vmgen.nim 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391
  1. #
  2. #
  3. # The Nim Compiler
  4. # (c) Copyright 2015 Andreas Rumpf
  5. #
  6. # See the file "copying.txt", included in this
  7. # distribution, for details about the copyright.
  8. #
  9. ## This module implements the code generator for the VM.
  10. # Important things to remember:
  11. # - The VM does not distinguish between definitions ('var x = y') and
  12. # assignments ('x = y'). For simple data types that fit into a register
  13. # this doesn't matter. However it matters for strings and other complex
  14. # types that use the 'node' field; the reason is that slots are
  15. # re-used in a register based VM. Example:
  16. # ```nim
  17. # let s = a & b # no matter what, create fresh node
  18. # s = a & b # no matter what, keep the node
  19. # ```
  20. # Also *stores* into non-temporary memory need to perform deep copies:
  21. # a.b = x.y
  22. # We used to generate opcAsgn for the *load* of 'x.y' but this is clearly
  23. # wrong! We need to produce opcAsgn (the copy) for the *store*. This also
  24. # solves the opcLdConst vs opcAsgnConst issue. Of course whether we need
  25. # this copy depends on the involved types.
  26. import tables
  27. when defined(nimPreviewSlimSystem):
  28. import std/assertions
  29. import
  30. strutils, ast, types, msgs, renderer, vmdef, trees,
  31. intsets, magicsys, options, lowerings, lineinfos, transf, astmsgs
  32. from modulegraphs import getBody
  33. when defined(nimCompilerStacktraceHints):
  34. import std/stackframes
  35. const
  36. debugEchoCode* = defined(nimVMDebug)
  37. when debugEchoCode:
  38. import std/private/asciitables
  39. when hasFFI:
  40. import evalffi
  41. type
  42. TGenFlag = enum
  43. gfNode # Affects how variables are loaded - always loads as rkNode
  44. gfNodeAddr # Affects how variables are loaded - always loads as rkNodeAddr
  45. gfIsParam # do not deepcopy parameters, they are immutable
  46. TGenFlags = set[TGenFlag]
  47. proc debugInfo(c: PCtx; info: TLineInfo): string =
  48. result = toFileLineCol(c.config, info)
  49. proc codeListing(c: PCtx, result: var string, start=0; last = -1) =
  50. ## for debugging purposes
  51. # first iteration: compute all necessary labels:
  52. var jumpTargets = initIntSet()
  53. let last = if last < 0: c.code.len-1 else: min(last, c.code.len-1)
  54. for i in start..last:
  55. let x = c.code[i]
  56. if x.opcode in relativeJumps:
  57. jumpTargets.incl(i+x.regBx-wordExcess)
  58. template toStr(opc: TOpcode): string = ($opc).substr(3)
  59. result.add "code listing:\n"
  60. var i = start
  61. while i <= last:
  62. if i in jumpTargets: result.addf("L$1:\n", i)
  63. let x = c.code[i]
  64. result.add($i)
  65. let opc = opcode(x)
  66. if opc in {opcIndCall, opcIndCallAsgn}:
  67. result.addf("\t$#\tr$#, r$#, nargs:$#", opc.toStr, x.regA,
  68. x.regB, x.regC)
  69. elif opc in {opcConv, opcCast}:
  70. let y = c.code[i+1]
  71. let z = c.code[i+2]
  72. result.addf("\t$#\tr$#, r$#, $#, $#", opc.toStr, x.regA, x.regB,
  73. c.types[y.regBx-wordExcess].typeToString,
  74. c.types[z.regBx-wordExcess].typeToString)
  75. inc i, 2
  76. elif opc < firstABxInstr:
  77. result.addf("\t$#\tr$#, r$#, r$#", opc.toStr, x.regA,
  78. x.regB, x.regC)
  79. elif opc in relativeJumps + {opcTry}:
  80. result.addf("\t$#\tr$#, L$#", opc.toStr, x.regA,
  81. i+x.regBx-wordExcess)
  82. elif opc in {opcExcept}:
  83. let idx = x.regBx-wordExcess
  84. result.addf("\t$#\t$#, $#", opc.toStr, x.regA, $idx)
  85. elif opc in {opcLdConst, opcAsgnConst}:
  86. let idx = x.regBx-wordExcess
  87. result.addf("\t$#\tr$#, $# ($#)", opc.toStr, x.regA,
  88. c.constants[idx].renderTree, $idx)
  89. else:
  90. result.addf("\t$#\tr$#, $#", opc.toStr, x.regA, x.regBx-wordExcess)
  91. result.add("\t# ")
  92. result.add(debugInfo(c, c.debug[i]))
  93. result.add("\n")
  94. inc i
  95. when debugEchoCode:
  96. result = result.alignTable
  97. proc echoCode*(c: PCtx; start=0; last = -1) {.deprecated.} =
  98. var buf = ""
  99. codeListing(c, buf, start, last)
  100. echo buf
  101. proc gABC(ctx: PCtx; n: PNode; opc: TOpcode;
  102. a: TRegister = 0, b: TRegister = 0, c: TRegister = 0) =
  103. ## Takes the registers `b` and `c`, applies the operation `opc` to them, and
  104. ## stores the result into register `a`
  105. ## The node is needed for debug information
  106. assert opc.ord < 255
  107. let ins = (opc.TInstrType or (a.TInstrType shl regAShift) or
  108. (b.TInstrType shl regBShift) or
  109. (c.TInstrType shl regCShift)).TInstr
  110. when false:
  111. if ctx.code.len == 43:
  112. writeStackTrace()
  113. echo "generating ", opc
  114. ctx.code.add(ins)
  115. ctx.debug.add(n.info)
  116. proc gABI(c: PCtx; n: PNode; opc: TOpcode; a, b: TRegister; imm: BiggestInt) =
  117. # Takes the `b` register and the immediate `imm`, applies the operation `opc`,
  118. # and stores the output value into `a`.
  119. # `imm` is signed and must be within [-128, 127]
  120. if imm >= -128 and imm <= 127:
  121. let ins = (opc.TInstrType or (a.TInstrType shl regAShift) or
  122. (b.TInstrType shl regBShift) or
  123. (imm+byteExcess).TInstrType shl regCShift).TInstr
  124. c.code.add(ins)
  125. c.debug.add(n.info)
  126. else:
  127. localError(c.config, n.info,
  128. "VM: immediate value does not fit into an int8")
  129. proc gABx(c: PCtx; n: PNode; opc: TOpcode; a: TRegister = 0; bx: int) =
  130. # Applies `opc` to `bx` and stores it into register `a`
  131. # `bx` must be signed and in the range [regBxMin, regBxMax]
  132. when false:
  133. if c.code.len == 43:
  134. writeStackTrace()
  135. echo "generating ", opc
  136. if bx >= regBxMin-1 and bx <= regBxMax:
  137. let ins = (opc.TInstrType or a.TInstrType shl regAShift or
  138. (bx+wordExcess).TInstrType shl regBxShift).TInstr
  139. c.code.add(ins)
  140. c.debug.add(n.info)
  141. else:
  142. localError(c.config, n.info,
  143. "VM: immediate value does not fit into regBx")
  144. proc xjmp(c: PCtx; n: PNode; opc: TOpcode; a: TRegister = 0): TPosition =
  145. #assert opc in {opcJmp, opcFJmp, opcTJmp}
  146. result = TPosition(c.code.len)
  147. gABx(c, n, opc, a, 0)
  148. proc genLabel(c: PCtx): TPosition =
  149. result = TPosition(c.code.len)
  150. #c.jumpTargets.incl(c.code.len)
  151. proc jmpBack(c: PCtx, n: PNode, p = TPosition(0)) =
  152. let dist = p.int - c.code.len
  153. internalAssert(c.config, regBxMin < dist and dist < regBxMax)
  154. gABx(c, n, opcJmpBack, 0, dist)
  155. proc patch(c: PCtx, p: TPosition) =
  156. # patch with current index
  157. let p = p.int
  158. let diff = c.code.len - p
  159. #c.jumpTargets.incl(c.code.len)
  160. internalAssert(c.config, regBxMin < diff and diff < regBxMax)
  161. let oldInstr = c.code[p]
  162. # opcode and regA stay the same:
  163. c.code[p] = ((oldInstr.TInstrType and regBxMask).TInstrType or
  164. TInstrType(diff+wordExcess) shl regBxShift).TInstr
  165. proc getSlotKind(t: PType): TSlotKind =
  166. case t.skipTypes(abstractRange-{tyTypeDesc}).kind
  167. of tyBool, tyChar, tyEnum, tyOrdinal, tyInt..tyInt64, tyUInt..tyUInt64:
  168. slotTempInt
  169. of tyString, tyCstring:
  170. slotTempStr
  171. of tyFloat..tyFloat128:
  172. slotTempFloat
  173. else:
  174. slotTempComplex
  175. const
  176. HighRegisterPressure = 40
  177. proc bestEffort(c: PCtx): TLineInfo =
  178. if c.prc != nil and c.prc.sym != nil:
  179. c.prc.sym.info
  180. else:
  181. c.module.info
  182. proc getFreeRegister(cc: PCtx; k: TSlotKind; start: int): TRegister =
  183. let c = cc.prc
  184. # we prefer the same slot kind here for efficiency. Unfortunately for
  185. # discardable return types we may not know the desired type. This can happen
  186. # for e.g. mNAdd[Multiple]:
  187. for i in start..c.regInfo.len-1:
  188. if c.regInfo[i].kind == k and not c.regInfo[i].inUse:
  189. c.regInfo[i].inUse = true
  190. return TRegister(i)
  191. # if register pressure is high, we re-use more aggressively:
  192. if c.regInfo.len >= high(TRegister):
  193. for i in start..c.regInfo.len-1:
  194. if not c.regInfo[i].inUse:
  195. c.regInfo[i] = (inUse: true, kind: k)
  196. return TRegister(i)
  197. if c.regInfo.len >= high(TRegister):
  198. globalError(cc.config, cc.bestEffort, "VM problem: too many registers required")
  199. result = TRegister(max(c.regInfo.len, start))
  200. c.regInfo.setLen int(result)+1
  201. c.regInfo[result] = (inUse: true, kind: k)
  202. proc getTemp(cc: PCtx; tt: PType): TRegister =
  203. let typ = tt.skipTypesOrNil({tyStatic})
  204. # we prefer the same slot kind here for efficiency. Unfortunately for
  205. # discardable return types we may not know the desired type. This can happen
  206. # for e.g. mNAdd[Multiple]:
  207. let k = if typ.isNil: slotTempComplex else: typ.getSlotKind
  208. result = getFreeRegister(cc, k, start = 0)
  209. when false:
  210. # enable this to find "register" leaks:
  211. if result == 4:
  212. echo "begin ---------------"
  213. writeStackTrace()
  214. echo "end ----------------"
  215. proc freeTemp(c: PCtx; r: TRegister) =
  216. let c = c.prc
  217. if c.regInfo[r].kind in {slotSomeTemp..slotTempComplex}:
  218. # this seems to cause https://github.com/nim-lang/Nim/issues/10647
  219. c.regInfo[r].inUse = false
  220. proc getTempRange(cc: PCtx; n: int; kind: TSlotKind): TRegister =
  221. # if register pressure is high, we re-use more aggressively:
  222. let c = cc.prc
  223. # we could also customize via the following (with proper caching in ConfigRef):
  224. # let highRegisterPressure = cc.config.getConfigVar("vm.highRegisterPressure", "40").parseInt
  225. if c.regInfo.len >= HighRegisterPressure or c.regInfo.len+n >= high(TRegister):
  226. for i in 0..c.regInfo.len-n:
  227. if not c.regInfo[i].inUse:
  228. block search:
  229. for j in i+1..i+n-1:
  230. if c.regInfo[j].inUse: break search
  231. result = TRegister(i)
  232. for k in result..result+n-1: c.regInfo[k] = (inUse: true, kind: kind)
  233. return
  234. if c.regInfo.len+n >= high(TRegister):
  235. globalError(cc.config, cc.bestEffort, "VM problem: too many registers required")
  236. result = TRegister(c.regInfo.len)
  237. setLen c.regInfo, c.regInfo.len+n
  238. for k in result..result+n-1: c.regInfo[k] = (inUse: true, kind: kind)
  239. proc freeTempRange(c: PCtx; start: TRegister, n: int) =
  240. for i in start..start+n-1: c.freeTemp(TRegister(i))
  241. template withTemp(tmp, typ, body: untyped) {.dirty.} =
  242. var tmp = getTemp(c, typ)
  243. body
  244. c.freeTemp(tmp)
  245. proc popBlock(c: PCtx; oldLen: int) =
  246. for f in c.prc.blocks[oldLen].fixups:
  247. c.patch(f)
  248. c.prc.blocks.setLen(oldLen)
  249. template withBlock(labl: PSym; body: untyped) {.dirty.} =
  250. var oldLen {.gensym.} = c.prc.blocks.len
  251. c.prc.blocks.add TBlock(label: labl, fixups: @[])
  252. body
  253. popBlock(c, oldLen)
  254. proc gen(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags = {})
  255. proc gen(c: PCtx; n: PNode; dest: TRegister; flags: TGenFlags = {}) =
  256. var d: TDest = dest
  257. gen(c, n, d, flags)
  258. #internalAssert c.config, d == dest # issue #7407
  259. proc gen(c: PCtx; n: PNode; flags: TGenFlags = {}) =
  260. var tmp: TDest = -1
  261. gen(c, n, tmp, flags)
  262. if tmp >= 0:
  263. freeTemp(c, tmp)
  264. #if n.typ.isEmptyType: internalAssert tmp < 0
  265. proc genx(c: PCtx; n: PNode; flags: TGenFlags = {}): TRegister =
  266. var tmp: TDest = -1
  267. gen(c, n, tmp, flags)
  268. #internalAssert c.config, tmp >= 0 # 'nim check' does not like this internalAssert.
  269. if tmp >= 0:
  270. result = TRegister(tmp)
  271. else:
  272. result = 0
  273. proc clearDest(c: PCtx; n: PNode; dest: var TDest) {.inline.} =
  274. # stmt is different from 'void' in meta programming contexts.
  275. # So we only set dest to -1 if 'void':
  276. if dest >= 0 and (n.typ.isNil or n.typ.kind == tyVoid):
  277. c.freeTemp(dest)
  278. dest = -1
  279. proc isNotOpr(n: PNode): bool =
  280. n.kind in nkCallKinds and n[0].kind == nkSym and
  281. n[0].sym.magic == mNot
  282. proc isTrue(n: PNode): bool =
  283. n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
  284. n.kind == nkIntLit and n.intVal != 0
  285. proc genWhile(c: PCtx; n: PNode) =
  286. # lab1:
  287. # cond, tmp
  288. # fjmp tmp, lab2
  289. # body
  290. # jmp lab1
  291. # lab2:
  292. let lab1 = c.genLabel
  293. withBlock(nil):
  294. if isTrue(n[0]):
  295. c.gen(n[1])
  296. c.jmpBack(n, lab1)
  297. elif isNotOpr(n[0]):
  298. var tmp = c.genx(n[0][1])
  299. let lab2 = c.xjmp(n, opcTJmp, tmp)
  300. c.freeTemp(tmp)
  301. c.gen(n[1])
  302. c.jmpBack(n, lab1)
  303. c.patch(lab2)
  304. else:
  305. var tmp = c.genx(n[0])
  306. let lab2 = c.xjmp(n, opcFJmp, tmp)
  307. c.freeTemp(tmp)
  308. c.gen(n[1])
  309. c.jmpBack(n, lab1)
  310. c.patch(lab2)
  311. proc genBlock(c: PCtx; n: PNode; dest: var TDest) =
  312. let oldRegisterCount = c.prc.regInfo.len
  313. withBlock(n[0].sym):
  314. c.gen(n[1], dest)
  315. for i in oldRegisterCount..<c.prc.regInfo.len:
  316. #if c.prc.regInfo[i].kind in {slotFixedVar, slotFixedLet}:
  317. if i != dest:
  318. when not defined(release):
  319. if c.prc.regInfo[i].inUse and c.prc.regInfo[i].kind in {slotTempUnknown,
  320. slotTempInt,
  321. slotTempFloat,
  322. slotTempStr,
  323. slotTempComplex}:
  324. raiseAssert "leaking temporary " & $i & " " & $c.prc.regInfo[i].kind
  325. c.prc.regInfo[i] = (inUse: false, kind: slotEmpty)
  326. c.clearDest(n, dest)
  327. proc genBreak(c: PCtx; n: PNode) =
  328. let lab1 = c.xjmp(n, opcJmp)
  329. if n[0].kind == nkSym:
  330. #echo cast[int](n[0].sym)
  331. for i in countdown(c.prc.blocks.len-1, 0):
  332. if c.prc.blocks[i].label == n[0].sym:
  333. c.prc.blocks[i].fixups.add lab1
  334. return
  335. globalError(c.config, n.info, "VM problem: cannot find 'break' target")
  336. else:
  337. c.prc.blocks[c.prc.blocks.high].fixups.add lab1
  338. proc genIf(c: PCtx, n: PNode; dest: var TDest) =
  339. # if (!expr1) goto lab1;
  340. # thenPart
  341. # goto LEnd
  342. # lab1:
  343. # if (!expr2) goto lab2;
  344. # thenPart2
  345. # goto LEnd
  346. # lab2:
  347. # elsePart
  348. # Lend:
  349. if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
  350. var endings: seq[TPosition] = @[]
  351. for i in 0..<n.len:
  352. var it = n[i]
  353. if it.len == 2:
  354. withTemp(tmp, it[0].typ):
  355. var elsePos: TPosition
  356. if isNotOpr(it[0]):
  357. c.gen(it[0][1], tmp)
  358. elsePos = c.xjmp(it[0][1], opcTJmp, tmp) # if true
  359. else:
  360. c.gen(it[0], tmp)
  361. elsePos = c.xjmp(it[0], opcFJmp, tmp) # if false
  362. c.clearDest(n, dest)
  363. c.gen(it[1], dest) # then part
  364. if i < n.len-1:
  365. endings.add(c.xjmp(it[1], opcJmp, 0))
  366. c.patch(elsePos)
  367. else:
  368. c.clearDest(n, dest)
  369. c.gen(it[0], dest)
  370. for endPos in endings: c.patch(endPos)
  371. c.clearDest(n, dest)
  372. proc isTemp(c: PCtx; dest: TDest): bool =
  373. result = dest >= 0 and c.prc.regInfo[dest].kind >= slotTempUnknown
  374. proc genAndOr(c: PCtx; n: PNode; opc: TOpcode; dest: var TDest) =
  375. # asgn dest, a
  376. # tjmp|fjmp lab1
  377. # asgn dest, b
  378. # lab1:
  379. let copyBack = dest < 0 or not isTemp(c, dest)
  380. let tmp = if copyBack:
  381. getTemp(c, n.typ)
  382. else:
  383. TRegister dest
  384. c.gen(n[1], tmp)
  385. let lab1 = c.xjmp(n, opc, tmp)
  386. c.gen(n[2], tmp)
  387. c.patch(lab1)
  388. if dest < 0:
  389. dest = tmp
  390. elif copyBack:
  391. c.gABC(n, opcAsgnInt, dest, tmp)
  392. freeTemp(c, tmp)
  393. proc rawGenLiteral(c: PCtx; n: PNode): int =
  394. result = c.constants.len
  395. #assert(n.kind != nkCall)
  396. n.flags.incl nfAllConst
  397. n.flags.excl nfIsRef
  398. c.constants.add n
  399. internalAssert c.config, result < regBxMax
  400. proc sameConstant*(a, b: PNode): bool =
  401. result = false
  402. if a == b:
  403. result = true
  404. elif a != nil and b != nil and a.kind == b.kind:
  405. case a.kind
  406. of nkSym: result = a.sym == b.sym
  407. of nkIdent: result = a.ident.id == b.ident.id
  408. of nkCharLit..nkUInt64Lit: result = a.intVal == b.intVal
  409. of nkFloatLit..nkFloat64Lit:
  410. result = cast[uint64](a.floatVal) == cast[uint64](b.floatVal)
  411. # refs bug #16469
  412. # if we wanted to only distinguish 0.0 vs -0.0:
  413. # if a.floatVal == 0.0: result = cast[uint64](a.floatVal) == cast[uint64](b.floatVal)
  414. # else: result = a.floatVal == b.floatVal
  415. of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
  416. of nkType, nkNilLit: result = a.typ == b.typ
  417. of nkEmpty: result = true
  418. else:
  419. if a.len == b.len:
  420. for i in 0..<a.len:
  421. if not sameConstant(a[i], b[i]): return
  422. result = true
  423. proc genLiteral(c: PCtx; n: PNode): int =
  424. # types do not matter here:
  425. for i in 0..<c.constants.len:
  426. if sameConstant(c.constants[i], n): return i
  427. result = rawGenLiteral(c, n)
  428. proc unused(c: PCtx; n: PNode; x: TDest) {.inline.} =
  429. if x >= 0:
  430. #debug(n)
  431. globalError(c.config, n.info, "not unused")
  432. proc genCase(c: PCtx; n: PNode; dest: var TDest) =
  433. # if (!expr1) goto lab1;
  434. # thenPart
  435. # goto LEnd
  436. # lab1:
  437. # if (!expr2) goto lab2;
  438. # thenPart2
  439. # goto LEnd
  440. # lab2:
  441. # elsePart
  442. # Lend:
  443. if not isEmptyType(n.typ):
  444. if dest < 0: dest = getTemp(c, n.typ)
  445. else:
  446. unused(c, n, dest)
  447. var endings: seq[TPosition] = @[]
  448. withTemp(tmp, n[0].typ):
  449. c.gen(n[0], tmp)
  450. # branch tmp, codeIdx
  451. # fjmp elseLabel
  452. for i in 1..<n.len:
  453. let it = n[i]
  454. if it.len == 1:
  455. # else stmt:
  456. if it[0].kind != nkNilLit or it[0].typ != nil:
  457. # an nkNilLit with nil for typ implies there is no else branch, this
  458. # avoids unused related errors as we've already consumed the dest
  459. c.gen(it[0], dest)
  460. else:
  461. let b = rawGenLiteral(c, it)
  462. c.gABx(it, opcBranch, tmp, b)
  463. let elsePos = c.xjmp(it.lastSon, opcFJmp, tmp)
  464. c.gen(it.lastSon, dest)
  465. if i < n.len-1:
  466. endings.add(c.xjmp(it.lastSon, opcJmp, 0))
  467. c.patch(elsePos)
  468. c.clearDest(n, dest)
  469. for endPos in endings: c.patch(endPos)
  470. proc genType(c: PCtx; typ: PType): int =
  471. for i, t in c.types:
  472. if sameType(t, typ): return i
  473. result = c.types.len
  474. c.types.add(typ)
  475. internalAssert(c.config, result <= regBxMax)
  476. proc genTry(c: PCtx; n: PNode; dest: var TDest) =
  477. if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
  478. var endings: seq[TPosition] = @[]
  479. let ehPos = c.xjmp(n, opcTry, 0)
  480. c.gen(n[0], dest)
  481. c.clearDest(n, dest)
  482. # Add a jump past the exception handling code
  483. let jumpToFinally = c.xjmp(n, opcJmp, 0)
  484. # This signals where the body ends and where the exception handling begins
  485. c.patch(ehPos)
  486. for i in 1..<n.len:
  487. let it = n[i]
  488. if it.kind != nkFinally:
  489. # first opcExcept contains the end label of the 'except' block:
  490. let endExcept = c.xjmp(it, opcExcept, 0)
  491. for j in 0..<it.len - 1:
  492. assert(it[j].kind == nkType)
  493. let typ = it[j].typ.skipTypes(abstractPtrs-{tyTypeDesc})
  494. c.gABx(it, opcExcept, 0, c.genType(typ))
  495. if it.len == 1:
  496. # general except section:
  497. c.gABx(it, opcExcept, 0, 0)
  498. c.gen(it.lastSon, dest)
  499. c.clearDest(n, dest)
  500. if i < n.len:
  501. endings.add(c.xjmp(it, opcJmp, 0))
  502. c.patch(endExcept)
  503. let fin = lastSon(n)
  504. # we always generate an 'opcFinally' as that pops the safepoint
  505. # from the stack if no exception is raised in the body.
  506. c.patch(jumpToFinally)
  507. c.gABx(fin, opcFinally, 0, 0)
  508. for endPos in endings: c.patch(endPos)
  509. if fin.kind == nkFinally:
  510. c.gen(fin[0])
  511. c.clearDest(n, dest)
  512. c.gABx(fin, opcFinallyEnd, 0, 0)
  513. proc genRaise(c: PCtx; n: PNode) =
  514. let dest = genx(c, n[0])
  515. c.gABC(n, opcRaise, dest)
  516. c.freeTemp(dest)
  517. proc genReturn(c: PCtx; n: PNode) =
  518. if n[0].kind != nkEmpty:
  519. gen(c, n[0])
  520. c.gABC(n, opcRet)
  521. proc genLit(c: PCtx; n: PNode; dest: var TDest) =
  522. # opcLdConst is now always valid. We produce the necessary copy in the
  523. # assignments now:
  524. #var opc = opcLdConst
  525. if dest < 0: dest = c.getTemp(n.typ)
  526. #elif c.prc.regInfo[dest].kind == slotFixedVar: opc = opcAsgnConst
  527. let lit = genLiteral(c, n)
  528. c.gABx(n, opcLdConst, dest, lit)
  529. proc genCall(c: PCtx; n: PNode; dest: var TDest) =
  530. # it can happen that due to inlining we have a 'n' that should be
  531. # treated as a constant (see issue #537).
  532. #if n.typ != nil and n.typ.sym != nil and n.typ.sym.magic == mPNimrodNode:
  533. # genLit(c, n, dest)
  534. # return
  535. # bug #10901: do not produce code for wrong call expressions:
  536. if n.len == 0 or n[0].typ.isNil: return
  537. if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
  538. let x = c.getTempRange(n.len, slotTempUnknown)
  539. # varargs need 'opcSetType' for the FFI support:
  540. let fntyp = skipTypes(n[0].typ, abstractInst)
  541. for i in 0..<n.len:
  542. var r: TRegister = x+i
  543. c.gen(n[i], r, {gfIsParam})
  544. if i >= fntyp.len:
  545. internalAssert c.config, tfVarargs in fntyp.flags
  546. c.gABx(n, opcSetType, r, c.genType(n[i].typ))
  547. if dest < 0:
  548. c.gABC(n, opcIndCall, 0, x, n.len)
  549. else:
  550. c.gABC(n, opcIndCallAsgn, dest, x, n.len)
  551. c.freeTempRange(x, n.len)
  552. template isGlobal(s: PSym): bool = sfGlobal in s.flags and s.kind != skForVar
  553. proc isGlobal(n: PNode): bool = n.kind == nkSym and isGlobal(n.sym)
  554. proc needsAsgnPatch(n: PNode): bool =
  555. n.kind in {nkBracketExpr, nkDotExpr, nkCheckedFieldExpr,
  556. nkDerefExpr, nkHiddenDeref} or (n.kind == nkSym and n.sym.isGlobal)
  557. proc genField(c: PCtx; n: PNode): TRegister =
  558. if n.kind != nkSym or n.sym.kind != skField:
  559. globalError(c.config, n.info, "no field symbol")
  560. let s = n.sym
  561. if s.position > high(typeof(result)):
  562. globalError(c.config, n.info,
  563. "too large offset! cannot generate code for: " & s.name.s)
  564. result = s.position
  565. proc genIndex(c: PCtx; n: PNode; arr: PType): TRegister =
  566. if arr.skipTypes(abstractInst).kind == tyArray and (let x = firstOrd(c.config, arr);
  567. x != Zero):
  568. let tmp = c.genx(n)
  569. # freeing the temporary here means we can produce: regA = regA - Imm
  570. c.freeTemp(tmp)
  571. result = c.getTemp(n.typ)
  572. c.gABI(n, opcSubImmInt, result, tmp, toInt(x))
  573. else:
  574. result = c.genx(n)
  575. proc genCheckedObjAccessAux(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags)
  576. proc genAsgnPatch(c: PCtx; le: PNode, value: TRegister) =
  577. case le.kind
  578. of nkBracketExpr:
  579. let
  580. dest = c.genx(le[0], {gfNode})
  581. idx = c.genIndex(le[1], le[0].typ)
  582. collTyp = le[0].typ.skipTypes(abstractVarRange-{tyTypeDesc})
  583. case collTyp.kind
  584. of tyString, tyCstring:
  585. c.gABC(le, opcWrStrIdx, dest, idx, value)
  586. of tyTuple:
  587. c.gABC(le, opcWrObj, dest, int le[1].intVal, value)
  588. else:
  589. c.gABC(le, opcWrArr, dest, idx, value)
  590. c.freeTemp(dest)
  591. c.freeTemp(idx)
  592. of nkCheckedFieldExpr:
  593. var objR: TDest = -1
  594. genCheckedObjAccessAux(c, le, objR, {gfNode})
  595. let idx = genField(c, le[0][1])
  596. c.gABC(le[0], opcWrObj, objR, idx, value)
  597. c.freeTemp(objR)
  598. of nkDotExpr:
  599. let dest = c.genx(le[0], {gfNode})
  600. let idx = genField(c, le[1])
  601. c.gABC(le, opcWrObj, dest, idx, value)
  602. c.freeTemp(dest)
  603. of nkDerefExpr, nkHiddenDeref:
  604. let dest = c.genx(le[0], {gfNode})
  605. c.gABC(le, opcWrDeref, dest, 0, value)
  606. c.freeTemp(dest)
  607. of nkSym:
  608. if le.sym.isGlobal:
  609. let dest = c.genx(le, {gfNodeAddr})
  610. c.gABC(le, opcWrDeref, dest, 0, value)
  611. c.freeTemp(dest)
  612. else:
  613. discard
  614. proc genNew(c: PCtx; n: PNode) =
  615. let dest = if needsAsgnPatch(n[1]): c.getTemp(n[1].typ)
  616. else: c.genx(n[1])
  617. # we use the ref's base type here as the VM conflates 'ref object'
  618. # and 'object' since internally we already have a pointer.
  619. c.gABx(n, opcNew, dest,
  620. c.genType(n[1].typ.skipTypes(abstractVar-{tyTypeDesc})[0]))
  621. c.genAsgnPatch(n[1], dest)
  622. c.freeTemp(dest)
  623. proc genNewSeq(c: PCtx; n: PNode) =
  624. let t = n[1].typ
  625. let dest = if needsAsgnPatch(n[1]): c.getTemp(t)
  626. else: c.genx(n[1])
  627. let tmp = c.genx(n[2])
  628. c.gABx(n, opcNewSeq, dest, c.genType(t.skipTypes(
  629. abstractVar-{tyTypeDesc})))
  630. c.gABx(n, opcNewSeq, tmp, 0)
  631. c.freeTemp(tmp)
  632. c.genAsgnPatch(n[1], dest)
  633. c.freeTemp(dest)
  634. proc genNewSeqOfCap(c: PCtx; n: PNode; dest: var TDest) =
  635. let t = n.typ
  636. if dest < 0:
  637. dest = c.getTemp(n.typ)
  638. let tmp = c.getTemp(n[1].typ)
  639. c.gABx(n, opcLdNull, dest, c.genType(t))
  640. c.gABx(n, opcLdImmInt, tmp, 0)
  641. c.gABx(n, opcNewSeq, dest, c.genType(t.skipTypes(
  642. abstractVar-{tyTypeDesc})))
  643. c.gABx(n, opcNewSeq, tmp, 0)
  644. c.freeTemp(tmp)
  645. proc genUnaryABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  646. let tmp = c.genx(n[1])
  647. if dest < 0: dest = c.getTemp(n.typ)
  648. c.gABC(n, opc, dest, tmp)
  649. c.freeTemp(tmp)
  650. proc genUnaryABI(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode; imm: BiggestInt=0) =
  651. let tmp = c.genx(n[1])
  652. if dest < 0: dest = c.getTemp(n.typ)
  653. c.gABI(n, opc, dest, tmp, imm)
  654. c.freeTemp(tmp)
  655. proc genBinaryABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  656. let
  657. tmp = c.genx(n[1])
  658. tmp2 = c.genx(n[2])
  659. if dest < 0: dest = c.getTemp(n.typ)
  660. c.gABC(n, opc, dest, tmp, tmp2)
  661. c.freeTemp(tmp)
  662. c.freeTemp(tmp2)
  663. proc genBinaryABCD(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  664. let
  665. tmp = c.genx(n[1])
  666. tmp2 = c.genx(n[2])
  667. tmp3 = c.genx(n[3])
  668. if dest < 0: dest = c.getTemp(n.typ)
  669. c.gABC(n, opc, dest, tmp, tmp2)
  670. c.gABC(n, opc, tmp3)
  671. c.freeTemp(tmp)
  672. c.freeTemp(tmp2)
  673. c.freeTemp(tmp3)
  674. template sizeOfLikeMsg(name): string =
  675. "'$1' requires '.importc' types to be '.completeStruct'" % [name]
  676. proc genNarrow(c: PCtx; n: PNode; dest: TDest) =
  677. let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
  678. # uint is uint64 in the VM, we we only need to mask the result for
  679. # other unsigned types:
  680. let size = getSize(c.config, t)
  681. if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and size < 8):
  682. c.gABC(n, opcNarrowU, dest, TRegister(size*8))
  683. elif t.kind in {tyInt8..tyInt32} or (t.kind == tyInt and size < 8):
  684. c.gABC(n, opcNarrowS, dest, TRegister(size*8))
  685. proc genNarrowU(c: PCtx; n: PNode; dest: TDest) =
  686. let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
  687. # uint is uint64 in the VM, we we only need to mask the result for
  688. # other unsigned types:
  689. let size = getSize(c.config, t)
  690. if t.kind in {tyUInt8..tyUInt32, tyInt8..tyInt32} or
  691. (t.kind in {tyUInt, tyInt} and size < 8):
  692. c.gABC(n, opcNarrowU, dest, TRegister(size*8))
  693. proc genBinaryABCnarrow(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  694. genBinaryABC(c, n, dest, opc)
  695. genNarrow(c, n, dest)
  696. proc genBinaryABCnarrowU(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  697. genBinaryABC(c, n, dest, opc)
  698. genNarrowU(c, n, dest)
  699. proc genSetType(c: PCtx; n: PNode; dest: TRegister) =
  700. let t = skipTypes(n.typ, abstractInst-{tyTypeDesc})
  701. if t.kind == tySet:
  702. c.gABx(n, opcSetType, dest, c.genType(t))
  703. proc genBinarySet(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  704. let
  705. tmp = c.genx(n[1])
  706. tmp2 = c.genx(n[2])
  707. if dest < 0: dest = c.getTemp(n.typ)
  708. c.genSetType(n[1], tmp)
  709. c.genSetType(n[2], tmp2)
  710. c.gABC(n, opc, dest, tmp, tmp2)
  711. c.freeTemp(tmp)
  712. c.freeTemp(tmp2)
  713. proc genBinaryStmt(c: PCtx; n: PNode; opc: TOpcode) =
  714. let
  715. dest = c.genx(n[1])
  716. tmp = c.genx(n[2])
  717. c.gABC(n, opc, dest, tmp, 0)
  718. c.freeTemp(tmp)
  719. c.freeTemp(dest)
  720. proc genBinaryStmtVar(c: PCtx; n: PNode; opc: TOpcode) =
  721. var x = n[1]
  722. if x.kind in {nkAddr, nkHiddenAddr}: x = x[0]
  723. let
  724. dest = c.genx(x)
  725. tmp = c.genx(n[2])
  726. c.gABC(n, opc, dest, tmp, 0)
  727. #c.genAsgnPatch(n[1], dest)
  728. c.freeTemp(tmp)
  729. c.freeTemp(dest)
  730. proc genUnaryStmt(c: PCtx; n: PNode; opc: TOpcode) =
  731. let tmp = c.genx(n[1])
  732. c.gABC(n, opc, tmp, 0, 0)
  733. c.freeTemp(tmp)
  734. proc genVarargsABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  735. if dest < 0: dest = getTemp(c, n.typ)
  736. var x = c.getTempRange(n.len-1, slotTempStr)
  737. for i in 1..<n.len:
  738. var r: TRegister = x+i-1
  739. c.gen(n[i], r)
  740. c.gABC(n, opc, dest, x, n.len-1)
  741. c.freeTempRange(x, n.len-1)
  742. proc isInt8Lit(n: PNode): bool =
  743. if n.kind in {nkCharLit..nkUInt64Lit}:
  744. result = n.intVal >= low(int8) and n.intVal <= high(int8)
  745. else:
  746. result = false
  747. proc isInt16Lit(n: PNode): bool =
  748. if n.kind in {nkCharLit..nkUInt64Lit}:
  749. result = n.intVal >= low(int16) and n.intVal <= high(int16)
  750. else:
  751. result = false
  752. proc genAddSubInt(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  753. if n[2].isInt8Lit:
  754. let tmp = c.genx(n[1])
  755. if dest < 0: dest = c.getTemp(n.typ)
  756. c.gABI(n, succ(opc), dest, tmp, n[2].intVal)
  757. c.freeTemp(tmp)
  758. else:
  759. genBinaryABC(c, n, dest, opc)
  760. c.genNarrow(n, dest)
  761. proc genConv(c: PCtx; n, arg: PNode; dest: var TDest; opc=opcConv) =
  762. let t2 = n.typ.skipTypes({tyDistinct})
  763. let targ2 = arg.typ.skipTypes({tyDistinct})
  764. proc implicitConv(): bool =
  765. if sameBackendType(t2, targ2): return true
  766. # xxx consider whether to use t2 and targ2 here
  767. if n.typ.kind == arg.typ.kind and arg.typ.kind == tyProc:
  768. # don't do anything for lambda lifting conversions:
  769. result = true
  770. else:
  771. result = false
  772. if implicitConv():
  773. gen(c, arg, dest)
  774. return
  775. let tmp = c.genx(arg)
  776. if dest < 0: dest = c.getTemp(n.typ)
  777. c.gABC(n, opc, dest, tmp)
  778. c.gABx(n, opc, 0, genType(c, n.typ.skipTypes({tyStatic})))
  779. c.gABx(n, opc, 0, genType(c, arg.typ.skipTypes({tyStatic})))
  780. c.freeTemp(tmp)
  781. proc genCard(c: PCtx; n: PNode; dest: var TDest) =
  782. let tmp = c.genx(n[1])
  783. if dest < 0: dest = c.getTemp(n.typ)
  784. c.genSetType(n[1], tmp)
  785. c.gABC(n, opcCard, dest, tmp)
  786. c.freeTemp(tmp)
  787. proc genCastIntFloat(c: PCtx; n: PNode; dest: var TDest) =
  788. const allowedIntegers = {tyInt..tyInt64, tyUInt..tyUInt64, tyChar}
  789. var signedIntegers = {tyInt..tyInt64}
  790. var unsignedIntegers = {tyUInt..tyUInt64, tyChar}
  791. let src = n[1].typ.skipTypes(abstractRange)#.kind
  792. let dst = n[0].typ.skipTypes(abstractRange)#.kind
  793. let srcSize = getSize(c.config, src)
  794. let dstSize = getSize(c.config, dst)
  795. if src.kind in allowedIntegers and dst.kind in allowedIntegers:
  796. let tmp = c.genx(n[1])
  797. if dest < 0: dest = c.getTemp(n[0].typ)
  798. c.gABC(n, opcAsgnInt, dest, tmp)
  799. if dstSize != sizeof(BiggestInt): # don't do anything on biggest int types
  800. if dst.kind in signedIntegers: # we need to do sign extensions
  801. if dstSize <= srcSize:
  802. # Sign extension can be omitted when the size increases.
  803. c.gABC(n, opcSignExtend, dest, TRegister(dstSize*8))
  804. elif dst.kind in unsignedIntegers:
  805. if src.kind in signedIntegers or dstSize < srcSize:
  806. # Cast from signed to unsigned always needs narrowing. Cast
  807. # from unsigned to unsigned only needs narrowing when target
  808. # is smaller than source.
  809. c.gABC(n, opcNarrowU, dest, TRegister(dstSize*8))
  810. c.freeTemp(tmp)
  811. elif srcSize == dstSize and src.kind in allowedIntegers and
  812. dst.kind in {tyFloat, tyFloat32, tyFloat64}:
  813. let tmp = c.genx(n[1])
  814. if dest < 0: dest = c.getTemp(n[0].typ)
  815. if dst.kind == tyFloat32:
  816. c.gABC(n, opcCastIntToFloat32, dest, tmp)
  817. else:
  818. c.gABC(n, opcCastIntToFloat64, dest, tmp)
  819. c.freeTemp(tmp)
  820. elif srcSize == dstSize and src.kind in {tyFloat, tyFloat32, tyFloat64} and
  821. dst.kind in allowedIntegers:
  822. let tmp = c.genx(n[1])
  823. if dest < 0: dest = c.getTemp(n[0].typ)
  824. if src.kind == tyFloat32:
  825. c.gABC(n, opcCastFloatToInt32, dest, tmp)
  826. if dst.kind in unsignedIntegers:
  827. # integers are sign extended by default.
  828. # since there is no opcCastFloatToUInt32, narrowing should do the trick.
  829. c.gABC(n, opcNarrowU, dest, TRegister(32))
  830. else:
  831. c.gABC(n, opcCastFloatToInt64, dest, tmp)
  832. # narrowing for 64 bits not needed (no extended sign bits available).
  833. c.freeTemp(tmp)
  834. elif src.kind in PtrLikeKinds + {tyRef} and dst.kind == tyInt:
  835. let tmp = c.genx(n[1])
  836. if dest < 0: dest = c.getTemp(n[0].typ)
  837. var imm: BiggestInt = if src.kind in PtrLikeKinds: 1 else: 2
  838. c.gABI(n, opcCastPtrToInt, dest, tmp, imm)
  839. c.freeTemp(tmp)
  840. elif src.kind in PtrLikeKinds + {tyInt} and dst.kind in PtrLikeKinds:
  841. let tmp = c.genx(n[1])
  842. if dest < 0: dest = c.getTemp(n[0].typ)
  843. c.gABx(n, opcSetType, dest, c.genType(dst))
  844. c.gABC(n, opcCastIntToPtr, dest, tmp)
  845. c.freeTemp(tmp)
  846. elif src.kind == tyNil and dst.kind in NilableTypes:
  847. # supports casting nil literals to NilableTypes in VM
  848. # see #16024
  849. if dest < 0: dest = c.getTemp(n[0].typ)
  850. genLit(c, n[1], dest)
  851. else:
  852. # todo: support cast from tyInt to tyRef
  853. globalError(c.config, n.info, "VM does not support 'cast' from " & $src.kind & " to " & $dst.kind)
  854. proc genVoidABC(c: PCtx, n: PNode, dest: TDest, opcode: TOpcode) =
  855. unused(c, n, dest)
  856. var
  857. tmp1 = c.genx(n[1])
  858. tmp2 = c.genx(n[2])
  859. tmp3 = c.genx(n[3])
  860. c.gABC(n, opcode, tmp1, tmp2, tmp3)
  861. c.freeTemp(tmp1)
  862. c.freeTemp(tmp2)
  863. c.freeTemp(tmp3)
  864. proc genBindSym(c: PCtx; n: PNode; dest: var TDest) =
  865. # nah, cannot use c.config.features because sempass context
  866. # can have local experimental switch
  867. # if dynamicBindSym notin c.config.features:
  868. if n.len == 2: # hmm, reliable?
  869. # bindSym with static input
  870. if n[1].kind in {nkClosedSymChoice, nkOpenSymChoice, nkSym}:
  871. let idx = c.genLiteral(n[1])
  872. if dest < 0: dest = c.getTemp(n.typ)
  873. c.gABx(n, opcNBindSym, dest, idx)
  874. else:
  875. localError(c.config, n.info, "invalid bindSym usage")
  876. else:
  877. # experimental bindSym
  878. if dest < 0: dest = c.getTemp(n.typ)
  879. let x = c.getTempRange(n.len, slotTempUnknown)
  880. # callee symbol
  881. var tmp0 = TDest(x)
  882. c.genLit(n[0], tmp0)
  883. # original parameters
  884. for i in 1..<n.len-2:
  885. var r = TRegister(x+i)
  886. c.gen(n[i], r)
  887. # info node
  888. var tmp1 = TDest(x+n.len-2)
  889. c.genLit(n[^2], tmp1)
  890. # payload idx
  891. var tmp2 = TDest(x+n.len-1)
  892. c.genLit(n[^1], tmp2)
  893. c.gABC(n, opcNDynBindSym, dest, x, n.len)
  894. c.freeTempRange(x, n.len)
  895. proc fitsRegister*(t: PType): bool =
  896. assert t != nil
  897. t.skipTypes(abstractInst + {tyStatic} - {tyTypeDesc}).kind in {
  898. tyRange, tyEnum, tyBool, tyInt..tyUInt64, tyChar}
  899. proc ldNullOpcode(t: PType): TOpcode =
  900. assert t != nil
  901. if fitsRegister(t): opcLdNullReg else: opcLdNull
  902. proc whichAsgnOpc(n: PNode; requiresCopy = true): TOpcode =
  903. case n.typ.skipTypes(abstractRange+{tyOwned}-{tyTypeDesc}).kind
  904. of tyBool, tyChar, tyEnum, tyOrdinal, tyInt..tyInt64, tyUInt..tyUInt64:
  905. opcAsgnInt
  906. of tyFloat..tyFloat128:
  907. opcAsgnFloat
  908. of tyRef, tyNil, tyVar, tyLent, tyPtr:
  909. opcAsgnRef
  910. else:
  911. (if requiresCopy: opcAsgnComplex else: opcFastAsgnComplex)
  912. proc genMagic(c: PCtx; n: PNode; dest: var TDest; m: TMagic) =
  913. case m
  914. of mAnd: c.genAndOr(n, opcFJmp, dest)
  915. of mOr: c.genAndOr(n, opcTJmp, dest)
  916. of mPred, mSubI:
  917. c.genAddSubInt(n, dest, opcSubInt)
  918. of mSucc, mAddI:
  919. c.genAddSubInt(n, dest, opcAddInt)
  920. of mInc, mDec:
  921. unused(c, n, dest)
  922. let isUnsigned = n[1].typ.skipTypes(abstractVarRange).kind in {tyUInt..tyUInt64}
  923. let opc = if not isUnsigned:
  924. if m == mInc: opcAddInt else: opcSubInt
  925. else:
  926. if m == mInc: opcAddu else: opcSubu
  927. let d = c.genx(n[1])
  928. if n[2].isInt8Lit and not isUnsigned:
  929. c.gABI(n, succ(opc), d, d, n[2].intVal)
  930. else:
  931. let tmp = c.genx(n[2])
  932. c.gABC(n, opc, d, d, tmp)
  933. c.freeTemp(tmp)
  934. c.genNarrow(n[1], d)
  935. c.genAsgnPatch(n[1], d)
  936. c.freeTemp(d)
  937. of mOrd, mChr, mArrToSeq, mUnown: c.gen(n[1], dest)
  938. of generatedMagics:
  939. genCall(c, n, dest)
  940. of mNew, mNewFinalize:
  941. unused(c, n, dest)
  942. c.genNew(n)
  943. of mNewSeq:
  944. unused(c, n, dest)
  945. c.genNewSeq(n)
  946. of mNewSeqOfCap: c.genNewSeqOfCap(n, dest)
  947. of mNewString:
  948. genUnaryABC(c, n, dest, opcNewStr)
  949. # XXX buggy
  950. of mNewStringOfCap:
  951. # we ignore the 'cap' argument and translate it as 'newString(0)'.
  952. # eval n[1] for possible side effects:
  953. c.freeTemp(c.genx(n[1]))
  954. var tmp = c.getTemp(n[1].typ)
  955. c.gABx(n, opcLdImmInt, tmp, 0)
  956. if dest < 0: dest = c.getTemp(n.typ)
  957. c.gABC(n, opcNewStr, dest, tmp)
  958. c.freeTemp(tmp)
  959. # XXX buggy
  960. of mLengthOpenArray, mLengthArray, mLengthSeq:
  961. genUnaryABI(c, n, dest, opcLenSeq)
  962. of mLengthStr:
  963. case n[1].typ.skipTypes(abstractVarRange).kind
  964. of tyString: genUnaryABI(c, n, dest, opcLenStr)
  965. of tyCstring: genUnaryABI(c, n, dest, opcLenCstring)
  966. else: raiseAssert $n[1].typ.kind
  967. of mSlice:
  968. var
  969. d = c.genx(n[1])
  970. left = c.genIndex(n[2], n[1].typ)
  971. right = c.genIndex(n[3], n[1].typ)
  972. if dest < 0: dest = c.getTemp(n.typ)
  973. c.gABC(n, opcNodeToReg, dest, d)
  974. c.gABC(n, opcSlice, dest, left, right)
  975. c.freeTemp(left)
  976. c.freeTemp(right)
  977. c.freeTemp(d)
  978. of mIncl, mExcl:
  979. unused(c, n, dest)
  980. var d = c.genx(n[1])
  981. var tmp = c.genx(n[2])
  982. c.genSetType(n[1], d)
  983. c.gABC(n, if m == mIncl: opcIncl else: opcExcl, d, tmp)
  984. c.freeTemp(d)
  985. c.freeTemp(tmp)
  986. of mCard: genCard(c, n, dest)
  987. of mMulI: genBinaryABCnarrow(c, n, dest, opcMulInt)
  988. of mDivI: genBinaryABCnarrow(c, n, dest, opcDivInt)
  989. of mModI: genBinaryABCnarrow(c, n, dest, opcModInt)
  990. of mAddF64: genBinaryABC(c, n, dest, opcAddFloat)
  991. of mSubF64: genBinaryABC(c, n, dest, opcSubFloat)
  992. of mMulF64: genBinaryABC(c, n, dest, opcMulFloat)
  993. of mDivF64: genBinaryABC(c, n, dest, opcDivFloat)
  994. of mShrI:
  995. # modified: genBinaryABC(c, n, dest, opcShrInt)
  996. # narrowU is applied to the left operandthe idea here is to narrow the left operand
  997. let tmp = c.genx(n[1])
  998. c.genNarrowU(n, tmp)
  999. let tmp2 = c.genx(n[2])
  1000. if dest < 0: dest = c.getTemp(n.typ)
  1001. c.gABC(n, opcShrInt, dest, tmp, tmp2)
  1002. c.freeTemp(tmp)
  1003. c.freeTemp(tmp2)
  1004. of mShlI:
  1005. genBinaryABC(c, n, dest, opcShlInt)
  1006. # genNarrowU modified
  1007. let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
  1008. let size = getSize(c.config, t)
  1009. if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and size < 8):
  1010. c.gABC(n, opcNarrowU, dest, TRegister(size*8))
  1011. elif t.kind in {tyInt8..tyInt32} or (t.kind == tyInt and size < 8):
  1012. c.gABC(n, opcSignExtend, dest, TRegister(size*8))
  1013. of mAshrI: genBinaryABC(c, n, dest, opcAshrInt)
  1014. of mBitandI: genBinaryABC(c, n, dest, opcBitandInt)
  1015. of mBitorI: genBinaryABC(c, n, dest, opcBitorInt)
  1016. of mBitxorI: genBinaryABC(c, n, dest, opcBitxorInt)
  1017. of mAddU: genBinaryABCnarrowU(c, n, dest, opcAddu)
  1018. of mSubU: genBinaryABCnarrowU(c, n, dest, opcSubu)
  1019. of mMulU: genBinaryABCnarrowU(c, n, dest, opcMulu)
  1020. of mDivU: genBinaryABCnarrowU(c, n, dest, opcDivu)
  1021. of mModU: genBinaryABCnarrowU(c, n, dest, opcModu)
  1022. of mEqI, mEqB, mEqEnum, mEqCh:
  1023. genBinaryABC(c, n, dest, opcEqInt)
  1024. of mLeI, mLeEnum, mLeCh, mLeB:
  1025. genBinaryABC(c, n, dest, opcLeInt)
  1026. of mLtI, mLtEnum, mLtCh, mLtB:
  1027. genBinaryABC(c, n, dest, opcLtInt)
  1028. of mEqF64: genBinaryABC(c, n, dest, opcEqFloat)
  1029. of mLeF64: genBinaryABC(c, n, dest, opcLeFloat)
  1030. of mLtF64: genBinaryABC(c, n, dest, opcLtFloat)
  1031. of mLePtr, mLeU: genBinaryABC(c, n, dest, opcLeu)
  1032. of mLtPtr, mLtU: genBinaryABC(c, n, dest, opcLtu)
  1033. of mEqProc, mEqRef:
  1034. genBinaryABC(c, n, dest, opcEqRef)
  1035. of mXor: genBinaryABC(c, n, dest, opcXor)
  1036. of mNot: genUnaryABC(c, n, dest, opcNot)
  1037. of mUnaryMinusI, mUnaryMinusI64:
  1038. genUnaryABC(c, n, dest, opcUnaryMinusInt)
  1039. genNarrow(c, n, dest)
  1040. of mUnaryMinusF64: genUnaryABC(c, n, dest, opcUnaryMinusFloat)
  1041. of mUnaryPlusI, mUnaryPlusF64: gen(c, n[1], dest)
  1042. of mBitnotI:
  1043. genUnaryABC(c, n, dest, opcBitnotInt)
  1044. #genNarrowU modified, do not narrow signed types
  1045. let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
  1046. let size = getSize(c.config, t)
  1047. if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and size < 8):
  1048. c.gABC(n, opcNarrowU, dest, TRegister(size*8))
  1049. of mCharToStr, mBoolToStr, mIntToStr, mInt64ToStr, mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr:
  1050. genConv(c, n, n[1], dest)
  1051. of mEqStr, mEqCString: genBinaryABC(c, n, dest, opcEqStr)
  1052. of mLeStr: genBinaryABC(c, n, dest, opcLeStr)
  1053. of mLtStr: genBinaryABC(c, n, dest, opcLtStr)
  1054. of mEqSet: genBinarySet(c, n, dest, opcEqSet)
  1055. of mLeSet: genBinarySet(c, n, dest, opcLeSet)
  1056. of mLtSet: genBinarySet(c, n, dest, opcLtSet)
  1057. of mMulSet: genBinarySet(c, n, dest, opcMulSet)
  1058. of mPlusSet: genBinarySet(c, n, dest, opcPlusSet)
  1059. of mMinusSet: genBinarySet(c, n, dest, opcMinusSet)
  1060. of mConStrStr: genVarargsABC(c, n, dest, opcConcatStr)
  1061. of mInSet: genBinarySet(c, n, dest, opcContainsSet)
  1062. of mRepr: genUnaryABC(c, n, dest, opcRepr)
  1063. of mExit:
  1064. unused(c, n, dest)
  1065. var tmp = c.genx(n[1])
  1066. c.gABC(n, opcQuit, tmp)
  1067. c.freeTemp(tmp)
  1068. of mSetLengthStr, mSetLengthSeq:
  1069. unused(c, n, dest)
  1070. var d = c.genx(n[1])
  1071. var tmp = c.genx(n[2])
  1072. c.gABC(n, if m == mSetLengthStr: opcSetLenStr else: opcSetLenSeq, d, tmp)
  1073. c.genAsgnPatch(n[1], d)
  1074. c.freeTemp(tmp)
  1075. c.freeTemp(d)
  1076. of mSwap:
  1077. unused(c, n, dest)
  1078. c.gen(lowerSwap(c.graph, n, c.idgen, if c.prc == nil or c.prc.sym == nil: c.module else: c.prc.sym))
  1079. of mIsNil: genUnaryABC(c, n, dest, opcIsNil)
  1080. of mParseBiggestFloat:
  1081. if dest < 0: dest = c.getTemp(n.typ)
  1082. var d2: TRegister
  1083. # skip 'nkHiddenAddr':
  1084. let d2AsNode = n[2][0]
  1085. if needsAsgnPatch(d2AsNode):
  1086. d2 = c.getTemp(getSysType(c.graph, n.info, tyFloat))
  1087. else:
  1088. d2 = c.genx(d2AsNode)
  1089. var
  1090. tmp1 = c.genx(n[1])
  1091. c.gABC(n, opcParseFloat, dest, tmp1, d2)
  1092. c.freeTemp(tmp1)
  1093. c.genAsgnPatch(d2AsNode, d2)
  1094. c.freeTemp(d2)
  1095. of mReset:
  1096. unused(c, n, dest)
  1097. var d = c.genx(n[1])
  1098. # XXX use ldNullOpcode() here?
  1099. c.gABx(n, opcLdNull, d, c.genType(n[1].typ))
  1100. c.gABC(n, opcNodeToReg, d, d)
  1101. c.genAsgnPatch(n[1], d)
  1102. of mDefault, mZeroDefault:
  1103. if dest < 0: dest = c.getTemp(n.typ)
  1104. c.gABx(n, ldNullOpcode(n.typ), dest, c.genType(n.typ))
  1105. of mOf, mIs:
  1106. if dest < 0: dest = c.getTemp(n.typ)
  1107. var tmp = c.genx(n[1])
  1108. var idx = c.getTemp(getSysType(c.graph, n.info, tyInt))
  1109. var typ = n[2].typ
  1110. if m == mOf: typ = typ.skipTypes(abstractPtrs)
  1111. c.gABx(n, opcLdImmInt, idx, c.genType(typ))
  1112. c.gABC(n, if m == mOf: opcOf else: opcIs, dest, tmp, idx)
  1113. c.freeTemp(tmp)
  1114. c.freeTemp(idx)
  1115. of mHigh:
  1116. if dest < 0: dest = c.getTemp(n.typ)
  1117. let tmp = c.genx(n[1])
  1118. case n[1].typ.skipTypes(abstractVar-{tyTypeDesc}).kind:
  1119. of tyString: c.gABI(n, opcLenStr, dest, tmp, 1)
  1120. of tyCstring: c.gABI(n, opcLenCstring, dest, tmp, 1)
  1121. else: c.gABI(n, opcLenSeq, dest, tmp, 1)
  1122. c.freeTemp(tmp)
  1123. of mEcho:
  1124. unused(c, n, dest)
  1125. let n = n[1].skipConv
  1126. if n.kind == nkBracket:
  1127. # can happen for nim check, see bug #9609
  1128. let x = c.getTempRange(n.len, slotTempUnknown)
  1129. for i in 0..<n.len:
  1130. var r: TRegister = x+i
  1131. c.gen(n[i], r)
  1132. c.gABC(n, opcEcho, x, n.len)
  1133. c.freeTempRange(x, n.len)
  1134. of mAppendStrCh:
  1135. unused(c, n, dest)
  1136. genBinaryStmtVar(c, n, opcAddStrCh)
  1137. of mAppendStrStr:
  1138. unused(c, n, dest)
  1139. genBinaryStmtVar(c, n, opcAddStrStr)
  1140. of mAppendSeqElem:
  1141. unused(c, n, dest)
  1142. genBinaryStmtVar(c, n, opcAddSeqElem)
  1143. of mParseExprToAst:
  1144. genBinaryABC(c, n, dest, opcParseExprToAst)
  1145. of mParseStmtToAst:
  1146. genBinaryABC(c, n, dest, opcParseStmtToAst)
  1147. of mTypeTrait:
  1148. let tmp = c.genx(n[1])
  1149. if dest < 0: dest = c.getTemp(n.typ)
  1150. c.gABx(n, opcSetType, tmp, c.genType(n[1].typ))
  1151. c.gABC(n, opcTypeTrait, dest, tmp)
  1152. c.freeTemp(tmp)
  1153. of mSlurp: genUnaryABC(c, n, dest, opcSlurp)
  1154. of mStaticExec: genBinaryABCD(c, n, dest, opcGorge)
  1155. of mNLen: genUnaryABI(c, n, dest, opcLenSeq, nimNodeFlag)
  1156. of mGetImpl: genUnaryABC(c, n, dest, opcGetImpl)
  1157. of mGetImplTransf: genUnaryABC(c, n, dest, opcGetImplTransf)
  1158. of mSymOwner: genUnaryABC(c, n, dest, opcSymOwner)
  1159. of mSymIsInstantiationOf: genBinaryABC(c, n, dest, opcSymIsInstantiationOf)
  1160. of mNChild: genBinaryABC(c, n, dest, opcNChild)
  1161. of mNSetChild: genVoidABC(c, n, dest, opcNSetChild)
  1162. of mNDel: genVoidABC(c, n, dest, opcNDel)
  1163. of mNAdd: genBinaryABC(c, n, dest, opcNAdd)
  1164. of mNAddMultiple: genBinaryABC(c, n, dest, opcNAddMultiple)
  1165. of mNKind: genUnaryABC(c, n, dest, opcNKind)
  1166. of mNSymKind: genUnaryABC(c, n, dest, opcNSymKind)
  1167. of mNccValue: genUnaryABC(c, n, dest, opcNccValue)
  1168. of mNccInc: genBinaryABC(c, n, dest, opcNccInc)
  1169. of mNcsAdd: genBinaryABC(c, n, dest, opcNcsAdd)
  1170. of mNcsIncl: genBinaryABC(c, n, dest, opcNcsIncl)
  1171. of mNcsLen: genUnaryABC(c, n, dest, opcNcsLen)
  1172. of mNcsAt: genBinaryABC(c, n, dest, opcNcsAt)
  1173. of mNctPut: genVoidABC(c, n, dest, opcNctPut)
  1174. of mNctLen: genUnaryABC(c, n, dest, opcNctLen)
  1175. of mNctGet: genBinaryABC(c, n, dest, opcNctGet)
  1176. of mNctHasNext: genBinaryABC(c, n, dest, opcNctHasNext)
  1177. of mNctNext: genBinaryABC(c, n, dest, opcNctNext)
  1178. of mNIntVal: genUnaryABC(c, n, dest, opcNIntVal)
  1179. of mNFloatVal: genUnaryABC(c, n, dest, opcNFloatVal)
  1180. of mNSymbol: genUnaryABC(c, n, dest, opcNSymbol)
  1181. of mNIdent: genUnaryABC(c, n, dest, opcNIdent)
  1182. of mNGetType:
  1183. let tmp = c.genx(n[1])
  1184. if dest < 0: dest = c.getTemp(n.typ)
  1185. let rc = case n[0].sym.name.s:
  1186. of "getType": 0
  1187. of "typeKind": 1
  1188. of "getTypeInst": 2
  1189. else: 3 # "getTypeImpl"
  1190. c.gABC(n, opcNGetType, dest, tmp, rc)
  1191. c.freeTemp(tmp)
  1192. #genUnaryABC(c, n, dest, opcNGetType)
  1193. of mNSizeOf:
  1194. let imm = case n[0].sym.name.s:
  1195. of "getSize": 0
  1196. of "getAlign": 1
  1197. else: 2 # "getOffset"
  1198. c.genUnaryABI(n, dest, opcNGetSize, imm)
  1199. of mNStrVal: genUnaryABC(c, n, dest, opcNStrVal)
  1200. of mNSigHash: genUnaryABC(c, n , dest, opcNSigHash)
  1201. of mNSetIntVal:
  1202. unused(c, n, dest)
  1203. genBinaryStmt(c, n, opcNSetIntVal)
  1204. of mNSetFloatVal:
  1205. unused(c, n, dest)
  1206. genBinaryStmt(c, n, opcNSetFloatVal)
  1207. of mNSetSymbol:
  1208. unused(c, n, dest)
  1209. genBinaryStmt(c, n, opcNSetSymbol)
  1210. of mNSetIdent:
  1211. unused(c, n, dest)
  1212. genBinaryStmt(c, n, opcNSetIdent)
  1213. of mNSetStrVal:
  1214. unused(c, n, dest)
  1215. genBinaryStmt(c, n, opcNSetStrVal)
  1216. of mNNewNimNode: genBinaryABC(c, n, dest, opcNNewNimNode)
  1217. of mNCopyNimNode: genUnaryABC(c, n, dest, opcNCopyNimNode)
  1218. of mNCopyNimTree: genUnaryABC(c, n, dest, opcNCopyNimTree)
  1219. of mNBindSym: genBindSym(c, n, dest)
  1220. of mStrToIdent: genUnaryABC(c, n, dest, opcStrToIdent)
  1221. of mEqIdent: genBinaryABC(c, n, dest, opcEqIdent)
  1222. of mEqNimrodNode: genBinaryABC(c, n, dest, opcEqNimNode)
  1223. of mSameNodeType: genBinaryABC(c, n, dest, opcSameNodeType)
  1224. of mNLineInfo:
  1225. case n[0].sym.name.s
  1226. of "getFile": genUnaryABI(c, n, dest, opcNGetLineInfo, 0)
  1227. of "getLine": genUnaryABI(c, n, dest, opcNGetLineInfo, 1)
  1228. of "getColumn": genUnaryABI(c, n, dest, opcNGetLineInfo, 2)
  1229. of "copyLineInfo":
  1230. internalAssert c.config, n.len == 3
  1231. unused(c, n, dest)
  1232. genBinaryStmt(c, n, opcNCopyLineInfo)
  1233. of "setLine":
  1234. internalAssert c.config, n.len == 3
  1235. unused(c, n, dest)
  1236. genBinaryStmt(c, n, opcNSetLineInfoLine)
  1237. of "setColumn":
  1238. internalAssert c.config, n.len == 3
  1239. unused(c, n, dest)
  1240. genBinaryStmt(c, n, opcNSetLineInfoColumn)
  1241. of "setFile":
  1242. internalAssert c.config, n.len == 3
  1243. unused(c, n, dest)
  1244. genBinaryStmt(c, n, opcNSetLineInfoFile)
  1245. else: internalAssert c.config, false
  1246. of mNHint:
  1247. unused(c, n, dest)
  1248. genBinaryStmt(c, n, opcNHint)
  1249. of mNWarning:
  1250. unused(c, n, dest)
  1251. genBinaryStmt(c, n, opcNWarning)
  1252. of mNError:
  1253. if n.len <= 1:
  1254. # query error condition:
  1255. c.gABC(n, opcQueryErrorFlag, dest)
  1256. else:
  1257. # setter
  1258. unused(c, n, dest)
  1259. genBinaryStmt(c, n, opcNError)
  1260. of mNCallSite:
  1261. if dest < 0: dest = c.getTemp(n.typ)
  1262. c.gABC(n, opcCallSite, dest)
  1263. of mNGenSym: genBinaryABC(c, n, dest, opcGenSym)
  1264. of mMinI, mMaxI, mAbsI, mDotDot:
  1265. c.genCall(n, dest)
  1266. of mExpandToAst:
  1267. if n.len != 2:
  1268. globalError(c.config, n.info, "expandToAst requires 1 argument")
  1269. let arg = n[1]
  1270. if arg.kind in nkCallKinds:
  1271. #if arg[0].kind != nkSym or arg[0].sym.kind notin {skTemplate, skMacro}:
  1272. # "ExpandToAst: expanded symbol is no macro or template"
  1273. if dest < 0: dest = c.getTemp(n.typ)
  1274. c.genCall(arg, dest)
  1275. # do not call clearDest(n, dest) here as getAst has a meta-type as such
  1276. # produces a value
  1277. else:
  1278. globalError(c.config, n.info, "expandToAst requires a call expression")
  1279. of mSizeOf:
  1280. globalError(c.config, n.info, sizeOfLikeMsg("sizeof"))
  1281. of mAlignOf:
  1282. globalError(c.config, n.info, sizeOfLikeMsg("alignof"))
  1283. of mOffsetOf:
  1284. globalError(c.config, n.info, sizeOfLikeMsg("offsetof"))
  1285. of mRunnableExamples:
  1286. discard "just ignore any call to runnableExamples"
  1287. of mDestroy, mTrace: discard "ignore calls to the default destructor"
  1288. of mEnsureMove:
  1289. gen(c, n[1], dest)
  1290. of mMove:
  1291. let arg = n[1]
  1292. let a = c.genx(arg)
  1293. if dest < 0: dest = c.getTemp(arg.typ)
  1294. gABC(c, arg, whichAsgnOpc(arg, requiresCopy=false), dest, a)
  1295. # XXX use ldNullOpcode() here?
  1296. # Don't zero out the arg for now #17199
  1297. # c.gABx(n, opcLdNull, a, c.genType(arg.typ))
  1298. # c.gABx(n, opcNodeToReg, a, a)
  1299. # c.genAsgnPatch(arg, a)
  1300. c.freeTemp(a)
  1301. of mDup:
  1302. let arg = n[1]
  1303. let a = c.genx(arg)
  1304. if dest < 0: dest = c.getTemp(arg.typ)
  1305. gABC(c, arg, whichAsgnOpc(arg, requiresCopy=false), dest, a)
  1306. c.freeTemp(a)
  1307. of mNodeId:
  1308. c.genUnaryABC(n, dest, opcNodeId)
  1309. else:
  1310. # mGCref, mGCunref,
  1311. globalError(c.config, n.info, "cannot generate code for: " & $m)
  1312. proc unneededIndirection(n: PNode): bool =
  1313. n.typ.skipTypes(abstractInstOwned-{tyTypeDesc}).kind == tyRef
  1314. proc canElimAddr(n: PNode; idgen: IdGenerator): PNode =
  1315. result = nil
  1316. case n[0].kind
  1317. of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
  1318. var m = n[0][0]
  1319. if m.kind in {nkDerefExpr, nkHiddenDeref}:
  1320. # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
  1321. result = copyNode(n[0])
  1322. result.add m[0]
  1323. if n.typ.skipTypes(abstractVar).kind != tyOpenArray:
  1324. result.typ = n.typ
  1325. elif n.typ.skipTypes(abstractInst).kind in {tyVar}:
  1326. result.typ = toVar(result.typ, n.typ.skipTypes(abstractInst).kind, idgen)
  1327. of nkHiddenStdConv, nkHiddenSubConv, nkConv:
  1328. var m = n[0][1]
  1329. if m.kind in {nkDerefExpr, nkHiddenDeref}:
  1330. # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
  1331. result = copyNode(n[0])
  1332. result.add n[0][0]
  1333. result.add m[0]
  1334. if n.typ.skipTypes(abstractVar).kind != tyOpenArray:
  1335. result.typ = n.typ
  1336. elif n.typ.skipTypes(abstractInst).kind in {tyVar}:
  1337. result.typ = toVar(result.typ, n.typ.skipTypes(abstractInst).kind, idgen)
  1338. else:
  1339. if n[0].kind in {nkDerefExpr, nkHiddenDeref}:
  1340. # addr ( deref ( x )) --> x
  1341. result = n[0][0]
  1342. proc genAddr(c: PCtx, n: PNode, dest: var TDest, flags: TGenFlags) =
  1343. if (let m = canElimAddr(n, c.idgen); m != nil):
  1344. gen(c, m, dest, flags)
  1345. return
  1346. let newflags = flags-{gfNode}+{gfNodeAddr}
  1347. if isGlobal(n[0]) or n[0].kind in {nkDotExpr, nkCheckedFieldExpr, nkBracketExpr}:
  1348. # checking for this pattern: addr(obj.field) / addr(array[i])
  1349. gen(c, n[0], dest, newflags)
  1350. else:
  1351. let tmp = c.genx(n[0], newflags)
  1352. if dest < 0: dest = c.getTemp(n.typ)
  1353. if c.prc.regInfo[tmp].kind >= slotTempUnknown:
  1354. gABC(c, n, opcAddrNode, dest, tmp)
  1355. # hack ahead; in order to fix bug #1781 we mark the temporary as
  1356. # permanent, so that it's not used for anything else:
  1357. c.prc.regInfo[tmp].kind = slotTempPerm
  1358. # XXX this is still a hack
  1359. #message(c.congig, n.info, warnUser, "suspicious opcode used")
  1360. else:
  1361. gABC(c, n, opcAddrReg, dest, tmp)
  1362. c.freeTemp(tmp)
  1363. proc genDeref(c: PCtx, n: PNode, dest: var TDest, flags: TGenFlags) =
  1364. if unneededIndirection(n[0]):
  1365. gen(c, n[0], dest, flags)
  1366. if {gfNodeAddr, gfNode} * flags == {} and fitsRegister(n.typ):
  1367. c.gABC(n, opcNodeToReg, dest, dest)
  1368. else:
  1369. let tmp = c.genx(n[0], flags)
  1370. if dest < 0: dest = c.getTemp(n.typ)
  1371. gABC(c, n, opcLdDeref, dest, tmp)
  1372. assert n.typ != nil
  1373. if {gfNodeAddr, gfNode} * flags == {} and fitsRegister(n.typ):
  1374. c.gABC(n, opcNodeToReg, dest, dest)
  1375. c.freeTemp(tmp)
  1376. proc genAsgn(c: PCtx; dest: TDest; ri: PNode; requiresCopy: bool) =
  1377. let tmp = c.genx(ri)
  1378. assert dest >= 0
  1379. gABC(c, ri, whichAsgnOpc(ri, requiresCopy), dest, tmp)
  1380. c.freeTemp(tmp)
  1381. proc setSlot(c: PCtx; v: PSym) =
  1382. # XXX generate type initialization here?
  1383. if v.position == 0:
  1384. v.position = getFreeRegister(c, if v.kind == skLet: slotFixedLet else: slotFixedVar, start = 1)
  1385. proc cannotEval(c: PCtx; n: PNode) {.noinline.} =
  1386. globalError(c.config, n.info, "cannot evaluate at compile time: " &
  1387. n.renderTree)
  1388. proc isOwnedBy(a, b: PSym): bool =
  1389. result = false
  1390. var a = a.owner
  1391. while a != nil and a.kind != skModule:
  1392. if a == b: return true
  1393. a = a.owner
  1394. proc getOwner(c: PCtx): PSym =
  1395. result = c.prc.sym
  1396. if result.isNil: result = c.module
  1397. proc importcCondVar*(s: PSym): bool {.inline.} =
  1398. # see also importcCond
  1399. if sfImportc in s.flags:
  1400. result = s.kind in {skVar, skLet, skConst}
  1401. else:
  1402. result = false
  1403. proc checkCanEval(c: PCtx; n: PNode) =
  1404. # we need to ensure that we don't evaluate 'x' here:
  1405. # proc foo() = var x ...
  1406. let s = n.sym
  1407. if {sfCompileTime, sfGlobal} <= s.flags: return
  1408. if compiletimeFFI in c.config.features and s.importcCondVar: return
  1409. if s.kind in {skVar, skTemp, skLet, skParam, skResult} and
  1410. not s.isOwnedBy(c.prc.sym) and s.owner != c.module and c.mode != emRepl:
  1411. # little hack ahead for bug #12612: assume gensym'ed variables
  1412. # are in the right scope:
  1413. if sfGenSym in s.flags and c.prc.sym == nil: discard
  1414. else: cannotEval(c, n)
  1415. elif s.kind in {skProc, skFunc, skConverter, skMethod,
  1416. skIterator} and sfForward in s.flags:
  1417. cannotEval(c, n)
  1418. template needsAdditionalCopy(n): untyped =
  1419. not c.isTemp(dest) and not fitsRegister(n.typ)
  1420. proc genAdditionalCopy(c: PCtx; n: PNode; opc: TOpcode;
  1421. dest, idx, value: TRegister) =
  1422. var cc = c.getTemp(n.typ)
  1423. c.gABC(n, whichAsgnOpc(n), cc, value)
  1424. c.gABC(n, opc, dest, idx, cc)
  1425. c.freeTemp(cc)
  1426. proc preventFalseAlias(c: PCtx; n: PNode; opc: TOpcode;
  1427. dest, idx, value: TRegister) =
  1428. # opcLdObj et al really means "load address". We sometimes have to create a
  1429. # copy in order to not introduce false aliasing:
  1430. # mylocal = a.b # needs a copy of the data!
  1431. assert n.typ != nil
  1432. if needsAdditionalCopy(n):
  1433. genAdditionalCopy(c, n, opc, dest, idx, value)
  1434. else:
  1435. c.gABC(n, opc, dest, idx, value)
  1436. proc genAsgn(c: PCtx; le, ri: PNode; requiresCopy: bool) =
  1437. case le.kind
  1438. of nkBracketExpr:
  1439. let
  1440. dest = c.genx(le[0], {gfNode})
  1441. idx = c.genIndex(le[1], le[0].typ)
  1442. tmp = c.genx(ri)
  1443. collTyp = le[0].typ.skipTypes(abstractVarRange-{tyTypeDesc})
  1444. case collTyp.kind
  1445. of tyString, tyCstring:
  1446. c.preventFalseAlias(le, opcWrStrIdx, dest, idx, tmp)
  1447. of tyTuple:
  1448. c.preventFalseAlias(le, opcWrObj, dest, int le[1].intVal, tmp)
  1449. else:
  1450. c.preventFalseAlias(le, opcWrArr, dest, idx, tmp)
  1451. c.freeTemp(tmp)
  1452. c.freeTemp(idx)
  1453. c.freeTemp(dest)
  1454. of nkCheckedFieldExpr:
  1455. var objR: TDest = -1
  1456. genCheckedObjAccessAux(c, le, objR, {gfNode})
  1457. let idx = genField(c, le[0][1])
  1458. let tmp = c.genx(ri)
  1459. c.preventFalseAlias(le[0], opcWrObj, objR, idx, tmp)
  1460. c.freeTemp(tmp)
  1461. # c.freeTemp(idx) # BUGFIX, see nkDotExpr
  1462. c.freeTemp(objR)
  1463. of nkDotExpr:
  1464. let dest = c.genx(le[0], {gfNode})
  1465. let idx = genField(c, le[1])
  1466. let tmp = c.genx(ri)
  1467. c.preventFalseAlias(le, opcWrObj, dest, idx, tmp)
  1468. # c.freeTemp(idx) # BUGFIX: idx is an immediate (field position), not a register
  1469. c.freeTemp(tmp)
  1470. c.freeTemp(dest)
  1471. of nkDerefExpr, nkHiddenDeref:
  1472. let dest = c.genx(le[0], {gfNode})
  1473. let tmp = c.genx(ri)
  1474. c.preventFalseAlias(le, opcWrDeref, dest, 0, tmp)
  1475. c.freeTemp(dest)
  1476. c.freeTemp(tmp)
  1477. of nkSym:
  1478. let s = le.sym
  1479. checkCanEval(c, le)
  1480. if s.isGlobal:
  1481. withTemp(tmp, le.typ):
  1482. c.gen(le, tmp, {gfNodeAddr})
  1483. let val = c.genx(ri)
  1484. c.preventFalseAlias(le, opcWrDeref, tmp, 0, val)
  1485. c.freeTemp(val)
  1486. else:
  1487. if s.kind == skForVar: c.setSlot s
  1488. internalAssert c.config, s.position > 0 or (s.position == 0 and
  1489. s.kind in {skParam, skResult})
  1490. var dest: TRegister = s.position + ord(s.kind == skParam)
  1491. assert le.typ != nil
  1492. if needsAdditionalCopy(le) and s.kind in {skResult, skVar, skParam}:
  1493. var cc = c.getTemp(le.typ)
  1494. gen(c, ri, cc)
  1495. c.gABC(le, whichAsgnOpc(le), dest, cc)
  1496. c.freeTemp(cc)
  1497. else:
  1498. gen(c, ri, dest)
  1499. else:
  1500. let dest = c.genx(le, {gfNodeAddr})
  1501. genAsgn(c, dest, ri, requiresCopy)
  1502. c.freeTemp(dest)
  1503. proc genTypeLit(c: PCtx; t: PType; dest: var TDest) =
  1504. var n = newNode(nkType)
  1505. n.typ = t
  1506. genLit(c, n, dest)
  1507. proc isEmptyBody(n: PNode): bool =
  1508. case n.kind
  1509. of nkStmtList:
  1510. for i in 0..<n.len:
  1511. if not isEmptyBody(n[i]): return false
  1512. result = true
  1513. else:
  1514. result = n.kind in {nkCommentStmt, nkEmpty}
  1515. proc importcCond*(c: PCtx; s: PSym): bool {.inline.} =
  1516. ## return true to importc `s`, false to execute its body instead (refs #8405)
  1517. result = false
  1518. if sfImportc in s.flags:
  1519. if s.kind in routineKinds:
  1520. return isEmptyBody(getBody(c.graph, s))
  1521. proc importcSym(c: PCtx; info: TLineInfo; s: PSym) =
  1522. when hasFFI:
  1523. if compiletimeFFI in c.config.features:
  1524. c.globals.add(importcSymbol(c.config, s))
  1525. s.position = c.globals.len
  1526. else:
  1527. localError(c.config, info,
  1528. "VM is not allowed to 'importc' without --experimental:compiletimeFFI")
  1529. else:
  1530. localError(c.config, info,
  1531. "cannot 'importc' variable at compile time; " & s.name.s)
  1532. proc getNullValue*(typ: PType, info: TLineInfo; conf: ConfigRef): PNode
  1533. proc genGlobalInit(c: PCtx; n: PNode; s: PSym) =
  1534. c.globals.add(getNullValue(s.typ, n.info, c.config))
  1535. s.position = c.globals.len
  1536. # This is rather hard to support, due to the laziness of the VM code
  1537. # generator. See tests/compile/tmacro2 for why this is necessary:
  1538. # var decls{.compileTime.}: seq[NimNode] = @[]
  1539. let dest = c.getTemp(s.typ)
  1540. c.gABx(n, opcLdGlobal, dest, s.position)
  1541. if s.astdef != nil:
  1542. let tmp = c.genx(s.astdef)
  1543. c.genAdditionalCopy(n, opcWrDeref, dest, 0, tmp)
  1544. c.freeTemp(dest)
  1545. c.freeTemp(tmp)
  1546. proc genRdVar(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  1547. # gfNodeAddr and gfNode are mutually exclusive
  1548. assert card(flags * {gfNodeAddr, gfNode}) < 2
  1549. let s = n.sym
  1550. if s.isGlobal:
  1551. let isImportcVar = importcCondVar(s)
  1552. if sfCompileTime in s.flags or c.mode == emRepl or isImportcVar:
  1553. discard
  1554. elif s.position == 0:
  1555. cannotEval(c, n)
  1556. if s.position == 0:
  1557. if importcCond(c, s) or isImportcVar: c.importcSym(n.info, s)
  1558. else: genGlobalInit(c, n, s)
  1559. if dest < 0: dest = c.getTemp(n.typ)
  1560. assert s.typ != nil
  1561. if gfNodeAddr in flags:
  1562. if isImportcVar:
  1563. c.gABx(n, opcLdGlobalAddrDerefFFI, dest, s.position)
  1564. else:
  1565. c.gABx(n, opcLdGlobalAddr, dest, s.position)
  1566. elif isImportcVar:
  1567. c.gABx(n, opcLdGlobalDerefFFI, dest, s.position)
  1568. elif fitsRegister(s.typ) and gfNode notin flags:
  1569. var cc = c.getTemp(n.typ)
  1570. c.gABx(n, opcLdGlobal, cc, s.position)
  1571. c.gABC(n, opcNodeToReg, dest, cc)
  1572. c.freeTemp(cc)
  1573. else:
  1574. c.gABx(n, opcLdGlobal, dest, s.position)
  1575. else:
  1576. if s.kind == skForVar and c.mode == emRepl: c.setSlot(s)
  1577. if s.position > 0 or (s.position == 0 and
  1578. s.kind in {skParam, skResult}):
  1579. if dest < 0:
  1580. dest = s.position + ord(s.kind == skParam)
  1581. internalAssert(c.config, c.prc.regInfo[dest].kind < slotSomeTemp)
  1582. else:
  1583. # we need to generate an assignment:
  1584. let requiresCopy = c.prc.regInfo[dest].kind >= slotSomeTemp and
  1585. gfIsParam notin flags
  1586. genAsgn(c, dest, n, requiresCopy)
  1587. else:
  1588. # see tests/t99bott for an example that triggers it:
  1589. cannotEval(c, n)
  1590. template needsRegLoad(): untyped =
  1591. {gfNode, gfNodeAddr} * flags == {} and
  1592. fitsRegister(n.typ.skipTypes({tyVar, tyLent, tyStatic}))
  1593. proc genArrAccessOpcode(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode;
  1594. flags: TGenFlags) =
  1595. let a = c.genx(n[0], flags)
  1596. let b = c.genIndex(n[1], n[0].typ)
  1597. if dest < 0: dest = c.getTemp(n.typ)
  1598. if opc in {opcLdArrAddr, opcLdStrIdxAddr} and gfNodeAddr in flags:
  1599. c.gABC(n, opc, dest, a, b)
  1600. elif needsRegLoad():
  1601. var cc = c.getTemp(n.typ)
  1602. c.gABC(n, opc, cc, a, b)
  1603. c.gABC(n, opcNodeToReg, dest, cc)
  1604. c.freeTemp(cc)
  1605. else:
  1606. #message(c.config, n.info, warnUser, "argh")
  1607. #echo "FLAGS ", flags, " ", fitsRegister(n.typ), " ", typeToString(n.typ)
  1608. c.gABC(n, opc, dest, a, b)
  1609. c.freeTemp(a)
  1610. c.freeTemp(b)
  1611. proc genObjAccessAux(c: PCtx; n: PNode; a, b: int, dest: var TDest; flags: TGenFlags) =
  1612. if dest < 0: dest = c.getTemp(n.typ)
  1613. if {gfNodeAddr} * flags != {}:
  1614. c.gABC(n, opcLdObjAddr, dest, a, b)
  1615. elif needsRegLoad():
  1616. var cc = c.getTemp(n.typ)
  1617. c.gABC(n, opcLdObj, cc, a, b)
  1618. c.gABC(n, opcNodeToReg, dest, cc)
  1619. c.freeTemp(cc)
  1620. else:
  1621. c.gABC(n, opcLdObj, dest, a, b)
  1622. c.freeTemp(a)
  1623. proc genObjAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  1624. genObjAccessAux(c, n, c.genx(n[0], flags), genField(c, n[1]), dest, flags)
  1625. proc genCheckedObjAccessAux(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  1626. internalAssert c.config, n.kind == nkCheckedFieldExpr
  1627. # nkDotExpr to access the requested field
  1628. let accessExpr = n[0]
  1629. # nkCall to check if the discriminant is valid
  1630. var checkExpr = n[1]
  1631. let negCheck = checkExpr[0].sym.magic == mNot
  1632. if negCheck:
  1633. checkExpr = checkExpr[^1]
  1634. # Discriminant symbol
  1635. let disc = checkExpr[2]
  1636. internalAssert c.config, disc.sym.kind == skField
  1637. # Load the object in `dest`
  1638. c.gen(accessExpr[0], dest, flags)
  1639. # Load the discriminant
  1640. var discVal = c.getTemp(disc.typ)
  1641. c.gABC(n, opcLdObj, discVal, dest, genField(c, disc))
  1642. # Check if its value is contained in the supplied set
  1643. let setLit = c.genx(checkExpr[1])
  1644. var rs = c.getTemp(getSysType(c.graph, n.info, tyBool))
  1645. c.gABC(n, opcContainsSet, rs, setLit, discVal)
  1646. c.freeTemp(discVal)
  1647. c.freeTemp(setLit)
  1648. # If the check fails let the user know
  1649. let lab1 = c.xjmp(n, if negCheck: opcFJmp else: opcTJmp, rs)
  1650. c.freeTemp(rs)
  1651. let strType = getSysType(c.graph, n.info, tyString)
  1652. var msgReg: TDest = c.getTemp(strType)
  1653. let fieldName = $accessExpr[1]
  1654. let msg = genFieldDefect(c.config, fieldName, disc.sym)
  1655. let strLit = newStrNode(msg, accessExpr[1].info)
  1656. strLit.typ = strType
  1657. c.genLit(strLit, msgReg)
  1658. c.gABC(n, opcInvalidField, msgReg, discVal)
  1659. c.freeTemp(msgReg)
  1660. c.patch(lab1)
  1661. proc genCheckedObjAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  1662. var objR: TDest = -1
  1663. genCheckedObjAccessAux(c, n, objR, flags)
  1664. let accessExpr = n[0]
  1665. # Field symbol
  1666. var field = accessExpr[1]
  1667. internalAssert c.config, field.sym.kind == skField
  1668. # Load the content now
  1669. if dest < 0: dest = c.getTemp(n.typ)
  1670. let fieldPos = genField(c, field)
  1671. if {gfNodeAddr} * flags != {}:
  1672. c.gABC(n, opcLdObjAddr, dest, objR, fieldPos)
  1673. elif needsRegLoad():
  1674. var cc = c.getTemp(accessExpr.typ)
  1675. c.gABC(n, opcLdObj, cc, objR, fieldPos)
  1676. c.gABC(n, opcNodeToReg, dest, cc)
  1677. c.freeTemp(cc)
  1678. else:
  1679. c.gABC(n, opcLdObj, dest, objR, fieldPos)
  1680. c.freeTemp(objR)
  1681. proc genArrAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  1682. let arrayType = n[0].typ.skipTypes(abstractVarRange-{tyTypeDesc}).kind
  1683. case arrayType
  1684. of tyString, tyCstring:
  1685. let opc = if gfNodeAddr in flags: opcLdStrIdxAddr else: opcLdStrIdx
  1686. genArrAccessOpcode(c, n, dest, opc, flags)
  1687. of tyTuple:
  1688. c.genObjAccessAux(n, c.genx(n[0], flags), int n[1].intVal, dest, flags)
  1689. of tyTypeDesc:
  1690. c.genTypeLit(n.typ, dest)
  1691. else:
  1692. let opc = if gfNodeAddr in flags: opcLdArrAddr else: opcLdArr
  1693. genArrAccessOpcode(c, n, dest, opc, flags)
  1694. proc getNullValueAux(t: PType; obj: PNode, result: PNode; conf: ConfigRef; currPosition: var int) =
  1695. if t != nil and t.len > 0 and t[0] != nil:
  1696. let b = skipTypes(t[0], skipPtrs)
  1697. getNullValueAux(b, b.n, result, conf, currPosition)
  1698. case obj.kind
  1699. of nkRecList:
  1700. for i in 0..<obj.len: getNullValueAux(nil, obj[i], result, conf, currPosition)
  1701. of nkRecCase:
  1702. getNullValueAux(nil, obj[0], result, conf, currPosition)
  1703. for i in 1..<obj.len:
  1704. getNullValueAux(nil, lastSon(obj[i]), result, conf, currPosition)
  1705. of nkSym:
  1706. let field = newNodeI(nkExprColonExpr, result.info)
  1707. field.add(obj)
  1708. let value = getNullValue(obj.sym.typ, result.info, conf)
  1709. value.flags.incl nfSkipFieldChecking
  1710. field.add(value)
  1711. result.add field
  1712. doAssert obj.sym.position == currPosition
  1713. inc currPosition
  1714. else: globalError(conf, result.info, "cannot create null element for: " & $obj)
  1715. proc getNullValue(typ: PType, info: TLineInfo; conf: ConfigRef): PNode =
  1716. var t = skipTypes(typ, abstractRange+{tyStatic, tyOwned}-{tyTypeDesc})
  1717. case t.kind
  1718. of tyBool, tyEnum, tyChar, tyInt..tyInt64:
  1719. result = newNodeIT(nkIntLit, info, t)
  1720. of tyUInt..tyUInt64:
  1721. result = newNodeIT(nkUIntLit, info, t)
  1722. of tyFloat..tyFloat128:
  1723. result = newNodeIT(nkFloatLit, info, t)
  1724. of tyCstring, tyString:
  1725. result = newNodeIT(nkStrLit, info, t)
  1726. result.strVal = ""
  1727. of tyVar, tyLent, tyPointer, tyPtr, tyUntyped,
  1728. tyTyped, tyTypeDesc, tyRef, tyNil:
  1729. result = newNodeIT(nkNilLit, info, t)
  1730. of tyProc:
  1731. if t.callConv != ccClosure:
  1732. result = newNodeIT(nkNilLit, info, t)
  1733. else:
  1734. result = newNodeIT(nkTupleConstr, info, t)
  1735. result.add(newNodeIT(nkNilLit, info, t))
  1736. result.add(newNodeIT(nkNilLit, info, t))
  1737. of tyObject:
  1738. result = newNodeIT(nkObjConstr, info, t)
  1739. result.add(newNodeIT(nkEmpty, info, t))
  1740. # initialize inherited fields, and all in the correct order:
  1741. var currPosition = 0
  1742. getNullValueAux(t, t.n, result, conf, currPosition)
  1743. of tyArray:
  1744. result = newNodeIT(nkBracket, info, t)
  1745. for i in 0..<toInt(lengthOrd(conf, t)):
  1746. result.add getNullValue(elemType(t), info, conf)
  1747. of tyTuple:
  1748. result = newNodeIT(nkTupleConstr, info, t)
  1749. for i in 0..<t.len:
  1750. result.add getNullValue(t[i], info, conf)
  1751. of tySet:
  1752. result = newNodeIT(nkCurly, info, t)
  1753. of tySequence, tyOpenArray:
  1754. result = newNodeIT(nkBracket, info, t)
  1755. else:
  1756. globalError(conf, info, "cannot create null element for: " & $t.kind)
  1757. result = newNodeI(nkEmpty, info)
  1758. proc genVarSection(c: PCtx; n: PNode) =
  1759. for a in n:
  1760. if a.kind == nkCommentStmt: continue
  1761. #assert(a[0].kind == nkSym) can happen for transformed vars
  1762. if a.kind == nkVarTuple:
  1763. for i in 0..<a.len-2:
  1764. if a[i].kind == nkSym:
  1765. if not a[i].sym.isGlobal: setSlot(c, a[i].sym)
  1766. checkCanEval(c, a[i])
  1767. c.gen(lowerTupleUnpacking(c.graph, a, c.idgen, c.getOwner))
  1768. elif a[0].kind == nkSym:
  1769. let s = a[0].sym
  1770. checkCanEval(c, a[0])
  1771. if s.isGlobal:
  1772. let runtimeAccessToCompileTime = c.mode == emRepl and
  1773. sfCompileTime in s.flags and s.position > 0
  1774. if s.position == 0:
  1775. if importcCond(c, s): c.importcSym(a.info, s)
  1776. else:
  1777. let sa = getNullValue(s.typ, a.info, c.config)
  1778. #if s.ast.isNil: getNullValue(s.typ, a.info)
  1779. #else: s.ast
  1780. assert sa.kind != nkCall
  1781. c.globals.add(sa)
  1782. s.position = c.globals.len
  1783. if runtimeAccessToCompileTime:
  1784. discard
  1785. elif a[2].kind != nkEmpty:
  1786. let tmp = c.genx(a[0], {gfNodeAddr})
  1787. let val = c.genx(a[2])
  1788. c.genAdditionalCopy(a[2], opcWrDeref, tmp, 0, val)
  1789. c.freeTemp(val)
  1790. c.freeTemp(tmp)
  1791. elif not importcCondVar(s) and not (s.typ.kind == tyProc and s.typ.callConv == ccClosure) and
  1792. sfPure notin s.flags: # fixes #10938
  1793. # there is a pre-existing issue with closure types in VM
  1794. # if `(var s: proc () = default(proc ()); doAssert s == nil)` works for you;
  1795. # you might remove the second condition.
  1796. # the problem is that closure types are tuples in VM, but the types of its children
  1797. # shouldn't have the same type as closure types.
  1798. let tmp = c.genx(a[0], {gfNodeAddr})
  1799. let sa = getNullValue(s.typ, a.info, c.config)
  1800. let val = c.genx(sa)
  1801. c.genAdditionalCopy(sa, opcWrDeref, tmp, 0, val)
  1802. c.freeTemp(val)
  1803. c.freeTemp(tmp)
  1804. else:
  1805. setSlot(c, s)
  1806. if a[2].kind == nkEmpty:
  1807. c.gABx(a, ldNullOpcode(s.typ), s.position, c.genType(s.typ))
  1808. else:
  1809. assert s.typ != nil
  1810. if not fitsRegister(s.typ):
  1811. c.gABx(a, ldNullOpcode(s.typ), s.position, c.genType(s.typ))
  1812. let le = a[0]
  1813. assert le.typ != nil
  1814. if not fitsRegister(le.typ) and s.kind in {skResult, skVar, skParam}:
  1815. var cc = c.getTemp(le.typ)
  1816. gen(c, a[2], cc)
  1817. c.gABC(le, whichAsgnOpc(le), s.position.TRegister, cc)
  1818. c.freeTemp(cc)
  1819. else:
  1820. gen(c, a[2], s.position.TRegister)
  1821. else:
  1822. # assign to a[0]; happens for closures
  1823. if a[2].kind == nkEmpty:
  1824. let tmp = genx(c, a[0])
  1825. c.gABx(a, ldNullOpcode(a[0].typ), tmp, c.genType(a[0].typ))
  1826. c.freeTemp(tmp)
  1827. else:
  1828. genAsgn(c, a[0], a[2], true)
  1829. proc genArrayConstr(c: PCtx, n: PNode, dest: var TDest) =
  1830. if dest < 0: dest = c.getTemp(n.typ)
  1831. c.gABx(n, opcLdNull, dest, c.genType(n.typ))
  1832. let intType = getSysType(c.graph, n.info, tyInt)
  1833. let seqType = n.typ.skipTypes(abstractVar-{tyTypeDesc})
  1834. if seqType.kind == tySequence:
  1835. var tmp = c.getTemp(intType)
  1836. c.gABx(n, opcLdImmInt, tmp, n.len)
  1837. c.gABx(n, opcNewSeq, dest, c.genType(seqType))
  1838. c.gABx(n, opcNewSeq, tmp, 0)
  1839. c.freeTemp(tmp)
  1840. if n.len > 0:
  1841. var tmp = getTemp(c, intType)
  1842. c.gABx(n, opcLdNullReg, tmp, c.genType(intType))
  1843. for x in n:
  1844. let a = c.genx(x)
  1845. c.preventFalseAlias(n, opcWrArr, dest, tmp, a)
  1846. c.gABI(n, opcAddImmInt, tmp, tmp, 1)
  1847. c.freeTemp(a)
  1848. c.freeTemp(tmp)
  1849. proc genSetConstr(c: PCtx, n: PNode, dest: var TDest) =
  1850. if dest < 0: dest = c.getTemp(n.typ)
  1851. c.gABx(n, opcLdNull, dest, c.genType(n.typ))
  1852. for x in n:
  1853. if x.kind == nkRange:
  1854. let a = c.genx(x[0])
  1855. let b = c.genx(x[1])
  1856. c.gABC(n, opcInclRange, dest, a, b)
  1857. c.freeTemp(b)
  1858. c.freeTemp(a)
  1859. else:
  1860. let a = c.genx(x)
  1861. c.gABC(n, opcIncl, dest, a)
  1862. c.freeTemp(a)
  1863. proc genObjConstr(c: PCtx, n: PNode, dest: var TDest) =
  1864. if dest < 0: dest = c.getTemp(n.typ)
  1865. let t = n.typ.skipTypes(abstractRange+{tyOwned}-{tyTypeDesc})
  1866. if t.kind == tyRef:
  1867. c.gABx(n, opcNew, dest, c.genType(t[0]))
  1868. else:
  1869. c.gABx(n, opcLdNull, dest, c.genType(n.typ))
  1870. for i in 1..<n.len:
  1871. let it = n[i]
  1872. if it.kind == nkExprColonExpr and it[0].kind == nkSym:
  1873. let idx = genField(c, it[0])
  1874. let tmp = c.genx(it[1])
  1875. c.preventFalseAlias(it[1], opcWrObj,
  1876. dest, idx, tmp)
  1877. c.freeTemp(tmp)
  1878. else:
  1879. globalError(c.config, n.info, "invalid object constructor")
  1880. proc genTupleConstr(c: PCtx, n: PNode, dest: var TDest) =
  1881. if dest < 0: dest = c.getTemp(n.typ)
  1882. if n.typ.kind != tyTypeDesc:
  1883. c.gABx(n, opcLdNull, dest, c.genType(n.typ))
  1884. # XXX x = (x.old, 22) produces wrong code ... stupid self assignments
  1885. for i in 0..<n.len:
  1886. let it = n[i]
  1887. if it.kind == nkExprColonExpr:
  1888. let idx = genField(c, it[0])
  1889. let tmp = c.genx(it[1])
  1890. c.preventFalseAlias(it[1], opcWrObj,
  1891. dest, idx, tmp)
  1892. c.freeTemp(tmp)
  1893. else:
  1894. let tmp = c.genx(it)
  1895. c.preventFalseAlias(it, opcWrObj, dest, i.TRegister, tmp)
  1896. c.freeTemp(tmp)
  1897. proc genProc*(c: PCtx; s: PSym): int
  1898. proc toKey(s: PSym): string =
  1899. result = ""
  1900. var s = s
  1901. while s != nil:
  1902. result.add s.name.s
  1903. if s.owner != nil:
  1904. if sfFromGeneric in s.flags:
  1905. s = s.owner.owner
  1906. else:
  1907. s = s.owner
  1908. result.add "."
  1909. else:
  1910. break
  1911. proc procIsCallback(c: PCtx; s: PSym): bool =
  1912. if s.offset < -1: return true
  1913. let key = toKey(s)
  1914. if c.callbackIndex.contains(key):
  1915. let index = c.callbackIndex[key]
  1916. doAssert s.offset == -1
  1917. s.offset = -2'i32 - index.int32
  1918. result = true
  1919. else:
  1920. result = false
  1921. proc gen(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags = {}) =
  1922. when defined(nimCompilerStacktraceHints):
  1923. setFrameMsg c.config$n.info & " " & $n.kind & " " & $flags
  1924. case n.kind
  1925. of nkSym:
  1926. let s = n.sym
  1927. checkCanEval(c, n)
  1928. case s.kind
  1929. of skVar, skForVar, skTemp, skLet, skParam, skResult:
  1930. genRdVar(c, n, dest, flags)
  1931. of skProc, skFunc, skConverter, skMacro, skTemplate, skMethod, skIterator:
  1932. # 'skTemplate' is only allowed for 'getAst' support:
  1933. if s.kind == skIterator and s.typ.callConv == TCallingConvention.ccClosure:
  1934. globalError(c.config, n.info, "Closure iterators are not supported by VM!")
  1935. if procIsCallback(c, s): discard
  1936. elif importcCond(c, s): c.importcSym(n.info, s)
  1937. genLit(c, n, dest)
  1938. of skConst:
  1939. let constVal = if s.astdef != nil: s.astdef else: s.typ.n
  1940. if dontInlineConstant(n, constVal):
  1941. genLit(c, constVal, dest)
  1942. else:
  1943. gen(c, constVal, dest)
  1944. of skEnumField:
  1945. # we never reach this case - as of the time of this comment,
  1946. # skEnumField is folded to an int in semfold.nim, but this code
  1947. # remains for robustness
  1948. if dest < 0: dest = c.getTemp(n.typ)
  1949. if s.position >= low(int16) and s.position <= high(int16):
  1950. c.gABx(n, opcLdImmInt, dest, s.position)
  1951. else:
  1952. var lit = genLiteral(c, newIntNode(nkIntLit, s.position))
  1953. c.gABx(n, opcLdConst, dest, lit)
  1954. of skType:
  1955. genTypeLit(c, s.typ, dest)
  1956. of skGenericParam:
  1957. if c.prc.sym != nil and c.prc.sym.kind == skMacro:
  1958. genRdVar(c, n, dest, flags)
  1959. else:
  1960. globalError(c.config, n.info, "cannot generate code for: " & s.name.s)
  1961. else:
  1962. globalError(c.config, n.info, "cannot generate code for: " & s.name.s)
  1963. of nkCallKinds:
  1964. if n[0].kind == nkSym:
  1965. let s = n[0].sym
  1966. if s.magic != mNone:
  1967. genMagic(c, n, dest, s.magic)
  1968. elif s.kind == skMethod:
  1969. localError(c.config, n.info, "cannot call method " & s.name.s &
  1970. " at compile time")
  1971. else:
  1972. genCall(c, n, dest)
  1973. clearDest(c, n, dest)
  1974. else:
  1975. genCall(c, n, dest)
  1976. clearDest(c, n, dest)
  1977. of nkCharLit..nkInt64Lit:
  1978. if isInt16Lit(n):
  1979. if dest < 0: dest = c.getTemp(n.typ)
  1980. c.gABx(n, opcLdImmInt, dest, n.intVal.int)
  1981. else:
  1982. genLit(c, n, dest)
  1983. of nkUIntLit..pred(nkNilLit): genLit(c, n, dest)
  1984. of nkNilLit:
  1985. if not n.typ.isEmptyType: genLit(c, getNullValue(n.typ, n.info, c.config), dest)
  1986. else: unused(c, n, dest)
  1987. of nkAsgn, nkFastAsgn, nkSinkAsgn:
  1988. unused(c, n, dest)
  1989. genAsgn(c, n[0], n[1], n.kind == nkAsgn)
  1990. of nkDotExpr: genObjAccess(c, n, dest, flags)
  1991. of nkCheckedFieldExpr: genCheckedObjAccess(c, n, dest, flags)
  1992. of nkBracketExpr: genArrAccess(c, n, dest, flags)
  1993. of nkDerefExpr, nkHiddenDeref: genDeref(c, n, dest, flags)
  1994. of nkAddr, nkHiddenAddr: genAddr(c, n, dest, flags)
  1995. of nkIfStmt, nkIfExpr: genIf(c, n, dest)
  1996. of nkWhenStmt:
  1997. # This is "when nimvm" node. Chose the first branch.
  1998. gen(c, n[0][1], dest)
  1999. of nkCaseStmt: genCase(c, n, dest)
  2000. of nkWhileStmt:
  2001. unused(c, n, dest)
  2002. genWhile(c, n)
  2003. of nkBlockExpr, nkBlockStmt: genBlock(c, n, dest)
  2004. of nkReturnStmt:
  2005. genReturn(c, n)
  2006. of nkRaiseStmt:
  2007. genRaise(c, n)
  2008. of nkBreakStmt:
  2009. genBreak(c, n)
  2010. of nkTryStmt, nkHiddenTryStmt: genTry(c, n, dest)
  2011. of nkStmtList:
  2012. #unused(c, n, dest)
  2013. # XXX Fix this bug properly, lexim triggers it
  2014. for x in n: gen(c, x)
  2015. of nkStmtListExpr:
  2016. for i in 0..<n.len-1: gen(c, n[i])
  2017. gen(c, n[^1], dest, flags)
  2018. of nkPragmaBlock:
  2019. gen(c, n.lastSon, dest, flags)
  2020. of nkDiscardStmt:
  2021. unused(c, n, dest)
  2022. gen(c, n[0])
  2023. of nkHiddenStdConv, nkHiddenSubConv, nkConv:
  2024. genConv(c, n, n[1], dest)
  2025. of nkObjDownConv:
  2026. genConv(c, n, n[0], dest)
  2027. of nkObjUpConv:
  2028. genConv(c, n, n[0], dest)
  2029. of nkVarSection, nkLetSection:
  2030. unused(c, n, dest)
  2031. genVarSection(c, n)
  2032. of declarativeDefs, nkMacroDef:
  2033. unused(c, n, dest)
  2034. of nkLambdaKinds:
  2035. #let s = n[namePos].sym
  2036. #discard genProc(c, s)
  2037. genLit(c, newSymNode(n[namePos].sym), dest)
  2038. of nkChckRangeF, nkChckRange64, nkChckRange:
  2039. let
  2040. tmp0 = c.genx(n[0])
  2041. tmp1 = c.genx(n[1])
  2042. tmp2 = c.genx(n[2])
  2043. c.gABC(n, opcRangeChck, tmp0, tmp1, tmp2)
  2044. c.freeTemp(tmp1)
  2045. c.freeTemp(tmp2)
  2046. if dest >= 0:
  2047. gABC(c, n, whichAsgnOpc(n), dest, tmp0)
  2048. c.freeTemp(tmp0)
  2049. else:
  2050. dest = tmp0
  2051. of nkEmpty, nkCommentStmt, nkTypeSection, nkConstSection, nkPragma,
  2052. nkTemplateDef, nkIncludeStmt, nkImportStmt, nkFromStmt, nkExportStmt,
  2053. nkMixinStmt, nkBindStmt:
  2054. unused(c, n, dest)
  2055. of nkStringToCString, nkCStringToString:
  2056. gen(c, n[0], dest)
  2057. of nkBracket: genArrayConstr(c, n, dest)
  2058. of nkCurly: genSetConstr(c, n, dest)
  2059. of nkObjConstr: genObjConstr(c, n, dest)
  2060. of nkPar, nkClosure, nkTupleConstr: genTupleConstr(c, n, dest)
  2061. of nkCast:
  2062. if allowCast in c.features:
  2063. genConv(c, n, n[1], dest, opcCast)
  2064. else:
  2065. genCastIntFloat(c, n, dest)
  2066. of nkTypeOfExpr:
  2067. genTypeLit(c, n.typ, dest)
  2068. of nkComesFrom:
  2069. discard "XXX to implement for better stack traces"
  2070. else:
  2071. if n.typ != nil and n.typ.isCompileTimeOnly:
  2072. genTypeLit(c, n.typ, dest)
  2073. else:
  2074. globalError(c.config, n.info, "cannot generate VM code for " & $n)
  2075. proc removeLastEof(c: PCtx) =
  2076. let last = c.code.len-1
  2077. if last >= 0 and c.code[last].opcode == opcEof:
  2078. # overwrite last EOF:
  2079. assert c.code.len == c.debug.len
  2080. c.code.setLen(last)
  2081. c.debug.setLen(last)
  2082. proc genStmt*(c: PCtx; n: PNode): int =
  2083. c.removeLastEof
  2084. result = c.code.len
  2085. var d: TDest = -1
  2086. c.gen(n, d)
  2087. c.gABC(n, opcEof)
  2088. if d >= 0:
  2089. globalError(c.config, n.info, "VM problem: dest register is set")
  2090. proc genExpr*(c: PCtx; n: PNode, requiresValue = true): int =
  2091. c.removeLastEof
  2092. result = c.code.len
  2093. var d: TDest = -1
  2094. c.gen(n, d)
  2095. if d < 0:
  2096. if requiresValue:
  2097. globalError(c.config, n.info, "VM problem: dest register is not set")
  2098. d = 0
  2099. c.gABC(n, opcEof, d)
  2100. #echo renderTree(n)
  2101. #c.echoCode(result)
  2102. proc genParams(c: PCtx; params: PNode) =
  2103. # res.sym.position is already 0
  2104. setLen(c.prc.regInfo, max(params.len, 1))
  2105. c.prc.regInfo[0] = (inUse: true, kind: slotFixedVar)
  2106. for i in 1..<params.len:
  2107. c.prc.regInfo[i] = (inUse: true, kind: slotFixedLet)
  2108. proc finalJumpTarget(c: PCtx; pc, diff: int) =
  2109. internalAssert(c.config, regBxMin < diff and diff < regBxMax)
  2110. let oldInstr = c.code[pc]
  2111. # opcode and regA stay the same:
  2112. c.code[pc] = ((oldInstr.TInstrType and ((regOMask shl regOShift) or (regAMask shl regAShift))).TInstrType or
  2113. TInstrType(diff+wordExcess) shl regBxShift).TInstr
  2114. proc genGenericParams(c: PCtx; gp: PNode) =
  2115. var base = c.prc.regInfo.len
  2116. setLen c.prc.regInfo, base + gp.len
  2117. for i in 0..<gp.len:
  2118. var param = gp[i].sym
  2119. param.position = base + i # XXX: fix this earlier; make it consistent with templates
  2120. c.prc.regInfo[base + i] = (inUse: true, kind: slotFixedLet)
  2121. proc optimizeJumps(c: PCtx; start: int) =
  2122. const maxIterations = 10
  2123. for i in start..<c.code.len:
  2124. let opc = c.code[i].opcode
  2125. case opc
  2126. of opcTJmp, opcFJmp:
  2127. var reg = c.code[i].regA
  2128. var d = i + c.code[i].jmpDiff
  2129. for iters in countdown(maxIterations, 0):
  2130. case c.code[d].opcode
  2131. of opcJmp:
  2132. d += c.code[d].jmpDiff
  2133. of opcTJmp, opcFJmp:
  2134. if c.code[d].regA != reg: break
  2135. # tjmp x, 23
  2136. # ...
  2137. # tjmp x, 12
  2138. # -- we know 'x' is true, and so can jump to 12+13:
  2139. if c.code[d].opcode == opc:
  2140. d += c.code[d].jmpDiff
  2141. else:
  2142. # tjmp x, 23
  2143. # fjmp x, 22
  2144. # We know 'x' is true so skip to the next instruction:
  2145. d += 1
  2146. else: break
  2147. if d != i + c.code[i].jmpDiff:
  2148. c.finalJumpTarget(i, d - i)
  2149. of opcJmp, opcJmpBack:
  2150. var d = i + c.code[i].jmpDiff
  2151. var iters = maxIterations
  2152. while c.code[d].opcode == opcJmp and iters > 0:
  2153. d += c.code[d].jmpDiff
  2154. dec iters
  2155. if c.code[d].opcode == opcRet:
  2156. # optimize 'jmp to ret' to 'ret' here
  2157. c.code[i] = c.code[d]
  2158. elif d != i + c.code[i].jmpDiff:
  2159. c.finalJumpTarget(i, d - i)
  2160. else: discard
  2161. proc genProc(c: PCtx; s: PSym): int =
  2162. let
  2163. pos = c.procToCodePos.getOrDefault(s.id)
  2164. wasNotGenProcBefore = pos == 0
  2165. noRegistersAllocated = s.offset == -1
  2166. if wasNotGenProcBefore or noRegistersAllocated:
  2167. # xxx: the noRegisterAllocated check is required in order to avoid issues
  2168. # where nimsuggest can crash due as a macro with pos will be loaded
  2169. # but it doesn't have offsets for register allocations see:
  2170. # https://github.com/nim-lang/Nim/issues/18385
  2171. # Improvements and further use of IC should remove the need for this.
  2172. #if s.name.s == "outterMacro" or s.name.s == "innerProc":
  2173. # echo "GENERATING CODE FOR ", s.name.s
  2174. let last = c.code.len-1
  2175. var eofInstr: TInstr = default(TInstr)
  2176. if last >= 0 and c.code[last].opcode == opcEof:
  2177. eofInstr = c.code[last]
  2178. c.code.setLen(last)
  2179. c.debug.setLen(last)
  2180. #c.removeLastEof
  2181. result = c.code.len+1 # skip the jump instruction
  2182. c.procToCodePos[s.id] = result
  2183. # thanks to the jmp we can add top level statements easily and also nest
  2184. # procs easily:
  2185. let body = transformBody(c.graph, c.idgen, s, if isCompileTimeProc(s): dontUseCache else: useCache)
  2186. let procStart = c.xjmp(body, opcJmp, 0)
  2187. var p = PProc(blocks: @[], sym: s)
  2188. let oldPrc = c.prc
  2189. c.prc = p
  2190. # iterate over the parameters and allocate space for them:
  2191. genParams(c, s.typ.n)
  2192. # allocate additional space for any generically bound parameters
  2193. if s.kind == skMacro and s.isGenericRoutineStrict:
  2194. genGenericParams(c, s.ast[genericParamsPos])
  2195. if tfCapturesEnv in s.typ.flags:
  2196. #let env = s.ast[paramsPos].lastSon.sym
  2197. #assert env.position == 2
  2198. c.prc.regInfo.add (inUse: true, kind: slotFixedLet)
  2199. gen(c, body)
  2200. # generate final 'return' statement:
  2201. c.gABC(body, opcRet)
  2202. c.patch(procStart)
  2203. c.gABC(body, opcEof, eofInstr.regA)
  2204. c.optimizeJumps(result)
  2205. s.offset = c.prc.regInfo.len.int32
  2206. #if s.name.s == "main" or s.name.s == "[]":
  2207. # echo renderTree(body)
  2208. # c.echoCode(result)
  2209. c.prc = oldPrc
  2210. else:
  2211. c.prc.regInfo.setLen s.offset
  2212. result = pos