESR register
  17534. Exception Syndrome Register.
  17535. See example at: xref:arm-svc-instruction[xrefstyle=full]
  17536. Documentation: <<armarm8-db>> D12.2.36 "ESR_EL1, Exception Syndrome Register (EL1)".
  17537. ===== ARM ELR register
  17538. Exception Link Register.
  17539. See the example at: xref:arm-svc-instruction[xrefstyle=full]
  17540. ==== ARM baremetal multicore
  17541. Examples:
  17542. ....
  17543. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/no_bootloader/multicore_asm.S --cpus 2
  17544. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/no_bootloader/multicore_asm.S --cpus 2 --emulator gem5
  17545. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/multicore.c --cpus 2
  17546. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/multicore.c --cpus 2 --emulator gem5
  17547. ./run --arch arm --baremetal baremetal/arch/arm/no_bootloader/multicore_asm.S --cpus 2
  17548. ./run --arch arm --baremetal baremetal/arch/arm/no_bootloader/multicore_asm.S --cpus 2 --emulator gem5
  17549. # TODO not working, hangs.
  17550. # ./run --arch arm --baremetal baremetal/arch/arm/multicore.c --cpus 2
  17551. ./run --arch arm --baremetal baremetal/arch/arm/multicore.c --cpus 2 --emulator gem5
  17552. ....
  17553. Sources:
  17554. * link:baremetal/arch/aarch64/no_bootloader/multicore_asm.S[]
  17555. * link:baremetal/arch/aarch64/multicore.c[]
  17556. * link:baremetal/arch/arm/no_bootloader/multicore_asm.S[]
  17557. * link:baremetal/arch/arm/multicore.c[]
  17558. CPU 0 of this program enters a spinlock loop: it repeatedly checks if a given memory address is 1.
  17559. So, we need CPU 1 to come to the rescue and set that memory address to 1, otherwise CPU 0 will be stuck there forever!
  17560. Don't believe me? Then try:
  17561. ....
  17562. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/multicore.c --cpus 1
  17563. ....
  17564. and watch it hang forever.
  17565. Note that if you try the same thing on gem5:
  17566. ....
  17567. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/multicore.c --cpus 1 --emulator gem5
  17568. ....
  17569. then the gem5 actually exits with <<gem5-simulate-limit-reached>> as opposed to the expected:
  17570. ....
  17571. Exiting @ tick 36500 because m5_exit instruction encountered
  17572. ....
  17573. since gem5 is able to detect when nothing will ever happen, and exits.
  17574. When GDB step debugging, switch between cores with the usual `thread` commands, see also: xref:gdb-step-debug-multicore-userland[xrefstyle=full].
  17575. Bibliography: https://stackoverflow.com/questions/980999/what-does-multicore-assembly-language-look-like/33651438#33651438
  17576. ===== ARM WFE and SEV instructions
  17577. The WFE and SEV instructions are just hints: a compliant implementation can treat them as NOPs.
  17578. Concrete examples of the instruction can be seen at:
  17579. * link:userland/arch/aarch64/nostartfiles/wfe.S[]
  17580. * link:userland/arch/aarch64/freestanding/linux/wfe.S[]
  17581. * link:userland/arch/aarch64/freestanding/linux/sevl_wfe.S[]
  17582. * link:userland/arch/aarch64/freestanding/linux/wfe_wfe.S[]: run WFE twice, because gem5 390a74f59934b85d91489f8a563450d8321b602d does not sleep on the first, see also: <<gem5-arm-wfe>>
  17583. * link:baremetal/arch/aarch64/no_bootloader/wfe_loop.S[], see: <<gem5-simulate-limit-reached>>
  17584. * link:userland/arch/aarch64/inline_asm/wfe_sev.cpp[]: one Linux thread runs WFE and the other runs SEV to wake it up
  17585. * <<arm-baremetal-multicore>> shows baremetal examples where WFE sleeps and another thread wakes it up:
  17586. ** link:baremetal/arch/arm/multicore.c[]
  17587. ** link:baremetal/arch/aarch64/multicore.c[]
  17588. ** link:baremetal/arch/arm/no_bootloader/multicore_asm.S[]
  17589. However, likely no implementation likely does (TODO confirm), since:
  17590. * WFE is intended to put the core in a low power mode
  17591. * SEV wakes up cores from a low power mode
  17592. and power consumption is key in ARM applications.
  17593. Quotes for the above <<armarm8-db>> G1.18.1 "Wait For Event and Send Event":
  17594. ____
  17595. The following events are WFE wake-up events:
  17596. \[...]
  17597. * An event caused by the clearing of the global monitor associated with the PE
  17598. ____
  17599. and <<armarm8-db>> E2.9.6 "Use of WFE and SEV instructions by spin-locks":
  17600. ____
  17601. ARMv8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, SEVL, that can assist with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock. These instructions can be used at the application level, but a complete understanding of what they do depends on a system level understanding of exceptions. They are described in Wait For Event and Send Event on page G1-5308. However, in ARMv8, when the global monitor for a PE changes from Exclusive Access state to Open Access state, an event is generated.
  17602. Note This is equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the need for spinlock code to include an SEV instruction after clearing a spinlock.
  17603. ____
  17604. The recommended ARMv8 spinlock implementation is shown at http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/ch01s03s02.html where `WAIT_FOR_UPDATE` is as explained in that section a macro that expands to WFE. TODO SEV is used explicitly in those examples via SIGNAL_UPDATE, where is the example that shows how SEV can be eliminated due to implicit monitor signals?
  17605. In QEMU 3.0.0, SEV is a NOPs, and WFE might be, but I'm not sure, see: https://github.com/qemu/qemu/blob/v3.0.0/target/arm/translate-a64.c#L1423
  17606. ....
  17607. case 2: /* WFE */
  17608. if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
  17609. s->base.is_jmp = DISAS_WFE;
  17610. }
  17611. return;
  17612. case 4: /* SEV */
  17613. case 5: /* SEVL */
  17614. /* we treat all as NOP at least for now */
  17615. return;
  17616. ....
  17617. TODO: what does the WFE code do? How can it not be a NOP if SEV is a NOP? https://github.com/qemu/qemu/blob/v3.0.0/target/arm/translate.c#L4609 might explain why, but it is Chinese to me (I only understand 30% ;-)):
  17618. ....
  17619. * For WFI we will halt the vCPU until an IRQ. For WFE and YIELD we
  17620. * only call the helper when running single threaded TCG code to ensure
  17621. * the next round-robin scheduled vCPU gets a crack. In MTTCG mode we
  17622. * just skip this instruction. Currently the SEV/SEVL instructions
  17623. * which are *one* of many ways to wake the CPU from WFE are not
  17624. * implemented so we can't sleep like WFI does.
  17625. */
  17626. ....
  17627. For gem5 however, if we comment out the SVE instruction, then it actually exits with `simulate() limit reached`, so the CPU truly never wakes up, which is a more realistic behaviour, since gem5 is more focused on simulating a realistic microarchitecture and power consumption.
  17628. The following Raspberry Pi bibliography helped us get this sample up and running:
  17629. * https://github.com/bztsrc/raspi3-tutorial/tree/a3f069b794aeebef633dbe1af3610784d55a0efa/02_multicorec
  17630. * https://github.com/dwelch67/raspberrypi/tree/a09771a1d5a0b53d8e7a461948dc226c5467aeec/multi00
  17631. * https://github.com/LdB-ECM/Raspberry-Pi/blob/3b628a2c113b3997ffdb408db03093b2953e4961/Multicore/SmartStart64.S
  17632. * https://github.com/LdB-ECM/Raspberry-Pi/blob/3b628a2c113b3997ffdb408db03093b2953e4961/Multicore/SmartStart32.S
  17633. For how userland spinlocks and mutexes are implemented see <<userland-mutex-implementation>>.
  17634. ====== ARM WFE global monitor events
  17635. Examples:
  17636. * link:userland/arch/aarch64/inline_asm/wfe_ldxr_stxr.cpp[]
  17637. * link:userland/arch/aarch64/inline_asm/wfe_ldxr_str.cpp[]
  17638. * link:userland/arch/aarch64/inline_asm/futex_ldxr_stxr.c[]: tests that ldxr and stxr do not interact with futexes. This was leading to problems in <<gem5-syscall-emulation-mode>> at one point: https://gem5.atlassian.net/browse/GEM5-537
  17639. +
  17640. Correct outcome: <<gem5-simulate-limit-reached>>.
  17641. +
  17642. Incorrect behaviour due to: https://gem5.atlassian.net/browse/GEM5-537[]: Exits successfully.
  17643. SEV is not the only thing that can wake up a WFE, it is only an explicit software way to do it.
  17644. Notably, global monitor operations on memory accesses of regions marked by <<arm-ldxr-and-stxr-instructions,LDAXR and STLXR instructions>> can also wake up a WFE sleeping core.
  17645. This is done to allow spinlocks opens to automatically wake up WFE sleeping cores at free time without the need for a explicit SEV.
  17646. In the shown in the `wfe_ldxr_stxr.cpp` example, which can only terminate in gem5 user mode simulation because due to this event.
  17647. Note that that program still terminates when running on top of the Linux kernel as explained at: <<wfe-from-userland>>.
  17648. ====== WFE from userland
  17649. WFE and SEV are usable from userland, and are part of an efficient spinlock implementation (which userland should arguably stay away from and rather use the <<futex-system-call>> which allow for non busy sleep instead), which maybe is not something that userland should ever tho and just stick to mutexes?
  17650. There is a control bit `SCTLR_EL1.nTWE` that determines if WFE is trapped or not, i.e.: is that bit is set, then it is trapped and EL0 execution raises an exception in EL1.
  17651. Linux v5.2.1 does not set `SCTLR_EL1.nTWE` however, tested with <<gem5-tracing>> with `--trace ExecAll,Failts` and the <<dump-regs,dump_regs kernel module>> in a full system simulation.
  17652. The kernel seems to setup nTWE at:
  17653. include/asm/sysreg.h
  17654. ....
  17655. #define SCTLR_EL1_SET (SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_SA |\
  17656. ...
  17657. SCTLR_EL1_NTWE | SCTLR_ELx_IESB | SCTLR_EL1_SPAN |\
  17658. ....
  17659. and:
  17660. mm/proc.S
  17661. ....
  17662. /*
  17663. * Prepare SCTLR
  17664. */
  17665. mov_q x0, SCTLR_EL1_SET
  17666. ....
  17667. To reduce the number of instructions from our trace, first we boot, and then we restore a checkpoint after boot with <<gem5-restore-new-script>> with a restore command that runs link:userland/arch/aarch64/freestanding/linux/wfe_wfe.S[]:
  17668. ....
  17669. ./run --arch aarch64 --emulator gem5 --gem5-worktree master --gem5-restore 1 --gem5-readfile 'arch/aarch64/freestanding/linux/wfe_wfe.out' --trace ExecAll,Faults,FmtFlag,Thread
  17670. ....
  17671. On the traces, we search for `wfe`, and there are just two hits, so they must be our instructions!
  17672. The traces then look like this at LKMC 777b7cbbd1d553baf2be9bc2075102be740054dd:
  17673. ....
  17674. 112285501668497000: Thread: system.cpu: suspend contextId 0
  17675. 112285501668497000: ExecEnable: system.cpu: A0 T0 : 0x400078 : wfe : IntAlu : D=0x0000000000000000 flags=(IsSerializeAfter|IsNonSpeculative|IsQuiesce|IsUnverifiable)
  17676. 112285501668497501: Thread: system.cpu: activate contextId 0
  17677. 112285501668498000: Thread: system.cpu: suspend contextId 0
  17678. 112285501668498000: ExecEnable: system.cpu: A0 T0 : 0x40007c : wfe : IntAlu : D=0x0000000000000000 flags=(IsSerializeAfter|IsNonSpeculative|IsQuiesce|IsUnverifiable)
  17679. 112285501909320284: Thread: system.cpu: activate contextId 0
  17680. 112285501909320500: Faults: IRQ: Invoking Fault (AArch64 target EL):IRQ cpsr:0x4003c5 PC:0x400080 elr:0x400080 newVec: 0xffffff8010082480
  17681. 112285501909320500: ExecEnable: system.cpu: A0 T0 : @vectors+1152 : nop : IntAlu : flags=(IsNop)
  17682. 112285501909321000: ExecEnable: system.cpu: A0 T0 : @vectors+1156 : nop : IntAlu : flags=(IsNop)
  17683. [more exception handler, no ERET here]
  17684. 112285501923080500: ExecEnable: system.cpu: A0 T0 : @finish_ret_to_user+188 : ldr x30, [sp, #240] : MemRead : D=0x0000000000000000 A=0xffffff8010cb3fb0 flags=(IsInteger|IsMemRef|IsLoad)
  17685. 112285501923081000: ExecEnable: system.cpu: A0 T0 : @finish_ret_to_user+192 : add sp, sp, #320 : IntAlu : D=0xffffff8010cb4000 flags=(IsInteger)
  17686. 112285501923081500: ExecEnable: system.cpu: A0 T0 : 0xffffff8010084144 : eret : IntAlu : D=0x0000000000000001 flags=(IsControl|IsSerializeAfter|IsNonSpeculative|IsSquashAfter)
  17687. 112285501923082000: ExecEnable: system.cpu: A0 T0 : 0x400080 : movz x0, #0, #0 : IntAlu : D=0x0000000000000000 flags=(IsInteger)
  17688. 112285501923082500: ExecEnable: system.cpu: A0 T0 : 0x400084 : movz x8, #93, #0 : IntAlu : D=0x000000000000005d flags=(IsInteger)
  17689. 112285501923083000: ExecEnable: system.cpu: A0 T0 : 0x400088 : svc #0x0 : IntAlu : flags=(IsSerializeAfter|IsNonSpeculative|IsSyscall)
  17690. ....
  17691. so we conclude that:
  17692. * the second WFE made the CPU stop running instructions at time 112285501668498000 and PC 0x40007c
  17693. * the next thing that happened a long time later (112285501909320500, while a following instruction would happen at 112285501668498000 + 1000) was an interrupt, presumably the <<arm-timer>>
  17694. * after a few interrupt handler instructions, the first <<arm-svc-instruction,ERET>> instruction exits the handler and comes back directly to the instruction after the WFE at PC 0x400080 == 0x40007c + 4
  17695. * the execution of the interrupt handler woke up the core that was in WFE, and it now continues normal execution past the WFE
  17696. Therefore, a WFE in userland is treated much like a busy loop by the Linux kernel: the kernel does not seem to try and explicitly make up room for other processes as would happen on a futex.
  17697. The following test checks that SEV events don't wake up a futexes, running forever in case of success. In <<gem5-syscall-emulation-multithreading>>, this is crucial to prevent deadlocks:
  17698. * link:userland/arch/aarch64/inline_asm/futex_sev.cpp[]
  17699. ====== ARMv8 spinlock pattern
  17700. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16277.html
  17701. ....
  17702. sev
  17703. 1: wfe
  17704. 2: ldaxr w1, [w0]
  17705. cbnz w1, %1b
  17706. stxr w1, w2, [w0]
  17707. cbnz w1, %2b
  17708. ....
  17709. It is the <<arm-ldxr-and-stxr-instructions,STXR>> from the unlock on another core that automatically wakes up the spinlock afterwards: https://stackoverflow.com/questions/32276313/how-is-a-spin-lock-woken-up-in-linux-arm64
  17710. ====== gem5 ARM WFE
  17711. gem5 390a74f59934b85d91489f8a563450d8321b602d does not sleep on the first WFE on either syscall emulation or full system, because the code does:
  17712. ....
  17713. Fault WfeInst::execute(
  17714. ExecContext *xc, Trace::InstRecord *traceData) const
  17715. {
  17716. [...]
  17717. if (SevMailbox == 1) {
  17718. SevMailbox = 0;
  17719. PseudoInst::quiesceSkip(tc);
  17720. } else if (tc->getCpuPtr()->getInterruptController(
  17721. tc->threadId())->checkInterrupts(tc)) {
  17722. PseudoInst::quiesceSkip(tc);
  17723. } else {
  17724. fault = trapWFx(tc, cpsr, scr, true);
  17725. if (fault == NoFault) {
  17726. PseudoInst::quiesce(tc);
  17727. } else {
  17728. PseudoInst::quiesceSkip(tc);
  17729. }
  17730. }
  17731. ....
  17732. where https://en.wiktionary.org/wiki/quiescent["quiesce" means "sleep"] for laymen like Ciro, and `quiesceSkip` means don't sleep.
  17733. `SevMailbox` is read from `MISCREG_SEV_MAILBOX` which is initialized to `1` at:
  17734. ....
  17735. ISA::clear()
  17736. {
  17737. [...]
  17738. miscRegs[MISCREG_SEV_MAILBOX] = 1;
  17739. ....
  17740. ====== ARM YIELD instruction
  17741. https://stackoverflow.com/questions/59311066/how-does-the-arm-yield-instruction-inform-other-threads-that-they-could-start-a
  17742. ===== ARM LDAXR and STLXR instructions
  17743. Can be used to implement atomic variables, see also:
  17744. * <<atomic-cpp>>
  17745. * https://stackoverflow.com/questions/56810/how-do-i-start-threads-in-plain-c/52453291#52453291
  17746. The ARMv7 analogues are LDREX and STREX.
  17747. ===== ARM PSCI
  17748. In QEMU, CPU 1 starts in a halted state. This can be observed from GDB, where:
  17749. ....
  17750. info threads
  17751. ....
  17752. shows something like:
  17753. ....
  17754. * 1 Thread 1 (CPU#0 [running]) lkmc_start
  17755. 2 Thread 2 (CPU#1 [halted ]) lkmc_start
  17756. ....
  17757. To wake up CPU 1 on QEMU, we must use the Power State Coordination Interface (PSCI) which is documented at: https://developer.arm.com/docs/den0022/latest/arm-power-state-coordination-interface-platform-design-document[].
  17758. This interface uses HVC calls, and the calling convention is documented at "SMC CALLING CONVENTION" https://developer.arm.com/docs/den0028/latest[].
  17759. If we boot the Linux kernel on QEMU and <<get-device-tree-from-a-running-kernel,dump the auto-generated device tree>>, we observe that it contains the address of the PSCI CPU_ON call:
  17760. ....
  17761. psci {
  17762. method = "hvc";
  17763. compatible = "arm,psci-0.2", "arm,psci";
  17764. cpu_on = <0xc4000003>;
  17765. migrate = <0xc4000005>;
  17766. cpu_suspend = <0xc4000001>;
  17767. cpu_off = <0x84000002>;
  17768. };
  17769. ....
  17770. The Linux kernel wakes up the secondary cores in this exact same way at: https://github.com/torvalds/linux/blob/v4.19/drivers/firmware/psci.c#L122 We first actually got it working here by grepping the kernel and step debugging that call :-)
  17771. In gem5, CPU 1 starts woken up from the start, so PSCI is not needed. TODO gem5 actually blows up if we try to do the HVC call, understand why.
  17772. Bibliography: https://stackoverflow.com/questions/20055754/arm-start-wakeup-bringup-the-other-cpu-cores-aps-and-pass-execution-start-addre/53473447#53473447
  17773. ===== ARM DMB instruction
  17774. TODO: create and study a minimal examples in gem5 where the DMB instruction leads to less cycles: https://stackoverflow.com/questions/15491751/real-life-use-cases-of-barriers-dsb-dmb-isb-in-arm
  17775. ==== ARM timer
  17776. The ARM timer is the simplest way to generate hardware interrupts periodically, and therefore serves as the simples example of <<arm-gic>> usage.
  17777. Working on QEMU: link:baremetal/arch/aarch64/timer.c[]
  17778. ....
  17779. ./run --arch aarch64 --baremetal baremetal/arch/aarch64/timer.c
  17780. ....
  17781. Output at lkmc d8dae268c0a3e4e361002aca3b382fedd77f2567 + 1:
  17782. ....
  17783. cntv_ctl_el0 0x0
  17784. cntfrq_el0 0x3B9ACA0
  17785. cntv_cval_el0 0x0
  17786. cntvct_el0 0x105113
  17787. cntvct_el0 0x1080BC
  17788. cntvct_el0 0x10A118
  17789. IRQ number 0x1B
  17790. cntvct_el0 0x14D25B
  17791. cntv_cval_el0 0x3CE9CD6
  17792. IRQ number 0x1B
  17793. cntvct_el0 0x3CF516F
  17794. cntv_cval_el0 0x7893217
  17795. IRQ number 0x1B
  17796. cntvct_el0 0x789B733
  17797. cntv_cval_el0 0xB439642
  17798. ....
  17799. and new `IRQ number` section appears every second, when a clock interrupt is raised!
  17800. TODO make work on gem5. Fails with <<gem5-simulate-limit-reached>> at the first WFI done in main, which means that the interrupt is never raised.
  17801. Once an interrupt is raised, the interrupt itself sets up a new interrupt to happen in one second in the future after `cntv_cval_el0` is reached by the counter.
  17802. The timer is part of the aarch64 specification itself and is documented at: <<armarm8-db>> Chapter D10 "The Generic Timer in AArch64 state". The key registers to keep in mind are:
  17803. * `CNTVCT_EL0`: "Counter-timer Virtual Count register". The increasing current counter value.
  17804. * `CNTFRQ_EL0`: "Counter-timer Frequency register". "Indicates the system counter clock frequency, in Hz."
  17805. * `CNTV_CTL_EL0`: "Counter-timer Virtual Timer Control register". This control register is very simple and only has three fields:
  17806. ** `CNTV_CTL_EL0.ISTATUS` bit: set to 1 when the timer condition is met
  17807. ** `CNTV_CTL_EL0.IMASK` bit: if 1, the interrupt does not happen when `ISTATUS` becomes one
  17808. ** `CNTV_CTL_EL0.ENABLE` bit: if 0, the counter is turned off, interrupts don't happen
  17809. * `CNTV_CVAL_EL0`: "Counter-timer Virtual Timer CompareValue register". The interrupt happens when `CNTVCT_EL0` reaches the value in this register.
  17810. Due to <<gem5-vs-qemu,QEMU's non-determinism>>, each consecutive run has slightly different output values.
  17811. From the terminal output, we can see that the initial clock frequency is 0x3B9ACA0 == 62500000 Hz == 62.5MHz. Grepping QEMU source for that string leads us to:
  17812. ....
  17813. /* Scale factor for generic timers, ie number of ns per tick.
  17814. * This gives a 62.5MHz timer.
  17815. */
  17816. #define GTIMER_SCALE 16
  17817. ....
  17818. which in turn is used to set the initial reset value of the clock:
  17819. ....
  17820. { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
  17821. .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
  17822. .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
  17823. .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
  17824. .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
  17825. ....
  17826. where `(1000 * 1000 * 1000) / 16 == 62500000`.
  17827. Trying to set the frequency on QEMU by writing to the CNTFRQ register does change the value of future reads, but has no effect on the actual clock frequency as commented on the QEMU source code https://github.com/qemu/qemu/blob/v4.0.0/target/arm/helper.c#L2647
  17828. ....
  17829. static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
  17830. /* Note that CNTFRQ is purely reads-as-written for the benefit
  17831. * of software; writing it doesn't actually change the timer frequency.
  17832. * Our reset value matches the fixed frequency we implement the timer at.
  17833. */
  17834. { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
  17835. .type = ARM_CP_ALIAS,
  17836. .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
  17837. .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
  17838. },
  17839. ....
  17840. At each interrupt, we increase the compare value `CVAL` by about 1x the clock frequency 0x3B9ACA0 so that it will fire again in one second, e.g. `0x3CE9CD6 - 0x14D25B == 3B9CA7B`. The increment is not perfect because the counter keeps ticking even while our register read and print instructions are running inside the interrupt handler!
  17841. We then observe that the next interrupt happens soon after CNTV_CVAL_EL0 is reached by CNTVCT_EL0:
  17842. ....
  17843. cntv_cval_el0 0x3CE9CD6
  17844. IRQ number 0x1B
  17845. cntvct_el0 0x3CF516F
  17846. ....
  17847. Bibliography:
  17848. * https://stackoverflow.com/questions/51094092/how-to-make-timer-irq-work-on-qemu-machine-virt-cpu-cortex-a57
  17849. * https://stackoverflow.com/questions/44198483/arm-timers-and-interrupts
  17850. ==== ARM GIC
  17851. Generic Interrupt Controller.
  17852. Examples:
  17853. * xref:arm-timer[]
  17854. ARM publishes both a GIC standard architecture specification, and specific implementations of these specifications.
  17855. The specification can be found at: https://developer.arm.com/docs/ihi0069/latest
  17856. As of 2019Q2 the latest version if v4.0, often called GICv4: https://static.docs.arm.com/ihi0069/e/Q1-IHI0069E_gic_architecture_specification_v3.1_19_01_21.pdf
  17857. That document clarifies that GICv2 is a legacy specification only:
  17858. ....
  17859. Version 2.0 (GICv2) is only described in terms of the GICv3 optional support for legacy operation
  17860. ....
  17861. The specific models have names of type GIC-600, GIC-500, etc.
  17862. In QEMU v4.0.0, the GICv3 can be selected with an extra `-machine gic_version=3` option.
  17863. In gem5 3126e84db773f64e46b1d02a9a27892bf6612d30, the GIC is determined by selecting the platform as explained at: <<gem5-arm-platforms>>.
  17864. ==== ARM paging
  17865. TODO create a minimal working aarch64 example analogous to the x86 one at: https://github.com/cirosantilli/x86-bare-metal-examples/blob/6dc9a73830fc05358d8d66128f740ef9906f7677/paging.S
  17866. A general introduction to paging with x86 examples can be found at: https://cirosantilli.com/x86-paging[].
  17867. Then, this article is amazing: https://www.starlab.io/blog/deep-dive-mmu-virtualization-with-xen-on-arm
  17868. ARM paging is documented at <<armarm8-db>> Chapter D5 and is mostly called VMSAv8 in the ARMv8 manual (Virtual Memory System Architecture).
  17869. Paging is enabled by the `SCTLR_EL1.M` bit.
  17870. The base table address is selected by the register documented at <<armarm8-db>> D12.2.111 "TTBR0_EL1, Translation Table Base Register 0 (EL1)".
  17871. There is also a `TTBR1_EL1` register, which is for the second translation stage to speed up virtualization: https://en.wikipedia.org/wiki/Second_Level_Address_Translation and will not be used in this section.
  17872. The translation types are described at: <<armarm8-db>> D5.2.4 "Memory translation granule size".
  17873. From this we can see that the translation scheme uses up to 4 levels (0 to 3) and has possible granule sizes 4KiB, 16KiB and 64KiB.
  17874. Page table formats are described at <<armarm8-db>> D5.3.1 "VMSAv8-64 translation table level 0, level 1, and level 2 descriptor formats".
  17875. ==== ARM baremetal bibliography
  17876. First, also consider the userland bibliography: xref:arm-assembly-bibliography[xrefstyle=full].
  17877. The most useful ARM baremetal example sets we've seen so far are:
  17878. * https://github.com/dwelch67/raspberrypi real hardware
  17879. * https://github.com/dwelch67/qemu_arm_samples QEMU `-m vexpress`
  17880. * https://github.com/bztsrc/raspi3-tutorial real hardware + QEMU `-m raspi`
  17881. * https://github.com/LdB-ECM/Raspberry-Pi real hardware
  17882. * https://github.com/BrianSidebotham/arm-tutorial-rpi
  17883. ===== NienfengYao/armv8-bare-metal
  17884. https://github.com/NienfengYao/armv8-bare-metal
  17885. The only QEMU `-m virt` aarch64 example set that I can find on the web. Awesome.
  17886. A large part of the code is taken from the awesome educational OS under 2-clause BSD as can be seen from file headers: https://github.com/takeharukato/sample-tsk-sw/tree/ce7973aa5d46c9eedb58309de43df3b09d4f8d8d/hal/aarch64 but Nienfeng largely minimized it.
  17887. I needed the following minor patches: https://github.com/NienfengYao/armv8-bare-metal/pull/1
  17888. Handles an SVC and setups and handles the timer about once per second.
  17889. The source claims GICv3, however if I try to add `-machine gic_version=3` on their command line with our QEMU v4.0.0, then it blows up at:
  17890. ....
  17891. static void init_gicc(void)
  17892. {
  17893. uint32_t pending_irq;
  17894. /* Disable CPU interface */
  17895. *REG_GIC_GICC_CTLR = GICC_CTLR_DISABLE;
  17896. ....
  17897. which tries to write to 0x8010000 according to GDB.
  17898. Without `-machine`, QEMU's DTB clearly states GICv2, so I'm starting to wonder if Nienfeng just made a mistake there? The QEMU GICv3 DTB contains:
  17899. ....
  17900. reg = <0x0 0x8000000 0x0 0x10000 0x0 0x80a0000 0x0 0xf60000>;
  17901. ....
  17902. and the GICv2 one:
  17903. ....
  17904. reg = <0x0 0x8000000 0x0 0x10000 0x0 0x8010000 0x0 0x10000>;
  17905. ....
  17906. which further confirms that the exception is correct: v2 has a register range at 0x8010000 while in v3 it moved to 0x80a0000 and 0x8010000 is empty.
  17907. The original source does not mention GICv3 anywhere, only https://github.com/takeharukato/sample-tsk-sw/blob/c7bbc9dce6b14660bcce8d20735f8c6ebb09396b/hal/aarch64/gic-pl390.c[pl390], which is a specific GIC model that predates the GICv2 spec I believe.
  17908. TODO if I hack `#define GIC_GICC_BASE (GIC_BASE + 0xa0000)`, then it goes a bit further, but the next loop never ends.
  17909. ===== tukl-msd/gem5.bare-metal
  17910. https://github.com/tukl-msd/gem5.bare-metal
  17911. Reiterated at: https://stackoverflow.com/questions/43682311/uart-communication-in-gem5-with-arm-bare-metal
  17912. Basic gem5 aarch64 baremetal setup that just works. Does serial IO and timer through GICv2. Usage:
  17913. ....
  17914. # Build gem5.
  17915. git clone https://gem5.googlesource.com/public/gem5
  17916. cd gem5
  17917. git checkout 60600f09c25255b3c8f72da7fb49100e2682093a
  17918. scons --ignore-style -j`nproc` build/ARM/gem5.opt
  17919. cd ..
  17920. # Build example.
  17921. sudo apt-get install gcc-arm-none-eabi
  17922. git clone https://github.com/tukl-msd/gem5.bare-metal
  17923. cd gem5.bare-metal
  17924. git checkout 6ad1069d4299b775b5491e9252739166bfac9bfe
  17925. cd Simple
  17926. make CROSS_COMPILE_DIR=/usr/bin
  17927. # Run example.
  17928. ../../gem5/default/build/ARM/gem5.opt' \
  17929. ../../gem5/configs/example/fs.py' \
  17930. --bare-metal \
  17931. --disk-image="$(pwd)/../common/fake.iso" \
  17932. --kernel="$(pwd)/main.elf" \
  17933. --machine-type=RealView_PBX \
  17934. --mem-size=256MB \
  17935. ;
  17936. ....
  17937. === How we got some baremetal stuff to work
  17938. It is nice when thing just work.
  17939. But you can also learn a thing or two from how I actually made them work in the first place.
  17940. ==== Find the UART address
  17941. Enter the QEMU console:
  17942. ....
  17943. Ctrl-X C
  17944. ....
  17945. Then do:
  17946. ....
  17947. info mtree
  17948. ....
  17949. And look for `pl011`:
  17950. ....
  17951. 0000000009000000-0000000009000fff (prio 0, i/o): pl011
  17952. ....
  17953. On gem5, it is easy to find it on the source. We are using the machine `RealView_PBX`, and a quick grep leads us to: https://github.com/gem5/gem5/blob/a27ce59a39ec8fa20a3c4e9fa53e9b3db1199e91/src/dev/arm/RealView.py#L615
  17954. ....
  17955. class RealViewPBX(RealView):
  17956. uart = Pl011(pio_addr=0x10009000, int_num=44)
  17957. ....
  17958. ==== aarch64 baremetal NEON setup
  17959. Inside link:baremetal/lib/aarch64.S[] there is a chunk of code that enables floating point operations:
  17960. ....
  17961. mov x1, 0x3 << 20
  17962. msr cpacr_el1, x1
  17963. isb
  17964. ....
  17965. CPACR_EL1 is documented at <<armarm8>> D10.2.29 "CPACR_EL1, Architectural Feature Access Control Register".
  17966. Here we touch the CPACR_EL1.FPEN bits to 3, which enable floating point operations:
  17967. ____
  17968. 11 This control does not cause any instructions to be trapped.
  17969. ____
  17970. We later also added an enable for the CPACR_EL1.ZEN bits, which are needed for <<arm-sve>>.
  17971. Without CPACR_EL1.FPEN, the `printf`:
  17972. ....
  17973. printf("got: %c\n", c);
  17974. ....
  17975. compiled to a:
  17976. ....
  17977. str q0, [sp, #80]
  17978. ....
  17979. which uses NEON registers, and goes into an exception loop.
  17980. It was a bit confusing because there was a previous `printf`:
  17981. ....
  17982. printf("enter a character\n");
  17983. ....
  17984. which did not blow up because GCC compiles it into `puts` directly since it has no arguments, and that does not generate NEON instructions.
  17985. The last instructions ran was found with:
  17986. ....
  17987. while(1)
  17988. stepi
  17989. end
  17990. ....
  17991. or by hacking the QEMU CLI to contain:
  17992. .....
  17993. -D log.log -d in_asm
  17994. .....
  17995. I could not find any previous NEON instruction executed so this led me to suspect that some NEON initialization was required:
  17996. * http://infocenter.arm.com/help/topic/com.arm.doc.dai0527a/DAI0527A_baremetal_boot_code_for_ARMv8_A_processors.pdf "Bare-metal Boot Code for ARMv8-A Processors"
  17997. * https://community.arm.com/processors/f/discussions/5409/how-to-enable-neon-in-cortex-a8
  17998. * https://stackoverflow.com/questions/19231197/enable-neon-on-arm-cortex-a-series
  17999. We then tried to copy the code from the "Bare-metal Boot Code for ARMv8-A Processors" document:
  18000. ....
  18001. // Disable trapping of accessing in EL3 and EL2.
  18002. MSR CPTR_EL3, XZR
  18003. MSR CPTR_EL3, XZR
  18004. // Disable access trapping in EL1 and EL0.
  18005. MOV X1, #(0x3 << 20) // FPEN disables trapping to EL1.
  18006. MSR CPACR_EL1, X1
  18007. ISB
  18008. ....
  18009. but it entered an exception loop at `MSR CPTR_EL3, XZR`.
  18010. We then found out that QEMU <<arm-exception-levels,starts in EL1>>, and so we kept just the EL1 part, and it worked. Related:
  18011. * https://stackoverflow.com/questions/42824706/qemu-system-aarch64-entering-el1-when-emulating-a53-power-up
  18012. * https://stackoverflow.com/questions/37299524/neon-support-in-armv8-system-mode-qemu
  18013. === Baremetal tests
  18014. Baremetal tests work exactly like <<user-mode-tests>>, except that you have to add the `--mode baremetal` option, for example:
  18015. ....
  18016. ./test-executables --mode baremetal --arch aarch64
  18017. ....
  18018. In baremetal, we detect if tests failed by parsing logs for the <<magic-failure-string>>.
  18019. See: xref:test-this-repo[xrefstyle=full] for more useful testing tips.
  18020. == Android
  18021. Remember: Android AOSP is a huge undocumented piece of bloatware. It's integration into this repo will likely never be super good. See also: https://cirosantilli.com#android
  18022. Verbose setup description: https://stackoverflow.com/questions/1809774/how-to-compile-the-android-aosp-kernel-and-test-it-with-the-android-emulator/48310014#48310014
  18023. Download, build and run with the prebuilt AOSP QEMU emulator and the AOSP kernel:
  18024. ....
  18025. ./build-android \
  18026. --android-base-dir /path/to/your/hd \
  18027. --android-version 8.1.0_r60 \
  18028. download \
  18029. build \
  18030. ;
  18031. ./run-android \
  18032. --android-base-dir /path/to/your/hd \
  18033. --android-version 8.1.0_r60 \
  18034. ;
  18035. ....
  18036. Sources:
  18037. * link:build-android[]
  18038. * link:run-android[]
  18039. TODO how to hack the AOSP kernel, userland and emulator?
  18040. Other archs work as well as usual with `--arch` parameter. However, running in non-x86 is very slow due to the lack of KVM.
  18041. Tested on: `8.1.0_r60`.
  18042. === Android image structure
  18043. https://source.android.com/devices/bootloader/partitions-images
  18044. The messy AOSP generates a ton of images instead of just one.
  18045. When the emulator launches, we can see them through QEMU `-drive` arguments:
  18046. ....
  18047. emulator: argv[21] = "-initrd"
  18048. emulator: argv[22] = "/data/aosp/8.1.0_r60/out/target/product/generic_x86_64/ramdisk.img"
  18049. emulator: argv[23] = "-drive"
  18050. emulator: argv[24] = "if=none,index=0,id=system,file=/path/to/aosp/8.1.0_r60/out/target/product/generic_x86_64/system-qemu.img,read-only"
  18051. emulator: argv[25] = "-device"
  18052. emulator: argv[26] = "virtio-blk-pci,drive=system,iothread=disk-iothread,modern-pio-notify"
  18053. emulator: argv[27] = "-drive"
  18054. emulator: argv[28] = "if=none,index=1,id=cache,file=/path/to/aosp/8.1.0_r60/out/target/product/generic_x86_64/cache.img.qcow2,overlap-check=none,cache=unsafe,l2-cache-size=1048576"
  18055. emulator: argv[29] = "-device"
  18056. emulator: argv[30] = "virtio-blk-pci,drive=cache,iothread=disk-iothread,modern-pio-notify"
  18057. emulator: argv[31] = "-drive"
  18058. emulator: argv[32] = "if=none,index=2,id=userdata,file=/path/to/aosp/8.1.0_r60/out/target/product/generic_x86_64/userdata-qemu.img.qcow2,overlap-check=none,cache=unsafe,l2-cache-size=1048576"
  18059. emulator: argv[33] = "-device"
  18060. emulator: argv[34] = "virtio-blk-pci,drive=userdata,iothread=disk-iothread,modern-pio-notify"
  18061. emulator: argv[35] = "-drive"
  18062. emulator: argv[36] = "if=none,index=3,id=encrypt,file=/path/to/aosp/8.1.0_r60/out/target/product/generic_x86_64/encryptionkey.img.qcow2,overlap-check=none,cache=unsafe,l2-cache-size=1048576"
  18063. emulator: argv[37] = "-device"
  18064. emulator: argv[38] = "virtio-blk-pci,drive=encrypt,iothread=disk-iothread,modern-pio-notify"
  18065. emulator: argv[39] = "-drive"
  18066. emulator: argv[40] = "if=none,index=4,id=vendor,file=/path/to/aosp/8.1.0_r60/out/target/product/generic_x86_64/vendor-qemu.img,read-only"
  18067. emulator: argv[41] = "-device"
  18068. emulator: argv[42] = "virtio-blk-pci,drive=vendor,iothread=disk-iothread,modern-pio-notify"
  18069. ....
  18070. The root directory is the <<initrd>> given on the QEMU CLI, which `/proc/mounts` reports at:
  18071. ....
  18072. rootfs on / type rootfs (ro,seclabel,size=886392k,nr_inodes=221598)
  18073. ....
  18074. This contains the <<android-init>>, which through `.rc` must be mounting mounts the drives int o the right places TODO find exact point.
  18075. The drive order is:
  18076. ....
  18077. system
  18078. cache
  18079. userdata
  18080. encryptionkey
  18081. vendor-qemu
  18082. ....
  18083. Then, on the terminal:
  18084. ....
  18085. mount | grep vd
  18086. ....
  18087. gives:
  18088. ....
  18089. /dev/block/vda1 on /system type ext4 (ro,seclabel,relatime,data=ordered)
  18090. /dev/block/vde1 on /vendor type ext4 (ro,seclabel,relatime,data=ordered)
  18091. /dev/block/vdb on /cache type ext4 (rw,seclabel,nosuid,nodev,noatime,errors=panic,data=ordered)
  18092. ....
  18093. and we see that the order of `vda`, `vdb`, etc. matches that in which `-drive` were given to QEMU.
  18094. Tested on: `8.1.0_r60`.
  18095. ==== Android images read-only
  18096. From `mount`, we can see that some of the mounted images are `ro`.
  18097. Basically, every image that was given to QEMU as qcow2 is writable, and that qcow2 is an overlay over the actual original image.
  18098. In order to make `/system` and `/vendor` writable by using qcow2 for them as well, we must use the `-writable-system` option:
  18099. ....
  18100. ./run-android -- -writable-system
  18101. ....
  18102. * https://android.stackexchange.com/questions/110927/how-to-mount-system-rewritable-or-read-only-rw-ro/207200#207200
  18103. * https://stackoverflow.com/questions/13089694/adb-remount-permission-denied-but-able-to-access-super-user-in-shell-android/43163693#43163693
  18104. then:
  18105. ....
  18106. su
  18107. mount -o rw,remount /system
  18108. date >/system/a
  18109. ....
  18110. Now reboot, and relaunch with `-writable-system` once again to pick up the modified qcow2 images:
  18111. ....
  18112. ./run-android -- -writable-system
  18113. ....
  18114. and the newly created file is still there:
  18115. ....
  18116. date >/system/a
  18117. ....
  18118. `/system` and `/vendor` can be nuked quickly with:
  18119. ....
  18120. ./build-android --extra-args snod
  18121. ./build-android --extra-args vnod
  18122. ....
  18123. as mentioned at: https://stackoverflow.com/questions/29023406/how-to-just-build-android-system-image and on:
  18124. ....
  18125. ./build-android --extra-args help
  18126. ....
  18127. Tested on: `8.1.0_r60`.
  18128. ==== Android /data partition
  18129. When I install an app like F-Droid, it goes under `/data` according to:
  18130. ....
  18131. find / -iname '*fdroid*'
  18132. ....
  18133. and it <<disk-persistency,persists across boots>>.
  18134. `/data` is behind a RW LVM device:
  18135. ....
  18136. /dev/block/dm-0 on /data type ext4 (rw,seclabel,nosuid,nodev,noatime,errors=panic,data=ordered)
  18137. ....
  18138. but TODO I can't find where it comes from since I don't have the CLI tools mentioned at:
  18139. * https://superuser.com/questions/131519/what-is-this-dm-0-device
  18140. * https://unix.stackexchange.com/questions/185057/where-does-lvm-store-its-configuration
  18141. However, by looking at:
  18142. ....
  18143. ./run-android -- -help
  18144. ....
  18145. we see:
  18146. ....
  18147. -data <file> data image (default <datadir>/userdata-qemu.img
  18148. ....
  18149. which confirms the suspicion that this data goes in `userdata-qemu.img`.
  18150. To reset images to their original state, just remove the qcow2 overlay and regenerate it: https://stackoverflow.com/questions/54446680/how-to-reset-the-userdata-image-when-building-android-aosp-and-running-it-on-the
  18151. Tested on: `8.1.0_r60`.
  18152. === Install Android apps
  18153. I don't know how to download files from the web on Vanilla android, the default browser does not download anything, and there is no `wget`:
  18154. * https://android.stackexchange.com/questions/6984/how-to-download-files-from-the-web-in-the-android-browser
  18155. * https://stackoverflow.com/questions/26775079/wget-in-android-terminal
  18156. Installing with `adb install` does however work: https://stackoverflow.com/questions/7076240/install-an-apk-file-from-command-prompt
  18157. https://f-droid.org[F-Droid] installed fine like that, however it does not have permission to install apps: https://www.maketecheasier.com/install-apps-from-unknown-sources-android/
  18158. And the `Settings` app crashes so I can't change it, logcat contains:
  18159. ....
  18160. No service published for: wifip2p
  18161. ....
  18162. which is mentioned at: https://stackoverflow.com/questions/47839955/android-8-settings-app-crashes-on-emulator-with-clean-aosp-build
  18163. We also tried to enable it from the command line with:
  18164. ....
  18165. settings put secure install_non_market_apps 1
  18166. ....
  18167. as mentioned at: https://android.stackexchange.com/questions/77280/allow-unknown-sources-from-terminal-without-going-to-settings-app but it didn't work either.
  18168. No person alive seems to know how to pre-install apps on AOSP: https://stackoverflow.com/questions/6249458/pre-installing-android-application
  18169. Tested on: `8.1.0_r60`.
  18170. === Android init
  18171. For Linux in general, see: xref:init[xrefstyle=full].
  18172. The `/init` executable interprets the `/init.rc` files, which is in a custom Android init system language: https://android.googlesource.com/platform/system/core/+/ee0e63f71d90537bb0570e77aa8a699cc222cfaf/init/README.md
  18173. The top of that file then sources other `.rc` files present on the root directory:
  18174. ....
  18175. import /init.environ.rc
  18176. import /init.usb.rc
  18177. import /init.${ro.hardware}.rc
  18178. import /vendor/etc/init/hw/init.${ro.hardware}.rc
  18179. import /init.usb.configfs.rc
  18180. import /init.${ro.zygote}.rc
  18181. ....
  18182. TODO: how is `ro.hardware` determined? https://stackoverflow.com/questions/20572781/android-boot-where-is-the-init-hardware-rc-read-in-init-c-where-are-servic It is a system property and can be obtained with:
  18183. ....
  18184. getprop ro.hardware
  18185. ....
  18186. This gives:
  18187. ....
  18188. ranchu
  18189. ....
  18190. which is the codename for the QEMU virtual platform we are running on: https://www.oreilly.com/library/view/android-system-programming/9781787125360/9736a97c-cd09-40c3-b14d-955717648302.xhtml
  18191. TODO: is it possible to add a custom `.rc` file without modifying the initrd that <<android-image-structure,gets mounted on root>>? https://stackoverflow.com/questions/9768103/make-persistent-changes-to-init-rc
  18192. Tested on: `8.1.0_r60`.
  18193. == Benchmark this repo
  18194. TODO: didn't fully port during refactor after 3b0a343647bed577586989fb702b760bd280844a. Reimplementing should not be hard.
  18195. In this section document how benchmark builds and runs of this repo, and how to investigate what the bottleneck is.
  18196. Ideally, we should setup an automated build server that benchmarks those things continuously for us, but our <<travis>> attempt failed.
  18197. So currently, we are running benchmarks manually when it seems reasonable and uploading them to: https://github.com/cirosantilli/linux-kernel-module-cheat-regression
  18198. All benchmarks were run on the <<p51>> machine, unless stated otherwise.
  18199. Run all benchmarks and upload the results:
  18200. ....
  18201. cd ..
  18202. git clone https://github.com/cirosantilli/linux-kernel-module-cheat-regression
  18203. cd -
  18204. ./bench-all -A
  18205. ....
  18206. === Continuous integration
  18207. We have explored a few Continuous integration solutions.
  18208. We haven't setup any of them yet.
  18209. ==== Travis
  18210. We tried to automate it on Travis with link:.travis.yml[] but it hits the current 50 minute job timeout: https://travis-ci.org/cirosantilli/linux-kernel-module-cheat/builds/296454523 And I bet it would likely hit a disk maxout either way if it went on.
  18211. ==== CircleCI
  18212. This setup successfully built gem5 on every commit: link:.circleci/config.yml[]
  18213. Enabling it is however blocked on: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/79 so we disabled the builds on the web UI.
  18214. If that ever gets done, we will also need to:
  18215. * convert this to a nightly with a workflow, to save server resources: https://circleci.com/docs/2.0/configuration-reference/#triggers
  18216. * download the prebuilt disk images and enable caches to save the images across runs
  18217. A build took about 1 hour of a core, and the free tier allows for 1000 minutes per month: https://circleci.com/pricing/ so about 17 hours. The cheapest non-free setup seems to be 50 dollars per month gets us infinite build minutes per month and 2 containers, so we could scale things to run in under 24 hours.
  18218. There is no result reporting web UI however... but neither does GitLab CI: https://gitlab.com/gitlab-org/gitlab-ce/issues/17081
  18219. === Benchmark this repo benchmarks
  18220. ==== Benchmark Linux kernel boot
  18221. Run all kernel boot benchmarks for one arch:
  18222. ....
  18223. ./build-test-boot --size 3 && ./test-boot --all-archs --all-emulators --size 3
  18224. cat "$(./getvar test_boot_benchmark_file)"
  18225. ....
  18226. Sample results at LKMC 8fb9db39316d43a6dbd571e04dd46ae73915027f:
  18227. ....
  18228. cmd ./run --arch x86_64 --eval './linux/poweroff.out'
  18229. time 8.25
  18230. exit_status 0
  18231. cmd ./run --arch x86_64 --eval './linux/poweroff.out' --kvm
  18232. time 1.22
  18233. exit_status 0
  18234. cmd ./run --arch x86_64 --eval './linux/poweroff.out' --trace exec_tb
  18235. time 8.83
  18236. exit_status 0
  18237. instructions 2244297
  18238. cmd ./run --arch x86_64 --eval 'm5 exit' --emulator gem5
  18239. time 213.39
  18240. exit_status 0
  18241. instructions 318486337
  18242. cmd ./run --arch arm --eval './linux/poweroff.out'
  18243. time 6.62
  18244. exit_status 0
  18245. cmd ./run --arch arm --eval './linux/poweroff.out' --trace exec_tb
  18246. time 6.90
  18247. exit_status 0
  18248. instructions 776374
  18249. cmd ./run --arch arm --eval 'm5 exit' --emulator gem5
  18250. time 118.46
  18251. exit_status 0
  18252. instructions 153023392
  18253. cmd ./run --arch arm --eval 'm5 exit' --emulator gem5 -- --cpu-type=HPI --caches --l2cache --l1d_size=1024kB --l1i_size=1024kB --l2_size=1024kB --l3_size=1024kB
  18254. time 2250.40
  18255. exit_status 0
  18256. instructions 151981914
  18257. cmd ./run --arch aarch64 --eval './linux/poweroff.out'
  18258. time 4.94
  18259. exit_status 0
  18260. cmd ./run --arch aarch64 --eval './linux/poweroff.out' --trace exec_tb
  18261. time 5.04
  18262. exit_status 0
  18263. instructions 233162
  18264. cmd ./run --arch aarch64 --eval 'm5 exit' --emulator gem5
  18265. time 70.89
  18266. exit_status 0
  18267. instructions 124346081
  18268. cmd ./run --arch aarch64 --eval 'm5 exit' --emulator gem5 -- --cpu-type=HPI --caches --l2cache --l1d_size=1024kB --l1i_size=1024kB --l2_size=1024kB --l3_size=1024kB
  18269. time 381.86
  18270. exit_status 0
  18271. instructions 124564620
  18272. cmd ./run --arch aarch64 --eval 'm5 exit' --emulator gem5 --gem5-build-type fast
  18273. time 58.00
  18274. exit_status 0
  18275. instructions 124346081
  18276. cmd ./run --arch aarch64 --eval 'm5 exit' --emulator gem5 --gem5-build-type debug
  18277. time 1022.03
  18278. exit_status 0
  18279. instructions 124346081
  18280. ....
  18281. TODO: aarch64 gem5 and QEMU use the same kernel, so why is the gem5 instruction count so much much higher?
  18282. <<p51>> Ubuntu 19.10 LKMC b11e3cd9fb5df0e3fe61de28e8264bbc95ea9005 gem5 e779c19dbb51ad2f7699bd58a5c7827708e12b55 aarch64: 143s. Why huge increases from 70s on above table? Kernel size is also huge BTW: 147MB.
  18283. Note that https://gem5.atlassian.net/browse/GEM5-337 "ARM PAuth patch slows down Linux boot 2x from 2 minutes to 4 minutes" was already semi fixed at that point.
  18284. Same but with <<buildroot-vanilla-kernel>> (kernel v4.19): 44s to blow up at "Please append a correct "root=" boot option; here are the available partitions" because missing some filesystem mount option. But likely wouldn't be much more until after boot since we are almost already done by then! Therefore this vanilla kernel is much much faster! TODO find which config or kernel commit added so much time! Also that kernel is tiny at 8.5MB.
  18285. Same but hacking `BR2_LINUX_KERNEL_LATEST_VERSION=y` and `BR2_PACKAGE_HOST_LINUX_HEADERS_CUSTOM_5_3=y` which reaches kernel 5.3.14 which closer to the LKMC one 5.4.3: 40s, which is very similar for the older kernel. Therefore it does not loook like it is a problem of kernel code changes, but rather of configs.
  18286. Same but with: <<gem5-arm-linux-kernel-patches>> at v4.15: 73s, kernel size: 132M.
  18287. On Ubuntu 20.04, LKMC d3f8d3e99f2e554aae6c3b325b350bcf7f3f087f (Linux kernel 5.4.3), gem5 6bc2111c9674d0c8db22f6a6adcc00e49625aabd (sept 2020):
  18288. ....
  18289. ./run --arch aarch64 --emulator gem5 --quit-after-boot
  18290. ....
  18291. took 193s. With some minimal newer kernel boot patches:
  18292. * kernel v5.7: 238s
  18293. * kernel v5.8: 239s
  18294. On Ubuntu 20.04 gem5 3ca404da175a66e0b958165ad75eb5f54cb5e772 this took 22 minutes 53 seconds:
  18295. ....
  18296. ./run -aa -eg --cpus 2 --tmux --quit-after-boot -- --cpu-type DerivO3CPU --caches
  18297. ....
  18298. ===== gem5 arm HPI boot takes much longer than aarch64
  18299. TODO 62f6870e4e0b384c4bd2d514116247e81b241251 takes 33 minutes to finish at 62f6870e4e0b384c4bd2d514116247e81b241251:
  18300. ....
  18301. cmd ./run --arch arm --eval 'm5 exit' --emulator gem5 -- --caches --cpu-type=HPI
  18302. ....
  18303. while aarch64 only 7 minutes.
  18304. I had previously documented on README 10 minutes at: 2eff007f7c3458be240c673c32bb33892a45d3a0 found with `git log` search for `10 minutes`. But then I checked out there, run it, and kernel panics before any messages come out. Lol?
  18305. Logs of the runs can be found at: https://github.com/cirosantilli2/gem5-issues/tree/0df13e862b50ae20fcd10bae1a9a53e55d01caac/arm-hpi-slow
  18306. The cycle count is higher for `arm`, 350M vs 250M for `aarch64`, not nowhere near the 5x runtime time increase.
  18307. A quick look at the boot logs show that they are basically identical in structure: the same operations appear more ore less on both, and there isn't one specific huge time pit in arm: it is just that every individual operation seems to be taking a lot longer.
  18308. [[gem5-x86-64-derivo3cpu-boot-panics]]
  18309. ===== gem5 x86_64 DerivO3CPU boot panics
  18310. https://github.com/cirosantilli2/gem5-issues/issues/2
  18311. ....
  18312. Kernel panic - not syncing: Attempted to kill the idle task!
  18313. ....
  18314. ==== Benchmark emulators on userland executables
  18315. Let's see how fast our simulators are running some well known or easy to understand userland benchmarks!
  18316. TODO: would be amazing to have an automated guest instructions per second count, but I'm not sure how to do that nicely for QEMU: <<qemu-get-guest-instruction-count>>.
  18317. TODO: automate this further, produce the results table automatically, possibly by generalizing link:test-executables[].
  18318. For now we can just run on gem5 to estimate the instruction count per input size and extrapolate?
  18319. For example, the simplest scalable CPU content would be an <<c-busy-loop>>, so let's start by analyzing that one.
  18320. Summary of manually collected results on <<p51>> at LKMC a18f28e263c91362519ef550150b5c9d75fa3679 + 1: xref:table-busy-loop-dmips[xrefstyle=full]. As expected, the less native/more detailed/more complex simulations are slower!
  18321. [[table-busy-loop-dmips]]
  18322. .Busy loop MIPS for different simulator setups
  18323. [options="header"]
  18324. |===
  18325. |Comment |LKMC |Benchmark build |Emulator command |Loops |Time (s) |Instruction count |Approximate MIPS |Hardware version |Host OS
  18326. |Native busy loop
  18327. |a7ae8e6a8e29ef46d79eb9178d8599d1faeea0e5 + 1
  18328. |link:userland/gcc/busy_loop.c[] `-O0`
  18329. |`./run --emulator native --userland userland/gcc/busy_loop.c --cli-args 10000000000`
  18330. |10^10
  18331. |27
  18332. |
  18333. |
  18334. |<<p51>>
  18335. |Ubuntu 20.04
  18336. |QEMU aarch64 busy loop
  18337. |a18f28e263c91362519ef550150b5c9d75fa3679 + 1
  18338. |link:userland/gcc/busy_loop.c[] `-O0`
  18339. |`./run --arch aarch64 --userland userland/gcc/busy_loop.c --cli-args 10000000000`
  18340. |10^10
  18341. |68
  18342. |1.1 * 10^11 (approx)
  18343. |2000
  18344. |
  18345. |
  18346. |gem5 busy loop
  18347. |a18f28e263c91362519ef550150b5c9d75fa3679
  18348. |link:userland/gcc/busy_loop.c[] `-O0`
  18349. |`./run --arch aarch64 --emulator gem5 --static --userland userland/gcc/busy_loop.c --cli-args 1000000`
  18350. |10^6
  18351. |18
  18352. |2.4005699 * 10^7
  18353. |1.3
  18354. |
  18355. |
  18356. |gem5 empty C program statically linked
  18357. |eb22fd3b6e7fff7e9ef946a88b208debf5b419d5
  18358. |link:userland/c/empty.c[] `-O0`
  18359. |`./run --arch aarch64 --emulator gem5 --static --userland userland/c/empty.c`
  18360. |1
  18361. |0
  18362. |5475
  18363. |
  18364. |872cb227fdc0b4d60acc7840889d567a6936b6e1
  18365. |Ubuntu 20.04
  18366. |gem5 empty C program dynamically linked
  18367. |eb22fd3b6e7fff7e9ef946a88b208debf5b419d5
  18368. |link:userland/c/empty.c[] `-O0`
  18369. |`./run --arch aarch64 --emulator gem5 --userland userland/c/empty.c`
  18370. |1
  18371. |0
  18372. |106999
  18373. |
  18374. |872cb227fdc0b4d60acc7840889d567a6936b6e1
  18375. |Ubuntu 20.04
  18376. |gem5 busy loop for a debug build
  18377. |a18f28e263c91362519ef550150b5c9d75fa3679 + 1
  18378. |link:userland/gcc/busy_loop.c[] `-O0`
  18379. |`./run --arch aarch64 --emulator gem5 --gem5-build-type debug --static --userland userland/gcc/busy_loop.c --cli-args 100000`
  18380. |10^5
  18381. |33
  18382. |2.405682 * 10^6
  18383. |0.07
  18384. |
  18385. |
  18386. |gem5 busy loop for a fast build
  18387. |0d5a41a3f88fcd7ed40fc19474fe5aed0463663f + 1
  18388. |link:userland/gcc/busy_loop.c[] `-O0 -static`
  18389. |`./run --arch aarch64 --emulator gem5 --gem5-build-type fast --static --userland userland/gcc/busy_loop.c --cli-args 1000000`
  18390. |10^6
  18391. |15
  18392. |2.4005699 * 10^7
  18393. |1.6
  18394. |
  18395. |
  18396. |gem5 busy loop for a <<gem5-cpu-types,TimingSimpleCPU>>
  18397. |a18f28e263c91362519ef550150b5c9d75fa3679 + 1
  18398. |link:userland/gcc/busy_loop.c[] `-O0`
  18399. |`+./run --arch aarch64 --emulator gem5 --arch aarch64 --static --userland userland/gcc/busy_loop.c --cli-args 1000000 -- --cpu-type TimingSimpleCPU --caches+`
  18400. |10^6
  18401. |26
  18402. |2.4005699 * 10^7
  18403. |0.9
  18404. |
  18405. |
  18406. |gem5 busy loop for a <<gem5-cpu-types,MinorCPU>>
  18407. |a18f28e263c91362519ef550150b5c9d75fa3679 + 1
  18408. |link:userland/gcc/busy_loop.c[] `-O0`
  18409. |`+./run --arch aarch64 --emulator gem5 --arch aarch64 --userland userland/gcc/busy_loop.c --cli-args 1000000 -- --cpu-type MinorCPU --caches+`
  18410. |10^6
  18411. |31
  18412. |1.1018152 * 10^7
  18413. |0.4
  18414. |
  18415. |
  18416. |gem5 busy loop for a <<gem5-cpu-types,DerivO3CPU>>
  18417. |a18f28e263c91362519ef550150b5c9d75fa3679 + 1
  18418. |link:userland/gcc/busy_loop.c[] `-O0`
  18419. |`+./run --arch aarch64 --emulator gem5 --userland userland/gcc/busy_loop.c --userland args 1000000 -- --cpu-type DerivO3CPU --caches+`
  18420. |10^6
  18421. |52
  18422. |1.1018128 * 10^7
  18423. |0.2
  18424. |
  18425. |
  18426. |
  18427. |a18f28e263c91362519ef550150b5c9d75fa3679 + 1
  18428. |link:userland/gcc/busy_loop.c[] `-O0`
  18429. |`+./run --arch aarch64 --emulator gem5 --gem5-build-id MOESI_CMP_directory -- --cpu-type DerivO3CPU --caches --ruby+`
  18430. |1 * 1000000 = 10^6
  18431. |63
  18432. |1.1005150 * 10^7
  18433. |0.2
  18434. |
  18435. |
  18436. |glibc C pre-main effects
  18437. |ab6f7331406b22f8ab6e2df5f8b8e464fb35b611
  18438. |link:userland/c/m5ops.c[] `-O0`
  18439. |`gem5 --arch aarch64 --cli-args e`
  18440. |1
  18441. |2
  18442. |1.26479 * 10^5
  18443. |0.05
  18444. |
  18445. |
  18446. |
  18447. |ab6f7331406b22f8ab6e2df5f8b8e464fb35b611
  18448. |glibc C pre-main link:userland/c/m5ops.c[] `-O0`
  18449. |`gem5 --arch aarch64 --cli-args e --gem5-build-type debug`
  18450. |1
  18451. |2
  18452. |1.26479 * 10^5
  18453. |0.05
  18454. |
  18455. |
  18456. |
  18457. |ab6f7331406b22f8ab6e2df5f8b8e464fb35b611
  18458. |glibc C++ pre-main link:userland/cpp/m5ops.cpp[] `-O0`
  18459. |`gem5 --arch aarch64 --cli-args e`
  18460. |1
  18461. |2
  18462. |2.385012 * 10^6
  18463. |1
  18464. |
  18465. |
  18466. |
  18467. |ab6f7331406b22f8ab6e2df5f8b8e464fb35b611
  18468. |glibc C++ pre-main link:userland/cpp/m5ops.cpp[] `-O0`
  18469. |`gem5 --arch aarch64 --cli-args e --gem5-build-type debug`
  18470. |1
  18471. |25
  18472. |2.385012 * 10^6
  18473. |0.1
  18474. |
  18475. |
  18476. |gem5 optimized build immediate exit on first instruction to benchmark the simulator startup time
  18477. |ab6f7331406b22f8ab6e2df5f8b8e464fb35b611
  18478. |immediate exit link:userland/freestanding/gem5_exit.S[] `-O0`
  18479. |`gem5 --arch aarch64`
  18480. |1
  18481. |1
  18482. |1
  18483. |
  18484. |
  18485. |
  18486. |same as above but debug build
  18487. |ab6f7331406b22f8ab6e2df5f8b8e464fb35b611
  18488. |link:userland/freestanding/gem5_exit.S[] `-O0`
  18489. |`gem5 --arch aarch64 --gem5-build-type debug`
  18490. |1
  18491. |1
  18492. |1
  18493. |
  18494. |
  18495. |
  18496. |Check the effect of an ExecAll log (log every instruction) on execution time, compare to analogous run without it. `trace.txt` size: 3.5GB. 5x slowdown observed with output to a hard disk.
  18497. |d29a07ddad499f273cc90dd66e40f8474b5dfc40
  18498. |link:userland/gcc/busy_loop.c[] `-O0`
  18499. |`./run --arch aarch64 --emulator gem5 --userland userland/gcc/busy_loop.c --cli-args 1000000 --gem5-worktree master --trace ExecAll`
  18500. |10^6
  18501. |2.4106774 * 10^7
  18502. |136
  18503. |0.2
  18504. |
  18505. |Same as above but with run command manually hacked to output to a ramfs. Slightly faster, but the bulk was still just in log format operations!
  18506. |d29a07ddad499f273cc90dd66e40f8474b5dfc40
  18507. |link:userland/gcc/busy_loop.c[] `-O0`
  18508. |`./run --arch aarch64 --emulator gem5 --userland userland/gcc/busy_loop.c --cli-args 1000000 --gem5-worktree master --trace ExecAll`
  18509. |10^6
  18510. |2.4106774 * 10^7
  18511. |107
  18512. |0.2
  18513. |
  18514. |
  18515. |===
  18516. The first step is to determine a number of loops that will run long enough to have meaningful results, but not too long that we will get bored, so about 1 minute.
  18517. On our <<p51>> machine, we found 10^7 (10 million == 1000 times 10000) loops to be a good number for a gem5 atomic simulation:
  18518. ....
  18519. ./run --arch aarch64 --emulator gem5 --userland userland/gcc/busy_loop.c --cli-args '1 10000000'
  18520. ./gem5-stat --arch aarch64 sim_insts
  18521. ....
  18522. as it gives:
  18523. * time: 00:01:40
  18524. * instructions: 110018162 ~ 110 millions
  18525. so ~ 110 million instructions / 100 seconds makes ~ 1 MIPS (million instructions per second).
  18526. This experiment also suggests that each loop is about 11 instructions long (110M instructions / 10M loops), which we confirm at xref:c-busy-loop[xrefstyle=full], bingo!
  18527. Then for QEMU, we experimentally turn the number of loops up to 10^10 loops (`100000 100000`), which contains an expected 11 * 10^10 instructions, and the runtime is 00:01:08, so we have 1.1 * 10^11 instruction / 68 seconds ~ 2 * 10^9 = 2000 MIPS!
  18528. We can then repeat the experiment for other gem5 CPUs to see how they compare.
  18529. ===== User mode vs full system benchmark
  18530. Let's see if user mode runs considerably faster than full system or not, ignoring the kernel boot.
  18531. First we build dhrystonee manually statically since dynamic linking is broken in gem5 as explained at: xref:gem5-syscall-emulation-mode[xrefstyle=full].
  18532. gem5 user mode:
  18533. ....
  18534. ./build-buildroot --arch arm --config 'BR2_PACKAGE_DHRYSTONE=y'
  18535. make \
  18536. -B \
  18537. -C "$(./getvar --arch arm buildroot_build_build_dir)/dhrystone-2" \
  18538. CC="$(./run-toolchain --arch arm --print-tool gcc)" \
  18539. CFLAGS=-static \
  18540. ;
  18541. time \
  18542. ./run \
  18543. --arch arm \
  18544. --emulator gem5 \
  18545. --userland "$(./getvar --arch arm buildroot_build_build_dir)/dhrystone-2/dhrystone" \
  18546. --cli-args 'asdf qwer' \
  18547. ;
  18548. ....
  18549. gem5 full system:
  18550. ....
  18551. time \
  18552. ./run \
  18553. --arch arm \
  18554. --eval-after './gem5.sh' \
  18555. --emulator gem5
  18556. --gem5-readfile 'dhrystone 100000' \
  18557. ;
  18558. ....
  18559. QEMU user mode:
  18560. ....
  18561. time qemu-arm "$(./getvar --arch arm buildroot_build_build_dir)/dhrystone-2/dhrystone" 100000000
  18562. ....
  18563. QEMU full system:
  18564. ....
  18565. time \
  18566. ./run \
  18567. --arch arm \
  18568. --eval-after 'time dhrystone 100000000;./linux/poweroff.out' \
  18569. ;
  18570. ....
  18571. Result on <<p51>> at bad30f513c46c1b0995d3a10c0d9bc2a33dc4fa0:
  18572. * gem5 user: 33 seconds
  18573. * gem5 full system: 51 seconds
  18574. * QEMU user: 45 seconds
  18575. * QEMU full system: 223 seconds
  18576. ==== Benchmark builds
  18577. The build times are calculated after doing `./configure` and https://buildroot.org/downloads/manual/manual.html#_offline_builds[`make source`], which downloads the sources, and basically benchmarks the <<benchmark-internets,Internet>>.
  18578. Sample build time at 2c12b21b304178a81c9912817b782ead0286d282: 28 minutes, 15 with full ccache hits. Breakdown: 19% GCC, 13% Linux kernel, 7% uclibc, 6% host-python, 5% host-qemu, 5% host-gdb, 2% host-binutils
  18579. Buildroot automatically stores build timestamps as milliseconds since Epoch. Convert to minutes:
  18580. ....
  18581. awk -F: 'NR==1{start=$1}; END{print ($1 - start)/(60000.0)}' "$(./getvar buildroot_build_build_dir)/build-time.log"
  18582. ....
  18583. Or to conveniently do a clean build without affecting your current one:
  18584. ....
  18585. ./bench-all -b
  18586. cat ../linux-kernel-module-cheat-regression/*/build-time.log
  18587. ....
  18588. ===== Find which Buildroot packages are making the build slow and big
  18589. ....
  18590. ./build-buildroot -- graph-build graph-size graph-depends
  18591. cd "$(./getvar buildroot_build_dir)/graphs"
  18592. xdg-open build.pie-packages.pdf
  18593. xdg-open graph-depends.pdf
  18594. xdg-open graph-size.pdf
  18595. ....
  18596. [[prebuilt-toolchain]]
  18597. ====== Buildroot use prebuilt host toolchain
  18598. The biggest build time hog is always GCC, and it does not look like we can use a precompiled one: https://stackoverflow.com/questions/10833672/buildroot-environment-with-host-toolchain
  18599. ===== Benchmark Buildroot build baseline
  18600. This is the minimal build we could expect to get away with.
  18601. We will run this whenever the Buildroot submodule is updated.
  18602. On the upstream Buildroot repo at :
  18603. ....
  18604. ./bench-all -B
  18605. ....
  18606. Sample time on 2017.08: 11 minutes, 7 with full ccache hits. Breakdown: 47% GCC, 15% Linux kernel, 9% uclibc, 5% host-binutils. Conclusions:
  18607. * we have bloated our kernel build 3x with all those delicious features :-)
  18608. * GCC time increased 1.5x by our bloat, but its percentage of the total was greatly reduced, due to new packages being introduced.
  18609. +
  18610. `make graph-depends` shows that most new dependencies come from QEMU and GDB, which we can't get rid of anyway.
  18611. A quick look at the system monitor reveals that the build switches between times when:
  18612. * CPUs are at a max, memory is fine. So we must be CPU / memory speed bound. I bet that this happens during heavy compilation.
  18613. * CPUs are not at a max, and memory is fine. So we are likely disk bound. I bet that this happens during configuration steps.
  18614. This is consistent with the fact that ccache reduces the build time only partially, since ccache should only overcome the CPU bound compilation steps, but not the disk bound ones.
  18615. The instructions counts varied very little between the baseline and LKMC, so runtime overhead is not a big deal apparently.
  18616. Size:
  18617. * `bzImage`: 4.4M
  18618. * `rootfs.cpio`: 1.6M
  18619. Zipped: 4.9M, `rootfs.cpio` deflates 50%, `bzImage` almost nothing.
  18620. ===== Benchmark gem5 build
  18621. How long it takes to build gem5 itself.
  18622. We will update this whenever the gem5 submodule is updated.
  18623. All benchmarks done on <<p51>>.
  18624. Get results with:
  18625. ....
  18626. ./bench-all --emulator gem5
  18627. tail -n+1 ../linux-kernel-module-cheat-regression/*/gem5-bench-build-*.txt
  18628. ....
  18629. Ubuntu 19.10, GCC 9.2.1, LKMC 7c6bb29bc89ec3f1056c0680c3f08bd64018a7bc, gem5 d7d9bc240615625141cd6feddbadd392457e49eb (2020-02-18), `./build --arch aarch64 --gem5-worktree master --no-cache`: 19m 33s TODO must investigate why it got so much worse.
  18630. Ubuntu 20.04, GCC 9.3.0, LKMC 6275f70ed8862d8fe4e58ca4524a6994d254be35, gem5 d9cb548d83fa81858599807f54b52e5be35a6b03 (2020-05-06), `./build --arch aarch64 --gem5-worktree master --no-cache`: 28m!!! It's out of control.
  18631. Same but gem5 d7d9bc240615625141cd6feddbadd392457e49eb (2018-06-17) hacked with `-Wnoerror`: 11m 37s. So there was a huge regression in the last two years! We have to find it out.
  18632. A profiling of the build has been done at: https://gem5.atlassian.net/browse/GEM5-277 Analysis there showed that d7d9bc240615625141cd6feddbadd392457e49eb (2018-06-17) is also composed of 50% pybind11 and with no obvious time sinks.
  18633. ====== pybind11 accounts for 50% of gem5 build time
  18634. https://gem5.atlassian.net/browse/GEM5-366
  18635. Yes, <<pybind11>> is slow to build.
  18636. See also: <<gem5-python-c-interaction>>.
  18637. ====== Benchmark gem5 single file change rebuild time
  18638. This is the critical development parameter, and is dominated by the link time of huge binaries.
  18639. In order to benchmark it better, make a comment only change to:
  18640. ....
  18641. vim submodules/gem5/src/sim/main.cc
  18642. ....
  18643. then rebuild with:
  18644. ....
  18645. ./build-gem5 --arch aarch64 --verbose
  18646. ....
  18647. and then copy the link command to a separate Bash file. Then you can time and modify it easily.
  18648. Some approximate reference values on <<p51>> LKMC d4b3e064adeeace3c3e7d106801f95c14637c12f + 1 (doing multiple runs to warm up disk caches):
  18649. * `opt`
  18650. ** unmodified: 10 seconds
  18651. ** `LDFLAGS_EXTRA=-fuse-ld=gold`: 6 seconds. Huge improvement! Note that in general you have to do a full rebuild or else link may fail: https://sourceware.org/bugzilla/show_bug.cgi?id=23869
  18652. +
  18653. More info on gold:
  18654. +
  18655. *** https://stackoverflow.com/questions/3476093/replacing-ld-with-gold-any-experience/53921263#53921263
  18656. *** https://gem5-review.googlesource.com/c/public/gem5/+/14075
  18657. * `debug`
  18658. ** unmodified: 14 seconds. Why so much slower than unmodified?
  18659. ** `-fuse-ld=gold`: `internal error in read_cie, at ../../gold/ehframe.cc:919` on Ubuntu 18.04 all GCC. https://sourceware.org/bugzilla/show_bug.cgi?id=23869
  18660. * `fast`
  18661. ** `--force-lto`: 1 minute. Slower as expected, since more optimizations are done at link time. `--force-lto` is only used for `fast`, and it adds `-flto` to the build.
  18662. * `opt LDFLAGS_EXTRA=-s`: stripping the executable greatly reduces link time, but you get no symbols
  18663. ramfs made no difference, the kernel must be caching files in memory very efficiently already.
  18664. In addition to the link time, scons startup time can also be considerable:
  18665. * https://gem5.atlassian.net/browse/GEM5-256
  18666. * https://gem5-review.googlesource.com/c/public/gem5/+/25385
  18667. On LKMC 220c3a434499e4713664d4a47c246cb81ee0a06a gem5 63e96992568d8a8a0dccac477b8b7f1370ac7e98 (Sep 2020):
  18668. * `opt`
  18669. ** default link: `18.32user 3.99system 0:22.33elapsed 99%CPU (0avgtext+0avgdata 4622908maxresident)k`
  18670. ** `LDFLAGS_EXTRA=-fuse-ld=lld` (after a build with default linker): `6.74user 1.81system 0:03.85elapsed 222%CPU (0avgtext+0avgdata 7025292maxresident)k`
  18671. ** `LDFLAGS_EXTRA=-fuse-ld=gold`: `7.70user 1.36system 0:09.44elapsed 95%CPU (0avgtext+0avgdata 5959152maxresident)k`
  18672. *** `LDFLAGS_EXTRA=-fuse-ld=gold -Wl,--threads -Wl,--thread-count=8`: `9.66user 1.86system 0:04.62elapsed 249%CPU (0avgtext+0avgdata 5989916maxresident)k`
  18673. +
  18674. Arghhh, it does not use multile threads by default... https://stackoverflow.com/questions/5142753/can-gcc-use-multiple-cores-when-linking/42302047#42302047
  18675. === Benchmark machines
  18676. [[p51]]
  18677. ==== 2017 Lenovo ThinkPad P51
  18678. Serial number: TYPE 20HH-CTO1WW S/N PF-0V5V5N 17/11
  18679. Parts: https://support.lenovo.com/gb/en/solutions/pd105026 (https://web.archive.org/web/20200607133848/https://support.lenovo.com/gb/en/solutions/pd105026[archive])
  18680. Hardware maintenance manual: https://download.lenovo.com/pccbbs/mobiles_pdf/p51_hmm_en_sp40k88791_01.pdf (https://web.archive.org/web/20200607155330/https://download.lenovo.com/pccbbs/mobiles_pdf/p51_hmm_en_sp40k88791_01.pdf[archive])
  18681. Summary string of key hardware for copy paste:
  18682. ____
  18683. Lenovo ThinkPad P51 laptop with CPU: <<intel-core-i7-7820hq-cpu,Intel Core i7-7820HQ>> (4 cores / 8 threads, 2.90 GHz base, 8 MB cache), DRAM: 2x <<samsung-m471a2k43bb1-crc-16gb-dram,Samsung M471A2K43BB1-CRC>> (2x 16GiB, 2400 Mbps), SSD: <<samsung-mzvlb512hajq-000l7-512gb-ssd,Samsung MZVLB512HAJQ-000L7>> (512GB, 3,000 MB/s).
  18684. ____
  18685. Further specs:
  18686. * Hard disk: <<seagate-st1000lm035-1rk1-1tb-hard-disk>>
  18687. * GPU: <<nvidia-quadro-m1200-4gb-gddr5-gpu>>
  18688. * Pre-installed OS:
  18689. ** Windows 10 Pro 64
  18690. ** Windows 10 Pro 64 WE (EN/FR/DE/NL/IT)
  18691. * Display: 15.6" FHD (1920x1080), anti-glare, IPS
  18692. * With Color Sensor
  18693. * 720p HD Camera with Microphone
  18694. * Keyboard with Number Pad - Euro English
  18695. * 3+3BCP, Fingerprint Reader,Color Sensor
  18696. * Integrated Fingerprint Reader
  18697. * Hardware dTPM2.0 Enabled
  18698. * 1TB 5400rpm HDD
  18699. * 170W AC Adapter - UK(3pin)
  18700. * 6 Cell Li-Polymer Battery, 90Wh
  18701. * Intel Dual Band Wireless AC(2x2) 8265, Bluetooth Version 4.1, vPro
  18702. Parts:
  18703. * keyboard FRU number: 01HW271 (written on part, Payton2Walter2 NBL KBD,USI,DFN according to https://support.lenovo.com/us/en/partslookup That website says 01ER981 is equivalent (Payton2Walter2 NBL KBD,USI,CHY), just different manufacturer
  18704. Reddit threads:
  18705. * https://www.reddit.com/r/linux4noobs/comments/5zyejw/update_1604_tp_1610_boot_hangs_at_started_nvidia/
  18706. * https://www.reddit.com/r/Lenovo/comments/6g8m9w/ubuntu_on_lenovo_p51/
  18707. * https://www.reddit.com/r/thinkpad/comments/6hi0zn/if_youre_thinking_of_running_linux_on_a_p51_read/
  18708. ===== P51 benchmarks
  18709. ===== Intel Core i7-7820HQ CPU
  18710. https://ark.intel.com/products/97496/Intel-Core-i7-7820HQ-Processor-8M-Cache-up-to-3-90-GHz- (http://web.archive.org/web/20181224203737/https://ark.intel.com/products/97496/Intel-Core-i7-7820HQ-Processor-8M-Cache-up-to-3-90-GHz-[archive]).
  18711. Cache: 8MB
  18712. Max frequency: 3.90GHz
  18713. Cores: 4
  18714. <<hardware-threads>>: 8
  18715. Recommended customer price: 378.00 USD
  18716. Launch date: Q1'17
  18717. Process: 14 nm
  18718. `cat /proc/cpuinfo` of one CPU on Ubuntu 20.04 Linux kernel 5.4.0:
  18719. ....
  18720. processor : 0
  18721. vendor_id : GenuineIntel
  18722. cpu family : 6
  18723. model : 158
  18724. model name : Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz
  18725. stepping : 9
  18726. microcode : 0xd6
  18727. cpu MHz : 1025.664
  18728. cache size : 8192 KB
  18729. physical id : 0
  18730. siblings : 8
  18731. core id : 0
  18732. cpu cores : 4
  18733. apicid : 0
  18734. initial apicid : 0
  18735. fpu : yes
  18736. fpu_exception : yes
  18737. cpuid level : 22
  18738. wp : yes
  18739. flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d
  18740. bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs taa itlb_multihit srbds
  18741. bogomips : 5799.77
  18742. clflush size : 64
  18743. cache_alignment : 64
  18744. address sizes : 39 bits physical, 48 bits virtual
  18745. power management:
  18746. ....
  18747. `getconf -a | grep CACHE` on Ubuntu 20.04 Linux kernel 5.4.0:
  18748. ....
  18749. LEVEL1_ICACHE_SIZE 32768
  18750. LEVEL1_ICACHE_ASSOC 8
  18751. LEVEL1_ICACHE_LINESIZE 64
  18752. LEVEL1_DCACHE_SIZE 32768
  18753. LEVEL1_DCACHE_ASSOC 8
  18754. LEVEL1_DCACHE_LINESIZE 64
  18755. LEVEL2_CACHE_SIZE 262144
  18756. LEVEL2_CACHE_ASSOC 4
  18757. LEVEL2_CACHE_LINESIZE 64
  18758. LEVEL3_CACHE_SIZE 8388608
  18759. LEVEL3_CACHE_ASSOC 16
  18760. LEVEL3_CACHE_LINESIZE 64
  18761. LEVEL4_CACHE_SIZE 0
  18762. LEVEL4_CACHE_ASSOC 0
  18763. LEVEL4_CACHE_LINESIZE 0
  18764. ....
  18765. ===== Samsung M471A2K43BB1-CRC 16GB DRAM
  18766. Nominal speed: 2400 Mbps
  18767. Type: SODIMM
  18768. https://www.samsung.com/semiconductor/dram/module/M471A2K43BB1-CRC/ (http://web.archive.org/web/20181224202657/https://www.samsung.com/semiconductor/dram/module/M471A2K43BB1-CRC/[archive]).
  18769. https://www.amazon.co.uk/Samsung-DDR4-16-GB-DDR4-2400-MHz-Memory-Module/dp/B016N24XKQ (http://web.archive.org/web/20181224203214/https://www.amazon.co.uk/Samsung-DDR4-16-GB-DDR4-2400-MHz-Memory-Module/dp/B016N24XKQ[archive]) 355.43 UK Pounds for 2x 16 GiB.
  18770. ===== Samsung MZVLB512HAJQ-000L7 512GB SSD
  18771. PCIe TLC OPAL2.
  18772. https://www.samsung.com/semiconductor/ssd/client-ssd/MZVLB512HAJQ/ (http://web.archive.org/web/20181224225400/https://www.samsung.com/semiconductor/ssd/client-ssd/MZVLB512HAJQ/[archive]).
  18773. https://www.samsung.com/semiconductor/global.semi/file/resource/2018/05/PM981_M.2_SSD_Datasheet_v1.3_for_General.pdf | http://web.archive.org/web/20181224225410/https://www.samsung.com/semiconductor/global.semi/file/resource/2018/05/PM981_M.2_SSD_Datasheet_v1.3_for_General.pdf
  18774. `sudo hdparm -Tt /dev/nvme0n1p5` on Ubuntu 20.04:
  18775. ....
  18776. Timing cached reads: 29812 MB in 1.99 seconds = 15007.00 MB/sec
  18777. HDIO_DRIVE_CMD(identify) failed: Inappropriate ioctl for device
  18778. Timing buffered disk reads: 6328 MB in 3.00 seconds = 2109.00 MB/sec
  18779. ....
  18780. Nominal maximum sequential read speed: 3,000 MB/s
  18781. ===== Seagate ST1000LM035-1RK1 1TB hard disk
  18782. 1TB.
  18783. https://www.disctech.com/Seagate-ST1000LM035-1TB-SATA-Hard-Drive 80 USD | http://web.archive.org/web/20181224201408/https://www.disctech.com/Seagate-ST1000LM035-1TB-SATA-Hard-Drive
  18784. https://www.seagate.com/www-content/datasheets/pdfs/mobile-hddDS1861-2-1603-en_US.pdf | http://web.archive.org/web/20181225095438/https://www.seagate.com/www-content/datasheets/pdfs/mobile-hddDS1861-2-1603-en_US.pdf
  18785. `sudo hdparm -Tt /dev/sda3` on Ubuntu 20.04:
  18786. ....
  18787. Timing cached reads: 29594 MB in 1.99 seconds = 14893.89 MB/sec
  18788. Timing buffered disk reads: 386 MB in 3.01 seconds = 128.07 MB/sec
  18789. ....
  18790. Nominal maximum speed: 140MB/s
  18791. ===== NVIDIA Quadro M1200 4GB GDDR5 GPU
  18792. === Benchmark Internets
  18793. ==== 38Mbps internet
  18794. 2c12b21b304178a81c9912817b782ead0286d282:
  18795. * shallow clone of all submodules: 4 minutes.
  18796. * `make source`: 2 minutes
  18797. Google M-lab speed test: 36.4Mbps
  18798. === Benchmark this repo bibliography
  18799. gem5:
  18800. * https://www.mail-archive.com/gem5-users@gem5.org/msg15262.html[] which parts of the gem5 code make it slow
  18801. * what are the minimum system requirements:
  18802. ** https://stackoverflow.com/questions/47997565/gem5-system-requirements-for-decent-performance/48941793#48941793
  18803. ** https://github.com/gem5/gem5/issues/25
  18804. == Compilers
  18805. Argh, compilers are boring, let's learn a bit about them.
  18806. === Prevent statement reordering
  18807. link:userland/gcc/prevent_reorder.cpp[]
  18808. https://stackoverflow.com/questions/37786547/enforcing-statement-order-in-c/56865717#56865717
  18809. We often need to do this to be sure that benchmark instrumentation is actually being put around the region of interest!
  18810. === C busy loop
  18811. link:userland/gcc/busy_loop.c[]
  18812. The hard part is how to prevent the compiler from optimizing it away: https://stackoverflow.com/questions/7083482/how-to-prevent-gcc-from-optimizing-out-a-busy-wait-loop/58758133#58758133
  18813. <<disas,Disassembly>> analysis:
  18814. ....
  18815. ./disas --arch aarch64 --userland userland/gcc/busy_loop.out busy_loop
  18816. ....
  18817. which contains at LKMC eb22fd3b6e7fff7e9ef946a88b208debf5b419d5:
  18818. ....
  18819. 10 ) {
  18820. 0x0000000000400700 <+0>: ff 83 00 d1 sub sp, sp, #0x20
  18821. 0x0000000000400704 <+4>: e0 07 00 f9 str x0, [sp, #8]
  18822. 0x0000000000400708 <+8>: e1 03 00 f9 str x1, [sp]
  18823. 11 for (unsigned long long i = 0; i < max2; i++) {
  18824. 0x000000000040070c <+12>: ff 0f 00 f9 str xzr, [sp, #24]
  18825. 0x0000000000400710 <+16>: 11 00 00 14 b 0x400754 <busy_loop+84>
  18826. 12 for (unsigned long long j = 0; j < max; j++) {
  18827. 0x0000000000400714 <+20>: ff 0b 00 f9 str xzr, [sp, #16]
  18828. 0x0000000000400718 <+24>: 08 00 00 14 b 0x400738 <busy_loop+56>
  18829. 13 __asm__ __volatile__ ("" : "+g" (i), "+g" (j) : :);
  18830. 0x000000000040071c <+28>: e1 0f 40 f9 ldr x1, [sp, #24]
  18831. 0x0000000000400720 <+32>: e0 0b 40 f9 ldr x0, [sp, #16]
  18832. 0x0000000000400724 <+36>: e1 0f 00 f9 str x1, [sp, #24]
  18833. 0x0000000000400728 <+40>: e0 0b 00 f9 str x0, [sp, #16]
  18834. 12 for (unsigned long long j = 0; j < max; j++) {
  18835. 0x000000000040072c <+44>: e0 0b 40 f9 ldr x0, [sp, #16]
  18836. 0x0000000000400730 <+48>: 00 04 00 91 add x0, x0, #0x1
  18837. 0x0000000000400734 <+52>: e0 0b 00 f9 str x0, [sp, #16]
  18838. 0x0000000000400738 <+56>: e1 0b 40 f9 ldr x1, [sp, #16]
  18839. 0x000000000040073c <+60>: e0 07 40 f9 ldr x0, [sp, #8]
  18840. 0x0000000000400740 <+64>: 3f 00 00 eb cmp x1, x0
  18841. 0x0000000000400744 <+68>: c3 fe ff 54 b.cc 0x40071c <busy_loop+28> // b.lo, b.ul, b.last
  18842. 11 for (unsigned long long i = 0; i < max2; i++) {
  18843. 0x0000000000400748 <+72>: e0 0f 40 f9 ldr x0, [sp, #24]
  18844. 0x000000000040074c <+76>: 00 04 00 91 add x0, x0, #0x1
  18845. 0x0000000000400750 <+80>: e0 0f 00 f9 str x0, [sp, #24]
  18846. 0x0000000000400754 <+84>: e1 0f 40 f9 ldr x1, [sp, #24]
  18847. 0x0000000000400758 <+88>: e0 03 40 f9 ldr x0, [sp]
  18848. 0x000000000040075c <+92>: 3f 00 00 eb cmp x1, x0
  18849. 0x0000000000400760 <+96>: a3 fd ff 54 b.cc 0x400714 <busy_loop+20> // b.lo, b.ul, b.last
  18850. 14 }
  18851. 15 }
  18852. 16 }
  18853. 0x0000000000400764 <+100>: 1f 20 03 d5 nop
  18854. 0x0000000000400768 <+104>: ff 83 00 91 add sp, sp, #0x20
  18855. 0x000000000040076c <+108>: c0 03 5f d6 ret
  18856. ....
  18857. We look for the internal backwards jumps, and we find two:
  18858. ....
  18859. 0x00000000004006dc <+68>: c8 fe ff 54 b.hi 0x4006b4 <busy_loop+28> // b.pmore
  18860. 0x00000000004006f8 <+96>: a8 fd ff 54 b.hi 0x4006ac <busy_loop+20> // b.pmore
  18861. ....
  18862. and so clearly the one at 0x4006dc happens first and jumps to a larger address than the other one, so the internal loop must be between 4006dc and 4006b4, which contains exactly 11 instructions.
  18863. Oh my God, unoptimized code is so horrendously inefficient, even I can't stand all those useless loads and stores to memory variables!!!
  18864. == Computer architecture
  18865. === Instruction pipelining
  18866. In gem5, can be seen on:
  18867. * <<gem5-minorcpu>>
  18868. * <<gem5-derivo3cpu>>
  18869. ==== Classic RISC pipeline
  18870. https://en.wikipedia.org/wiki/Classic_RISC_pipeline
  18871. gem5's <<gem5-minorcpu>> implements a similar but 4 stage pipeline. TODO why didn't they go with the classic RISC pipeline instead?
  18872. === Superscalar processor
  18873. https://en.wikipedia.org/wiki/Superscalar_processor
  18874. http://www.lighterra.com/papers/modernmicroprocessors/ explains it well.
  18875. You basically decode multiple instructions in one go, and run them at the same time if they can go in separate <<execution-unit,functional units>> and have no conflicts. Genius!
  18876. And so the concept of <<branch-predictor,branch predictor>> must come in here: when a conditional branch is reached, you have to decide which side to execute before knowing for sure.
  18877. This is why it is called a type of <<instruction-level-parallelism>>.
  18878. Although this is a microarchitectural feature, it is so important that it is publicly documented. For example:
  18879. * https://en.wikipedia.org/wiki/ARM_Cortex-A77[]: ARM Cortex A77 (2019) has a 4-wide superscalar decode (and is <<out-of-order-execution,out-of-order>>)
  18880. ==== Execution unit
  18881. https://en.wikipedia.org/wiki/Execution_unit
  18882. gem5 calls them "functional units".
  18883. gem5 has <<execution-unit,functional units>> explicitly modelled as shown at <<gem5-functional-units>>, and those are used by both <<gem5-minorcpu>> and <<gem5-derivo3cpu>>.
  18884. === Out-of-order execution
  18885. https://en.wikipedia.org/wiki/Out-of-order_execution
  18886. gem5's model is <<gem5-derivo3cpu>>.
  18887. Allows working around data dependencies: you can execute the second next instruction forward if the first next depends on the current one.
  18888. Likely used on basically all (?) 2020 non-power-constrained CPUs.
  18889. As mentioned at: https://stackoverflow.com/questions/10074831/what-is-general-difference-between-superscalar-and-ooo-execution it is in theory possible for an out-of-order CPU to not a <<superscalar-processor>>, but the combination is so natural (since you can look ahead, you might as well run it!) that it is not super common.
  18890. ==== Speculative execution
  18891. https://en.wikipedia.org/wiki/Speculative_execution
  18892. A gem5 example can be seen at: <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-speculative>>.
  18893. Bibliography:
  18894. * https://stackoverflow.com/questions/49601910/out-of-order-execution-vs-speculative-execution
  18895. ===== Branch predictor
  18896. https://en.wikipedia.org/wiki/Branch_predictor
  18897. Comes in for <<superscalar-processor,superscalar processors>>.
  18898. A gem5 example can be seen at: <<gem5-event-queue-derivo3cpu-syscall-emulation-freestanding-example-analysis-speculative>>.
  18899. ==== Re-order buffer
  18900. https://en.wikipedia.org/wiki/Re-order_buffer
  18901. ==== Register renaming
  18902. https://en.wikipedia.org/wiki/Register_renaming
  18903. === Instruction level parallelism
  18904. https://en.wikipedia.org/wiki/Instruction-level_parallelism
  18905. Basically means decoding and then potentially executing a bunch of instructions in one go.
  18906. Important examples:
  18907. * <<superscalar-processor>>
  18908. === Hardware threads
  18909. Intel name: "Hyperthreading"
  18910. * https://superuser.com/questions/133082/what-is-the-difference-between-hyper-threading-and-multiple-cores/995858#995858
  18911. * https://stackoverflow.com/questions/5593328/software-threads-vs-hardware-threads/61415402#61415402
  18912. * https://superuser.com/questions/122536/what-is-hyper-threading-and-how-does-it-work
  18913. gem5 appears to possibly have attempted to implement hardware threads in <<gem5-syscall-emulation-mode>> as mentioned at <<gem5-syscall-emulation-smt>>.
  18914. On fs.py it is not exposed in any in-tree config however, and as pointed by the above issue O3 FS has an assert that prevents it in https://github.com/gem5/gem5/blob/377898c4034c72b84b2662ed252fa25079a4ea62/src/cpu/o3/cpu.cc#L313[src/cpu/o3/cpu.cc]:
  18915. ....
  18916. // SMT is not supported in FS mode yet.
  18917. assert(this->numThreads == 1);
  18918. ....
  18919. TODO why only in fs.py? Is there much difference between fs and se from a hyperthreading point of view? Maybe the message is there because as concluded in <<gem5-o3threadcontext>>, registeres for `DerivO3CPU` are stored in `DerivO3CPU` itself (`FullO3CPU`), and therefore there is no way to to currently represent multiple register sets per CPU.
  18920. Other CPUs just appear to fail non-gracefully, e.g.:
  18921. ....
  18922. ./run --arch aarch64 --emulator gem5 -- --param 'system.cpu[0].numThreads = 2'
  18923. ....
  18924. fails with:
  18925. ....
  18926. fatal: fatal condition interrupts.size() != numThreads occurred: CPU system.cpu has 1 interrupt controllers, but is expecting one per thread (2)
  18927. ....
  18928. === Caches
  18929. https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec15.pdf contains some of the first pictures you should see.
  18930. In a direct-mapped cache architecture (every address has a single possible block), a memory address can be broken up into:
  18931. ....
  18932. +-----+-------+--------------+
  18933. | | | | full address
  18934. +-----+-------+--------------+
  18935. | | | |
  18936. | tag | index | block offset |
  18937. ....
  18938. where:
  18939. * index: determines in which block the address will go. This is the "index/ID of the block" it will go into!
  18940. * tag: allows us to differentiate between multiple addresses that have the same index
  18941. +
  18942. We really want tag to be the higher bits, so that consecutive blocks may be placed in the cache at once.
  18943. * block offset: address withing the cache. Not used to find caches at all! Only used to find the data within the cache line
  18944. If the cache is set associative, we just simply make the index smaller and add a bits to the tag.
  18945. For example, for a 2-way associative cache, we remove on bit from the index, and add it to the tag.
  18946. ==== Cache coherence
  18947. https://en.wikipedia.org/wiki/Cache_coherence
  18948. In simple terms, when a certain group of caches of different CPUs are coherent, reads on one core always see the writes previously made by other cores. TODO: is it that strict, or just ordering? TODO what about simultaneous read and writes?
  18949. http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture07-sc.pdf mentions that:
  18950. Cache coherence:
  18951. - guarantees eventual write propagation
  18952. - guarantees a single order of all writes to same location
  18953. - no guarantees on when writes propagate
  18954. And notably it contrasts that with <<memory-consistency>>, which according to them is about ordering requirements on _different_ addresses.
  18955. Algorithms to keep the caches of different cores of a system coherent. Only matters for multicore systems.
  18956. The main goal of such systems is to reduce the number of messages that have to be sent on the coherency bus, and even more importantly, to memory (which passes first through the coherency bus).
  18957. The main software use case example to have in mind is that of multiple threads incrementing an atomic counter as in link:userland/cpp/atomic/std_atomic.cpp[], see also: <<atomic-cpp>>. Then, if one processors writes to the cache, other processors have to know about it before they read from that address.
  18958. Even if caches are coherent, this is still not enough to avoid data race conditions, because this does not enforce atomicity of read modify write sequences. This is for example shown at: <<detailed-gem5-analysis-of-how-data-races-happen>>.
  18959. ===== Memory consistency
  18960. According to http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture07-sc.pdf "memory consistency" is about ordering requirements of different memory addresses.
  18961. This is represented explicitly in C++ for example <<cpp-memory-order>>.
  18962. ====== Sequential Consistency
  18963. According to http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture07-sc.pdf[], the strongest possible consistency, everything nicely ordered as you'd expect.
  18964. ===== Can caches snoop data from other caches?
  18965. Either they can snoop only control, or both control and data can be snooped.
  18966. The answer to this determines if some of the following design decisions make sense.
  18967. This is the central point in question at: https://electronics.stackexchange.com/questions/484830/why-is-a-flush-needed-in-the-msi-cache-coherency-protocol-when-moving-from-modif
  18968. If data snoops are not possible, then data must always to to DRAM first.
  18969. ===== VI cache coherence protocol
  18970. Mentioned at:
  18971. * http://courses.csail.mit.edu/6.888/spring13/lectures/L7-coherence.pdf
  18972. * http://csg.csail.mit.edu/6.823S16/lectures/L15.pdf
  18973. This is the most trivial, but likely it is too bad and most sources don't even mention it.
  18974. In what follows I make some stuff up with design choice comparisons, needs confirmation.
  18975. In this protocol, every cache only needs a single bit of state: validity.
  18976. At the start, everything is invalid.
  18977. Then, when you need to read and are invalid, you send a read on bus. If there is another valid cache in another CPU, it services the request. Otherwise, goes the request goes to memory. After read you become valid.
  18978. Read for valid generates no bus requests, which is good.
  18979. When you write, if you are invalid, you must first read to get the full cache line, like for any other protocol.
  18980. Then, there are two possible design choices, either:
  18981. * that read is marked as exclusive, and all caches that had it, snoop it become invalid.
  18982. +
  18983. Upside: no need to send the new data to the bus.
  18984. +
  18985. Downside: more invalidations. But those are not too serious, because future invalid reads tend to just hit the remaining valid cache.
  18986. * after the read and write, you send the data on the bus, and those that had it update and become valid.
  18987. +
  18988. Downside: much more data on bus, so likely this is not going to be the best choice.
  18989. So we take the first option.
  18990. When you write and are valid, you don't need to read. But you still have invalidate everyone else, because multiple reads can lead to multiple valid holders, otherwise other valid holders would keep reading old values.
  18991. We could either do this with an exclusive read, and ignore the return, or with a new Invalidate request that has no reply. This invalidation is called `BusUpgr` to match with Wikipedia.
  18992. Write also has two other possible design choices, either:
  18993. * every write writes through to memory. This is likely never the best option.
  18994. * when the cache is full, eviction leads to a write to memory.
  18995. +
  18996. If multiple valid holders may exist, then this may lead to multiple write through evictions of the same thing.
  18997. So we take the second option.
  18998. With this we would have:
  18999. * V
  19000. ** PrRd
  19001. *** V
  19002. ***
  19003. ** PrWr
  19004. *** V
  19005. *** BusUpgr
  19006. ** BusRd
  19007. *** V
  19008. *** BusData
  19009. ** BusRdX
  19010. *** I
  19011. *** BusData
  19012. ** BusUpgr
  19013. *** I
  19014. ***
  19015. * I
  19016. ** PrRd
  19017. *** V
  19018. *** BusRd
  19019. ** PrWr
  19020. *** V
  19021. *** BusRdX
  19022. ** BusRd
  19023. *** I
  19024. ***
  19025. ** BusRdX
  19026. *** I
  19027. ***
  19028. ** BusUpgr
  19029. *** I
  19030. ***
  19031. Here Flush and BusData replies are omitted since those never lead to a change of state, nor to the sending of further messages.
  19032. TODO at:
  19033. * http://courses.csail.mit.edu/6.888/spring13/lectures/L7-coherence.pdf
  19034. * http://csg.csail.mit.edu/6.823S16/lectures/L15.pdf
  19035. why PrWr stays in invalid? Why do writes always go to memory? Why not wait until eviction?
  19036. ===== MSI cache coherence protocol
  19037. https://en.wikipedia.org/wiki/MSI_protocol
  19038. This is the most basic non-trivial coherency protocol, and therefore the first one you should learn.
  19039. Compared to the <<vi-cache-coherence-protocol>>, MSI:
  19040. * adds one bit of knowledge per cache line (shared)
  19041. * splits Valid into Modified and Shared depending on the shared bit
  19042. * this allows us to not send BusUpgr messages on the bus when writing to Modified, since we now we know that the data is not present in any other cache!
  19043. Helpful video: https://www.youtube.com/watch?v=gAUVAel-2Fg "MSI Coherence - Georgia Tech - HPCA: Part 5" by Udacity.
  19044. Let's focus on a single cache line representing a given memory address.
  19045. The system looks like this:
  19046. ....
  19047. +----+
  19048. |DRAM|
  19049. +----+
  19050. ^
  19051. |
  19052. v
  19053. +--------+
  19054. | BUS |
  19055. +--------+
  19056. ^ ^
  19057. | |
  19058. v v
  19059. +------+ +------+
  19060. |CACHE1| |CACHE2|
  19061. +------+ +------+
  19062. ^ ^
  19063. | |
  19064. | |
  19065. +----+ +----+
  19066. |CPU1| |CPU2|
  19067. +----+ +----+
  19068. ....
  19069. MSI stands for which states each cache can be in for a given cache line. The states are:
  19070. * Modified: a single cache has the valid data and it has been modified from DRAM.
  19071. +
  19072. Both reads and writes are free, because we don't have to worry about other processors.
  19073. * Shared: the data is synchronized with DRAM, and may be present in multiple caches.
  19074. +
  19075. Reads are free, but writes need to do extra work.
  19076. +
  19077. This is the "most interesting" state of the protocol, as it allows for those free reads, even when multiple processors are using some address.
  19078. * Invalid: the cache does not have the data, CPU reads and writes need to do extra work
  19079. The above allowed states can be summarized in the following table:
  19080. ....
  19081. CACHE1
  19082. MSI
  19083. M nny
  19084. CACHE2 S nyy
  19085. I yyy
  19086. ....
  19087. The whole goal of the protocol is to maintain that state at all times, so that we can get those free reads when in shared state!
  19088. To do so, the caches have to pass messages between themselves! This means generating bus traffic, which has a cost and must be kept to a minimum.
  19089. The system components can receive and send the following messages:
  19090. * CPUn can send to CACHEn:
  19091. ** "Local read": CPU reads from cache
  19092. ** "Local write": CPU writes to cache
  19093. * CACHEn to itself:
  19094. ** "Evict": the cache is running out of space due to another request
  19095. * CACHEn can send the following message to the bus.
  19096. ** "Bus read": the cache needs to get the data. The reply will contain the full data line. It can come either from another cache that has the data, or from DRAM if none do.
  19097. ** "Bus write": the cache wants to modify some data, and it does not have the line.
  19098. +
  19099. The reply must contain the full data line, because maybe the processor just wants to change one byte, but the line is much larger.
  19100. +
  19101. That's why this request can also be called "Read Exclusive", as it is basically a "Bus Read" + "Invalidate" in one
  19102. ** "Invalidate": the cache wants to modify some data, but it knows that all other caches are up to date, because it is in shared state.
  19103. +
  19104. Therefore, it does not need to fetch the data, which saves bus traffic compared to "Bus write" since the data itself does not need to be sent.
  19105. +
  19106. This is also called a Bus Upgrade message or BusUpgr, as it informs others that the value is going to be upgraded.
  19107. ** "Write back": send the data on the bus and tell someone to pick it up: either DRAM or another cache
  19108. When a message is sent to the bus:
  19109. * all other caches and the DRAM will see it, this is called "snooping"
  19110. * either caches or DRAM can reply if a reply is needed, but other caches get priority to reply earlier if they can, e.g. to serve a cache request from other caches rather than going all the way to DRAM
  19111. When a cache receives a message, it do one or both of:
  19112. * change to another MSI state
  19113. * send a message to the bus
  19114. And finally, the transitions are:
  19115. * Modified:
  19116. ** "Local read": don't need to do anything because only the current cache holds the data
  19117. ** "Local write": don't need to do anything because only the current cache holds the data
  19118. ** "Evict": have to save data to DRAM so that our local modifications won't be lost
  19119. *** Move to: Invalid
  19120. *** Send message: "Write back"
  19121. ** "Bus read": another cache is trying to read the address which we owned exclusively.
  19122. +
  19123. Since we know what the latest data is, we can move to "Shared" rather than "Invalid" to possibly save time on future reads.
  19124. +
  19125. But to do that, we need to write the data back to DRAM to maintain the shared state consistent. The <<mesi-cache-coherence-protocol>> prevents that extra read in some cases.
  19126. +
  19127. And it has to be either: before the other cache gets its data from DRAM, or better, the other cache can get its data from our write back itself just like the DRAM.
  19128. +
  19129. *** Move to: Shared
  19130. *** Send message: "Write back"
  19131. ** "Bus write": someone else will write to our address.
  19132. +
  19133. We don't know what they will write, so the best bet is to move to invalid.
  19134. +
  19135. Since the writer will become the new sole data owner, the writer can get the cache from us without going to DRAM at all! This is fine, because the writer will be the new sole owner of the line, so DRAM can remain dirty without problems.
  19136. +
  19137. TODO Wikipedia requires a Flush there, why? https://electronics.stackexchange.com/questions/484830/why-is-a-flush-needed-in-the-msi-cache-coherency-protocol-when-moving-from-modif
  19138. +
  19139. *** Move to: Invalid
  19140. *** Send message: "Write back"
  19141. * Shared: TODO
  19142. ** "Local read":
  19143. ** "Local write":
  19144. ** "Evict":
  19145. ** "Bus read":
  19146. ** "Bus write":
  19147. * Invalid: TODO
  19148. ** "Local read":
  19149. ** "Local write":
  19150. ** "Evict":
  19151. ** "Bus read":
  19152. ** "Bus write":
  19153. TODO gem5 concrete example.
  19154. ====== MSI cache coherence protocol with transient states
  19155. TODO understand well why those are needed.
  19156. * http://learning.gem5.org/book/part3/MSI/directory.html
  19157. * https://www.researchgate.net/figure/MSI-Protocol-with-Transient-States-Adapted-from-30_fig3_2531432
  19158. * http://csg.csail.mit.edu/6.823S16/lectures/L15.pdf page 28
  19159. ===== MESI cache coherence protocol
  19160. https://en.wikipedia.org/wiki/MESI_protocol
  19161. Splits the Shared of <<msi-cache-coherence-protocol>> into a new Exclusive state:
  19162. * MESI Exclusive: clean but only present in one cache
  19163. * MESI Shared: clean but present in more that one cache
  19164. Exclusive is entered from Invalid after a PrRd, but only if the reply came from DRAM (<<can-caches-snoop-data-from-other-caches,or if we snooped that no one sent the reply to DRAM for us to read it>>)! If the reply came from another cache, we go directly to shared instead. It is this extra information that allows for the split of S.
  19165. This is why the simplified transition diagram shown in many places e.g.: https://upload.wikimedia.org/wikipedia/commons/c/c1/Diagrama_MESI.GIF is not a proper state machine: I can go to either S or E given a PrRd.
  19166. The advantage of this over MSI is that when we move from Exclusive to Modified, no invalidate message is required, reducing bus traffic: https://en.wikipedia.org/wiki/MESI_protocol#Advantages_of_MESI_over_MSI
  19167. This is a common case on read write modify loops. On MSI, it would:
  19168. * first do PrRd
  19169. * send BusRd (to move any M to S), get data, and go to Shared
  19170. * then PrWr must send BusUpgr to invalidate other Shared and move to M
  19171. With MESI:
  19172. * the PrRd could go to E instead of S depending on who services it
  19173. * if it does go to E, then the PrWr only moves it to M, there is no need to send BusUpgr because we know that no one else is in S
  19174. gem5 12c917de54145d2d50260035ba7fa614e25317a3 has two <<gem5-ruby-build,Ruby>> MESI models implemented: `MESI_Two_Level` and `MESI_Three_Level`.
  19175. ===== MOSI cache coherence protocol
  19176. https://en.wikipedia.org/wiki/MOSI_protocol The critical MSI vs MOSI section was a bit bogus though: https://en.wikipedia.org/w/index.php?title=MOSI_protocol&oldid=895443023 but I edited it :-)
  19177. In MSI, it feels wasteful that an MS transaction needs to flush to memory: why do we need to flush right now, since even more caches now have that data? Why not wait until later ant try to gain something from this deferral?
  19178. The problem with doing that in MSI, is that not flushing on an MS transaction would force us to every S eviction. So we would end up flushing even after reads!
  19179. MOSI solves that by making M move to O instead of S on BusRd. Now, O is the only responsible for the flush back on eviction.
  19180. So, in case we had:
  19181. * processor 1: M
  19182. * processor 2: I then read
  19183. * processor 1: write
  19184. An MSI cache 1 would do:
  19185. * write to main memory, go to S
  19186. * BusUpgr, go back to M, 2 back to I
  19187. and MOSI would do:
  19188. * go to O (no bus traffic)
  19189. * BusUpgr, go back to M
  19190. This therefore saves one memory write through and its bus traffic.
  19191. [[moesi]]
  19192. ===== MOESI cache coherence protocol
  19193. https://en.wikipedia.org/wiki/MOESI_protocol
  19194. <<mesi-cache-coherence-protocol>> + <<mosi-cache-coherence-protocol>>, not much else to it!
  19195. In gem5 9fc9c67b4242c03f165951775be5cd0812f2a705, MOESI is the default cache coherency protocol of the <<gem5-ruby-build,classic memory system>> as shown at xref:what-is-the-coherency-protocol-implemented-by-the-classic-cache-system-in-gem5[xrefstyle=full].
  19196. A good an simple example showing several MOESI transitions in the classic memory model can be seen at: xref:gem5-event-queue-atomicsimplecpu-syscall-emulation-freestanding-example-analysis-with-caches-and-multiple-cpus[xrefstyle=full].
  19197. gem5 12c917de54145d2d50260035ba7fa614e25317a3 has several <<gem5-ruby-build,Ruby>> MOESI models implemented: `MOESI_AMD_Base`, `MOESI_CMP_directory`, `MOESI_CMP_token` and `MOESI_hammer`.
  19198. == About this repo
  19199. === Supported hosts
  19200. The host requirements depend a lot on which examples you want to run.
  19201. Some setups of this repository are very portable, notably setups under <<userland-setup>>, e.g. <<c>>, and will likely work on any host system with minimal modification.
  19202. The least portable setups are those that require Buildroot and crosstool-NG.
  19203. We tend to test this repo the most on the latest Ubuntu and on the latest https://askubuntu.com/questions/16366/whats-the-difference-between-a-long-term-support-release-and-a-normal-release[Ubuntu LTS].
  19204. For other Linux distros, everything will likely also just work if you install the analogous required packages for your distro.
  19205. Find out the packages that we install with:
  19206. ....
  19207. cat ./setup
  19208. ./build --download-dependencies --dry-run <some-target> | less
  19209. ....
  19210. and then just look for the `apt-get` commands shown on the log.
  19211. After installing the missing packages for your distro, do the build with:
  19212. ....
  19213. ./build --download-dependencies --no-apt <some-target>
  19214. ....
  19215. which does everything as normal, except that it skips any `apt` commands.
  19216. If something does not work however, <<docker>> should just work on any Linux distro.
  19217. Native Windows is unlikely feasible for Buildroot setups because Buildroot is a huge set of GNU Make scripts + host tools, just do everything from inside an Ubuntu in VirtualBox instance in that case.
  19218. Pull requests with ports to new host systems and reports on issues that things work or don't work on your host are welcome.
  19219. === Common build issues
  19220. [[put-source-uris-in-sources]]
  19221. ==== You must put some 'source' URIs in your sources.list
  19222. If `./build --download-dependencies` fails with:
  19223. ....
  19224. E: You must put some 'source' URIs in your sources.list
  19225. ....
  19226. see this: https://askubuntu.com/questions/496549/error-you-must-put-some-source-uris-in-your-sources-list/857433#857433 I don't know how to automate this step. Why, Ubuntu, why.
  19227. ==== Build from downloaded source zip files
  19228. It does not work if you just download the `.zip` with the sources for this repository from GitHub because we use link:.gitmodules[Git submodules], you must clone this repo.
  19229. `./build --download-dependencies` then fetches only the required submodules for you.
  19230. === Run command after boot
  19231. If you just want to run a command after boot ends without thinking much about it, just use the `--eval-after` option, e.g.:
  19232. ....
  19233. ./run --eval-after 'echo hello'
  19234. ....
  19235. This option passes the command to our init scripts through <<kernel-command-line-parameters>>, and uses a few clever tricks along the way to make it just work.
  19236. See <<init>> for the gory details.
  19237. === Default command line arguments
  19238. It gets annoying to retype `--arch aarch64` for every single command, or to remember `--config` setups.
  19239. So simplify that, do:
  19240. ....
  19241. cp config.py data/
  19242. ....
  19243. and then edit the `data/config` file to your needs.
  19244. Source: link:config.py[]
  19245. You can also choose a different configuration file explicitly with:
  19246. ....
  19247. ./run --config data/config2.py
  19248. ....
  19249. Almost all options names are automatically deduced from their command line `--help` name: just replace `-` with `_`.
  19250. More precisely, we use the `dest=` value of Python's https://docs.python.org/3/library/argparse.html[argparse module].
  19251. To get a list of all global options that you can use, try:
  19252. ....
  19253. ./getvar --type input
  19254. ....
  19255. but note that this does not include script specific options.
  19256. === Documentation
  19257. To learn how to build the documentation see: xref:build-the-documentation[xrefstyle=full].
  19258. ==== Documentation verification
  19259. When running link:build-doc[], we do the following checks:
  19260. * `<<>>` inner links are not broken
  19261. * `+link:somefile[]+` links point to paths that exist via <<asciidoctor-extract-link-targets>>. Upstream wontfix at: https://github.com/asciidoctor/asciidoctor/issues/3210
  19262. * all links in non-README files to README IDs exist via `git grep` + <<asciidoctor-extract-header-ids>>
  19263. The scripts prints what you have to fix and exits with an error status if there are any errors.
  19264. [[asciidoctor-extract-link-targets]]
  19265. ===== asciidoctor/extract-link-targets
  19266. Documentation for link:asciidoctor/extract-link-targets[]
  19267. Extract link targets from Asciidoctor document.
  19268. Usage:
  19269. ....
  19270. ./asciidoctor/extract-link-targets README.adoc
  19271. ....
  19272. Output: one link target per line.
  19273. Hastily hacked from: https://asciidoctor.org/docs/user-manual/#inline-macro-processor-example
  19274. [[asciidoctor-extract-header-ids]]
  19275. ===== asciidoctor/extract-header-ids
  19276. Documentation for link:asciidoctor/extract-header-ids[]
  19277. Extract header IDs, both auto-generated and manually given.
  19278. E.g., for the document `test.adoc`:
  19279. ....
  19280. = Auto generated
  19281. [[explicitly-given]]
  19282. == La la
  19283. ....
  19284. the script:
  19285. ....
  19286. ./asciidoctor/extract-header-ids test.adoc
  19287. ....
  19288. produces:
  19289. ....
  19290. auto-generated
  19291. explicitly-given
  19292. ....
  19293. One application we have in mind for this is that as of 2.0.10 Asciidoctor does not warn on header ID collisions between auto-generated IDs: https://github.com/asciidoctor/asciidoctor/issues/3147 But this script doesn't solve that yet as it would require generating the section IDs without the `-N` suffix. Section generation happens at `Section.generate_id` in Asciidoctor code.
  19294. Hastily hacked from: https://asciidoctor.org/docs/user-manual/#https://asciidoctor.org/docs/user-manual/#tree-processor-example until I noticed that that example had a bug at the time and so fixed it here: https://github.com/asciidoctor/asciidoctor/issues/3363
  19295. [[asciidoctor-link-target-up-rb]]
  19296. === asciidoctor/link-target-up.rb
  19297. The Asciidoctor extension scripts:
  19298. * link:asciidoctor-link-up.rb
  19299. * link:asciidoctor-link-github.rb
  19300. hack the README `link:` targets to make them work from:
  19301. * inside the `out/` directory with `../`
  19302. * <<github-pages>>, with explicit GitHub blob URLs
  19303. ==== GitHub pages
  19304. As mentioned before the TOC, we have to push this README to GitHub pages due to: https://github.com/isaacs/github/issues/1610
  19305. For now, instead of pushing with `git push`, I just remember to always push with:
  19306. ....
  19307. ./publish-gh-pages
  19308. ....
  19309. Source: link:publish-gh-pages[]
  19310. I'm going this way for now because:
  19311. * the Jekyll Asciidoctor plugin is not enabled by default on GitHub: https://webapps.stackexchange.com/questions/114606/can-github-pages-render-asciidoc
  19312. * https://stackoverflow.com/questions/1797074/local-executing-hook-after-a-git-push[post-push hooks don't exist]
  19313. * I'm lazy to setup a proper Travis CI push
  19314. * I'm the only contributor essentially, so no problems with pull requests
  19315. The only files used by the GitHub pages are:
  19316. * link:Gemfile[]
  19317. * link:_config.yml[]
  19318. === Clean the build
  19319. You did something crazy, and nothing seems to work anymore?
  19320. All our build outputs are stored under `out/`, so the coarsest and most effective thing you can do is:
  19321. ....
  19322. rm -rf out
  19323. ....
  19324. This implies a full rebuild for all archs however, so you might first want to explore finer grained cleans first.
  19325. All our individual `build-*` scripts have a `--clean` option to completely nuke their builds:
  19326. ....
  19327. ./build-gem5 --clean
  19328. ./build-qemu --clean
  19329. ./build-buildroot --clean
  19330. ....
  19331. Verify with:
  19332. ....
  19333. ls "$(./getvar qemu_build_dir)"
  19334. ls "$(./getvar gem5_build_dir)"
  19335. ls "$(./getvar buildroot_build_dir)"
  19336. ....
  19337. Note that host tools like QEMU and gem5 store all archs in a single directory to factor out build objects, so cleaning one arch will clean all of them.
  19338. To only nuke only one Buildroot package, we can use the https://buildroot.org/downloads/manual/manual.html#pkg-build-steps[`-dirclean`] Buildroot target:
  19339. ....
  19340. ./build-buildroot --no-all -- <package-name>-dirclean
  19341. ....
  19342. e.g.:
  19343. ....
  19344. ./build-buildroot --no-all -- sample_package-dirclean
  19345. ....
  19346. Verify with:
  19347. ....
  19348. ls "$(./getvar buildroot_build_build_dir)"
  19349. ....
  19350. === Custom build directory
  19351. For now there is no way to change the build directory from `out/` (resp. `out.docker` for <<docker>.) to something else.
  19352. However, if you just want to place the build storage in your hard drive and the source in your SSD, which is a good configuration if you are doing lots of builds, just create a symlink as:
  19353. ....
  19354. mkdir -p /mnt/hd/linux-kernel-module-cheat-out
  19355. ln -s out /mnt/hd/linux-kernel-module-cheat-out
  19356. ....
  19357. === ccache
  19358. https://en.wikipedia.org/wiki/Ccache[ccache] <<benchmark-builds,might>> save you a lot of re-build when you decide to <<clean-the-build>> or create a new <<build-variants,build variant>>.
  19359. We have ccache enabled for everything we build by default.
  19360. However, you likely want to add the following to your `.bashrc` to take better advantage of `ccache`:
  19361. ....
  19362. export CCACHE_DIR=~/.ccache
  19363. export CCACHE_MAXSIZE="20G"
  19364. ....
  19365. We cannot automate this because you have to decide:
  19366. * should I store my cache on my HD or SSD?
  19367. * how big is my build, and how many build configurations do I need to keep around at a time?
  19368. If you don't those variables it, the default is to use `~/.buildroot-ccache` with `5G`, which is a bit small for us.
  19369. To check if `ccache` is working, run this command while a build is running on another shell:
  19370. ....
  19371. watch -n1 'make -C "$(./getvar buildroot_build_dir)" ccache-stats'
  19372. ....
  19373. or if you have it installed on host and the environment variables exported simply with:
  19374. ....
  19375. watch -n1 'ccache -s'
  19376. ....
  19377. and then watch the miss or hit counts go up.
  19378. We have https://buildroot.org/downloads/manual/manual.html#ccache[enabled ccached] builds by default.
  19379. `BR2_CCACHE_USE_BASEDIR=n` is used for Buildroot, which means that:
  19380. * absolute paths are used and GDB can find source files
  19381. * but builds are not reused across separated LKMC directories
  19382. ccache can be disabled with the `--no-ccache` option as in:
  19383. ....
  19384. ./build-gem5 --no-ccache
  19385. ....
  19386. This can be useful to <<benchmark-builds,benchmark builds>>.
  19387. === getvar
  19388. The link:getvar[] helper script can print the values of internal LKMC variables.
  19389. Within our Python scripts such as link:common.py[], those variable are visible as `self.env[<var>]`.
  19390. For example, to find the Buildroot output directory for an `aarch64` build, you could use:
  19391. ....
  19392. ./getvar --arch aarch64 buildroot_build_dir
  19393. ....
  19394. which as of LKMC b15a0e455d691afa49f3b813ad9b09394dfb02b7 outputs:
  19395. ....
  19396. /path/to/linux-kernel-module-cheat/out/buildroot/build/default/aarch64
  19397. ....
  19398. You can also list all available variables in one go with just:
  19399. ....
  19400. ./getvar
  19401. ....
  19402. Using link:getvar[] makes it possible to make Bash scripts more portable if for example directory structure changes across LKMC versions.
  19403. For this reason, we use it in particular often in this README to reduce the need for refactoring.
  19404. ==== run-toolchain
  19405. While you could just manually find/learn the path to toolchain tools, e.g. in LKMC b15a0e455d691afa49f3b813ad9b09394dfb02b7 they are:
  19406. ....
  19407. ./out/buildroot/build/default/aarch64/host/bin/aarch64-buildroot-linux-gnu-gcc userland/c/hello.c
  19408. ./out/buildroot/build/default/aarch64/host/bin/aarch64-buildroot-linux-gnu-objdump -D a.out
  19409. ....
  19410. you can save some typing and get portability across directory structure changes with our link:run-toolchain[] helper:
  19411. ....
  19412. ./run-toolchain --arch aarch64 gcc -- userland/c/hello.c
  19413. ./run-toolchain --arch aarch64 objdump -- -D a.out
  19414. ....
  19415. This plays nicely with <<getvar>> e.g. you could disassembly link:userland/c/hello.c[] with:
  19416. ....
  19417. ./run-toolchain --arch aarch64 objdump -- -D $(./getvar --arch aarch64 userland_build_dir)/c/hello.out
  19418. ....
  19419. however disassembly is such a common use case that we have a shortcut for it: <<disas>>.
  19420. Alternatively, if you just need a variable to feed into your own Build system, you can also use <<getvar>>:
  19421. ....
  19422. ./getvar --arch aarch64 toolchain_prefix
  19423. ....
  19424. which outputs as of LKMC b15a0e455d691afa49f3b813ad9b09394dfb02b7:
  19425. ....
  19426. /path/to/linux-kernel-module-cheat/out/buildroot/build/default/aarch64/host/usr/bin/aarch64-buildroot-linux-gnu
  19427. ....
  19428. ===== disas
  19429. Since disassembly of a single function of a LKMC executable with GDB is such a common use case for <<run-toolchain>> via https://stackoverflow.com/questions/22769246/how-to-disassemble-one-single-function-using-objdump[], we have this shortcut for it.
  19430. For example to disassemle a function from an <<userland-content,userland binary>>:
  19431. ....
  19432. ./disas --arch aarch64 --userland userland/c/hello.c main
  19433. ....
  19434. or to disassemble a function from the <<linux-kernel>>:
  19435. ....
  19436. ./disas --arch aarch64 start_kernel
  19437. ....
  19438. and a <<baremetal-setup,baremetal>> executable:
  19439. ....
  19440. ./disas --arch aarch64 --baremetal baremetal/arch/aarch64/no_bootloader/exit.S _start
  19441. ....
  19442. === Rebuild Buildroot while running
  19443. It is not possible to rebuild the root filesystem while running QEMU because QEMU holds the file qcow2 file:
  19444. ....
  19445. error while converting qcow2: Failed to get "write" lock
  19446. ....
  19447. === Simultaneous runs
  19448. When doing long simulations sweeping across multiple system parameters, it becomes fundamental to do multiple simulations in parallel.
  19449. This is specially true for gem5, which runs much slower than QEMU, and cannot use multiple host cores to speed up the simulation: https://github.com/cirosantilli2/gem5-issues/issues/15[], so the only way to parallelize is to run multiple instances in parallel.
  19450. This also has a good synergy with <<build-variants>>.
  19451. First shell:
  19452. ....
  19453. ./run
  19454. ....
  19455. Another shell:
  19456. ....
  19457. ./run --run-id 1
  19458. ....
  19459. and now you have two QEMU instances running in parallel.
  19460. The default run id is `0`.
  19461. Our scripts solve two difficulties with simultaneous runs:
  19462. * port conflicts, e.g. GDB and link:gem5-shell[]
  19463. * output directory conflicts, e.g. traces and gem5 stats overwriting one another
  19464. Each run gets a separate output directory. For example:
  19465. ....
  19466. ./run --arch aarch64 --emulator gem5 --run-id 0 &>/dev/null &
  19467. ./run --arch aarch64 --emulator gem5 --run-id 1 &>/dev/null &
  19468. ....
  19469. produces two separate <<m5out-directory,`m5out` directories>>:
  19470. ....
  19471. echo "$(./getvar --arch aarch64 --emulator gem5 --run-id 0 m5out_dir)"
  19472. echo "$(./getvar --arch aarch64 --emulator gem5 --run-id 1 m5out_dir)"
  19473. ....
  19474. and the gem5 host executable stdout and stderr can be found at:
  19475. ....
  19476. less "$(./getvar --arch aarch64 --emulator gem5 --run-id 0 termout_file)"
  19477. less "$(./getvar --arch aarch64 --emulator gem5 --run-id 1 termout_file)"
  19478. ....
  19479. Each line is prepended with the timestamp in seconds since the start of the program when it appeared.
  19480. To have more semantic output directories names for later inspection, you can use a non numeric string for the run ID, and indicate the port offset explicitly:
  19481. ....
  19482. ./run --arch aarch64 --emulator gem5 --run-id some-experiment --port-offset 1
  19483. ....
  19484. `--port-offset` defaults to the run ID when that is a number.
  19485. Like <<cpu-architecture>>, you will need to pass the `-n` option to anything that needs to know runtime information, e.g. <<gdb>>:
  19486. ....
  19487. ./run --run-id 1
  19488. ./run-gdb --run-id 1
  19489. ....
  19490. To run multiple gem5 checkouts, see: xref:gem5-worktree[xrefstyle=full].
  19491. Implementation note: we create multiple namespaces for two things:
  19492. * run output directory
  19493. * ports
  19494. ** QEMU allows setting all ports explicitly.
  19495. +
  19496. If a port is not free, it just crashes.
  19497. +
  19498. We assign a contiguous port range for each run ID.
  19499. ** gem5 automatically increments ports until it finds a free one.
  19500. +
  19501. gem5 60600f09c25255b3c8f72da7fb49100e2682093a does not seem to expose a way to set the terminal and VNC ports from `fs.py`, so we just let gem5 assign the ports itself, and use `-n` only to match what it assigned. Those ports both appear on <<gem5-config-ini>>.
  19502. +
  19503. The GDB port can be assigned on `gem5.opt --remote-gdb-port`, but it does not appear on `config.ini`.
  19504. === Build variants
  19505. It often happens that you are comparing two versions of the build, a good and a bad one, and trying to figure out why the bad one is bad.
  19506. Our build variants system allows you to keep multiple built versions of all major components, so that you can easily switching between running one or the other.
  19507. ==== Linux kernel build variants
  19508. If you want to keep two builds around, one for the latest Linux version, and the other for Linux `v4.16`:
  19509. ....
  19510. # Build master.
  19511. ./build-linux
  19512. # Build another branch.
  19513. git -C "$(./getvar linux_source_dir)" fetch --tags --unshallow
  19514. git -C "$(./getvar linux_source_dir)" checkout v4.16
  19515. ./build-linux --linux-build-id v4.16
  19516. # Restore master.
  19517. git -C "$(./getvar linux_source_dir)" checkout -
  19518. # Run master.
  19519. ./run
  19520. # Run another branch.
  19521. ./run --linux-build-id v4.16
  19522. ....
  19523. The `git fetch --unshallow` is needed the first time because `./build --download-dependencies` only does a shallow clone of the Linux kernel to save space and time, see also: https://stackoverflow.com/questions/6802145/how-to-convert-a-git-shallow-clone-to-a-full-clone
  19524. The `--linux-build-id` option should be passed to all scripts that support it, much like `--arch` for the <<cpu-architecture>>, e.g. to step debug:
  19525. .....
  19526. ./run-gdb --linux-build-id v4.16
  19527. .....
  19528. To run both kernels simultaneously, one on each QEMU instance, see: xref:simultaneous-runs[xrefstyle=full].
  19529. ==== QEMU build variants
  19530. Analogous to the <<linux-kernel-build-variants>> but with the `--qemu-build-id` option instead:
  19531. ....
  19532. ./build-qemu
  19533. git -C "$(./getvar qemu_source_dir)" checkout v2.12.0
  19534. ./build-qemu --qemu-build-id v2.12.0
  19535. git -C "$(./getvar qemu_source_dir)" checkout -
  19536. ./run
  19537. ./run --qemu-build-id v2.12.0
  19538. ....
  19539. ==== gem5 build variants
  19540. Analogous to the <<linux-kernel-build-variants>> but with the `--gem5-build-id` option instead:
  19541. ....
  19542. # Build master.
  19543. ./build-gem5
  19544. # Build another branch.
  19545. git -C "$(./getvar gem5_source_dir)" checkout some-branch
  19546. ./build-gem5 --gem5-build-id some-branch
  19547. # Restore master.
  19548. git -C "$(./getvar gem5_source_dir)" checkout -
  19549. # Run master.
  19550. ./run --emulator gem5
  19551. # Run another branch.
  19552. git -C "$(./getvar gem5_source_dir)" checkout some-branch
  19553. ./run --gem5-build-id some-branch --emulator gem5
  19554. ....
  19555. Don't forget however that gem5 has Python scripts in its source code tree, and that those must match the source code of a given build.
  19556. Therefore, you can't forget to checkout to the sources to that of the corresponding build before running, unless you explicitly tell gem5 to use a non-default source tree with <<gem5-worktree>>. This becomes inevitable when you want to launch multiple simultaneous runs at different checkouts.
  19557. ===== gem5 worktree
  19558. <<gem5-build-variants,`--gem5-build-id`>> goes a long way, but if you want to seamlessly switch between two gem5 tress without checking out multiple times, then `--gem5-worktree` is for you.
  19559. ....
  19560. # Build gem5 at the revision in the gem5 submodule.
  19561. ./build-gem5
  19562. # Create a branch at the same revision as the gem5 submodule.
  19563. ./build-gem5 --gem5-worktree my-new-feature
  19564. cd "$(./getvar --gem5-worktree my-new-feature)"
  19565. vim create-bugs
  19566. git add .
  19567. git commit -m 'Created a bug'
  19568. cd -
  19569. ./build-gem5 --gem5-worktree my-new-feature
  19570. # Run the submodule.
  19571. ./run --emulator gem5 --run-id 0 &>/dev/null &
  19572. # Run the branch the need to check out anything.
  19573. # With --gem5-worktree, we can do both runs at the same time!
  19574. ./run --emulator gem5 --gem5-worktree my-new-feature --run-id 1 &>/dev/null &
  19575. ....
  19576. `--gem5-worktree <worktree-id>` automatically creates:
  19577. * a https://git-scm.com/docs/git-worktree[Git worktree] of gem5 if one didn't exit yet for `<worktree-id>`
  19578. * a separate build directory, exactly like `--gem5-build-id my-new-feature` would
  19579. We promise that the scripts sill never touch that worktree again once it has been created: it is now up to you to manage the code manually.
  19580. `--gem5-worktree` is required if you want to do multiple simultaneous runs of different gem5 versions, because each gem5 build needs to use the matching Python scripts inside the source tree.
  19581. The difference between `--gem5-build-id` and `--gem5-worktree` is that `--gem5-build-id` specifies only the gem5 build output directory, while `--gem5-worktree` specifies the source input directory.
  19582. Each Git worktree needs a branch name, and we append the `wt/` prefix to the `--gem5-worktree` value, where `wt` stands for `WorkTree`. This is done to allow us to checkout to a test `some-branch` branch under `submodules/gem5` and still use `--gem5-worktree some-branch`, without conflict for the worktree branch, which can only be checked out once.
  19583. ===== gem5 private source trees
  19584. Suppose that you are working on a private fork of gem5, but you want to use this repository to develop it as well.
  19585. Simply adding your private repository as a remote to `submodules/gem5` is dangerous, as you might forget and push your private work by mistake one day.
  19586. Even removing remotes is not safe enough, since `git submodule update` and other submodule commands can restore the old public remote.
  19587. Instead, we provide the following safer process.
  19588. First do a separate private clone of you private repository outside of this repository:
  19589. ....
  19590. git clone https://my.private.repo.com/my-fork/gem5.git gem5-internal
  19591. gem5_internal="$(pwd)/gem5-internal"
  19592. ....
  19593. Next, when you want to build with the private repository, use the `--gem5-build-dir` and `--gem5-source-dir` argument to override our default gem5 source and build locations:
  19594. ....
  19595. cd linux-kernel-module-cheat
  19596. ./build-gem5 \
  19597. --gem5-build-dir "${gem5_internal}/build" \
  19598. --gem5-source-dir "$gem5_internal" \
  19599. ;
  19600. ./run-gem5 \
  19601. --gem5-build-dir "${gem5_internal}/build" \
  19602. --gem5-source-dir "$gem5_internal" \
  19603. ;
  19604. ....
  19605. With this setup, both your private gem5 source and build are safely kept outside of this public repository.
  19606. ==== Buildroot build variants
  19607. Allows you to have multiple versions of the GCC toolchain or root filesystem.
  19608. Analogous to the <<linux-kernel-build-variants>> but with the `--build-id` option instead:
  19609. ....
  19610. ./build-buildroot
  19611. git -C "$(./getvar buildroot_source_dir)" checkout 2018.05
  19612. ./build-buildroot --buildroot-build-id 2018.05
  19613. git -C "$(./getvar buildroot_source_dir)" checkout -
  19614. ./run
  19615. ./run --buildroot-build-id 2018.05
  19616. ....
  19617. === Optimization level of a build
  19618. The `--optimization-level` option is available on all build scripts and sets the given GCC `-`O optimization level where it has been implemented for guest binaries.
  19619. The default optimization level is `-O0` to improve guest visibility.
  19620. To keep things sane, you generally want to create a separate <<build-variants,build variant>> for each optimization level, e.g. to create an `-O3` build:
  19621. ....
  19622. ./build-userland --optimization-level 3 --userland-build-id o3
  19623. ./run --userland userland/c/hello.c --userland-build-id o3
  19624. ....
  19625. Note that for some guest content, there are hard technical challenges why we are not able to forward `-O`, notably the linux kernel: <<kernel-o0>>.
  19626. Our emulators however are build with higher optimization levels by default otherwise running anything would be too unbearably slow.
  19627. Emulator builds are also controlled with other mechanisms instead of `--optimization-level` as explained at: <<debug-the-emulator>>.
  19628. === Directory structure
  19629. ==== lkmc directory
  19630. link:lkmc/[] contains sources and headers that are shared across kernel modules, userland and baremetal examples.
  19631. We chose this awkward name so that our includes will have an `lkmc/` prefix.
  19632. Another option would have been to name it as `includes/lkmc`, but that would make paths longer, and we might want to store source code in that directory as well in the future.
  19633. ===== Userland objects vs header-only
  19634. When factoring out functionality across userland examples, there are two main options:
  19635. * use header-only implementations
  19636. * use separate C files and link to separate objects.
  19637. The downsides of the header-only implementation are:
  19638. * slower compilation time, especially for C++
  19639. * cannot call C implementations from assembly files
  19640. The advantages of header-only implementations are:
  19641. * easier to use, just `#include` and you are done, no need to modify build metadata.
  19642. As a result, we are currently using the following rule:
  19643. * if something is only going to be used from C and not assembly, define it in a header which is easier to use
  19644. +
  19645. The slower compilation should be OK as long as split functionality amongst different headers and only include the required ones.
  19646. +
  19647. Also we don't have a choice in the case of C++ template, which must stay in headers.
  19648. * if the functionality will be called from assembly, then we don't have a choice, and must add it to a separate source file and link against it.
  19649. [[buildroot-packages-directory]]
  19650. ==== buildroot_packages directory
  19651. Source: link:buildroot_packages/[].
  19652. Every directory inside it is a Buildroot package.
  19653. Those packages get automatically added to Buildroot's `BR2_EXTERNAL`, so all you need to do is to turn them on during build, e.g.:
  19654. ....
  19655. ./build-buildroot --config 'BR2_PACKAGE_SAMPLE_PACKAGE=y'
  19656. ....
  19657. then test it out with:
  19658. ....
  19659. ./run --eval-after '/sample_package.out'
  19660. ....
  19661. and you should see:
  19662. ....
  19663. hello sample_package
  19664. ....
  19665. Source: link:buildroot_packages/sample_package/sample_package.c[]
  19666. You can force a rebuild with:
  19667. ....
  19668. ./build-buildroot --config 'BR2_PACKAGE_SAMPLE_PACKAGE=y' -- sample_package-reconfigure
  19669. ....
  19670. Buildroot packages are convenient, but in general, if a package if very important to you, but not really mergeable back to Buildroot, you might want to just use a custom build script for it, and point it to the Buildroot toolchain, and then use `BR2_ROOTFS_OVERLAY`, much like we do for <<userland-setup>>.
  19671. A custom build script can give you more flexibility: e.g. the package can be made work with other root filesystems more easily, have better <<9p>> support, and rebuild faster as it evades some Buildroot boilerplate.
  19672. [[kernel-modules-buildroot-package]]
  19673. ===== kernel_modules buildroot package
  19674. Source: link:buildroot_packages/kernel_modules/[]
  19675. An example of how to use kernel modules in Buildroot.
  19676. Usage:
  19677. ....
  19678. ./build-buildroot \
  19679. --build-linux \
  19680. --config 'BR2_PACKAGE_KERNEL_MODULES=y' \
  19681. --no-overlay \
  19682. -- \
  19683. kernel_modules-reconfigure \
  19684. ;
  19685. ....
  19686. Then test one of the modules with:
  19687. ....
  19688. ./run --buildroot-linux --eval-after 'modprobe buildroot_hello'
  19689. ....
  19690. Source: link:buildroot_packages/kernel_modules/buildroot_hello.c[]
  19691. As you have just seen, this sets up everything so that <<modprobe>> can correctly find the module.
  19692. `./build-buildroot --build-linux` and `./run --buildroot-linux` are needed because the Buildroot kernel modules must use the Buildroot Linux kernel at build and run time, see also: <<buildroot-vanilla-kernel>>.
  19693. The `--no-overlay` is required otherwise our `modules.order` generated by `./build-linux` and installed with `BR2_ROOTFS_OVERLAY` overwrites the Buildroot generated one.
  19694. Implementattion described at: https://stackoverflow.com/questions/40307328/how-to-add-a-linux-kernel-driver-module-as-a-buildroot-package/43874273#43874273
  19695. ==== patches directory
  19696. [[patches-global-directory]]
  19697. ===== patches/global directory
  19698. Has the following structure:
  19699. ....
  19700. package-name/00001-do-something.patch
  19701. ....
  19702. The patches are then applied to the corresponding packages before build.
  19703. Uses `BR2_GLOBAL_PATCH_DIR`.
  19704. [[patches-manual-directory]]
  19705. ===== patches/manual directory
  19706. Patches in this directory are never applied automatically: it is up to users to manually apply them before usage following the instructions in this documentation.
  19707. These are typically patches that don't contain fundamental functionality, so we don't feel like forking the target repos.
  19708. [[rootfs-overlay]]
  19709. ==== rootfs_overlay
  19710. Source: link:rootfs_overlay[].
  19711. We use this directory for:
  19712. * customized configuration files
  19713. * userland module test scripts that don't need to be compiled.
  19714. +
  19715. Contrast this with <<userland-content,C examples>> that need compilation.
  19716. This directory is copied into the target filesystem by:
  19717. ....
  19718. ./copy-overlay
  19719. ./build-buildroot
  19720. ....
  19721. Source: link:copy-overlay[]
  19722. Build Buildroot is required for the same reason as described at: xref:your-first-kernel-module-hack[xrefstyle=full].
  19723. However, since the link:rootfs_overlay[] directory does not require compilation, unlike say <<your-first-kernel-module-hack,kernel modules>>, we also make it <<9p>> available to the guest directly even without `./copy-overlay` at:
  19724. ....
  19725. ls /mnt/9p/rootfs_overlay
  19726. ....
  19727. This way you can just hack away the scripts and try them out immediately without any further operations.
  19728. [[out-rootfs-overlay-dir]]
  19729. ===== `out_rootfs_overlay_dir`
  19730. This path can be found with:
  19731. ....
  19732. ./getvar out_rootfs_overlay_dir
  19733. ....
  19734. This output directory contains all the files that LKMC will put inside the final image, including for example:
  19735. * <<userland-content>> that needs to be compiled
  19736. * <<rootfs-overlay>> content that gets put inside the image as is
  19737. LKMC first collects all the files that it will dump into the guest there, and then in the very last step dumps everything into the final image.
  19738. In Buildroot, this is done by pointing `BR2_ROOTFS_OVERLAY` to that directory, which is documented at: https://buildroot.org/downloads/manual/manual.html#rootfs-custom
  19739. This does not include native image modification mechanisms such as <<buildroot-packages-directory,Buildroot packages>>, which we let Buildroot itself manage.
  19740. [[disk-image-2]]
  19741. ====== `disk_image_2`
  19742. A squashfs of <<out-rootfs-overlay-dir>> that gets passed as the second argument.
  19743. Especially useful with <<gem5>> as a way to <<gem5-restore-new-script>> via <<secondary-disk>> since setting up <<gem5-9p>> is slightly laborious.
  19744. ==== lkmc.c
  19745. The files:
  19746. * link:lkmc.c[]
  19747. * link:lkmc.h[]
  19748. contain common C function helpers that can be used both in userland and baremetal. Oh, the infinite <<about-the-baremetal-setup,joys of Newlib>>.
  19749. Those files also contain arch specific helpers under ifdefs like:
  19750. ....
  19751. #if defined(__aarch64__)
  19752. ....
  19753. We try to keep as much as possible in those files. It bloats builds a little, but just makes everything simpler to understand.
  19754. Link with lkmc.o is enabled with the <<path-properties>>
  19755. ....
  19756. 'extra_objs_lkmc_common': False,
  19757. ....
  19758. [[lkmc-home]]
  19759. ==== lkmc_home
  19760. `lkmc_home` refers to the target base directory in which we put all our custom built stuff, such as <<userland-setup,userland executables>> and <<your-first-kernel-module-hack,kernel modules>>.
  19761. The current value can be found with:
  19762. ....
  19763. ./getvar guest_lkmc_home
  19764. ....
  19765. In the past, we used to dump everything into the root filesystem, but as the userland structure got more complex with subfolders, we decided that the risk of conflicting with important root files was becoming too great.
  19766. To save you from typing that path every time, we have made our most common commands `cd` into that directory by default for you, e.g.:
  19767. * interactive shells `cd` there through <<busybox-shell-initrc-files>>
  19768. * `--eval` and `--eval-after` through <<replace-init>> and <<init-busybox>>
  19769. Whenever a relative path is used inside a guest sample command, e.g. `insmod hello.ko` or `./hello.out`, it means that the path lives in `lkmc_home` unless stated otherwise.
  19770. [[path-properties]]
  19771. ==== path_properties.py
  19772. In order to build and run each userland and <<baremetal-setup,baremetal>> example properly, we need per-file metadata such as compiler flags and required number of cores.
  19773. This data is stored is stored in link:path_properties.py[] at `path_properties_tuples`.
  19774. Maybe we should embed it magically into source files directories to make it easier to see? But one big Python dict was easier to implement so we started like this. And it allows factoring chunks out easily.
  19775. The format is as follows:
  19776. ....
  19777. 'path_component': (
  19778. {'property': value},
  19779. {
  19780. 'child_path_component':
  19781. {
  19782. {'child_property': },
  19783. {}
  19784. }
  19785. }
  19786. )
  19787. ....
  19788. and as a shortcut, paths that don't have any children can be written directly as:
  19789. .....
  19790. 'path_component': {'property': value}
  19791. .....
  19792. Properties of parent directories apply to all children.
  19793. Lists coming from parent directories are extended instead of overwritten by children, this is especially useful for C compiler flags.
  19794. To quickly determine which properties a path has, you can use link:getprops[], e.g.:
  19795. ....
  19796. ./getprops userland/c/hello.c
  19797. ....
  19798. which outputs values such as:
  19799. ....
  19800. allowed_archs=None
  19801. allowed_emulators=None
  19802. arm_aarch32=False
  19803. arm_sve=False
  19804. baremetal=True
  19805. ....
  19806. [[rand-check-out]]
  19807. ==== rand_check.out
  19808. Print out several parameters that normally change randomly from boot to boot:
  19809. ....
  19810. ./run --eval-after './linux/rand_check.out;./linux/poweroff.out'
  19811. ....
  19812. Source: link:userland/linux/rand_check.c[]
  19813. This can be used to check the determinism of:
  19814. * <<norandmaps>>
  19815. * <<qemu-record-and-replay>>
  19816. === Test this repo
  19817. ==== Automated tests
  19818. Run almost all tests:
  19819. ....
  19820. ./build-test --all-archs --all-emulators --size 3 && \
  19821. ./test --size 3
  19822. echo $?
  19823. ....
  19824. should output 0.
  19825. Sources:
  19826. * link:build-test[]
  19827. * link:test[]
  19828. The link:test[] script runs several different types of tests, which can also be run separately as explained at:
  19829. * link:test-boot[]
  19830. * <<test-userland-in-full-system>>
  19831. * <<user-mode-tests>>
  19832. * <<baremetal-tests>>
  19833. * <<gdb-tests>>
  19834. * <<gem5-unit-tests>>
  19835. link:test[] does not all possible tests, because there are too many possible variations and that would take forever. The rationale is the same as for `./build all` and is explained in `./build --help`.
  19836. ===== Test arch and emulator selection
  19837. You can select multiple archs and emulators of interest, as for an other command, with:
  19838. ....
  19839. ./test-executables \
  19840. --arch x86_64 \
  19841. --arch aarch64 \
  19842. --emulator gem5 \
  19843. --emulator qemu \
  19844. ;
  19845. ....
  19846. You can also test all supported archs and emulators with:
  19847. ....
  19848. ./test-executables \
  19849. --all-archs \
  19850. --all-emulators \
  19851. ;
  19852. ....
  19853. This command would run the test four times, using `x86_64` and `aarch64` with both gem5 and QEMU.
  19854. Without those flags, it defaults to just running the default arch and emulator once: `x86_64` and `qemu`.
  19855. ===== Quit on fail
  19856. By default, continue running even after the first failure happens, and they show a summary at the end.
  19857. You can make them exit immediately with the `--no-quit-on-fail` option, e.g.:
  19858. ....
  19859. ./test-executables --quit-on-fail
  19860. ....
  19861. ===== Test userland in full system
  19862. TODO: we really need a mechanism to automatically generate the test list automatically e.g. based on <<path-properties>>, currently there are many tests missing, and we have to add everything manually which is very annoying.
  19863. We could just generate it on the fly on the host, and forward it to guest through CLI arguments.
  19864. Run all userland tests from inside full system simulation (i.e. not <<user-mode-simulation>>):
  19865. ....
  19866. ./test-userland-full-system
  19867. ....
  19868. This includes, in particular, userland programs that test the kernel modules, which cannot be tested in user mode simulation.
  19869. Basically just boots and runs: link:rootfs_overlay/lkmc/test_all.sh[]
  19870. Failure is detected by looking for the <<magic-failure-string>>
  19871. Most userland programs that don't rely on kernel modules can also be tested in user mode simulation as explained at: xref:user-mode-tests[xrefstyle=full].
  19872. ===== GDB tests
  19873. We have some https://github.com/pexpect/pexpect[pexpect] automated tests for GDB for both userland and baremetal programs!
  19874. Run the userland tests:
  19875. ....
  19876. ./build --all-archs test-gdb && \
  19877. ./test-gdb --all-archs --all-emulators
  19878. ....
  19879. Run the baremetal tests instead:
  19880. ....
  19881. ./test-gdb --all-archs --all-emulators --mode baremetal
  19882. ....
  19883. Sources:
  19884. * link:test-gdb[]
  19885. * link:userland/gdb_tests/[]
  19886. * link:userland/arch/arm/gdb_tests/[]
  19887. * link:userland/arch/aarch64/gdb_tests/[]
  19888. If a test fails, re-run the test commands manually and use `--verbose` to understand what happened:
  19889. ....
  19890. ./run --arch arm --background --baremetal baremetal/c/add.c --gdb-wait &
  19891. ./run-gdb --arch arm --baremetal baremetal/c/add.c --verbose -- main
  19892. ....
  19893. and possibly repeat the GDB steps manually with the usual:
  19894. ....
  19895. ./run-gdb --arch arm --baremetal baremetal/c/add.c --no-continue --verbose
  19896. ....
  19897. To debug GDB problems on gem5, you might want to enable the following <<gem5-tracing,tracing>> options:
  19898. ....
  19899. ./run \
  19900. --arch arm \
  19901. --baremetal baremetal/c/add.c \
  19902. --gdb-wait \
  19903. --trace GDBRecv,GDBSend \
  19904. --trace-stdout \
  19905. ;
  19906. ....
  19907. ===== Magic failure string
  19908. We do not know of any way to set the emulator exit status in QEMU arm full system.
  19909. For other arch / emulator combinations, we know how to do it:
  19910. * aarch64: aarch64 semihosting supports exit status
  19911. * gem5: <<m5-fail>> works on all archs
  19912. * user mode: QEMU forwards exit status, for gem5 we do some log parsing as described at: xref:gem5-syscall-emulation-exit-status[xrefstyle=full]
  19913. Since we can't do it for QEMU arm, the only reliable solution is to just parse the guest serial output for a magic failure string to check if tests failed.
  19914. Our run scripts parse the serial output looking for a line line containing only exactly the magic regular expression:
  19915. ....
  19916. lkmc_exit_status_(\d+)
  19917. ....
  19918. and then exit with the given regular expression, e.g.:
  19919. ....
  19920. ./run --arch aarch64 baremetal/return2.c
  19921. echo $?
  19922. ....
  19923. should output:
  19924. ....
  19925. 2
  19926. ....
  19927. This magic output string is notably generated by:
  19928. * link:rootfs_overlay/lkmc/test_fail.sh[], which is used by <<test-userland-in-full-system>>
  19929. * the `exit()` baremetal function when `status != 1`.
  19930. +
  19931. Unfortunately the only way we found to set this up was with `on_exit`: https://github.com/cirosantilli/linux-kernel-module-cheat/issues/59[].
  19932. +
  19933. Trying to patch `_exit` directly fails since at that point some de-initialization has already happened which prevents the print.
  19934. +
  19935. So setup this `on_exit` automatically from all our <<baremetal-bootloaders>>, so it just works automatically for the examples that use the bootloaders: https://stackoverflow.com/questions/44097610/pass-parameter-to-atexit/49659697#49659697
  19936. +
  19937. The following examples end up testing that our setup is working:
  19938. +
  19939. * link:userland/c/assert_fail.c[]
  19940. * link:userland/c/return0.c[]
  19941. * link:userland/c/return1.c[]
  19942. * link:userland/c/return2.c[]
  19943. * link:userland/c/exit0.c[]
  19944. * link:userland/c/exit1.c[]
  19945. * link:userland/c/exit2.c[]
  19946. * link:userland/posix/kill.c[]
  19947. Beware that on Linux kernel simulations, you cannot even echo that string from userland, since userland stdout shows up on the serial.
  19948. ==== Non-automated tests
  19949. ===== Test GDB Linux kernel
  19950. For the Linux kernel, do the following manual tests for now.
  19951. Shell 1:
  19952. ....
  19953. ./run --gdb-wait
  19954. ....
  19955. Shell 2:
  19956. ....
  19957. ./run-gdb start_kernel
  19958. ....
  19959. Should break GDB at `start_kernel`.
  19960. Then proceed to do the following tests:
  19961. * `./count.sh` and `break __x64_sys_write`
  19962. * `insmod timer.ko` and `break lkmc_timer_callback`
  19963. ===== Test the Internet
  19964. You should also test that the Internet works:
  19965. ....
  19966. ./run --arch x86_64 --kernel-cli '- lkmc_eval="ifup -a;wget -S google.com;poweroff;"'
  19967. ....
  19968. ===== CLI script tests
  19969. `build-userland` and `test-executables` have a wide variety of target selection modes, and it was hard to keep them all working without some tests:
  19970. * link:test-build-userland[]
  19971. * link:test-test-executables[]
  19972. === Bisection
  19973. When updating the Linux kernel, QEMU and gem5, things sometimes break.
  19974. However, for many types of crashes, it is trivial to bisect down to the offending commit, in particular because we can make QEMU and gem5 exit with status 1 on kernel panic as mentioned at: xref:exit-emulator-on-panic[xrefstyle=full].
  19975. For example, when updating from QEMU `v2.12.0` to `v3.0.0-rc3`, the Linux kernel boot started to panic for `arm`.
  19976. We then bisected it as explained at: https://stackoverflow.com/questions/4713088/how-to-use-git-bisect/22592593#22592593 with the link:bisect-qemu-linux-boot[] script:
  19977. ....
  19978. root_dir="$(pwd)"
  19979. cd "$(./getvar qemu_source_dir)"
  19980. git bisect start
  19981. # Check that our test script fails on v3.0.0-rc3 as expected, and mark it as bad.
  19982. "${root_dir}/bisect-qemu-linux-boot"
  19983. # Should output 1.
  19984. echo #?
  19985. git bisect bad
  19986. # Same for the good end.
  19987. git checkout v2.12.0
  19988. "${root_dir}/bisect-qemu-linux-boot"
  19989. # Should output 0.
  19990. echo #?
  19991. git bisect good
  19992. # This leaves us at the offending commit.
  19993. git bisect run "${root_dir}/bisect-qemu-linux-boot"
  19994. # Clean up after the bisection.
  19995. git bisect reset
  19996. git submodule update
  19997. "${root_dir}/build-qemu" --clean --qemu-build-id bisect
  19998. ....
  19999. Other bisection helpers include:
  20000. * link:bisect-linux-boot-gem5[]
  20001. * link:bisect-gem5-linux-boot[]
  20002. === Update a forked submodule
  20003. This is a template update procedure for submodules for which we have some patches on on top of mainline.
  20004. This example is based on the Linux kernel, for which we used to have patches, but have since moved to mainline:
  20005. ....
  20006. # Last point before out patches.
  20007. last_mainline_revision=v4.15
  20008. next_mainline_revision=v4.16
  20009. cd "$(./getvar linux_source_dir)"
  20010. # Create a branch before the rebase in case things go wrong.
  20011. git checkout -b "lkmc-${last_mainline_revision}"
  20012. git remote set-url origin git@github.com:cirosantilli/linux.git
  20013. git push
  20014. git checkout master
  20015. git fetch up
  20016. git rebase --onto "$next_mainline_revision" "$last_mainline_revision"
  20017. # And update the README to show off.
  20018. git commit -m "linux: update to ${next_mainline_revision}"
  20019. ....
  20020. === Release
  20021. ==== Release procedure
  20022. Ensure that the <<automated-tests>> are passing on a clean build:
  20023. ....
  20024. mv out out.bak
  20025. ./build-test --size 3 && ./test --size 3
  20026. ....
  20027. The `./build-test` command builds a superset of what will be downloaded which also tests other things we would like to be working on the release. For the minimal build to generate the files to be uploaded, see: xref:release-zip[xrefstyle=full]
  20028. The clean build is necessary as it generates clean images since <<remove-buildroot-packages,it is not possible to remove Buildroot packages>>
  20029. Run all tests in <<non-automated-tests>> just QEMU x86_64 and QEMU aarch64.
  20030. TODO: not working currently, so skipped: Ensure that the <<benchmark-this-repo,benchmarks>> look fine:
  20031. ....
  20032. ./bench-all -A
  20033. ....
  20034. Create a release candidate and upload it:
  20035. ....
  20036. git tag -a -m '' v3.0-rc1
  20037. git push --follow-tags
  20038. ./release-zip --all-archs
  20039. # export LKMC_GITHUB_TOKEN=<your-token>
  20040. ./release-upload
  20041. ....
  20042. Now let's do an out-of-box testing for the release candidate:
  20043. ....
  20044. cd ..
  20045. git clone https://github.com/cirosantilli/linux-kernel-module-cheat linux-kernel-module-cheat-release
  20046. cd linux-kernel-module-cheat-release
  20047. ....
  20048. Test <<prebuilt>>.
  20049. Clean up, and re-start from scratch:
  20050. ....
  20051. cd ..
  20052. rm -rf linux-kernel-module-cheat-release
  20053. git clone https://github.com/cirosantilli/linux-kernel-module-cheat linux-kernel-module-cheat-release
  20054. cd linux-kernel-module-cheat-release
  20055. ....
  20056. Go through all the other <<getting-started>> sections in order.
  20057. Once everything looks fine, publish the release with:
  20058. ....
  20059. git tag -a v3.0
  20060. # Describe the release int the tag message.
  20061. git push --follow-tags
  20062. ./release-zip --all-archs
  20063. # export LKMC_GITHUB_TOKEN=<your-token>
  20064. ./release-upload
  20065. ....
  20066. ==== release-zip
  20067. Create a zip containing all files required for <<prebuilt>>:
  20068. ....
  20069. ./build --all-archs release && ./release-zip --all-archs
  20070. ....
  20071. Source: link:release-zip[]
  20072. This generates a zip file:
  20073. ....
  20074. echo "$(./getvar release_zip_file)"
  20075. ....
  20076. which you can then upload somewhere.
  20077. ==== release-upload
  20078. After:
  20079. * running <<release-zip>>
  20080. * creating and pushing a tag to GitHub
  20081. you can upload the release to GitHub automatically with:
  20082. ....
  20083. # export LKMC_GITHUB_TOKEN=<your-token>
  20084. ./release-upload
  20085. ....
  20086. Source: link:release-upload[]
  20087. The HEAD of the local repository must be on top of a tag that has been pushed for this to work.
  20088. Create `LKMC_GITHUB_TOKEN` under: https://github.com/settings/tokens/new and save it to your `.bashrc`.
  20089. The implementation of this script is described at:
  20090. * https://stackoverflow.com/questions/5207269/how-to-release-a-build-artifact-asset-on-github-with-a-script/52354732#52354732
  20091. * https://stackoverflow.com/questions/38153418/can-someone-give-a-python-requests-example-of-uploading-a-release-asset-in-githu/52354681#52354681
  20092. === Design rationale
  20093. ==== Design goals
  20094. This project was created to help me understand, modify and test low level system components by using system simulators.
  20095. System simulators are cool compared to real hardware because they are:
  20096. * free
  20097. * make experiments highly reproducible
  20098. * give full visibility to the system: you can inspect any byte in memory, or the state of any hardware register. The laws of physics sometimes get in the way when doing that for real hardware.
  20099. The current components we focus the most on are:
  20100. * <<linux-kernel>> and Linux kernel modules
  20101. * full systems emulators, currently <<qemu-buildroot-setup,qemu>> and <<gem5-buildroot-setup,gem5>>
  20102. * <<buildroot>>. We use and therefore document, a large part of its feature set.
  20103. The following components are not covered, but they would also benefit from this setup, and it shouldn't be hard to add them:
  20104. * C standard libraries
  20105. * compilers. Project idea: add a new instruction to x86, then hack up GCC to actually use it, and make a C program that generates it.
  20106. The design goals are to provide setups that are:
  20107. * highly automated: "just works"
  20108. * thoroughly documented: you know what "just works" means
  20109. * can be fully built from source: to give visibility and allow modifications
  20110. * can also use <<prebuilt, prebuilt binaries>> as much as possible: in case you are lazy or unable to build from source
  20111. We aim to make a documentation that contains a very high runnable example / theory bullshit ratio.
  20112. Having at least one example per section is ideal, and it should be the very first thing in the section if possible.
  20113. ==== Setup trade-offs
  20114. The trade-offs between the different <<getting-started,setups>> are basically a balance between:
  20115. * speed ans size: how long and how much disk space do the build and run take?
  20116. * visibility: can you GDB step debug everything and read source code?
  20117. * modifiability: can you modify the source code and rebuild a modified version?
  20118. * portability: does it work on a Windows host? Could it ever?
  20119. * accuracy: how accurate does the simulation represent real hardware?
  20120. * compatibility: how likely is is that all the components will work well together: emulator, compiler, kernel, standard library, ...
  20121. * guest software availability: how wide is your choice of easily installed guest software packages? See also: xref:linux-distro-choice[xrefstyle=full]
  20122. ==== Resource tradeoff guidelines
  20123. Choosing which features go into our default builds means making tradeoffs, here are our guidelines:
  20124. * keep the root filesystem as tiny as possible to make <<prebuilt>> small: only add BusyBox to have a small interactive system.
  20125. +
  20126. It is easy to add new packages once you have the toolchain, and if you don't there are infinitely many packages to cover and we can't cover them all.
  20127. * enable every feature possible on the toolchain (GCC, Binutils), because changes imply Buildroot rebuilds
  20128. * runtime is sacred. Faster systems are:
  20129. +
  20130. --
  20131. ** easier to understand
  20132. ** run faster, which is specially for <<gem5>> which is slow
  20133. --
  20134. +
  20135. Runtime basically just comes down to how we configure the Linux kernel, since in the root filesystem all that matters is `init=`, and that is easy to control.
  20136. +
  20137. One possibility we could play with is to build loadable modules instead of built-in modules to reduce runtime, but make it easier to get started with the modules.
  20138. In order to learn how to measure some of those aspects, see: xref:benchmark-this-repo[xrefstyle=full].
  20139. ==== Linux distro choice
  20140. We haven't found the ultimate distro yet, here is a summary table of trade-offs that we care about: xref:table-lkmc-linux-distro-comparison[xrefstyle=full].
  20141. [[table-lkmc-linux-distro-comparison]]
  20142. .Comparison of Linux distros for usage in this repository
  20143. [options="header"]
  20144. |===
  20145. |Distro |Packages in single Git tree |Git tracked docs |Cross build without QEMU |Prebuilt downloads |Number of packages
  20146. |Buildroot 2018.05
  20147. |y
  20148. |y
  20149. |y
  20150. |n
  20151. |2k (1)
  20152. |Ubuntu 18.04
  20153. |n
  20154. |n
  20155. |n
  20156. |y
  20157. |50k (3)
  20158. |Yocto 2.5 (8)
  20159. |?
  20160. |y (5)
  20161. |?
  20162. |y (6)
  20163. |400 (7)
  20164. |Alpine Linux 3.8.0
  20165. |y
  20166. |n (1)
  20167. |?
  20168. |y
  20169. |2000 (4)
  20170. |===
  20171. * (1): Wiki... https://wiki.alpinelinux.org/wiki/Main_Page
  20172. * (2): `ls packages | wc`
  20173. * (3): https://askubuntu.com/questions/120630/how-many-packages-are-in-the-main-repository
  20174. * (4): `ls main community non-free | wc`
  20175. * (5): yes, but on a separate Git tree... https://git.yoctoproject.org/cgit/cgit.cgi/yocto-docs/
  20176. * (6): yes, but the initial Poky build / download still took 5 hours on <<38mbps-internet>>, and QEMU failed to boot at the end... https://bugzilla.yoctoproject.org/show_bug.cgi?id=12953
  20177. * (7): `ls recipes-* | wc`
  20178. * (8): Poky reference system: http://git.yoctoproject.org/cgit/cgit.cgi/poky
  20179. Other interesting possibilities that I haven't evaluated well:
  20180. * NixOS https://nixos.org/ Seems to support full build from source well. Not much cross compilation information however.
  20181. * Gentoo https://en.wikipedia.org/wiki/Gentoo_Linux Seems to support full build from source well.
  20182. === Soft topics
  20183. ==== Fairy tale
  20184. ____
  20185. Once upon a time, there was a boy called Linus.
  20186. Linus made a super fun toy, and since he was not very humble, decided to call it Linux.
  20187. Linux was an awesome toy, but it had one big problem: it was very difficult to learn how to play with it!
  20188. As a result, only some weird kids who were very bored ended up playing with Linux, and everyone thought those kids were very cool, in their own weird way.
  20189. One day, a mysterious new kid called Ciro tried to play with Linux, and like many before him, got very frustrated, and gave up.
  20190. A few years later, Ciro had grown up a bit, and by chance came across a very cool toy made by the boy Petazzoni and his gang: it was called Buildroot.
  20191. Ciro noticed that if you used Buildroot together with Linux, and Linux suddenly became very fun to play with!
  20192. So Ciro decided to explain to as many kids as possible how to use Buildroot to play with Linux.
  20193. And so everyone was happy. Except some of the old weird kernel hackers who wanted to keep their mystique, but so be it.
  20194. THE END
  20195. ____
  20196. === Bibliography
  20197. Runnable stuff:
  20198. * https://lwn.net/Kernel/LDD3/ the best book, but outdated. Updated source: https://github.com/martinezjavier/ldd3 But examples non-minimal and take too much brain power to understand.
  20199. * https://github.com/satoru-takeuchi/elkdat manual build process without Buildroot, very few and simple kernel modules. But it seem ktest + QEMU working, which is awesome. `./test` there patches ktest config dynamically based on CLI! Maybe we should just steal it since GPL licensed.
  20200. * https://github.com/tinyclub/linux-lab Buildroot based, no kernel modules?
  20201. * https://github.com/agelastic/eudyptula
  20202. * https://github.com/linux-kernel-labs Yocto based, source inside a kernel fork subdir: https://github.com/linux-kernel-labs/linux/tree/f08b9e4238dfc612a9d019e3705bd906930057fc/tools/labs which the author would like to upstream https://www.reddit.com/r/programming/comments/79w2q9/linux_device_driver_labs_the_linux_kernel/dp6of43/
  20203. * Android AOSP: https://stackoverflow.com/questions/1809774/how-to-compile-the-android-aosp-kernel-and-test-it-with-the-android-emulator/48310014#48310014 AOSP is basically a uber bloated Buildroot (2 hours build vs 30 minutes), Android is Linux based, and QEMU is the emulator backend. These instructions might work for debugging the kernel: https://github.com/Fuzion24/AndroidKernelExploitationPlayground
  20204. * https://github.com/s-matyukevich/raspberry-pi-os Does both an OS from scratch, and annotates the corresponding kernel source code. For RPI3, no QEMU support: https://github.com/s-matyukevich/raspberry-pi-os/issues/8
  20205. * https://github.com/pw4ever/linux-kernel-hacking-helper as of bd9952127e7eda643cbb6cb4c51ad7b5b224f438, Bash, Arch Linux rootfs
  20206. * https://github.com/MichielDerhaeg/build-linux untested. Manually builds musl and BusyBox, no Buildroot. Seems to use host packaged toolchain and tested on x86_64 only. Might contain a minimized kernel config.
  20207. * https://eli.thegreenplace.net and the accompanying code: https://github.com/eliben/code-for-blog
  20208. Theory:
  20209. * http://cs241.cs.illinois.edu/coursebook/index.html "CS 241: System Programming" from the University of Illinois at Urbana-Champaign. Has a PDF, Tex source at: https://github.com/illinois-cs241/coursebook TODO any runnable code?
  20210. * https://github.com/0xAX/linux-insides wait, how come they have 10x more starts as this repo? :-) Just kidding, awesome effort.
  20211. * http://nairobi-embedded.org you will fall here a lot when you start popping the hard QEMU Google queries. They have covered everything we do here basically, but with a more manual approach, while this repo automates everything.
  20212. +
  20213. I couldn't find the markup source code for the tutorials, and as a result when the domain went down in May 2018, you have to use http://web.archive.org/ to see the pages...
  20214. * https://balau82.wordpress.com awesome low level resource
  20215. * https://rwmj.wordpress.com/ awesome red hatter
  20216. * https://lwn.net
  20217. * http://www.makelinux.net
  20218. * https://notes.shichao.io/lkd/
  20219. Awesome lists:
  20220. * https://github.com/gurugio/lowlevelprogramming-university
  20221. * https://github.com/uhub/awesome-c