1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This file implements the new evaluation engine for Nim code.
- ## An instruction is 1-3 int32s in memory, it is a register based VM.
- import semmacrosanity
- import
- std/[strutils, tables, parseutils],
- msgs, vmdef, vmgen, nimsets, types,
- parser, vmdeps, idents, trees, renderer, options, transf,
- gorgeimpl, lineinfos, btrees, macrocacheimpl,
- modulegraphs, sighashes, int128, vmprofiler
- when defined(nimPreviewSlimSystem):
- import std/formatfloat
- import ast except getstr
- from semfold import leValueConv, ordinalValToString
- from evaltempl import evalTemplate
- from magicsys import getSysType
- const
- traceCode = defined(nimVMDebug)
- when hasFFI:
- import evalffi
- proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) =
- if x != nil:
- if recursionLimit == 0:
- var calls = 0
- var x = x
- while x != nil:
- inc calls
- x = x.next
- msgWriteln(c.config, $calls & " calls omitted\n", {msgNoUnitSep})
- return
- stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1)
- var info = c.debug[pc]
- # we now use a format similar to the one in lib/system/excpt.nim
- var s = ""
- # todo: factor with quotedFilename
- if optExcessiveStackTrace in c.config.globalOptions:
- s = toFullPath(c.config, info)
- else:
- s = toFilename(c.config, info)
- var line = toLinenumber(info)
- var col = toColumn(info)
- if line > 0:
- s.add('(')
- s.add($line)
- s.add(", ")
- s.add($(col + ColOffset))
- s.add(')')
- if x.prc != nil:
- for k in 1..max(1, 25-s.len): s.add(' ')
- s.add(x.prc.name.s)
- msgWriteln(c.config, s, {msgNoUnitSep})
- proc stackTraceImpl(c: PCtx, tos: PStackFrame, pc: int,
- msg: string, lineInfo: TLineInfo, infoOrigin: InstantiationInfo) {.noinline.} =
- # noinline to avoid code bloat
- msgWriteln(c.config, "stack trace: (most recent call last)", {msgNoUnitSep})
- stackTraceAux(c, tos, pc)
- let action = if c.mode == emRepl: doRaise else: doNothing
- # XXX test if we want 'globalError' for every mode
- let lineInfo = if lineInfo == TLineInfo.default: c.debug[pc] else: lineInfo
- liMessage(c.config, lineInfo, errGenerated, msg, action, infoOrigin)
- when not defined(nimHasCallsitePragma):
- {.pragma: callsite.}
- template stackTrace(c: PCtx, tos: PStackFrame, pc: int,
- msg: string, lineInfo: TLineInfo = TLineInfo.default) {.callsite.} =
- stackTraceImpl(c, tos, pc, msg, lineInfo, instantiationInfo(-2, fullPaths = true))
- return
- proc bailOut(c: PCtx; tos: PStackFrame) =
- stackTrace(c, tos, c.exceptionInstr, "unhandled exception: " &
- c.currentExceptionA[3].skipColon.strVal &
- " [" & c.currentExceptionA[2].skipColon.strVal & "]")
- when not defined(nimComputedGoto):
- {.pragma: computedGoto.}
- proc ensureKind(n: var TFullReg, k: TRegisterKind) {.inline.} =
- if n.kind != k:
- n = TFullReg(kind: k)
- template ensureKind(k: untyped) {.dirty.} =
- ensureKind(regs[ra], k)
- template decodeB(k: untyped) {.dirty.} =
- let rb = instr.regB
- ensureKind(k)
- template decodeBC(k: untyped) {.dirty.} =
- let rb = instr.regB
- let rc = instr.regC
- ensureKind(k)
- template declBC() {.dirty.} =
- let rb = instr.regB
- let rc = instr.regC
- template decodeBImm(k: untyped) {.dirty.} =
- let rb = instr.regB
- let imm = instr.regC - byteExcess
- ensureKind(k)
- template decodeBx(k: untyped) {.dirty.} =
- let rbx = instr.regBx - wordExcess
- ensureKind(k)
- template move(a, b: untyped) {.dirty.} =
- when defined(gcArc) or defined(gcOrc) or defined(gcAtomicArc):
- a = move b
- else:
- system.shallowCopy(a, b)
- # XXX fix minor 'shallowCopy' overloading bug in compiler
- proc derefPtrToReg(address: BiggestInt, typ: PType, r: var TFullReg, isAssign: bool): bool =
- # nim bug: `isAssign: static bool` doesn't work, giving odd compiler error
- template fun(field, typ, rkind) =
- if isAssign:
- cast[ptr typ](address)[] = typ(r.field)
- else:
- r.ensureKind(rkind)
- let val = cast[ptr typ](address)[]
- when typ is SomeInteger | char:
- r.field = BiggestInt(val)
- else:
- r.field = val
- return true
- ## see also typeinfo.getBiggestInt
- case typ.kind
- of tyChar: fun(intVal, char, rkInt)
- of tyInt: fun(intVal, int, rkInt)
- of tyInt8: fun(intVal, int8, rkInt)
- of tyInt16: fun(intVal, int16, rkInt)
- of tyInt32: fun(intVal, int32, rkInt)
- of tyInt64: fun(intVal, int64, rkInt)
- of tyUInt: fun(intVal, uint, rkInt)
- of tyUInt8: fun(intVal, uint8, rkInt)
- of tyUInt16: fun(intVal, uint16, rkInt)
- of tyUInt32: fun(intVal, uint32, rkInt)
- of tyUInt64: fun(intVal, uint64, rkInt) # note: differs from typeinfo.getBiggestInt
- of tyFloat: fun(floatVal, float, rkFloat)
- of tyFloat32: fun(floatVal, float32, rkFloat)
- of tyFloat64: fun(floatVal, float64, rkFloat)
- else: return false
- proc createStrKeepNode(x: var TFullReg; keepNode=true) =
- if x.node.isNil or not keepNode:
- x.node = newNode(nkStrLit)
- elif x.node.kind == nkNilLit and keepNode:
- when defined(useNodeIds):
- let id = x.node.id
- x.node[] = TNode(kind: nkStrLit)
- when defined(useNodeIds):
- x.node.id = id
- elif x.node.kind notin {nkStrLit..nkTripleStrLit} or
- nfAllConst in x.node.flags:
- # XXX this is hacky; tests/txmlgen triggers it:
- x.node = newNode(nkStrLit)
- # It not only hackey, it is also wrong for tgentemplate. The primary
- # cause of bugs like these is that the VM does not properly distinguish
- # between variable definitions (var foo = e) and variable updates (foo = e).
- include vmhooks
- template createStr(x) =
- x.node = newNode(nkStrLit)
- template createSet(x) =
- x.node = newNode(nkCurly)
- proc moveConst(x: var TFullReg, y: TFullReg) =
- x.ensureKind(y.kind)
- case x.kind
- of rkNone: discard
- of rkInt: x.intVal = y.intVal
- of rkFloat: x.floatVal = y.floatVal
- of rkNode: x.node = y.node
- of rkRegisterAddr: x.regAddr = y.regAddr
- of rkNodeAddr: x.nodeAddr = y.nodeAddr
- # this seems to be the best way to model the reference semantics
- # of system.NimNode:
- template asgnRef(x, y: untyped) = moveConst(x, y)
- proc copyValue(src: PNode): PNode =
- if src == nil or nfIsRef in src.flags:
- return src
- result = newNode(src.kind)
- result.info = src.info
- result.typ = src.typ
- result.flags = src.flags * PersistentNodeFlags
- result.comment = src.comment
- when defined(useNodeIds):
- if result.id == nodeIdToDebug:
- echo "COMES FROM ", src.id
- case src.kind
- of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
- of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
- of nkSym: result.sym = src.sym
- of nkIdent: result.ident = src.ident
- of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
- else:
- newSeq(result.sons, src.len)
- for i in 0..<src.len:
- result[i] = copyValue(src[i])
- proc asgnComplex(x: var TFullReg, y: TFullReg) =
- x.ensureKind(y.kind)
- case x.kind
- of rkNone: discard
- of rkInt: x.intVal = y.intVal
- of rkFloat: x.floatVal = y.floatVal
- of rkNode: x.node = copyValue(y.node)
- of rkRegisterAddr: x.regAddr = y.regAddr
- of rkNodeAddr: x.nodeAddr = y.nodeAddr
- proc fastAsgnComplex(x: var TFullReg, y: TFullReg) =
- x.ensureKind(y.kind)
- case x.kind
- of rkNone: discard
- of rkInt: x.intVal = y.intVal
- of rkFloat: x.floatVal = y.floatVal
- of rkNode: x.node = y.node
- of rkRegisterAddr: x.regAddr = y.regAddr
- of rkNodeAddr: x.nodeAddr = y.nodeAddr
- proc writeField(n: var PNode, x: TFullReg) =
- case x.kind
- of rkNone: discard
- of rkInt:
- if n.kind == nkNilLit:
- n[] = TNode(kind: nkIntLit) # ideally, `nkPtrLit`
- n.intVal = x.intVal
- of rkFloat: n.floatVal = x.floatVal
- of rkNode: n = copyValue(x.node)
- of rkRegisterAddr: writeField(n, x.regAddr[])
- of rkNodeAddr: n = x.nodeAddr[]
- proc putIntoReg(dest: var TFullReg; n: PNode) =
- case n.kind
- of nkStrLit..nkTripleStrLit:
- dest = TFullReg(kind: rkNode, node: newStrNode(nkStrLit, n.strVal))
- of nkIntLit: # use `nkPtrLit` once this is added
- if dest.kind == rkNode: dest.node = n
- elif n.typ != nil and n.typ.kind in PtrLikeKinds:
- dest = TFullReg(kind: rkNode, node: n)
- else:
- dest = TFullReg(kind: rkInt, intVal: n.intVal)
- of {nkCharLit..nkUInt64Lit} - {nkIntLit}:
- dest = TFullReg(kind: rkInt, intVal: n.intVal)
- of nkFloatLit..nkFloat128Lit:
- dest = TFullReg(kind: rkFloat, floatVal: n.floatVal)
- else:
- dest = TFullReg(kind: rkNode, node: n)
- proc regToNode(x: TFullReg): PNode =
- case x.kind
- of rkNone: result = newNode(nkEmpty)
- of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal
- of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal
- of rkNode: result = x.node
- of rkRegisterAddr: result = regToNode(x.regAddr[])
- of rkNodeAddr: result = x.nodeAddr[]
- template getstr(a: untyped): untyped =
- (if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal)))
- proc pushSafePoint(f: PStackFrame; pc: int) =
- f.safePoints.add(pc)
- proc popSafePoint(f: PStackFrame) =
- discard f.safePoints.pop()
- type
- ExceptionGoto = enum
- ExceptionGotoHandler,
- ExceptionGotoFinally,
- ExceptionGotoUnhandled
- proc findExceptionHandler(c: PCtx, f: PStackFrame, exc: PNode):
- tuple[why: ExceptionGoto, where: int] =
- let raisedType = exc.typ.skipTypes(abstractPtrs)
- while f.safePoints.len > 0:
- var pc = f.safePoints.pop()
- var matched = false
- var pcEndExcept = pc
- # Scan the chain of exceptions starting at pc.
- # The structure is the following:
- # pc - opcExcept, <end of this block>
- # - opcExcept, <pattern1>
- # - opcExcept, <pattern2>
- # ...
- # - opcExcept, <patternN>
- # - Exception handler body
- # - ... more opcExcept blocks may follow
- # - ... an optional opcFinally block may follow
- #
- # Note that the exception handler body already contains a jump to the
- # finally block or, if that's not present, to the point where the execution
- # should continue.
- # Also note that opcFinally blocks are the last in the chain.
- while c.code[pc].opcode == opcExcept:
- # Where this Except block ends
- pcEndExcept = pc + c.code[pc].regBx - wordExcess
- inc pc
- # A series of opcExcept follows for each exception type matched
- while c.code[pc].opcode == opcExcept:
- let excIndex = c.code[pc].regBx - wordExcess
- let exceptType =
- if excIndex > 0: c.types[excIndex].skipTypes(abstractPtrs)
- else: nil
- # echo typeToString(exceptType), " ", typeToString(raisedType)
- # Determine if the exception type matches the pattern
- if exceptType.isNil or inheritanceDiff(raisedType, exceptType) <= 0:
- matched = true
- break
- inc pc
- # Skip any further ``except`` pattern and find the first instruction of
- # the handler body
- while c.code[pc].opcode == opcExcept:
- inc pc
- if matched:
- break
- # If no handler in this chain is able to catch this exception we check if
- # the "parent" chains are able to. If this chain ends with a `finally`
- # block we must execute it before continuing.
- pc = pcEndExcept
- # Where the handler body starts
- let pcBody = pc
- if matched:
- return (ExceptionGotoHandler, pcBody)
- elif c.code[pc].opcode == opcFinally:
- # The +1 here is here because we don't want to execute it since we've
- # already pop'd this statepoint from the stack.
- return (ExceptionGotoFinally, pc + 1)
- return (ExceptionGotoUnhandled, 0)
- proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
- # Walk up the chain of safepoints and return the PC of the first `finally`
- # block we find or -1 if no such block is found.
- # Note that the safepoint is removed once the function returns!
- result = -1
- # Traverse the stack starting from the end in order to execute the blocks in
- # the intended order
- for i in 1..f.safePoints.len:
- var pc = f.safePoints[^i]
- # Skip the `except` blocks
- while c.code[pc].opcode == opcExcept:
- pc += c.code[pc].regBx - wordExcess
- if c.code[pc].opcode == opcFinally:
- discard f.safePoints.pop
- return pc + 1
- proc opConv(c: PCtx; dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool =
- result = false
- if desttyp.kind == tyString:
- dest.ensureKind(rkNode)
- dest.node = newNode(nkStrLit)
- let styp = srctyp.skipTypes(abstractRange)
- case styp.kind
- of tyEnum:
- let n = styp.n
- let x = src.intVal.int
- if x <% n.len and (let f = n[x].sym; f.position == x):
- dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
- else:
- for i in 0..<n.len:
- if n[i].kind != nkSym: internalError(c.config, "opConv for enum")
- let f = n[i].sym
- if f.position == x:
- dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
- return
- dest.node.strVal = styp.sym.name.s & " " & $x
- of tyInt..tyInt64:
- dest.node.strVal = $src.intVal
- of tyUInt..tyUInt64:
- dest.node.strVal = $uint64(src.intVal)
- of tyBool:
- dest.node.strVal = if src.intVal == 0: "false" else: "true"
- of tyFloat..tyFloat128:
- dest.node.strVal = $src.floatVal
- of tyString:
- dest.node.strVal = src.node.strVal
- of tyCstring:
- if src.node.kind == nkBracket:
- # Array of chars
- var strVal = ""
- for son in src.node.sons:
- let c = char(son.intVal)
- if c == '\0': break
- strVal.add(c)
- dest.node.strVal = strVal
- else:
- dest.node.strVal = src.node.strVal
- of tyChar:
- dest.node.strVal = $chr(src.intVal)
- else:
- internalError(c.config, "cannot convert to string " & desttyp.typeToString)
- else:
- let desttyp = skipTypes(desttyp, abstractVarRange)
- case desttyp.kind
- of tyInt..tyInt64:
- dest.ensureKind(rkInt)
- case skipTypes(srctyp, abstractRange).kind
- of tyFloat..tyFloat64:
- dest.intVal = int(src.floatVal)
- else:
- dest.intVal = src.intVal
- if toInt128(dest.intVal) < firstOrd(c.config, desttyp) or toInt128(dest.intVal) > lastOrd(c.config, desttyp):
- return true
- of tyUInt..tyUInt64:
- dest.ensureKind(rkInt)
- let styp = srctyp.skipTypes(abstractRange) # skip distinct types(dest type could do this too if needed)
- case styp.kind
- of tyFloat..tyFloat64:
- dest.intVal = int(src.floatVal)
- else:
- let destSize = getSize(c.config, desttyp)
- let destDist = (sizeof(dest.intVal) - destSize) * 8
- var value = cast[BiggestUInt](src.intVal)
- when false:
- # this would make uint64(-5'i8) evaluate to 251
- # but at runtime, uint64(-5'i8) is 18446744073709551611
- # so don't do it
- let srcSize = getSize(c.config, styp)
- let srcDist = (sizeof(src.intVal) - srcSize) * 8
- value = (value shl srcDist) shr srcDist
- value = (value shl destDist) shr destDist
- dest.intVal = cast[BiggestInt](value)
- of tyBool:
- dest.ensureKind(rkInt)
- dest.intVal =
- case skipTypes(srctyp, abstractRange).kind
- of tyFloat..tyFloat64: int(src.floatVal != 0.0)
- else: int(src.intVal != 0)
- of tyFloat..tyFloat64:
- dest.ensureKind(rkFloat)
- let srcKind = skipTypes(srctyp, abstractRange).kind
- case srcKind
- of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
- dest.floatVal = toBiggestFloat(src.intVal)
- elif src.kind == rkInt:
- dest.floatVal = toBiggestFloat(src.intVal)
- else:
- dest.floatVal = src.floatVal
- of tyObject:
- if srctyp.skipTypes(abstractVarRange).kind != tyObject:
- internalError(c.config, "invalid object-to-object conversion")
- # A object-to-object conversion is essentially a no-op
- moveConst(dest, src)
- else:
- asgnComplex(dest, src)
- proc compile(c: PCtx, s: PSym): int =
- result = vmgen.genProc(c, s)
- when debugEchoCode: c.echoCode result
- #c.echoCode
- template handleJmpBack() {.dirty.} =
- if c.loopIterations <= 0:
- if allowInfiniteLoops in c.features:
- c.loopIterations = c.config.maxLoopIterationsVM
- else:
- msgWriteln(c.config, "stack trace: (most recent call last)", {msgNoUnitSep})
- stackTraceAux(c, tos, pc)
- globalError(c.config, c.debug[pc], errTooManyIterations % $c.config.maxLoopIterationsVM)
- dec(c.loopIterations)
- proc recSetFlagIsRef(arg: PNode) =
- if arg.kind notin {nkStrLit..nkTripleStrLit}:
- arg.flags.incl(nfIsRef)
- for i in 0..<arg.safeLen:
- arg[i].recSetFlagIsRef
- proc setLenSeq(c: PCtx; node: PNode; newLen: int; info: TLineInfo) =
- let typ = node.typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc})
- let oldLen = node.len
- setLen(node.sons, newLen)
- if oldLen < newLen:
- for i in oldLen..<newLen:
- node[i] = getNullValue(typ.elementType, info, c.config)
- const
- errNilAccess = "attempt to access a nil address"
- errOverOrUnderflow = "over- or underflow"
- errConstantDivisionByZero = "division by zero"
- errIllegalConvFromXtoY = "illegal conversion from '$1' to '$2'"
- errTooManyIterations = "interpretation requires too many iterations; " &
- "if you are sure this is not a bug in your code, compile with `--maxLoopIterationsVM:number` (current value: $1)"
- errFieldXNotFound = "node lacks field: "
- template maybeHandlePtr(node2: PNode, reg: TFullReg, isAssign2: bool): bool =
- let node = node2 # prevent double evaluation
- if node.kind == nkNilLit:
- stackTrace(c, tos, pc, errNilAccess)
- let typ = node.typ
- if nfIsPtr in node.flags or (typ != nil and typ.kind == tyPtr):
- assert node.kind == nkIntLit, $(node.kind)
- assert typ != nil
- let typ2 = if typ.kind == tyPtr: typ.elementType else: typ
- if not derefPtrToReg(node.intVal, typ2, reg, isAssign = isAssign2):
- # tyObject not supported in this context
- stackTrace(c, tos, pc, "deref unsupported ptr type: " & $(typeToString(typ), typ.kind))
- true
- else:
- false
- template takeAddress(reg, source) =
- reg.nodeAddr = addr source
- GC_ref source
- proc takeCharAddress(c: PCtx, src: PNode, index: BiggestInt, pc: int): TFullReg =
- let typ = newType(tyPtr, c.idgen, c.module.owner)
- typ.add getSysType(c.graph, c.debug[pc], tyChar)
- var node = newNodeIT(nkIntLit, c.debug[pc], typ) # xxx nkPtrLit
- node.intVal = cast[int](src.strVal[index].addr)
- node.flags.incl nfIsPtr
- TFullReg(kind: rkNode, node: node)
- proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg =
- result = TFullReg(kind: rkNone)
- var pc = start
- var tos = tos
- # Used to keep track of where the execution is resumed.
- var savedPC = -1
- var savedFrame: PStackFrame = nil
- when defined(gcArc) or defined(gcOrc) or defined(gcAtomicArc):
- template updateRegsAlias = discard
- template regs: untyped = tos.slots
- else:
- template updateRegsAlias =
- move(regs, tos.slots)
- var regs: seq[TFullReg] # alias to tos.slots for performance
- updateRegsAlias
- #echo "NEW RUN ------------------------"
- while true:
- #{.computedGoto.}
- let instr = c.code[pc]
- let ra = instr.regA
- when traceCode:
- template regDescr(name, r): string =
- let kind = if r < regs.len: $regs[r].kind else: ""
- let ret = name & ": " & $r & " " & $kind
- alignLeft(ret, 15)
- echo "PC:$pc $opcode $ra $rb $rc" % [
- "pc", $pc, "opcode", alignLeft($c.code[pc].opcode, 15),
- "ra", regDescr("ra", ra), "rb", regDescr("rb", instr.regB),
- "rc", regDescr("rc", instr.regC)]
- if c.config.isVmTrace:
- # unlike nimVMDebug, this doesn't require re-compiling nim and is controlled by user code
- let info = c.debug[pc]
- # other useful variables: c.loopIterations
- echo "$# [$#] $#" % [c.config$info, $instr.opcode, c.config.sourceLine(info)]
- c.profiler.enter(c, tos)
- case instr.opcode
- of opcEof: return regs[ra]
- of opcRet:
- let newPc = c.cleanUpOnReturn(tos)
- # Perform any cleanup action before returning
- if newPc < 0:
- pc = tos.comesFrom
- let retVal = regs[0]
- tos = tos.next
- if tos.isNil:
- return retVal
- updateRegsAlias
- assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
- if c.code[pc].opcode == opcIndCallAsgn:
- regs[c.code[pc].regA] = retVal
- else:
- savedPC = pc
- savedFrame = tos
- # The -1 is needed because at the end of the loop we increment `pc`
- pc = newPc - 1
- of opcYldYoid: assert false
- of opcYldVal: assert false
- of opcAsgnInt:
- decodeB(rkInt)
- regs[ra].intVal = regs[rb].intVal
- of opcAsgnFloat:
- decodeB(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal
- of opcCastFloatToInt32:
- let rb = instr.regB
- ensureKind(rkInt)
- regs[ra].intVal = cast[int32](float32(regs[rb].floatVal))
- of opcCastFloatToInt64:
- let rb = instr.regB
- ensureKind(rkInt)
- regs[ra].intVal = cast[int64](regs[rb].floatVal)
- of opcCastIntToFloat32:
- let rb = instr.regB
- ensureKind(rkFloat)
- regs[ra].floatVal = cast[float32](regs[rb].intVal)
- of opcCastIntToFloat64:
- let rb = instr.regB
- ensureKind(rkFloat)
- regs[ra].floatVal = cast[float64](regs[rb].intVal)
- of opcCastPtrToInt: # RENAME opcCastPtrOrRefToInt
- decodeBImm(rkInt)
- case imm
- of 1: # PtrLikeKinds
- case regs[rb].kind
- of rkNode:
- regs[ra].intVal = cast[int](regs[rb].node.intVal)
- of rkNodeAddr:
- regs[ra].intVal = cast[int](regs[rb].nodeAddr)
- of rkInt:
- regs[ra].intVal = regs[rb].intVal
- else:
- stackTrace(c, tos, pc, "opcCastPtrToInt: got " & $regs[rb].kind)
- of 2: # tyRef
- regs[ra].intVal = cast[int](regs[rb].node)
- else: assert false, $imm
- of opcCastIntToPtr:
- let rb = instr.regB
- let typ = regs[ra].node.typ
- let node2 = newNodeIT(nkIntLit, c.debug[pc], typ)
- case regs[rb].kind
- of rkInt: node2.intVal = regs[rb].intVal
- of rkNode:
- if regs[rb].node.typ.kind notin PtrLikeKinds:
- stackTrace(c, tos, pc, "opcCastIntToPtr: regs[rb].node.typ: " & $regs[rb].node.typ.kind)
- node2.intVal = regs[rb].node.intVal
- else: stackTrace(c, tos, pc, "opcCastIntToPtr: regs[rb].kind: " & $regs[rb].kind)
- regs[ra].node = node2
- of opcAsgnComplex:
- asgnComplex(regs[ra], regs[instr.regB])
- of opcFastAsgnComplex:
- fastAsgnComplex(regs[ra], regs[instr.regB])
- of opcAsgnRef:
- asgnRef(regs[ra], regs[instr.regB])
- of opcNodeToReg:
- let ra = instr.regA
- let rb = instr.regB
- # opcLdDeref might already have loaded it into a register. XXX Let's hope
- # this is still correct this way:
- if regs[rb].kind != rkNode:
- regs[ra] = regs[rb]
- else:
- assert regs[rb].kind == rkNode
- let nb = regs[rb].node
- case nb.kind
- of nkCharLit..nkUInt64Lit:
- ensureKind(rkInt)
- regs[ra].intVal = nb.intVal
- of nkFloatLit..nkFloat64Lit:
- ensureKind(rkFloat)
- regs[ra].floatVal = nb.floatVal
- else:
- ensureKind(rkNode)
- regs[ra].node = nb
- of opcSlice:
- # A bodge, but this takes in `toOpenArray(rb, rc, rc)` and emits
- # nkTupleConstr(x, y, z) into the `regs[ra]`. These can later be used for calculating the slice we have taken.
- decodeBC(rkNode)
- let
- collection = regs[ra].node
- leftInd = regs[rb].intVal
- rightInd = regs[rc].intVal
- proc rangeCheck(left, right: BiggestInt, safeLen: BiggestInt) =
- if left < 0:
- stackTrace(c, tos, pc, formatErrorIndexBound(left, safeLen))
- if right > safeLen:
- stackTrace(c, tos, pc, formatErrorIndexBound(right, safeLen))
- case collection.kind
- of nkTupleConstr: # slice of a slice
- let safeLen = collection[2].intVal - collection[1].intVal
- rangeCheck(leftInd, rightInd, safeLen)
- let
- leftInd = leftInd + collection[1].intVal # Slice is from the start of the old
- rightInd = rightInd + collection[1].intVal
- regs[ra].node = newTree(
- nkTupleConstr,
- collection[0],
- newIntNode(nkIntLit, BiggestInt leftInd),
- newIntNode(nkIntLit, BiggestInt rightInd)
- )
- else:
- let safeLen = safeArrLen(collection) - 1
- rangeCheck(leftInd, rightInd, safeLen)
- regs[ra].node = newTree(
- nkTupleConstr,
- collection,
- newIntNode(nkIntLit, BiggestInt leftInd),
- newIntNode(nkIntLit, BiggestInt rightInd)
- )
- of opcLdArr:
- # a = b[c]
- decodeBC(rkNode)
- if regs[rc].intVal > high(int):
- stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
- let idx = regs[rc].intVal.int
- let src = regs[rb].node
- case src.kind
- of nkTupleConstr: # refer to `of opcSlice`
- let
- left = src[1].intVal
- right = src[2].intVal
- realIndex = left + idx
- if idx in 0..(right - left):
- case src[0].kind
- of nkStrKinds:
- regs[ra].node = newIntNode(nkCharLit, ord src[0].strVal[int realIndex])
- of nkBracket:
- regs[ra].node = src[0][int realIndex]
- else:
- stackTrace(c, tos, pc, "opcLdArr internal error")
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, int right))
- of nkStrLit..nkTripleStrLit:
- if idx <% src.strVal.len:
- regs[ra].node = newNodeI(nkCharLit, c.debug[pc])
- regs[ra].node.intVal = src.strVal[idx].ord
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.strVal.len-1))
- elif src.kind notin {nkEmpty..nkFloat128Lit} and idx <% src.len:
- regs[ra].node = src[idx]
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.safeLen-1))
- of opcLdArrAddr:
- # a = addr(b[c])
- decodeBC(rkNodeAddr)
- if regs[rc].intVal > high(int):
- stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
- let idx = regs[rc].intVal.int
- let src = if regs[rb].kind == rkNode: regs[rb].node else: regs[rb].nodeAddr[]
- case src.kind
- of nkTupleConstr:
- let
- left = src[1].intVal
- right = src[2].intVal
- realIndex = left + idx
- if idx in 0..(right - left): # Refer to `opcSlice`
- case src[0].kind
- of nkStrKinds:
- regs[ra] = takeCharAddress(c, src[0], realIndex, pc)
- of nkBracket:
- takeAddress regs[ra], src.sons[0].sons[realIndex]
- else:
- stackTrace(c, tos, pc, "opcLdArrAddr internal error")
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, int right))
- else:
- if src.kind notin {nkEmpty..nkTripleStrLit} and idx <% src.len:
- takeAddress regs[ra], src.sons[idx]
- elif src.kind in nkStrKinds and idx <% src.strVal.len:
- regs[ra] = takeCharAddress(c, src, idx, pc)
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.safeLen-1))
- of opcLdStrIdx:
- decodeBC(rkInt)
- let idx = regs[rc].intVal.int
- let s {.cursor.} = regs[rb].node.strVal
- if idx <% s.len:
- regs[ra].intVal = s[idx].ord
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, s.len-1))
- of opcLdStrIdxAddr:
- # a = addr(b[c]); similar to opcLdArrAddr
- decodeBC(rkNode)
- if regs[rc].intVal > high(int):
- stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
- let idx = regs[rc].intVal.int
- let s = regs[rb].node.strVal.addr # or `byaddr`
- if idx <% s[].len:
- regs[ra] = takeCharAddress(c, regs[rb].node, idx, pc)
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, s[].len-1))
- of opcWrArr:
- # a[b] = c
- decodeBC(rkNode)
- let idx = regs[rb].intVal.int
- assert regs[ra].kind == rkNode
- let arr = regs[ra].node
- case arr.kind
- of nkTupleConstr: # refer to `opcSlice`
- let
- src = arr[0]
- left = arr[1].intVal
- right = arr[2].intVal
- realIndex = left + idx
- if idx in 0..(right - left):
- case src.kind
- of nkStrKinds:
- src.strVal[int(realIndex)] = char(regs[rc].intVal)
- of nkBracket:
- if regs[rc].kind == rkInt:
- src[int(realIndex)] = newIntNode(nkIntLit, regs[rc].intVal)
- else:
- assert regs[rc].kind == rkNode
- src[int(realIndex)] = regs[rc].node
- else:
- stackTrace(c, tos, pc, "opcWrArr internal error")
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, int right))
- of {nkStrLit..nkTripleStrLit}:
- if idx <% arr.strVal.len:
- arr.strVal[idx] = chr(regs[rc].intVal)
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.strVal.len-1))
- elif idx <% arr.len:
- writeField(arr[idx], regs[rc])
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.safeLen-1))
- of opcLdObj:
- # a = b.c
- decodeBC(rkNode)
- let src = if regs[rb].kind == rkNode: regs[rb].node else: regs[rb].nodeAddr[]
- case src.kind
- of nkEmpty..nkNilLit:
- # for nkPtrLit, this could be supported in the future, use something like:
- # derefPtrToReg(src.intVal + offsetof(src.typ, rc), typ_field, regs[ra], isAssign = false)
- # where we compute the offset in bytes for field rc
- stackTrace(c, tos, pc, errNilAccess & " " & $("kind", src.kind, "typ", typeToString(src.typ), "rc", rc))
- of nkObjConstr:
- let n = src[rc + 1].skipColon
- regs[ra].node = n
- of nkTupleConstr:
- let n = if src.typ != nil and tfTriggersCompileTime in src.typ.flags:
- src[rc]
- else:
- src[rc].skipColon
- regs[ra].node = n
- else:
- let n = src[rc]
- regs[ra].node = n
- of opcLdObjAddr:
- # a = addr(b.c)
- decodeBC(rkNodeAddr)
- let src = if regs[rb].kind == rkNode: regs[rb].node else: regs[rb].nodeAddr[]
- case src.kind
- of nkEmpty..nkNilLit:
- stackTrace(c, tos, pc, errNilAccess)
- of nkObjConstr:
- let n = src.sons[rc + 1]
- if n.kind == nkExprColonExpr:
- takeAddress regs[ra], n.sons[1]
- else:
- takeAddress regs[ra], src.sons[rc + 1]
- else:
- takeAddress regs[ra], src.sons[rc]
- of opcWrObj:
- # a.b = c
- decodeBC(rkNode)
- assert regs[ra].node != nil
- let shiftedRb = rb + ord(regs[ra].node.kind == nkObjConstr)
- let dest = regs[ra].node
- if dest.kind == nkNilLit:
- stackTrace(c, tos, pc, errNilAccess)
- elif dest[shiftedRb].kind == nkExprColonExpr:
- writeField(dest[shiftedRb][1], regs[rc])
- else:
- writeField(dest[shiftedRb], regs[rc])
- of opcWrStrIdx:
- decodeBC(rkNode)
- let idx = regs[rb].intVal.int
- if idx <% regs[ra].node.strVal.len:
- regs[ra].node.strVal[idx] = chr(regs[rc].intVal)
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, regs[ra].node.strVal.len-1))
- of opcAddrReg:
- decodeB(rkRegisterAddr)
- regs[ra].regAddr = addr(regs[rb])
- of opcAddrNode:
- decodeB(rkNodeAddr)
- case regs[rb].kind
- of rkNode:
- takeAddress regs[ra], regs[rb].node
- of rkNodeAddr: # bug #14339
- regs[ra].nodeAddr = regs[rb].nodeAddr
- else:
- stackTrace(c, tos, pc, "limited VM support for 'addr', got kind: " & $regs[rb].kind)
- of opcLdDeref:
- # a = b[]
- let ra = instr.regA
- let rb = instr.regB
- case regs[rb].kind
- of rkNodeAddr:
- ensureKind(rkNode)
- regs[ra].node = regs[rb].nodeAddr[]
- of rkRegisterAddr:
- ensureKind(regs[rb].regAddr.kind)
- regs[ra] = regs[rb].regAddr[]
- of rkNode:
- if regs[rb].node.kind == nkRefTy:
- regs[ra].node = regs[rb].node[0]
- elif not maybeHandlePtr(regs[rb].node, regs[ra], false):
- ## e.g.: typ.kind = tyObject
- ensureKind(rkNode)
- regs[ra].node = regs[rb].node
- else:
- stackTrace(c, tos, pc, errNilAccess & " kind: " & $regs[rb].kind)
- of opcWrDeref:
- # a[] = c; b unused
- let ra = instr.regA
- let rc = instr.regC
- case regs[ra].kind
- of rkNodeAddr:
- let n = regs[rc].regToNode
- # `var object` parameters are sent as rkNodeAddr. When they are mutated
- # vmgen generates opcWrDeref, which means that we must dereference
- # twice.
- # TODO: This should likely be handled differently in vmgen.
- let nAddr = regs[ra].nodeAddr
- if nAddr[] == nil: stackTrace(c, tos, pc, "opcWrDeref internal error") # refs bug #16613
- if (nfIsRef notin nAddr[].flags and nfIsRef notin n.flags): nAddr[][] = n[]
- else: nAddr[] = n
- of rkRegisterAddr: regs[ra].regAddr[] = regs[rc]
- of rkNode:
- # xxx: also check for nkRefTy as in opcLdDeref?
- if not maybeHandlePtr(regs[ra].node, regs[rc], true):
- regs[ra].node[] = regs[rc].regToNode[]
- regs[ra].node.flags.incl nfIsRef
- else: stackTrace(c, tos, pc, errNilAccess)
- of opcAddInt:
- decodeBC(rkInt)
- let
- bVal = regs[rb].intVal
- cVal = regs[rc].intVal
- sum = bVal +% cVal
- if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
- regs[ra].intVal = sum
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcAddImmInt:
- decodeBImm(rkInt)
- #message(c.config, c.debug[pc], warnUser, "came here")
- #debug regs[rb].node
- let
- bVal = regs[rb].intVal
- cVal = imm
- sum = bVal +% cVal
- if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
- regs[ra].intVal = sum
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcSubInt:
- decodeBC(rkInt)
- let
- bVal = regs[rb].intVal
- cVal = regs[rc].intVal
- diff = bVal -% cVal
- if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
- regs[ra].intVal = diff
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcSubImmInt:
- decodeBImm(rkInt)
- let
- bVal = regs[rb].intVal
- cVal = imm
- diff = bVal -% cVal
- if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
- regs[ra].intVal = diff
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcLenSeq:
- decodeBImm(rkInt)
- #assert regs[rb].kind == nkBracket
- let
- high = (imm and 1) # discard flags
- node = regs[rb].node
- if (imm and nimNodeFlag) != 0:
- # used by mNLen (NimNode.len)
- regs[ra].intVal = regs[rb].node.safeLen - high
- else:
- case node.kind
- of nkTupleConstr: # refer to `of opcSlice`
- regs[ra].intVal = node[2].intVal - node[1].intVal + 1 - high
- else:
- # safeArrLen also return string node len
- # used when string is passed as openArray in VM
- regs[ra].intVal = node.safeArrLen - high
- of opcLenStr:
- decodeBImm(rkInt)
- assert regs[rb].kind == rkNode
- regs[ra].intVal = regs[rb].node.strVal.len - imm
- of opcLenCstring:
- decodeBImm(rkInt)
- assert regs[rb].kind == rkNode
- if regs[rb].node.kind == nkNilLit:
- regs[ra].intVal = -imm
- else:
- regs[ra].intVal = regs[rb].node.strVal.cstring.len - imm
- of opcIncl:
- decodeB(rkNode)
- let b = regs[rb].regToNode
- if not inSet(regs[ra].node, b):
- regs[ra].node.add copyTree(b)
- of opcInclRange:
- decodeBC(rkNode)
- var r = newNode(nkRange)
- r.add regs[rb].regToNode
- r.add regs[rc].regToNode
- regs[ra].node.add r.copyTree
- of opcExcl:
- decodeB(rkNode)
- var b = newNodeIT(nkCurly, regs[ra].node.info, regs[ra].node.typ)
- b.add regs[rb].regToNode
- var r = diffSets(c.config, regs[ra].node, b)
- discardSons(regs[ra].node)
- for i in 0..<r.len: regs[ra].node.add r[i]
- of opcCard:
- decodeB(rkInt)
- regs[ra].intVal = nimsets.cardSet(c.config, regs[rb].node)
- of opcMulInt:
- decodeBC(rkInt)
- let
- bVal = regs[rb].intVal
- cVal = regs[rc].intVal
- product = bVal *% cVal
- floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal)
- resAsFloat = toBiggestFloat(product)
- if resAsFloat == floatProd:
- regs[ra].intVal = product
- elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
- regs[ra].intVal = product
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcDivInt:
- decodeBC(rkInt)
- if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
- else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
- of opcModInt:
- decodeBC(rkInt)
- if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
- else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
- of opcAddFloat:
- decodeBC(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
- of opcSubFloat:
- decodeBC(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
- of opcMulFloat:
- decodeBC(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
- of opcDivFloat:
- decodeBC(rkFloat)
- regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
- of opcShrInt:
- decodeBC(rkInt)
- let b = cast[uint64](regs[rb].intVal)
- let c = cast[uint64](regs[rc].intVal)
- let a = cast[int64](b shr c)
- regs[ra].intVal = a
- of opcShlInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
- of opcAshrInt:
- decodeBC(rkInt)
- regs[ra].intVal = ashr(regs[rb].intVal, regs[rc].intVal)
- of opcBitandInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
- of opcBitorInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
- of opcBitxorInt:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
- of opcAddu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
- of opcSubu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
- of opcMulu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
- of opcDivu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
- of opcModu:
- decodeBC(rkInt)
- regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
- of opcEqInt:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
- of opcLeInt:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
- of opcLtInt:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
- of opcEqFloat:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
- of opcLeFloat:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
- of opcLtFloat:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
- of opcLeu:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
- of opcLtu:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
- of opcEqRef:
- var ret = false
- decodeBC(rkInt)
- template getTyp(n): untyped =
- n.typ.skipTypes(abstractInst)
- template skipRegisterAddr(n: TFullReg): TFullReg =
- var tmp = n
- while tmp.kind == rkRegisterAddr:
- tmp = tmp.regAddr[]
- tmp
- proc ptrEquality(n1: ptr PNode, n2: PNode): bool =
- ## true if n2.intVal represents a ptr equal to n1
- let p1 = cast[int](n1)
- case n2.kind
- of nkNilLit: return p1 == 0
- of nkIntLit: # TODO: nkPtrLit
- # for example, n1.kind == nkFloatLit (ptr float)
- # the problem is that n1.typ == nil so we can't compare n1.typ and n2.typ
- # this is the best we can do (pending making sure we assign a valid n1.typ to nodeAddr's)
- let t2 = n2.getTyp
- return t2.kind in PtrLikeKinds and n2.intVal == p1
- else: return false
- let rbReg = skipRegisterAddr(regs[rb])
- let rcReg = skipRegisterAddr(regs[rc])
- if rbReg.kind == rkNodeAddr:
- if rcReg.kind == rkNodeAddr:
- ret = rbReg.nodeAddr == rcReg.nodeAddr
- else:
- ret = ptrEquality(rbReg.nodeAddr, rcReg.node)
- elif rcReg.kind == rkNodeAddr:
- ret = ptrEquality(rcReg.nodeAddr, rbReg.node)
- else:
- let nb = rbReg.node
- let nc = rcReg.node
- if nb.kind != nc.kind: discard
- elif (nb == nc) or (nb.kind == nkNilLit): ret = true # intentional
- elif nb.kind in {nkSym, nkTupleConstr, nkClosure} and nb.typ != nil and nb.typ.kind == tyProc and sameConstant(nb, nc):
- ret = true
- # this also takes care of procvar's, represented as nkTupleConstr, e.g. (nil, nil)
- elif nb.kind == nkIntLit and nc.kind == nkIntLit and nb.intVal == nc.intVal: # TODO: nkPtrLit
- let tb = nb.getTyp
- let tc = nc.getTyp
- ret = tb.kind in PtrLikeKinds and tc.kind == tb.kind
- regs[ra].intVal = ord(ret)
- of opcEqNimNode:
- decodeBC(rkInt)
- regs[ra].intVal =
- ord(exprStructuralEquivalent(regs[rb].node, regs[rc].node,
- strictSymEquality=true))
- of opcSameNodeType:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].node.typ.sameTypeOrNil(regs[rc].node.typ, {ExactTypeDescValues, ExactGenericParams}))
- # The types should exactly match which is why we pass `{ExactTypeDescValues..ExactGcSafety}`.
- of opcXor:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
- of opcNot:
- decodeB(rkInt)
- assert regs[rb].kind == rkInt
- regs[ra].intVal = 1 - regs[rb].intVal
- of opcUnaryMinusInt:
- decodeB(rkInt)
- assert regs[rb].kind == rkInt
- let val = regs[rb].intVal
- if val != int64.low:
- regs[ra].intVal = -val
- else:
- stackTrace(c, tos, pc, errOverOrUnderflow)
- of opcUnaryMinusFloat:
- decodeB(rkFloat)
- assert regs[rb].kind == rkFloat
- regs[ra].floatVal = -regs[rb].floatVal
- of opcBitnotInt:
- decodeB(rkInt)
- assert regs[rb].kind == rkInt
- regs[ra].intVal = not regs[rb].intVal
- of opcEqStr:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal)
- of opcEqCString:
- decodeBC(rkInt)
- let bNil = regs[rb].node.kind == nkNilLit
- let cNil = regs[rc].node.kind == nkNilLit
- regs[ra].intVal = ord((bNil and cNil) or
- (not bNil and not cNil and regs[rb].node.strVal == regs[rc].node.strVal))
- of opcLeStr:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal)
- of opcLtStr:
- decodeBC(rkInt)
- regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal)
- of opcLeSet:
- decodeBC(rkInt)
- regs[ra].intVal = ord(containsSets(c.config, regs[rb].node, regs[rc].node))
- of opcEqSet:
- decodeBC(rkInt)
- regs[ra].intVal = ord(equalSets(c.config, regs[rb].node, regs[rc].node))
- of opcLtSet:
- decodeBC(rkInt)
- let a = regs[rb].node
- let b = regs[rc].node
- regs[ra].intVal = ord(containsSets(c.config, a, b) and not equalSets(c.config, a, b))
- of opcMulSet:
- decodeBC(rkNode)
- createSet(regs[ra])
- move(regs[ra].node.sons,
- nimsets.intersectSets(c.config, regs[rb].node, regs[rc].node).sons)
- of opcPlusSet:
- decodeBC(rkNode)
- createSet(regs[ra])
- move(regs[ra].node.sons,
- nimsets.unionSets(c.config, regs[rb].node, regs[rc].node).sons)
- of opcMinusSet:
- decodeBC(rkNode)
- createSet(regs[ra])
- move(regs[ra].node.sons,
- nimsets.diffSets(c.config, regs[rb].node, regs[rc].node).sons)
- of opcConcatStr:
- decodeBC(rkNode)
- createStr regs[ra]
- regs[ra].node.strVal = getstr(regs[rb])
- for i in rb+1..rb+rc-1:
- regs[ra].node.strVal.add getstr(regs[i])
- of opcAddStrCh:
- decodeB(rkNode)
- regs[ra].node.strVal.add(regs[rb].intVal.chr)
- of opcAddStrStr:
- decodeB(rkNode)
- regs[ra].node.strVal.add(regs[rb].node.strVal)
- of opcAddSeqElem:
- decodeB(rkNode)
- if regs[ra].node.kind == nkBracket:
- regs[ra].node.add(copyValue(regs[rb].regToNode))
- else:
- stackTrace(c, tos, pc, errNilAccess)
- of opcGetImpl:
- decodeB(rkNode)
- var a = regs[rb].node
- if a.kind == nkVarTy: a = a[0]
- if a.kind == nkSym:
- regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
- else: copyTree(a.sym.ast)
- regs[ra].node.flags.incl nfIsRef
- else:
- stackTrace(c, tos, pc, "node is not a symbol")
- of opcGetImplTransf:
- decodeB(rkNode)
- let a = regs[rb].node
- if a.kind == nkSym:
- regs[ra].node =
- if a.sym.ast.isNil:
- newNode(nkNilLit)
- else:
- let ast = a.sym.ast.shallowCopy
- for i in 0..<a.sym.ast.len:
- ast[i] = a.sym.ast[i]
- ast[bodyPos] = transformBody(c.graph, c.idgen, a.sym, {useCache, force})
- ast.copyTree()
- of opcSymOwner:
- decodeB(rkNode)
- let a = regs[rb].node
- if a.kind == nkSym:
- regs[ra].node = if a.sym.owner.isNil: newNode(nkNilLit)
- else: newSymNode(a.sym.skipGenericOwner)
- regs[ra].node.flags.incl nfIsRef
- else:
- stackTrace(c, tos, pc, "node is not a symbol")
- of opcSymIsInstantiationOf:
- decodeBC(rkInt)
- let a = regs[rb].node
- let b = regs[rc].node
- if a.kind == nkSym and a.sym.kind in skProcKinds and
- b.kind == nkSym and b.sym.kind in skProcKinds:
- regs[ra].intVal =
- if sfFromGeneric in a.sym.flags and a.sym.instantiatedFrom == b.sym: 1
- else: 0
- else:
- stackTrace(c, tos, pc, "node is not a proc symbol")
- of opcEcho:
- let rb = instr.regB
- template fn(s) = msgWriteln(c.config, s, {msgStdout, msgNoUnitSep})
- if rb == 1: fn(regs[ra].node.strVal)
- else:
- var outp = ""
- for i in ra..ra+rb-1:
- #if regs[i].kind != rkNode: debug regs[i]
- outp.add(regs[i].node.strVal)
- fn(outp)
- of opcContainsSet:
- decodeBC(rkInt)
- regs[ra].intVal = ord(inSet(regs[rb].node, regs[rc].regToNode))
- of opcParseFloat:
- decodeBC(rkInt)
- var rcAddr = addr(regs[rc])
- if rcAddr.kind == rkRegisterAddr: rcAddr = rcAddr.regAddr
- elif regs[rc].kind != rkFloat:
- regs[rc] = TFullReg(kind: rkFloat)
- let coll = regs[rb].node
- case coll.kind
- of nkTupleConstr:
- let
- data = coll[0]
- left = coll[1].intVal
- right = coll[2].intVal
- case data.kind
- of nkStrKinds:
- regs[ra].intVal = parseBiggestFloat(data.strVal.toOpenArray(int left, int right), rcAddr.floatVal)
- of nkBracket:
- var s = newStringOfCap(right - left + 1)
- for i in left..right:
- s.add char data[int i].intVal
- regs[ra].intVal = parseBiggestFloat(s, rcAddr.floatVal)
- else:
- internalError(c.config, c.debug[pc], "opcParseFloat: Incorrectly created openarray")
- else:
- regs[ra].intVal = parseBiggestFloat(regs[ra].node.strVal, rcAddr.floatVal)
- of opcRangeChck:
- let rb = instr.regB
- let rc = instr.regC
- if not (leValueConv(regs[rb].regToNode, regs[ra].regToNode) and
- leValueConv(regs[ra].regToNode, regs[rc].regToNode)):
- stackTrace(c, tos, pc,
- errIllegalConvFromXtoY % [
- $regs[ra].regToNode, "[" & $regs[rb].regToNode & ".." & $regs[rc].regToNode & "]"])
- of opcIndCall, opcIndCallAsgn:
- # dest = call regStart, n; where regStart = fn, arg1, ...
- let rb = instr.regB
- let rc = instr.regC
- let bb = regs[rb].node
- let isClosure = bb.kind == nkTupleConstr
- let prc = if not isClosure: bb.sym else: bb[0].sym
- if prc.offset < -1:
- # it's a callback:
- c.callbacks[-prc.offset-2](
- VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[ptr UncheckedArray[TFullReg]](addr regs[0]),
- currentException: c.currentExceptionA,
- currentLineInfo: c.debug[pc])
- )
- elif importcCond(c, prc):
- if compiletimeFFI notin c.config.features:
- globalError(c.config, c.debug[pc], "VM not allowed to do FFI, see `compiletimeFFI`")
- # we pass 'tos.slots' instead of 'regs' so that the compiler can keep
- # 'regs' in a register:
- when hasFFI:
- if prc.position - 1 < 0:
- globalError(c.config, c.debug[pc],
- "VM call invalid: prc.position: " & $prc.position)
- let prcValue = c.globals[prc.position-1]
- if prcValue.kind == nkEmpty:
- globalError(c.config, c.debug[pc], "cannot run " & prc.name.s)
- var slots2: TNodeSeq = newSeq[PNode](tos.slots.len)
- for i in 0..<tos.slots.len:
- slots2[i] = regToNode(tos.slots[i])
- let newValue = callForeignFunction(c.config, prcValue, prc.typ, slots2,
- rb+1, rc-1, c.debug[pc])
- if newValue.kind != nkEmpty:
- assert instr.opcode == opcIndCallAsgn
- putIntoReg(regs[ra], newValue)
- else:
- globalError(c.config, c.debug[pc], "VM not built with FFI support")
- elif prc.kind != skTemplate:
- let newPc = compile(c, prc)
- # tricky: a recursion is also a jump back, so we use the same
- # logic as for loops:
- if newPc < pc: handleJmpBack()
- #echo "new pc ", newPc, " calling: ", prc.name.s
- var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
- newSeq(newFrame.slots, prc.offset+ord(isClosure))
- if not isEmptyType(prc.typ.returnType):
- putIntoReg(newFrame.slots[0], getNullValue(prc.typ.returnType, prc.info, c.config))
- for i in 1..rc-1:
- newFrame.slots[i] = regs[rb+i]
- if isClosure:
- newFrame.slots[rc] = TFullReg(kind: rkNode, node: regs[rb].node[1])
- tos = newFrame
- updateRegsAlias
- # -1 for the following 'inc pc'
- pc = newPc-1
- else:
- # for 'getAst' support we need to support template expansion here:
- let genSymOwner = if tos.next != nil and tos.next.prc != nil:
- tos.next.prc
- else:
- c.module
- var macroCall = newNodeI(nkCall, c.debug[pc])
- macroCall.add(newSymNode(prc))
- for i in 1..rc-1:
- let node = regs[rb+i].regToNode
- node.info = c.debug[pc]
- if prc.typ[i].kind notin {tyTyped, tyUntyped}:
- node.annotateType(prc.typ[i], c.config)
- macroCall.add(node)
- var a = evalTemplate(macroCall, prc, genSymOwner, c.config, c.cache, c.templInstCounter, c.idgen)
- if a.kind == nkStmtList and a.len == 1: a = a[0]
- a.recSetFlagIsRef
- ensureKind(rkNode)
- regs[ra].node = a
- of opcTJmp:
- # jump Bx if A != 0
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- if regs[ra].intVal != 0:
- inc pc, rbx
- of opcFJmp:
- # jump Bx if A == 0
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- if regs[ra].intVal == 0:
- inc pc, rbx
- of opcJmp:
- # jump Bx
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- inc pc, rbx
- of opcJmpBack:
- let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- inc pc, rbx
- handleJmpBack()
- of opcBranch:
- # we know the next instruction is a 'fjmp':
- let branch = c.constants[instr.regBx-wordExcess]
- var cond = false
- for j in 0..<branch.len - 1:
- if overlap(regs[ra].regToNode, branch[j]):
- cond = true
- break
- assert c.code[pc+1].opcode == opcFJmp
- inc pc
- # we skip this instruction so that the final 'inc(pc)' skips
- # the following jump
- if not cond:
- let instr2 = c.code[pc]
- let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
- inc pc, rbx
- of opcTry:
- let rbx = instr.regBx - wordExcess
- tos.pushSafePoint(pc + rbx)
- assert c.code[pc+rbx].opcode in {opcExcept, opcFinally}
- of opcExcept:
- # This opcode is never executed, it only holds information for the
- # exception handling routines.
- raiseAssert "unreachable"
- of opcFinally:
- # Pop the last safepoint introduced by a opcTry. This opcode is only
- # executed _iff_ no exception was raised in the body of the `try`
- # statement hence the need to pop the safepoint here.
- doAssert(savedPC < 0)
- tos.popSafePoint()
- of opcFinallyEnd:
- # The control flow may not resume at the next instruction since we may be
- # raising an exception or performing a cleanup.
- if savedPC >= 0:
- pc = savedPC - 1
- savedPC = -1
- if tos != savedFrame:
- tos = savedFrame
- updateRegsAlias
- of opcRaise:
- let raised =
- # Empty `raise` statement - reraise current exception
- if regs[ra].kind == rkNone:
- c.currentExceptionA
- else:
- regs[ra].node
- c.currentExceptionA = raised
- # Set the `name` field of the exception
- var exceptionNameNode = newStrNode(nkStrLit, c.currentExceptionA.typ.sym.name.s)
- if c.currentExceptionA[2].kind == nkExprColonExpr:
- exceptionNameNode.typ = c.currentExceptionA[2][1].typ
- c.currentExceptionA[2][1] = exceptionNameNode
- else:
- exceptionNameNode.typ = c.currentExceptionA[2].typ
- c.currentExceptionA[2] = exceptionNameNode
- c.exceptionInstr = pc
- var frame = tos
- var jumpTo = findExceptionHandler(c, frame, raised)
- while jumpTo.why == ExceptionGotoUnhandled and not frame.next.isNil:
- frame = frame.next
- jumpTo = findExceptionHandler(c, frame, raised)
- case jumpTo.why
- of ExceptionGotoHandler:
- # Jump to the handler, do nothing when the `finally` block ends.
- savedPC = -1
- pc = jumpTo.where - 1
- if tos != frame:
- tos = frame
- updateRegsAlias
- of ExceptionGotoFinally:
- # Jump to the `finally` block first then re-jump here to continue the
- # traversal of the exception chain
- savedPC = pc
- savedFrame = tos
- pc = jumpTo.where - 1
- if tos != frame:
- tos = frame
- updateRegsAlias
- of ExceptionGotoUnhandled:
- # Nobody handled this exception, error out.
- bailOut(c, tos)
- of opcNew:
- ensureKind(rkNode)
- let typ = c.types[instr.regBx - wordExcess]
- regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
- regs[ra].node.flags.incl nfIsRef
- of opcNewSeq:
- let typ = c.types[instr.regBx - wordExcess]
- inc pc
- ensureKind(rkNode)
- let instr2 = c.code[pc]
- let count = regs[instr2.regA].intVal.int
- regs[ra].node = newNodeI(nkBracket, c.debug[pc])
- regs[ra].node.typ = typ
- newSeq(regs[ra].node.sons, count)
- for i in 0..<count:
- regs[ra].node[i] = getNullValue(typ.elementType, c.debug[pc], c.config)
- of opcNewStr:
- decodeB(rkNode)
- regs[ra].node = newNodeI(nkStrLit, c.debug[pc])
- regs[ra].node.strVal = newString(regs[rb].intVal.int)
- of opcLdImmInt:
- # dest = immediate value
- decodeBx(rkInt)
- regs[ra].intVal = rbx
- of opcLdNull:
- ensureKind(rkNode)
- let typ = c.types[instr.regBx - wordExcess]
- regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
- # opcLdNull really is the gist of the VM's problems: should it load
- # a fresh null to regs[ra].node or to regs[ra].node[]? This really
- # depends on whether regs[ra] represents the variable itself or whether
- # it holds the indirection! Due to the way registers are re-used we cannot
- # say for sure here! --> The codegen has to deal with it
- # via 'genAsgnPatch'.
- of opcLdNullReg:
- let typ = c.types[instr.regBx - wordExcess]
- if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in {
- tyFloat..tyFloat128}:
- ensureKind(rkFloat)
- regs[ra].floatVal = 0.0
- else:
- ensureKind(rkInt)
- regs[ra].intVal = 0
- of opcLdConst:
- let rb = instr.regBx - wordExcess
- let cnst = c.constants[rb]
- if fitsRegister(cnst.typ):
- reset(regs[ra])
- putIntoReg(regs[ra], cnst)
- else:
- ensureKind(rkNode)
- regs[ra].node = cnst
- of opcAsgnConst:
- let rb = instr.regBx - wordExcess
- let cnst = c.constants[rb]
- if fitsRegister(cnst.typ):
- putIntoReg(regs[ra], cnst)
- else:
- ensureKind(rkNode)
- regs[ra].node = cnst.copyTree
- of opcLdGlobal:
- let rb = instr.regBx - wordExcess - 1
- ensureKind(rkNode)
- regs[ra].node = c.globals[rb]
- of opcLdGlobalDerefFFI:
- let rb = instr.regBx - wordExcess - 1
- let node = c.globals[rb]
- let typ = node.typ
- doAssert node.kind == nkIntLit, $(node.kind)
- if typ.kind == tyPtr:
- ensureKind(rkNode)
- # use nkPtrLit once this is added
- let node2 = newNodeIT(nkIntLit, c.debug[pc], typ)
- node2.intVal = cast[ptr int](node.intVal)[]
- node2.flags.incl nfIsPtr
- regs[ra].node = node2
- elif not derefPtrToReg(node.intVal, typ, regs[ra], isAssign = false):
- stackTrace(c, tos, pc, "opcLdDeref unsupported type: " & $(typeToString(typ), typ.elementType.kind))
- of opcLdGlobalAddrDerefFFI:
- let rb = instr.regBx - wordExcess - 1
- let node = c.globals[rb]
- let typ = node.typ
- var node2 = newNodeIT(nkIntLit, node.info, typ)
- node2.intVal = node.intVal
- node2.flags.incl nfIsPtr
- ensureKind(rkNode)
- regs[ra].node = node2
- of opcLdGlobalAddr:
- let rb = instr.regBx - wordExcess - 1
- ensureKind(rkNodeAddr)
- regs[ra].nodeAddr = addr(c.globals[rb])
- of opcRepr:
- decodeB(rkNode)
- createStr regs[ra]
- regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments, renderDocComments, renderNonExportedFields})
- of opcQuit:
- if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
- message(c.config, c.debug[pc], hintQuitCalled)
- msgQuit(int8(toInt(getOrdValue(regs[ra].regToNode, onError = toInt128(1)))))
- else:
- return TFullReg(kind: rkNone)
- of opcInvalidField:
- let msg = regs[ra].node.strVal
- let disc = regs[instr.regB].regToNode
- let msg2 = formatFieldDefect(msg, $disc)
- stackTrace(c, tos, pc, msg2)
- of opcSetLenStr:
- decodeB(rkNode)
- #createStrKeepNode regs[ra]
- regs[ra].node.strVal.setLen(regs[rb].intVal.int)
- of opcOf:
- decodeBC(rkInt)
- let typ = c.types[regs[rc].intVal.int]
- regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) <= 0)
- of opcIs:
- decodeBC(rkInt)
- let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc})
- let t2 = c.types[regs[rc].intVal.int]
- # XXX: This should use the standard isOpImpl
- let match = if t2.kind == tyUserTypeClass: true
- else: sameType(t1, t2)
- regs[ra].intVal = ord(match)
- of opcSetLenSeq:
- decodeB(rkNode)
- let newLen = regs[rb].intVal.int
- if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess)
- else: c.setLenSeq(regs[ra].node, newLen, c.debug[pc])
- of opcNarrowS:
- decodeB(rkInt)
- let min = -(1.BiggestInt shl (rb-1))
- let max = (1.BiggestInt shl (rb-1))-1
- if regs[ra].intVal < min or regs[ra].intVal > max:
- stackTrace(c, tos, pc, "unhandled exception: value out of range")
- of opcNarrowU:
- decodeB(rkInt)
- regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1)
- of opcSignExtend:
- # like opcNarrowS, but no out of range possible
- decodeB(rkInt)
- let imm = 64 - rb
- regs[ra].intVal = ashr(regs[ra].intVal shl imm, imm)
- of opcIsNil:
- decodeB(rkInt)
- let node = regs[rb].node
- regs[ra].intVal = ord(
- # Note that `nfIsRef` + `nkNilLit` represents an allocated
- # reference with the value `nil`, so `isNil` should be false!
- (node.kind == nkNilLit and nfIsRef notin node.flags) or
- (not node.typ.isNil and node.typ.kind == tyProc and
- node.typ.callConv == ccClosure and node.safeLen > 0 and
- node[0].kind == nkNilLit and node[1].kind == nkNilLit))
- of opcNBindSym:
- # cannot use this simple check
- # if dynamicBindSym notin c.config.features:
- # bindSym with static input
- decodeBx(rkNode)
- regs[ra].node = copyTree(c.constants[rbx])
- regs[ra].node.flags.incl nfIsRef
- of opcNDynBindSym:
- # experimental bindSym
- let
- rb = instr.regB
- rc = instr.regC
- idx = int(regs[rb+rc-1].intVal)
- callback = c.callbacks[idx]
- args = VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[ptr UncheckedArray[TFullReg]](addr regs[0]),
- currentException: c.currentExceptionA,
- currentLineInfo: c.debug[pc])
- callback(args)
- regs[ra].node.flags.incl nfIsRef
- of opcNChild:
- decodeBC(rkNode)
- let idx = regs[rc].intVal.int
- let src = regs[rb].node
- if src.kind in {nkEmpty..nkNilLit}:
- stackTrace(c, tos, pc, "cannot get child of node kind: n" & $src.kind)
- elif idx >=% src.len:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
- else:
- regs[ra].node = src[idx]
- of opcNSetChild:
- decodeBC(rkNode)
- let idx = regs[rb].intVal.int
- var dest = regs[ra].node
- if nfSem in dest.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
- stackTrace(c, tos, pc, "typechecked nodes may not be modified")
- elif dest.kind in {nkEmpty..nkNilLit}:
- stackTrace(c, tos, pc, "cannot set child of node kind: n" & $dest.kind)
- elif idx >=% dest.len:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, dest.len-1))
- else:
- dest[idx] = regs[rc].node
- of opcNAdd:
- decodeBC(rkNode)
- var u = regs[rb].node
- if nfSem in u.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
- stackTrace(c, tos, pc, "typechecked nodes may not be modified")
- elif u.kind in {nkEmpty..nkNilLit}:
- stackTrace(c, tos, pc, "cannot add to node kind: n" & $u.kind)
- else:
- u.add(regs[rc].node)
- regs[ra].node = u
- of opcNAddMultiple:
- decodeBC(rkNode)
- let x = regs[rc].node
- var u = regs[rb].node
- if nfSem in u.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
- stackTrace(c, tos, pc, "typechecked nodes may not be modified")
- elif u.kind in {nkEmpty..nkNilLit}:
- stackTrace(c, tos, pc, "cannot add to node kind: n" & $u.kind)
- else:
- for i in 0..<x.len: u.add(x[i])
- regs[ra].node = u
- of opcNKind:
- decodeB(rkInt)
- regs[ra].intVal = ord(regs[rb].node.kind)
- c.comesFromHeuristic = regs[rb].node.info
- of opcNSymKind:
- decodeB(rkInt)
- let a = regs[rb].node
- if a.kind == nkSym:
- regs[ra].intVal = ord(a.sym.kind)
- else:
- stackTrace(c, tos, pc, "node is not a symbol")
- c.comesFromHeuristic = regs[rb].node.info
- of opcNIntVal:
- decodeB(rkInt)
- let a = regs[rb].node
- if a.kind in {nkCharLit..nkUInt64Lit}:
- regs[ra].intVal = a.intVal
- elif a.kind == nkSym and a.sym.kind == skEnumField:
- regs[ra].intVal = a.sym.position
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
- of opcNFloatVal:
- decodeB(rkFloat)
- let a = regs[rb].node
- case a.kind
- of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
- else: stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
- of opcNSymbol:
- decodeB(rkNode)
- let a = regs[rb].node
- if a.kind == nkSym:
- regs[ra].node = copyNode(a)
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
- of opcNIdent:
- decodeB(rkNode)
- let a = regs[rb].node
- if a.kind == nkIdent:
- regs[ra].node = copyNode(a)
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "ident")
- of opcNodeId:
- decodeB(rkInt)
- when defined(useNodeIds):
- regs[ra].intVal = regs[rb].node.id
- else:
- regs[ra].intVal = -1
- of opcNGetType:
- let rb = instr.regB
- let rc = instr.regC
- case rc
- of 0:
- # getType opcode:
- ensureKind(rkNode)
- if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
- regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.typ, c.debug[pc], c.idgen)
- elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
- regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc], c.idgen)
- else:
- stackTrace(c, tos, pc, "node has no type")
- of 1:
- # typeKind opcode:
- ensureKind(rkInt)
- if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
- regs[ra].intVal = ord(regs[rb].node.typ.kind)
- elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
- regs[ra].intVal = ord(regs[rb].node.sym.typ.kind)
- #else:
- # stackTrace(c, tos, pc, "node has no type")
- of 2:
- # getTypeInst opcode:
- ensureKind(rkNode)
- if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
- regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.typ, c.debug[pc], c.idgen)
- elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
- regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc], c.idgen)
- else:
- stackTrace(c, tos, pc, "node has no type")
- else:
- # getTypeImpl opcode:
- ensureKind(rkNode)
- if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
- regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.typ, c.debug[pc], c.idgen)
- elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
- regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc], c.idgen)
- else:
- stackTrace(c, tos, pc, "node has no type")
- of opcNGetSize:
- decodeBImm(rkInt)
- let n = regs[rb].node
- case imm
- of 0: # size
- if n.typ == nil:
- stackTrace(c, tos, pc, "node has no type")
- else:
- regs[ra].intVal = getSize(c.config, n.typ)
- of 1: # align
- if n.typ == nil:
- stackTrace(c, tos, pc, "node has no type")
- else:
- regs[ra].intVal = getAlign(c.config, n.typ)
- else: # offset
- if n.kind != nkSym:
- stackTrace(c, tos, pc, "node is not a symbol")
- elif n.sym.kind != skField:
- stackTrace(c, tos, pc, "symbol is not a field (nskField)")
- else:
- regs[ra].intVal = n.sym.offset
- of opcNStrVal:
- decodeB(rkNode)
- createStr regs[ra]
- let a = regs[rb].node
- case a.kind
- of nkStrLit..nkTripleStrLit:
- regs[ra].node.strVal = a.strVal
- of nkCommentStmt:
- regs[ra].node.strVal = a.comment
- of nkIdent:
- regs[ra].node.strVal = a.ident.s
- of nkSym:
- regs[ra].node.strVal = a.sym.name.s
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
- of opcNSigHash:
- decodeB(rkNode)
- createStr regs[ra]
- if regs[rb].node.kind != nkSym:
- stackTrace(c, tos, pc, "node is not a symbol")
- else:
- regs[ra].node.strVal = $sigHash(regs[rb].node.sym, c.config)
- of opcSlurp:
- decodeB(rkNode)
- createStr regs[ra]
- regs[ra].node.strVal = opSlurp(regs[rb].node.strVal, c.debug[pc],
- c.module, c.config)
- of opcGorge:
- decodeBC(rkNode)
- inc pc
- let rd = c.code[pc].regA
- createStr regs[ra]
- if defined(nimsuggest) or c.config.cmd == cmdCheck:
- discard "don't run staticExec for 'nim suggest'"
- regs[ra].node.strVal = ""
- else:
- when defined(nimcore):
- regs[ra].node.strVal = opGorge(regs[rb].node.strVal,
- regs[rc].node.strVal, regs[rd].node.strVal,
- c.debug[pc], c.config)[0]
- else:
- regs[ra].node.strVal = ""
- globalError(c.config, c.debug[pc], "VM is not built with 'gorge' support")
- of opcNError, opcNWarning, opcNHint:
- decodeB(rkNode)
- let a = regs[ra].node
- let b = regs[rb].node
- let info = if b.kind == nkNilLit: c.debug[pc] else: b.info
- if instr.opcode == opcNError:
- stackTrace(c, tos, pc, a.strVal, info)
- elif instr.opcode == opcNWarning:
- message(c.config, info, warnUser, a.strVal)
- elif instr.opcode == opcNHint:
- message(c.config, info, hintUser, a.strVal)
- of opcParseExprToAst:
- decodeBC(rkNode)
- var error: string = ""
- let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
- regs[rc].node.strVal, 0,
- proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
- if error.len == 0 and msg <= errMax:
- error = formatMsg(conf, info, msg, arg))
- regs[ra].node = newNode(nkEmpty)
- if error.len > 0:
- c.errorFlag = error
- elif ast.len != 1:
- c.errorFlag = formatMsg(c.config, c.debug[pc], errGenerated,
- "expected expression, but got multiple statements")
- else:
- regs[ra].node = ast[0]
- of opcParseStmtToAst:
- decodeBC(rkNode)
- var error: string = ""
- let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
- regs[rc].node.strVal, 0,
- proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
- if error.len == 0 and msg <= errMax:
- error = formatMsg(conf, info, msg, arg))
- if error.len > 0:
- c.errorFlag = error
- regs[ra].node = newNode(nkEmpty)
- else:
- regs[ra].node = ast
- of opcQueryErrorFlag:
- createStr regs[ra]
- regs[ra].node.strVal = c.errorFlag
- c.errorFlag.setLen 0
- of opcCallSite:
- ensureKind(rkNode)
- if c.callsite != nil: regs[ra].node = c.callsite
- else: stackTrace(c, tos, pc, errFieldXNotFound & "callsite")
- of opcNGetLineInfo:
- decodeBImm(rkNode)
- let n = regs[rb].node
- case imm
- of 0: # getFile
- regs[ra].node = newStrNode(nkStrLit, toFullPath(c.config, n.info))
- of 1: # getLine
- regs[ra].node = newIntNode(nkIntLit, n.info.line.int)
- of 2: # getColumn
- regs[ra].node = newIntNode(nkIntLit, n.info.col.int)
- else:
- internalAssert c.config, false
- regs[ra].node.info = n.info
- regs[ra].node.typ = n.typ
- of opcNCopyLineInfo:
- decodeB(rkNode)
- regs[ra].node.info = regs[rb].node.info
- of opcNSetLineInfoLine:
- decodeB(rkNode)
- regs[ra].node.info.line = regs[rb].intVal.uint16
- of opcNSetLineInfoColumn:
- decodeB(rkNode)
- regs[ra].node.info.col = regs[rb].intVal.int16
- of opcNSetLineInfoFile:
- decodeB(rkNode)
- regs[ra].node.info.fileIndex =
- fileInfoIdx(c.config, RelativeFile regs[rb].node.strVal)
- of opcEqIdent:
- decodeBC(rkInt)
- # aliases for shorter and easier to understand code below
- var aNode = regs[rb].node
- var bNode = regs[rc].node
- # Skipping both, `nkPostfix` and `nkAccQuoted` for both
- # arguments. `nkPostfix` exists only to tag exported symbols
- # and therefor it can be safely skipped. Nim has no postfix
- # operator. `nkAccQuoted` is used to quote an identifier that
- # wouldn't be allowed to use in an unquoted context.
- if aNode.kind == nkPostfix:
- aNode = aNode[1]
- if aNode.kind == nkAccQuoted:
- aNode = aNode[0]
- if bNode.kind == nkPostfix:
- bNode = bNode[1]
- if bNode.kind == nkAccQuoted:
- bNode = bNode[0]
- # These vars are of type `cstring` to prevent unnecessary string copy.
- var aStrVal: cstring = nil
- var bStrVal: cstring = nil
- # extract strVal from argument ``a``
- case aNode.kind
- of nkStrLit..nkTripleStrLit:
- aStrVal = aNode.strVal.cstring
- of nkIdent:
- aStrVal = aNode.ident.s.cstring
- of nkSym:
- aStrVal = aNode.sym.name.s.cstring
- of nkOpenSymChoice, nkClosedSymChoice:
- aStrVal = aNode[0].sym.name.s.cstring
- else:
- discard
- # extract strVal from argument ``b``
- case bNode.kind
- of nkStrLit..nkTripleStrLit:
- bStrVal = bNode.strVal.cstring
- of nkIdent:
- bStrVal = bNode.ident.s.cstring
- of nkSym:
- bStrVal = bNode.sym.name.s.cstring
- of nkOpenSymChoice, nkClosedSymChoice:
- bStrVal = bNode[0].sym.name.s.cstring
- else:
- discard
- regs[ra].intVal =
- if aStrVal != nil and bStrVal != nil:
- ord(idents.cmpIgnoreStyle(aStrVal, bStrVal, high(int)) == 0)
- else:
- 0
- of opcStrToIdent:
- decodeB(rkNode)
- if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}:
- stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
- else:
- regs[ra].node = newNodeI(nkIdent, c.debug[pc])
- regs[ra].node.ident = getIdent(c.cache, regs[rb].node.strVal)
- regs[ra].node.flags.incl nfIsRef
- of opcSetType:
- let typ = c.types[instr.regBx - wordExcess]
- if regs[ra].kind != rkNode:
- let temp = regToNode(regs[ra])
- ensureKind(rkNode)
- regs[ra].node = temp
- regs[ra].node.info = c.debug[pc]
- regs[ra].node.typ = typ
- of opcConv:
- let rb = instr.regB
- inc pc
- let desttyp = c.types[c.code[pc].regBx - wordExcess]
- inc pc
- let srctyp = c.types[c.code[pc].regBx - wordExcess]
- if opConv(c, regs[ra], regs[rb], desttyp, srctyp):
- stackTrace(c, tos, pc,
- errIllegalConvFromXtoY % [
- typeToString(srctyp), typeToString(desttyp)])
- of opcCast:
- let rb = instr.regB
- inc pc
- let desttyp = c.types[c.code[pc].regBx - wordExcess]
- inc pc
- let srctyp = c.types[c.code[pc].regBx - wordExcess]
- when hasFFI:
- let dest = fficast(c.config, regs[rb].node, desttyp)
- # todo: check whether this is correct
- # asgnRef(regs[ra], dest)
- putIntoReg(regs[ra], dest)
- else:
- globalError(c.config, c.debug[pc], "cannot evaluate cast")
- of opcNSetIntVal:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind in {nkCharLit..nkUInt64Lit} and
- regs[rb].kind in {rkInt}:
- dest.intVal = regs[rb].intVal
- elif dest.kind == nkSym and dest.sym.kind == skEnumField:
- stackTrace(c, tos, pc, "`intVal` cannot be changed for an enum symbol.")
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
- of opcNSetFloatVal:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind in {nkFloatLit..nkFloat64Lit} and
- regs[rb].kind in {rkFloat}:
- dest.floatVal = regs[rb].floatVal
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
- of opcNSetSymbol:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind == nkSym and regs[rb].node.kind == nkSym:
- dest.sym = regs[rb].node.sym
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
- of opcNSetIdent:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind == nkIdent and regs[rb].node.kind == nkIdent:
- dest.ident = regs[rb].node.ident
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "ident")
- of opcNSetStrVal:
- decodeB(rkNode)
- var dest = regs[ra].node
- if dest.kind in {nkStrLit..nkTripleStrLit} and
- regs[rb].kind in {rkNode}:
- dest.strVal = regs[rb].node.strVal
- elif dest.kind == nkCommentStmt and regs[rb].kind in {rkNode}:
- dest.comment = regs[rb].node.strVal
- else:
- stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
- of opcNNewNimNode:
- decodeBC(rkNode)
- var k = regs[rb].intVal
- if k < 0 or k > ord(high(TNodeKind)):
- internalError(c.config, c.debug[pc],
- "request to create a NimNode of invalid kind")
- let cc = regs[rc].node
- let x = newNodeI(TNodeKind(int(k)),
- if cc.kind != nkNilLit:
- cc.info
- elif c.comesFromHeuristic.line != 0'u16:
- c.comesFromHeuristic
- elif c.callsite != nil and c.callsite.safeLen > 1:
- c.callsite[1].info
- else:
- c.debug[pc])
- x.flags.incl nfIsRef
- # prevent crashes in the compiler resulting from wrong macros:
- if x.kind == nkIdent: x.ident = c.cache.emptyIdent
- regs[ra].node = x
- of opcNCopyNimNode:
- decodeB(rkNode)
- regs[ra].node = copyNode(regs[rb].node)
- of opcNCopyNimTree:
- decodeB(rkNode)
- regs[ra].node = copyTree(regs[rb].node)
- of opcNDel:
- decodeBC(rkNode)
- let bb = regs[rb].intVal.int
- for i in 0..<regs[rc].intVal.int:
- delSon(regs[ra].node, bb)
- of opcGenSym:
- decodeBC(rkNode)
- let k = regs[rb].intVal
- let name = if regs[rc].node.strVal.len == 0: ":tmp"
- else: regs[rc].node.strVal
- if k < 0 or k > ord(high(TSymKind)):
- internalError(c.config, c.debug[pc], "request to create symbol of invalid kind")
- var sym = newSym(k.TSymKind, getIdent(c.cache, name), c.idgen, c.module.owner, c.debug[pc])
- incl(sym.flags, sfGenSym)
- regs[ra].node = newSymNode(sym)
- regs[ra].node.flags.incl nfIsRef
- of opcNccValue:
- decodeB(rkInt)
- let destKey {.cursor.} = regs[rb].node.strVal
- regs[ra].intVal = getOrDefault(c.graph.cacheCounters, destKey)
- of opcNccInc:
- let g = c.graph
- declBC()
- let destKey {.cursor.} = regs[rb].node.strVal
- let by = regs[rc].intVal
- let v = getOrDefault(g.cacheCounters, destKey)
- g.cacheCounters[destKey] = v+by
- recordInc(c, c.debug[pc], destKey, by)
- of opcNcsAdd:
- let g = c.graph
- declBC()
- let destKey {.cursor.} = regs[rb].node.strVal
- let val = regs[rc].node
- if not contains(g.cacheSeqs, destKey):
- g.cacheSeqs[destKey] = newTree(nkStmtList, val)
- else:
- g.cacheSeqs[destKey].add val
- recordAdd(c, c.debug[pc], destKey, val)
- of opcNcsIncl:
- let g = c.graph
- declBC()
- let destKey {.cursor.} = regs[rb].node.strVal
- let val = regs[rc].node
- if not contains(g.cacheSeqs, destKey):
- g.cacheSeqs[destKey] = newTree(nkStmtList, val)
- else:
- block search:
- for existing in g.cacheSeqs[destKey]:
- if exprStructuralEquivalent(existing, val, strictSymEquality=true):
- break search
- g.cacheSeqs[destKey].add val
- recordIncl(c, c.debug[pc], destKey, val)
- of opcNcsLen:
- let g = c.graph
- decodeB(rkInt)
- let destKey {.cursor.} = regs[rb].node.strVal
- regs[ra].intVal =
- if contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey].len else: 0
- of opcNcsAt:
- let g = c.graph
- decodeBC(rkNode)
- let idx = regs[rc].intVal
- let destKey {.cursor.} = regs[rb].node.strVal
- if contains(g.cacheSeqs, destKey) and idx <% g.cacheSeqs[destKey].len:
- regs[ra].node = g.cacheSeqs[destKey][idx.int]
- else:
- stackTrace(c, tos, pc, formatErrorIndexBound(idx, g.cacheSeqs[destKey].len-1))
- of opcNctPut:
- let g = c.graph
- let destKey {.cursor.} = regs[ra].node.strVal
- let key {.cursor.} = regs[instr.regB].node.strVal
- let val = regs[instr.regC].node
- if not contains(g.cacheTables, destKey):
- g.cacheTables[destKey] = initBTree[string, PNode]()
- if not contains(g.cacheTables[destKey], key):
- g.cacheTables[destKey].add(key, val)
- recordPut(c, c.debug[pc], destKey, key, val)
- else:
- stackTrace(c, tos, pc, "key already exists: " & key)
- of opcNctLen:
- let g = c.graph
- decodeB(rkInt)
- let destKey {.cursor.} = regs[rb].node.strVal
- regs[ra].intVal =
- if contains(g.cacheTables, destKey): g.cacheTables[destKey].len else: 0
- of opcNctGet:
- let g = c.graph
- decodeBC(rkNode)
- let destKey {.cursor.} = regs[rb].node.strVal
- let key {.cursor.} = regs[rc].node.strVal
- if contains(g.cacheTables, destKey):
- if contains(g.cacheTables[destKey], key):
- regs[ra].node = getOrDefault(g.cacheTables[destKey], key)
- else:
- stackTrace(c, tos, pc, "key does not exist: " & key)
- else:
- stackTrace(c, tos, pc, "key does not exist: " & destKey)
- of opcNctHasNext:
- let g = c.graph
- decodeBC(rkInt)
- let destKey {.cursor.} = regs[rb].node.strVal
- regs[ra].intVal =
- if g.cacheTables.contains(destKey):
- ord(btrees.hasNext(g.cacheTables[destKey], regs[rc].intVal.int))
- else:
- 0
- of opcNctNext:
- let g = c.graph
- decodeBC(rkNode)
- let destKey {.cursor.} = regs[rb].node.strVal
- let index = regs[rc].intVal
- if contains(g.cacheTables, destKey):
- let (k, v, nextIndex) = btrees.next(g.cacheTables[destKey], index.int)
- regs[ra].node = newTree(nkTupleConstr, newStrNode(k, c.debug[pc]), v,
- newIntNode(nkIntLit, nextIndex))
- else:
- stackTrace(c, tos, pc, "key does not exist: " & destKey)
- of opcTypeTrait:
- # XXX only supports 'name' for now; we can use regC to encode the
- # type trait operation
- decodeB(rkNode)
- var typ = regs[rb].node.typ
- internalAssert c.config, typ != nil
- while typ.kind == tyTypeDesc and typ.hasElementType: typ = typ.skipModifier
- createStr regs[ra]
- regs[ra].node.strVal = typ.typeToString(preferExported)
- c.profiler.leave(c)
- inc pc
- proc execute(c: PCtx, start: int): PNode =
- var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
- newSeq(tos.slots, c.prc.regInfo.len)
- result = rawExecute(c, start, tos).regToNode
- proc execProc*(c: PCtx; sym: PSym; args: openArray[PNode]): PNode =
- c.loopIterations = c.config.maxLoopIterationsVM
- if sym.kind in routineKinds:
- if sym.typ.paramsLen != args.len:
- result = nil
- localError(c.config, sym.info,
- "NimScript: expected $# arguments, but got $#" % [
- $(sym.typ.paramsLen), $args.len])
- else:
- let start = genProc(c, sym)
- var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
- let maxSlots = sym.offset
- newSeq(tos.slots, maxSlots)
- # setup parameters:
- if not isEmptyType(sym.typ.returnType) or sym.kind == skMacro:
- putIntoReg(tos.slots[0], getNullValue(sym.typ.returnType, sym.info, c.config))
- # XXX We could perform some type checking here.
- for i in 0..<sym.typ.paramsLen:
- putIntoReg(tos.slots[i+1], args[i])
- result = rawExecute(c, start, tos).regToNode
- else:
- result = nil
- localError(c.config, sym.info,
- "NimScript: attempt to call non-routine: " & sym.name.s)
- proc evalStmt*(c: PCtx, n: PNode) =
- let n = transformExpr(c.graph, c.idgen, c.module, n)
- let start = genStmt(c, n)
- # execute new instructions; this redundant opcEof check saves us lots
- # of allocations in 'execute':
- if c.code[start].opcode != opcEof:
- discard execute(c, start)
- proc evalExpr*(c: PCtx, n: PNode): PNode =
- # deadcode
- # `nim --eval:"expr"` might've used it at some point for idetools; could
- # be revived for nimsuggest
- let n = transformExpr(c.graph, c.idgen, c.module, n)
- let start = genExpr(c, n)
- assert c.code[start].opcode != opcEof
- result = execute(c, start)
- proc getGlobalValue*(c: PCtx; s: PSym): PNode =
- internalAssert c.config, s.kind in {skLet, skVar} and sfGlobal in s.flags
- result = c.globals[s.position-1]
- proc setGlobalValue*(c: PCtx; s: PSym, val: PNode) =
- ## Does not do type checking so ensure the `val` matches the `s.typ`
- internalAssert c.config, s.kind in {skLet, skVar} and sfGlobal in s.flags
- c.globals[s.position-1] = val
- include vmops
- proc setupGlobalCtx*(module: PSym; graph: ModuleGraph; idgen: IdGenerator) =
- if graph.vm.isNil:
- graph.vm = newCtx(module, graph.cache, graph, idgen)
- registerAdditionalOps(PCtx graph.vm)
- else:
- refresh(PCtx graph.vm, module, idgen)
- proc setupEvalGen*(graph: ModuleGraph; module: PSym; idgen: IdGenerator): PPassContext =
- #var c = newEvalContext(module, emRepl)
- #c.features = {allowCast, allowInfiniteLoops}
- #pushStackFrame(c, newStackFrame())
- # XXX produce a new 'globals' environment here:
- setupGlobalCtx(module, graph, idgen)
- result = PCtx graph.vm
- proc interpreterCode*(c: PPassContext, n: PNode): PNode =
- let c = PCtx(c)
- # don't eval errornous code:
- if c.oldErrorCount == c.config.errorCounter:
- evalStmt(c, n)
- result = newNodeI(nkEmpty, n.info)
- else:
- result = n
- c.oldErrorCount = c.config.errorCounter
- proc evalConstExprAux(module: PSym; idgen: IdGenerator;
- g: ModuleGraph; prc: PSym, n: PNode,
- mode: TEvalMode): PNode =
- when defined(nimsuggest):
- if g.config.expandDone():
- return n
- #if g.config.errorCounter > 0: return n
- let n = transformExpr(g, idgen, module, n)
- setupGlobalCtx(module, g, idgen)
- var c = PCtx g.vm
- let oldMode = c.mode
- c.mode = mode
- let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
- if c.code[start].opcode == opcEof: return newNodeI(nkEmpty, n.info)
- assert c.code[start].opcode != opcEof
- when debugEchoCode: c.echoCode start
- var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
- newSeq(tos.slots, c.prc.regInfo.len)
- #for i in 0..<c.prc.regInfo.len: tos.slots[i] = newNode(nkEmpty)
- result = rawExecute(c, start, tos).regToNode
- if result.info.col < 0: result.info = n.info
- c.mode = oldMode
- proc evalConstExpr*(module: PSym; idgen: IdGenerator; g: ModuleGraph; e: PNode): PNode =
- result = evalConstExprAux(module, idgen, g, nil, e, emConst)
- proc evalStaticExpr*(module: PSym; idgen: IdGenerator; g: ModuleGraph; e: PNode, prc: PSym): PNode =
- result = evalConstExprAux(module, idgen, g, prc, e, emStaticExpr)
- proc evalStaticStmt*(module: PSym; idgen: IdGenerator; g: ModuleGraph; e: PNode, prc: PSym) =
- discard evalConstExprAux(module, idgen, g, prc, e, emStaticStmt)
- proc setupCompileTimeVar*(module: PSym; idgen: IdGenerator; g: ModuleGraph; n: PNode) =
- discard evalConstExprAux(module, idgen, g, nil, n, emStaticStmt)
- proc prepareVMValue(arg: PNode): PNode =
- ## strip nkExprColonExpr from tuple values recursively. That is how
- ## they are expected to be stored in the VM.
- # Early abort without copy. No transformation takes place.
- if arg.kind in nkLiterals:
- return arg
- if arg.kind == nkExprColonExpr and arg[0].typ != nil and
- arg[0].typ.sym != nil and arg[0].typ.sym.magic == mPNimrodNode:
- # Poor mans way of protecting static NimNodes
- # XXX: Maybe we need a nkNimNode?
- return arg
- result = copyNode(arg)
- if arg.kind == nkTupleConstr:
- for child in arg:
- if child.kind == nkExprColonExpr:
- result.add prepareVMValue(child[1])
- else:
- result.add prepareVMValue(child)
- else:
- for child in arg:
- result.add prepareVMValue(child)
- proc setupMacroParam(x: PNode, typ: PType): TFullReg =
- case typ.kind
- of tyStatic:
- result = TFullReg(kind: rkNone)
- putIntoReg(result, prepareVMValue(x))
- else:
- var n = x
- if n.kind in {nkHiddenSubConv, nkHiddenStdConv}: n = n[1]
- n.flags.incl nfIsRef
- n.typ = x.typ
- result = TFullReg(kind: rkNode, node: n)
- iterator genericParamsInMacroCall*(macroSym: PSym, call: PNode): (PSym, PNode) =
- let gp = macroSym.ast[genericParamsPos]
- for i in 0..<gp.len:
- let genericParam = gp[i].sym
- let posInCall = macroSym.typ.signatureLen + i
- if posInCall < call.len:
- yield (genericParam, call[posInCall])
- # to prevent endless recursion in macro instantiation
- const evalMacroLimit = 1000
- #proc errorNode(idgen: IdGenerator; owner: PSym, n: PNode): PNode =
- # result = newNodeI(nkEmpty, n.info)
- # result.typ = newType(tyError, idgen, owner)
- # result.typ.flags.incl tfCheckedForDestructor
- proc evalMacroCall*(module: PSym; idgen: IdGenerator; g: ModuleGraph; templInstCounter: ref int;
- n, nOrig: PNode, sym: PSym): PNode =
- #if g.config.errorCounter > 0: return errorNode(idgen, module, n)
- # XXX globalError() is ugly here, but I don't know a better solution for now
- inc(g.config.evalMacroCounter)
- if g.config.evalMacroCounter > evalMacroLimit:
- globalError(g.config, n.info, "macro instantiation too nested")
- # immediate macros can bypass any type and arity checking so we check the
- # arity here too:
- let sl = sym.typ.signatureLen
- if sl > n.safeLen and sl > 1:
- globalError(g.config, n.info, "in call '$#' got $#, but expected $# argument(s)" % [
- n.renderTree, $(n.safeLen-1), $(sym.typ.paramsLen)])
- setupGlobalCtx(module, g, idgen)
- var c = PCtx g.vm
- let oldMode = c.mode
- c.mode = emStaticStmt
- c.comesFromHeuristic.line = 0'u16
- c.callsite = nOrig
- c.templInstCounter = templInstCounter
- let start = genProc(c, sym)
- var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
- let maxSlots = sym.offset
- newSeq(tos.slots, maxSlots)
- # setup arguments:
- var L = n.safeLen
- if L == 0: L = 1
- # This is wrong for tests/reject/tind1.nim where the passed 'else' part
- # doesn't end up in the parameter:
- #InternalAssert tos.slots.len >= L
- # return value:
- tos.slots[0] = TFullReg(kind: rkNode, node: newNodeI(nkEmpty, n.info))
- # setup parameters:
- for i, param in paramTypes(sym.typ):
- tos.slots[i-FirstParamAt+1] = setupMacroParam(n[i-FirstParamAt+1], param)
- let gp = sym.ast[genericParamsPos]
- for i in 0..<gp.len:
- let idx = sym.typ.signatureLen + i
- if idx < n.len:
- tos.slots[idx] = setupMacroParam(n[idx], gp[i].sym.typ)
- else:
- dec(g.config.evalMacroCounter)
- c.callsite = nil
- localError(c.config, n.info, "expected " & $gp.len &
- " generic parameter(s)")
- # temporary storage:
- #for i in L..<maxSlots: tos.slots[i] = newNode(nkEmpty)
- result = rawExecute(c, start, tos).regToNode
- if result.info.line < 0: result.info = n.info
- if cyclicTree(result): globalError(c.config, n.info, "macro produced a cyclic tree")
- dec(g.config.evalMacroCounter)
- c.callsite = nil
- c.mode = oldMode
|