12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2011 Alexander Mitchell-Robinson
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## Although this module has `seq` in its name, it implements operations
- ## not only for the `seq`:idx: type, but for three built-in container types
- ## under the `openArray` umbrella:
- ## * sequences
- ## * strings
- ## * array
- ##
- ## The `system` module defines several common functions, such as:
- ## * `newSeq[T]` for creating new sequences of type `T`
- ## * `@` for converting arrays and strings to sequences
- ## * `add` for adding new elements to strings and sequences
- ## * `&` for string and seq concatenation
- ## * `in` (alias for `contains`) and `notin` for checking if an item is
- ## in a container
- ##
- ## This module builds upon that, providing additional functionality in form of
- ## procs, iterators and templates inspired by functional programming
- ## languages.
- ##
- ## For functional style programming you have different options at your disposal:
- ## * the `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
- ## * pass an `anonymous proc<manual.html#procedures-anonymous-procs>`_
- ## * import the `sugar module<sugar.html>`_ and use
- ## the `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
- ## * use `...It templates<#18>`_
- ## (`mapIt<#mapIt.t,typed,untyped>`_,
- ## `filterIt<#filterIt.t,untyped,untyped>`_, etc.)
- ##
- ## Chaining of functions is possible thanks to the
- ## `method call syntax<manual.html#procedures-method-call-syntax>`_.
- runnableExamples:
- import std/sugar
- # Creating a sequence from 1 to 10, multiplying each member by 2,
- # keeping only the members which are not divisible by 6.
- let
- foo = toSeq(1..10).map(x => x * 2).filter(x => x mod 6 != 0)
- bar = toSeq(1..10).mapIt(it * 2).filterIt(it mod 6 != 0)
- baz = collect:
- for i in 1..10:
- let j = 2 * i
- if j mod 6 != 0:
- j
- doAssert foo == bar
- doAssert foo == baz
- doAssert foo == @[2, 4, 8, 10, 14, 16, 20]
- doAssert foo.any(x => x > 17)
- doAssert not bar.allIt(it < 20)
- doAssert foo.foldl(a + b) == 74 # sum of all members
- runnableExamples:
- from std/strutils import join
- let
- vowels = @"aeiou"
- foo = "sequtils is an awesome module"
- doAssert (vowels is seq[char]) and (vowels == @['a', 'e', 'i', 'o', 'u'])
- doAssert foo.filterIt(it notin vowels).join == "sqtls s n wsm mdl"
- ## See also
- ## ========
- ## * `strutils module<strutils.html>`_ for common string functions
- ## * `sugar module<sugar.html>`_ for syntactic sugar macros
- ## * `algorithm module<algorithm.html>`_ for common generic algorithms
- ## * `json module<json.html>`_ for a structure which allows
- ## heterogeneous members
- import std/private/since
- import macros
- when defined(nimPreviewSlimSystem):
- import std/assertions
- when defined(nimHasEffectsOf):
- {.experimental: "strictEffects".}
- else:
- {.pragma: effectsOf.}
- macro evalOnceAs(expAlias, exp: untyped,
- letAssigneable: static[bool]): untyped =
- ## Injects `expAlias` in caller scope, to avoid bugs involving multiple
- ## substitution in macro arguments such as
- ## https://github.com/nim-lang/Nim/issues/7187.
- ## `evalOnceAs(myAlias, myExp)` will behave as `let myAlias = myExp`
- ## except when `letAssigneable` is false (e.g. to handle openArray) where
- ## it just forwards `exp` unchanged.
- expectKind(expAlias, nnkIdent)
- var val = exp
- result = newStmtList()
- # If `exp` is not a symbol we evaluate it once here and then use the temporary
- # symbol as alias
- if exp.kind != nnkSym and letAssigneable:
- val = genSym()
- result.add(newLetStmt(val, exp))
- result.add(
- newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)],
- body = val, procType = nnkTemplateDef))
- func concat*[T](seqs: varargs[seq[T]]): seq[T] =
- ## Takes several sequences' items and returns them inside a new sequence.
- ## All sequences must be of the same type.
- ##
- ## **See also:**
- ## * `distribute func<#distribute,seq[T],Positive>`_ for a reverse
- ## operation
- ##
- runnableExamples:
- let
- s1 = @[1, 2, 3]
- s2 = @[4, 5]
- s3 = @[6, 7]
- total = concat(s1, s2, s3)
- assert total == @[1, 2, 3, 4, 5, 6, 7]
- var L = 0
- for seqitm in items(seqs): inc(L, len(seqitm))
- newSeq(result, L)
- var i = 0
- for s in items(seqs):
- for itm in items(s):
- result[i] = itm
- inc(i)
- func count*[T](s: openArray[T], x: T): int =
- ## Returns the number of occurrences of the item `x` in the container `s`.
- ##
- runnableExamples:
- let
- a = @[1, 2, 2, 3, 2, 4, 2]
- b = "abracadabra"
- assert count(a, 2) == 4
- assert count(a, 99) == 0
- assert count(b, 'r') == 2
- for itm in items(s):
- if itm == x:
- inc result
- func cycle*[T](s: openArray[T], n: Natural): seq[T] =
- ## Returns a new sequence with the items of the container `s` repeated
- ## `n` times.
- ## `n` must be a non-negative number (zero or more).
- ##
- runnableExamples:
- let
- s = @[1, 2, 3]
- total = s.cycle(3)
- assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
- result = newSeq[T](n * s.len)
- var o = 0
- for x in 0 ..< n:
- for e in s:
- result[o] = e
- inc o
- proc repeat*[T](x: T, n: Natural): seq[T] =
- ## Returns a new sequence with the item `x` repeated `n` times.
- ## `n` must be a non-negative number (zero or more).
- ##
- runnableExamples:
- let
- total = repeat(5, 3)
- assert total == @[5, 5, 5]
- result = newSeq[T](n)
- for i in 0 ..< n:
- result[i] = x
- func deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
- ## Returns a new sequence without duplicates.
- ##
- ## Setting the optional argument `isSorted` to true (default: false)
- ## uses a faster algorithm for deduplication.
- ##
- runnableExamples:
- let
- dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
- dup2 = @["a", "a", "c", "d", "d"]
- unique1 = deduplicate(dup1)
- unique2 = deduplicate(dup2, isSorted = true)
- assert unique1 == @[1, 3, 4, 2, 8]
- assert unique2 == @["a", "c", "d"]
- result = @[]
- if s.len > 0:
- if isSorted:
- var prev = s[0]
- result.add(prev)
- for i in 1..s.high:
- if s[i] != prev:
- prev = s[i]
- result.add(prev)
- else:
- for itm in items(s):
- if not result.contains(itm): result.add(itm)
- func minIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
- ## Returns the index of the minimum value of `s`.
- ## `T` needs to have a `<` operator.
- runnableExamples:
- let
- a = @[1, 2, 3, 4]
- b = @[6, 5, 4, 3]
- c = [2, -7, 8, -5]
- d = "ziggy"
- assert minIndex(a) == 0
- assert minIndex(b) == 3
- assert minIndex(c) == 1
- assert minIndex(d) == 2
- for i in 1..high(s):
- if s[i] < s[result]: result = i
- func maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
- ## Returns the index of the maximum value of `s`.
- ## `T` needs to have a `<` operator.
- runnableExamples:
- let
- a = @[1, 2, 3, 4]
- b = @[6, 5, 4, 3]
- c = [2, -7, 8, -5]
- d = "ziggy"
- assert maxIndex(a) == 3
- assert maxIndex(b) == 0
- assert maxIndex(c) == 2
- assert maxIndex(d) == 0
- for i in 1..high(s):
- if s[i] > s[result]: result = i
- func minmax*[T](x: openArray[T]): (T, T) =
- ## The minimum and maximum values of `x`. `T` needs to have a `<` operator.
- var l = x[0]
- var h = x[0]
- for i in 1..high(x):
- if x[i] < l: l = x[i]
- if h < x[i]: h = x[i]
- result = (l, h)
- template zipImpl(s1, s2, retType: untyped): untyped =
- proc zip*[S, T](s1: openArray[S], s2: openArray[T]): retType =
- ## Returns a new sequence with a combination of the two input containers.
- ##
- ## The input containers can be of different types.
- ## If one container is shorter, the remaining items in the longer container
- ## are discarded.
- ##
- ## **Note**: For Nim 1.0.x and older version, `zip` returned a seq of
- ## named tuples with fields `a` and `b`. For Nim versions 1.1.x and newer,
- ## `zip` returns a seq of unnamed tuples.
- runnableExamples:
- let
- short = @[1, 2, 3]
- long = @[6, 5, 4, 3, 2, 1]
- words = @["one", "two", "three"]
- letters = "abcd"
- zip1 = zip(short, long)
- zip2 = zip(short, words)
- assert zip1 == @[(1, 6), (2, 5), (3, 4)]
- assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
- assert zip1[2][0] == 3
- assert zip2[1][1] == "two"
- when (NimMajor, NimMinor) <= (1, 0):
- let
- zip3 = zip(long, letters)
- assert zip3 == @[(a: 6, b: 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
- assert zip3[0].b == 'a'
- else:
- let
- zip3: seq[tuple[num: int, letter: char]] = zip(long, letters)
- assert zip3 == @[(6, 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
- assert zip3[0].letter == 'a'
- var m = min(s1.len, s2.len)
- newSeq(result, m)
- for i in 0 ..< m:
- result[i] = (s1[i], s2[i])
- when (NimMajor, NimMinor) <= (1, 0):
- zipImpl(s1, s2, seq[tuple[a: S, b: T]])
- else:
- zipImpl(s1, s2, seq[(S, T)])
- proc unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} =
- ## Returns a tuple of two sequences split out from a sequence of 2-field tuples.
- runnableExamples:
- let
- zipped = @[(1, 'a'), (2, 'b'), (3, 'c')]
- unzipped1 = @[1, 2, 3]
- unzipped2 = @['a', 'b', 'c']
- assert zipped.unzip() == (unzipped1, unzipped2)
- assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2)
- result = (newSeq[S](s.len), newSeq[T](s.len))
- for i in 0..<s.len:
- result[0][i] = s[i][0]
- result[1][i] = s[i][1]
- func distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
- ## Splits and distributes a sequence `s` into `num` sub-sequences.
- ##
- ## Returns a sequence of `num` sequences. For *some* input values this is the
- ## inverse of the `concat <#concat,varargs[seq[T]]>`_ func.
- ## The input sequence `s` can be empty, which will produce
- ## `num` empty sequences.
- ##
- ## If `spread` is false and the length of `s` is not a multiple of `num`, the
- ## func will max out the first sub-sequence with `1 + len(s) div num`
- ## entries, leaving the remainder of elements to the last sequence.
- ##
- ## On the other hand, if `spread` is true, the func will distribute evenly
- ## the remainder of the division across all sequences, which makes the result
- ## more suited to multithreading where you are passing equal sized work units
- ## to a thread pool and want to maximize core usage.
- ##
- runnableExamples:
- let numbers = @[1, 2, 3, 4, 5, 6, 7]
- assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
- assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
- assert numbers.distribute(6)[0] == @[1, 2]
- assert numbers.distribute(6)[1] == @[3]
- if num < 2:
- result = @[s]
- return
- # Create the result and calculate the stride size and the remainder if any.
- result = newSeq[seq[T]](num)
- var
- stride = s.len div num
- first = 0
- last = 0
- extra = s.len mod num
- if extra == 0 or spread == false:
- # Use an algorithm which overcounts the stride and minimizes reading limits.
- if extra > 0: inc(stride)
- for i in 0 ..< num:
- result[i] = newSeq[T]()
- for g in first ..< min(s.len, first + stride):
- result[i].add(s[g])
- first += stride
- else:
- # Use an undercounting algorithm which *adds* the remainder each iteration.
- for i in 0 ..< num:
- last = first + stride
- if extra > 0:
- extra -= 1
- inc(last)
- result[i] = newSeq[T]()
- for g in first ..< last:
- result[i].add(s[g])
- first = last
- proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
- seq[S] {.inline, effectsOf: op.} =
- ## Returns a new sequence with the results of the `op` proc applied to every
- ## item in the container `s`.
- ##
- ## Since the input is not modified, you can use it to
- ## transform the type of the elements in the input container.
- ##
- ## Instead of using `map` and `filter`, consider using the `collect` macro
- ## from the `sugar` module.
- ##
- ## **See also:**
- ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
- ## * `mapIt template<#mapIt.t,typed,untyped>`_
- ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version
- ##
- runnableExamples:
- let
- a = @[1, 2, 3, 4]
- b = map(a, proc(x: int): string = $x)
- assert b == @["1", "2", "3", "4"]
- newSeq(result, s.len)
- for i in 0 ..< s.len:
- result[i] = op(s[i])
- proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
- {.inline, effectsOf: op.} =
- ## Applies `op` to every item in `s`, modifying it directly.
- ##
- ## Note that the container `s` must be declared as a `var`,
- ## since `s` is modified in-place.
- ## The parameter function takes a `var T` type parameter.
- ##
- ## **See also:**
- ## * `applyIt template<#applyIt.t,untyped,untyped>`_
- ## * `map proc<#map,openArray[T],proc(T)>`_
- ##
- runnableExamples:
- var a = @["1", "2", "3", "4"]
- apply(a, proc(x: var string) = x &= "42")
- assert a == @["142", "242", "342", "442"]
- for i in 0 ..< s.len: op(s[i])
- proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
- {.inline, effectsOf: op.} =
- ## Applies `op` to every item in `s` modifying it directly.
- ##
- ## Note that the container `s` must be declared as a `var`
- ## and it is required for your input and output types to
- ## be the same, since `s` is modified in-place.
- ## The parameter function takes and returns a `T` type variable.
- ##
- ## **See also:**
- ## * `applyIt template<#applyIt.t,untyped,untyped>`_
- ## * `map proc<#map,openArray[T],proc(T)>`_
- ##
- runnableExamples:
- var a = @["1", "2", "3", "4"]
- apply(a, proc(x: string): string = x & "42")
- assert a == @["142", "242", "342", "442"]
- for i in 0 ..< s.len: s[i] = op(s[i])
- proc apply*[T](s: openArray[T], op: proc (x: T) {.closure.}) {.inline, since: (1, 3), effectsOf: op.} =
- ## Same as `apply` but for a proc that does not return anything
- ## and does not mutate `s` directly.
- runnableExamples:
- var message: string
- apply([0, 1, 2, 3, 4], proc(item: int) = message.addInt item)
- assert message == "01234"
- for i in 0 ..< s.len: op(s[i])
- iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T {.effectsOf: pred.} =
- ## Iterates through a container `s` and yields every item that fulfills the
- ## predicate `pred` (a function that returns a `bool`).
- ##
- ## Instead of using `map` and `filter`, consider using the `collect` macro
- ## from the `sugar` module.
- ##
- ## **See also:**
- ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
- ## * `filter proc<#filter,openArray[T],proc(T)>`_
- ## * `filterIt template<#filterIt.t,untyped,untyped>`_
- ##
- runnableExamples:
- let numbers = @[1, 4, 5, 8, 9, 7, 4]
- var evens = newSeq[int]()
- for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
- evens.add(n)
- assert evens == @[4, 8, 4]
- for i in 0 ..< s.len:
- if pred(s[i]):
- yield s[i]
- proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
- {.inline, effectsOf: pred.} =
- ## Returns a new sequence with all the items of `s` that fulfill the
- ## predicate `pred` (a function that returns a `bool`).
- ##
- ## Instead of using `map` and `filter`, consider using the `collect` macro
- ## from the `sugar` module.
- ##
- ## **See also:**
- ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
- ## * `filterIt template<#filterIt.t,untyped,untyped>`_
- ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
- ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version
- ##
- runnableExamples:
- let
- colors = @["red", "yellow", "black"]
- f1 = filter(colors, proc(x: string): bool = x.len < 6)
- f2 = filter(colors, proc(x: string): bool = x.contains('y'))
- assert f1 == @["red", "black"]
- assert f2 == @["yellow"]
- result = newSeq[T]()
- for i in 0 ..< s.len:
- if pred(s[i]):
- result.add(s[i])
- proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
- {.inline, effectsOf: pred.} =
- ## Keeps the items in the passed sequence `s` if they fulfill the
- ## predicate `pred` (a function that returns a `bool`).
- ##
- ## Note that `s` must be declared as a `var`.
- ##
- ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_,
- ## but modifies the sequence directly.
- ##
- ## **See also:**
- ## * `keepItIf template<#keepItIf.t,seq,untyped>`_
- ## * `filter proc<#filter,openArray[T],proc(T)>`_
- ##
- runnableExamples:
- var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
- keepIf(floats, proc(x: float): bool = x > 10)
- assert floats == @[13.0, 12.5, 10.1]
- var pos = 0
- for i in 0 ..< len(s):
- if pred(s[i]):
- if pos != i:
- when defined(gcDestructors):
- s[pos] = move(s[i])
- else:
- shallowCopy(s[pos], s[i])
- inc(pos)
- setLen(s, pos)
- func delete*[T](s: var seq[T]; slice: Slice[int]) =
- ## Deletes the items `s[slice]`, raising `IndexDefect` if the slice contains
- ## elements out of range.
- ##
- ## This operation moves all elements after `s[slice]` in linear time.
- runnableExamples:
- var a = @[10, 11, 12, 13, 14]
- doAssertRaises(IndexDefect): a.delete(4..5)
- assert a == @[10, 11, 12, 13, 14]
- a.delete(4..4)
- assert a == @[10, 11, 12, 13]
- a.delete(1..2)
- assert a == @[10, 13]
- a.delete(1..<1) # empty slice
- assert a == @[10, 13]
- when compileOption("boundChecks"):
- if not (slice.a < s.len and slice.a >= 0 and slice.b < s.len):
- raise newException(IndexDefect, $(slice: slice, len: s.len))
- if slice.b >= slice.a:
- template defaultImpl =
- var i = slice.a
- var j = slice.b + 1
- var newLen = s.len - j + i
- while i < newLen:
- when defined(gcDestructors):
- s[i] = move(s[j])
- else:
- s[i].shallowCopy(s[j])
- inc(i)
- inc(j)
- setLen(s, newLen)
- when nimvm: defaultImpl()
- else:
- when defined(js):
- let n = slice.b - slice.a + 1
- let first = slice.a
- {.emit: "`s`.splice(`first`, `n`);".}
- else:
- defaultImpl()
- func delete*[T](s: var seq[T]; first, last: Natural) {.deprecated: "use `delete(s, first..last)`".} =
- ## Deletes the items of a sequence `s` at positions `first..last`
- ## (including both ends of the range).
- ## This modifies `s` itself, it does not return a copy.
- runnableExamples("--warning:deprecated:off"):
- let outcome = @[1, 1, 1, 1, 1, 1, 1, 1]
- var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
- dest.delete(3, 8)
- assert outcome == dest
- doAssert first <= last
- if first >= s.len:
- return
- var i = first
- var j = min(len(s), last + 1)
- var newLen = len(s) - j + i
- while i < newLen:
- when defined(gcDestructors):
- s[i] = move(s[j])
- else:
- s[i].shallowCopy(s[j])
- inc(i)
- inc(j)
- setLen(s, newLen)
- func insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
- ## Inserts items from `src` into `dest` at position `pos`. This modifies
- ## `dest` itself, it does not return a copy.
- ##
- ## Note that the elements of `src` and `dest` must be of the same type.
- ##
- runnableExamples:
- var dest = @[1, 1, 1, 1, 1, 1, 1, 1]
- let
- src = @[2, 2, 2, 2, 2, 2]
- outcome = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
- dest.insert(src, 3)
- assert dest == outcome
- var j = len(dest) - 1
- var i = j + len(src)
- if i == j: return
- dest.setLen(i + 1)
- # Move items after `pos` to the end of the sequence.
- while j >= pos:
- when defined(gcDestructors):
- dest[i] = move(dest[j])
- else:
- dest[i].shallowCopy(dest[j])
- dec(i)
- dec(j)
- # Insert items from `dest` into `dest` at `pos`
- inc(j)
- for item in src:
- dest[j] = item
- inc(j)
- template filterIt*(s, pred: untyped): untyped =
- ## Returns a new sequence with all the items of `s` that fulfill the
- ## predicate `pred`.
- ##
- ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and
- ## `filter iterator<#filter.i,openArray[T],proc(T)>`_,
- ## the predicate needs to be an expression using the `it` variable
- ## for testing, like: `filterIt("abcxyz", it == 'x')`.
- ##
- ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
- ## from the `sugar` module.
- ##
- ## **See also:**
- ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
- ## * `filter proc<#filter,openArray[T],proc(T)>`_
- ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
- ##
- runnableExamples:
- let
- temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
- acceptable = temperatures.filterIt(it < 50 and it > -10)
- notAcceptable = temperatures.filterIt(it > 50 or it < -10)
- assert acceptable == @[-2.0, 24.5, 44.31]
- assert notAcceptable == @[-272.15, 99.9, -113.44]
- var result = newSeq[typeof(s[0])]()
- for it {.inject.} in items(s):
- if pred: result.add(it)
- result
- template keepItIf*(varSeq: seq, pred: untyped) =
- ## Keeps the items in the passed sequence (must be declared as a `var`)
- ## if they fulfill the predicate.
- ##
- ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_,
- ## the predicate needs to be an expression using
- ## the `it` variable for testing, like: `keepItIf("abcxyz", it == 'x')`.
- ##
- ## **See also:**
- ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_
- ## * `filterIt template<#filterIt.t,untyped,untyped>`_
- ##
- runnableExamples:
- var candidates = @["foo", "bar", "baz", "foobar"]
- candidates.keepItIf(it.len == 3 and it[0] == 'b')
- assert candidates == @["bar", "baz"]
- var pos = 0
- for i in 0 ..< len(varSeq):
- let it {.inject.} = varSeq[i]
- if pred:
- if pos != i:
- when defined(gcDestructors):
- varSeq[pos] = move(varSeq[i])
- else:
- shallowCopy(varSeq[pos], varSeq[i])
- inc(pos)
- setLen(varSeq, pos)
- since (1, 1):
- template countIt*(s, pred: untyped): int =
- ## Returns a count of all the items that fulfill the predicate.
- ##
- ## The predicate needs to be an expression using
- ## the `it` variable for testing, like: `countIt(@[1, 2, 3], it > 2)`.
- ##
- runnableExamples:
- let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
- iterator iota(n: int): int =
- for i in 0..<n: yield i
- assert numbers.countIt(it < 0) == 3
- assert countIt(iota(10), it < 2) == 2
- var result = 0
- for it {.inject.} in s:
- if pred: result += 1
- result
- proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} =
- ## Iterates through a container and checks if every item fulfills the
- ## predicate.
- ##
- ## **See also:**
- ## * `allIt template<#allIt.t,untyped,untyped>`_
- ## * `any proc<#any,openArray[T],proc(T)>`_
- ##
- runnableExamples:
- let numbers = @[1, 4, 5, 8, 9, 7, 4]
- assert all(numbers, proc (x: int): bool = x < 10) == true
- assert all(numbers, proc (x: int): bool = x < 9) == false
- for i in s:
- if not pred(i):
- return false
- true
- template allIt*(s, pred: untyped): bool =
- ## Iterates through a container and checks if every item fulfills the
- ## predicate.
- ##
- ## Unlike the `all proc<#all,openArray[T],proc(T)>`_,
- ## the predicate needs to be an expression using
- ## the `it` variable for testing, like: `allIt("abba", it == 'a')`.
- ##
- ## **See also:**
- ## * `all proc<#all,openArray[T],proc(T)>`_
- ## * `anyIt template<#anyIt.t,untyped,untyped>`_
- ##
- runnableExamples:
- let numbers = @[1, 4, 5, 8, 9, 7, 4]
- assert numbers.allIt(it < 10) == true
- assert numbers.allIt(it < 9) == false
- var result = true
- for it {.inject.} in items(s):
- if not pred:
- result = false
- break
- result
- proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} =
- ## Iterates through a container and checks if at least one item
- ## fulfills the predicate.
- ##
- ## **See also:**
- ## * `anyIt template<#anyIt.t,untyped,untyped>`_
- ## * `all proc<#all,openArray[T],proc(T)>`_
- ##
- runnableExamples:
- let numbers = @[1, 4, 5, 8, 9, 7, 4]
- assert any(numbers, proc (x: int): bool = x > 8) == true
- assert any(numbers, proc (x: int): bool = x > 9) == false
- for i in s:
- if pred(i):
- return true
- false
- template anyIt*(s, pred: untyped): bool =
- ## Iterates through a container and checks if at least one item
- ## fulfills the predicate.
- ##
- ## Unlike the `any proc<#any,openArray[T],proc(T)>`_,
- ## the predicate needs to be an expression using
- ## the `it` variable for testing, like: `anyIt("abba", it == 'a')`.
- ##
- ## **See also:**
- ## * `any proc<#any,openArray[T],proc(T)>`_
- ## * `allIt template<#allIt.t,untyped,untyped>`_
- ##
- runnableExamples:
- let numbers = @[1, 4, 5, 8, 9, 7, 4]
- assert numbers.anyIt(it > 8) == true
- assert numbers.anyIt(it > 9) == false
- var result = false
- for it {.inject.} in items(s):
- if pred:
- result = true
- break
- result
- template toSeq1(s: not iterator): untyped =
- # overload for typed but not iterator
- type OutType = typeof(items(s))
- when compiles(s.len):
- block:
- evalOnceAs(s2, s, compiles((let _ = s)))
- var i = 0
- var result = newSeq[OutType](s2.len)
- for it in s2:
- result[i] = it
- i += 1
- result
- else:
- var result: seq[OutType]# = @[]
- for it in s:
- result.add(it)
- result
- template toSeq2(iter: iterator): untyped =
- # overload for iterator
- evalOnceAs(iter2, iter(), false)
- when compiles(iter2.len):
- var i = 0
- var result = newSeq[typeof(iter2)](iter2.len)
- for x in iter2:
- result[i] = x
- inc i
- result
- else:
- type OutType = typeof(iter2())
- var result: seq[OutType]# = @[]
- when compiles(iter2()):
- evalOnceAs(iter4, iter, false)
- let iter3 = iter4()
- for x in iter3():
- result.add(x)
- else:
- for x in iter2():
- result.add(x)
- result
- template toSeq*(iter: untyped): untyped =
- ## Transforms any iterable (anything that can be iterated over, e.g. with
- ## a for-loop) into a sequence.
- ##
- runnableExamples:
- let
- myRange = 1..5
- mySet: set[int8] = {5'i8, 3, 1}
- assert typeof(myRange) is HSlice[system.int, system.int]
- assert typeof(mySet) is set[int8]
- let
- mySeq1 = toSeq(myRange)
- mySeq2 = toSeq(mySet)
- assert mySeq1 == @[1, 2, 3, 4, 5]
- assert mySeq2 == @[1'i8, 3, 5]
- when compiles(toSeq1(iter)):
- toSeq1(iter)
- elif compiles(toSeq2(iter)):
- toSeq2(iter)
- else:
- # overload for untyped, e.g.: `toSeq(myInlineIterator(3))`
- when compiles(iter.len):
- block:
- evalOnceAs(iter2, iter, true)
- var result = newSeq[typeof(iter)](iter2.len)
- var i = 0
- for x in iter2:
- result[i] = x
- inc i
- result
- else:
- var result: seq[typeof(iter)] = @[]
- for x in iter:
- result.add(x)
- result
- template foldl*(sequence, operation: untyped): untyped =
- ## Template to fold a sequence from left to right, returning the accumulation.
- ##
- ## The sequence is required to have at least a single element. Debug versions
- ## of your program will assert in this situation but release versions will
- ## happily go ahead. If the sequence has a single element it will be returned
- ## without applying `operation`.
- ##
- ## The `operation` parameter should be an expression which uses the
- ## variables `a` and `b` for each step of the fold. Since this is a left
- ## fold, for non associative binary operations like subtraction think that
- ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
- ## 3).
- ##
- ## **See also:**
- ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
- ## * `foldr template<#foldr.t,untyped,untyped>`_
- ##
- runnableExamples:
- let
- numbers = @[5, 9, 11]
- addition = foldl(numbers, a + b)
- subtraction = foldl(numbers, a - b)
- multiplication = foldl(numbers, a * b)
- words = @["nim", "is", "cool"]
- concatenation = foldl(words, a & b)
- procs = @["proc", "Is", "Also", "Fine"]
- func foo(acc, cur: string): string =
- result = acc & cur
- assert addition == 25, "Addition is (((5)+9)+11)"
- assert subtraction == -15, "Subtraction is (((5)-9)-11)"
- assert multiplication == 495, "Multiplication is (((5)*9)*11)"
- assert concatenation == "nimiscool"
- assert foldl(procs, foo(a, b)) == "procIsAlsoFine"
- let s = sequence
- assert s.len > 0, "Can't fold empty sequences"
- var result: typeof(s[0])
- result = s[0]
- for i in 1..<s.len:
- let
- a {.inject.} = result
- b {.inject.} = s[i]
- result = operation
- result
- template foldl*(sequence, operation, first): untyped =
- ## Template to fold a sequence from left to right, returning the accumulation.
- ##
- ## This version of `foldl` gets a **starting parameter**. This makes it possible
- ## to accumulate the sequence into a different type than the sequence elements.
- ##
- ## The `operation` parameter should be an expression which uses the variables
- ## `a` and `b` for each step of the fold. The `first` parameter is the
- ## start value (the first `a`) and therefore defines the type of the result.
- ##
- ## **See also:**
- ## * `foldr template<#foldr.t,untyped,untyped>`_
- ##
- runnableExamples:
- let
- numbers = @[0, 8, 1, 5]
- digits = foldl(numbers, a & (chr(b + ord('0'))), "")
- assert digits == "0815"
- var result: typeof(first) = first
- for x in items(sequence):
- let
- a {.inject.} = result
- b {.inject.} = x
- result = operation
- result
- template foldr*(sequence, operation: untyped): untyped =
- ## Template to fold a sequence from right to left, returning the accumulation.
- ##
- ## The sequence is required to have at least a single element. Debug versions
- ## of your program will assert in this situation but release versions will
- ## happily go ahead. If the sequence has a single element it will be returned
- ## without applying `operation`.
- ##
- ## The `operation` parameter should be an expression which uses the
- ## variables `a` and `b` for each step of the fold. Since this is a right
- ## fold, for non associative binary operations like subtraction think that
- ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
- ## (3))).
- ##
- ## **See also:**
- ## * `foldl template<#foldl.t,untyped,untyped>`_
- ## * `foldl template<#foldl.t,,,>`_ with a starting parameter
- ##
- runnableExamples:
- let
- numbers = @[5, 9, 11]
- addition = foldr(numbers, a + b)
- subtraction = foldr(numbers, a - b)
- multiplication = foldr(numbers, a * b)
- words = @["nim", "is", "cool"]
- concatenation = foldr(words, a & b)
- assert addition == 25, "Addition is (5+(9+(11)))"
- assert subtraction == 7, "Subtraction is (5-(9-(11)))"
- assert multiplication == 495, "Multiplication is (5*(9*(11)))"
- assert concatenation == "nimiscool"
- let s = sequence # xxx inefficient, use {.evalonce.} pending #13750
- let n = s.len
- assert n > 0, "Can't fold empty sequences"
- var result = s[n - 1]
- for i in countdown(n - 2, 0):
- let
- a {.inject.} = s[i]
- b {.inject.} = result
- result = operation
- result
- template mapIt*(s: typed, op: untyped): untyped =
- ## Returns a new sequence with the results of the `op` proc applied to every
- ## item in the container `s`.
- ##
- ## Since the input is not modified you can use it to
- ## transform the type of the elements in the input container.
- ##
- ## The template injects the `it` variable which you can use directly in an
- ## expression.
- ##
- ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
- ## from the `sugar` module.
- ##
- ## **See also:**
- ## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
- ## * `map proc<#map,openArray[T],proc(T)>`_
- ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version
- ##
- runnableExamples:
- let
- nums = @[1, 2, 3, 4]
- strings = nums.mapIt($(4 * it))
- assert strings == @["4", "8", "12", "16"]
- type OutType = typeof((
- block:
- var it{.inject.}: typeof(items(s), typeOfIter);
- op), typeOfProc)
- when OutType is not (proc):
- # Here, we avoid to create closures in loops.
- # This avoids https://github.com/nim-lang/Nim/issues/12625
- when compiles(s.len):
- block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580
- # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors
- # (`error: use of undeclared identifier`) instead of Nim compile errors
- evalOnceAs(s2, s, compiles((let _ = s)))
- var i = 0
- var result = newSeq[OutType](s2.len)
- for it {.inject.} in s2:
- result[i] = op
- i += 1
- result
- else:
- var result: seq[OutType]# = @[]
- # use `items` to avoid https://github.com/nim-lang/Nim/issues/12639
- for it {.inject.} in items(s):
- result.add(op)
- result
- else:
- # `op` is going to create closures in loops, let's fallback to `map`.
- # NOTE: Without this fallback, developers have to define a helper function and
- # call `map`:
- # [1, 2].map((it) => ((x: int) => it + x))
- # With this fallback, above code can be simplified to:
- # [1, 2].mapIt((x: int) => it + x)
- # In this case, `mapIt` is just syntax sugar for `map`.
- type InType = typeof(items(s), typeOfIter)
- # Use a help proc `f` to create closures for each element in `s`
- let f = proc (x: InType): OutType =
- let it {.inject.} = x
- op
- map(s, f)
- template applyIt*(varSeq, op: untyped) =
- ## Convenience template around the mutable `apply` proc to reduce typing.
- ##
- ## The template injects the `it` variable which you can use directly in an
- ## expression. The expression has to return the same type as the elements
- ## of the sequence you are mutating.
- ##
- ## **See also:**
- ## * `apply proc<#apply,openArray[T],proc(T)_2>`_
- ## * `mapIt template<#mapIt.t,typed,untyped>`_
- ##
- runnableExamples:
- var nums = @[1, 2, 3, 4]
- nums.applyIt(it * 3)
- assert nums[0] + nums[3] == 15
- for i in low(varSeq) .. high(varSeq):
- let it {.inject.} = varSeq[i]
- varSeq[i] = op
- template newSeqWith*(len: int, init: untyped): untyped =
- ## Creates a new `seq` of length `len`, calling `init` to initialize
- ## each value of the seq.
- ##
- ## Useful for creating "2D" seqs - seqs containing other seqs
- ## or to populate fields of the created seq.
- runnableExamples:
- ## Creates a seq containing 5 bool seqs, each of length of 3.
- var seq2D = newSeqWith(5, newSeq[bool](3))
- assert seq2D.len == 5
- assert seq2D[0].len == 3
- assert seq2D[4][2] == false
- ## Creates a seq with random numbers
- import std/random
- var seqRand = newSeqWith(20, rand(1.0))
- assert seqRand[0] != seqRand[1]
- let newLen = len
- var result = newSeq[typeof(init)](newLen)
- for i in 0 ..< newLen:
- result[i] = init
- move(result) # refs bug #7295
- func mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
- filter = nnkLiterals): NimNode =
- if constructor.kind in filter:
- result = newNimNode(nnkCall, lineInfoFrom = constructor)
- result.add op
- result.add constructor
- else:
- result = copyNimNode(constructor)
- for v in constructor:
- if nested or v.kind in filter:
- result.add mapLitsImpl(v, op, nested, filter)
- else:
- result.add v
- macro mapLiterals*(constructor, op: untyped;
- nested = true): untyped =
- ## Applies `op` to each of the **atomic** literals like `3`
- ## or `"abc"` in the specified `constructor` AST. This can
- ## be used to map every array element to some target type:
- runnableExamples:
- let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
- doAssert x is array[4, int]
- doAssert x == [int(0.1), int(1.2), int(2.3), int(3.4)]
- ## If `nested` is true (which is the default), the literals are replaced
- ## everywhere in the `constructor` AST, otherwise only the first level
- ## is considered:
- runnableExamples:
- let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
- let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
- assert a == (1, (2, 3), 4)
- assert b == (1, (2.3, 3.4), 4)
- let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
- let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
- assert c == ("1", ("2", "3"), "4", ("5", "6"))
- assert d == ("1", (2, 3), "4", (5, 6))
- ## There are no constraints for the `constructor` AST, it
- ## works for nested tuples of arrays of sets etc.
- result = mapLitsImpl(constructor, op, nested.boolVal)
- iterator items*[T](xs: iterator: T): T =
- ## Iterates over each element yielded by a closure iterator. This may
- ## not seem particularly useful on its own, but this allows closure
- ## iterators to be used by the mapIt, filterIt, allIt, anyIt, etc.
- ## templates.
- for x in xs():
- yield x
|