123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2012 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## Implementation of:
- ## * `singly linked lists <#SinglyLinkedList>`_
- ## * `doubly linked lists <#DoublyLinkedList>`_
- ## * `singly linked rings <#SinglyLinkedRing>`_ (circular lists)
- ## * `doubly linked rings <#DoublyLinkedRing>`_ (circular lists)
- ##
- ## # Basic Usage
- ## Because it makes no sense to do otherwise, the `next` and `prev` pointers
- ## are not hidden from you and can be manipulated directly for efficiency.
- ##
- ## ## Lists
- runnableExamples:
- var list = initDoublyLinkedList[int]()
- let
- a = newDoublyLinkedNode[int](3)
- b = newDoublyLinkedNode[int](7)
- c = newDoublyLinkedNode[int](9)
- list.add(a)
- list.add(b)
- list.prepend(c)
- assert a.next == b
- assert a.prev == c
- assert c.next == a
- assert c.next.next == b
- assert c.prev == nil
- assert b.next == nil
- ## ## Rings
- runnableExamples:
- var ring = initSinglyLinkedRing[int]()
- let
- a = newSinglyLinkedNode[int](3)
- b = newSinglyLinkedNode[int](7)
- c = newSinglyLinkedNode[int](9)
- ring.add(a)
- ring.add(b)
- ring.prepend(c)
- assert c.next == a
- assert a.next == b
- assert c.next.next == b
- assert b.next == c
- assert c.next.next.next == c
- ## # See also
- ## * `deques module <deques.html>`_ for double-ended queues
- import std/private/since
- when defined(nimPreviewSlimSystem):
- import std/assertions
- type
- DoublyLinkedNodeObj*[T] = object
- ## A node of a doubly linked list.
- ##
- ## It consists of a `value` field, and pointers to `next` and `prev`.
- next*: DoublyLinkedNode[T]
- prev* {.cursor.}: DoublyLinkedNode[T]
- value*: T
- DoublyLinkedNode*[T] = ref DoublyLinkedNodeObj[T]
- SinglyLinkedNodeObj*[T] = object
- ## A node of a singly linked list.
- ##
- ## It consists of a `value` field, and a pointer to `next`.
- next*: SinglyLinkedNode[T]
- value*: T
- SinglyLinkedNode*[T] = ref SinglyLinkedNodeObj[T]
- SinglyLinkedList*[T] = object
- ## A singly linked list.
- head*: SinglyLinkedNode[T]
- tail* {.cursor.}: SinglyLinkedNode[T]
- DoublyLinkedList*[T] = object
- ## A doubly linked list.
- head*: DoublyLinkedNode[T]
- tail* {.cursor.}: DoublyLinkedNode[T]
- SinglyLinkedRing*[T] = object
- ## A singly linked ring.
- head*: SinglyLinkedNode[T]
- tail* {.cursor.}: SinglyLinkedNode[T]
- DoublyLinkedRing*[T] = object
- ## A doubly linked ring.
- head*: DoublyLinkedNode[T]
- SomeLinkedList*[T] = SinglyLinkedList[T] | DoublyLinkedList[T]
- SomeLinkedRing*[T] = SinglyLinkedRing[T] | DoublyLinkedRing[T]
- SomeLinkedCollection*[T] = SomeLinkedList[T] | SomeLinkedRing[T]
- SomeLinkedNode*[T] = SinglyLinkedNode[T] | DoublyLinkedNode[T]
- proc initSinglyLinkedList*[T](): SinglyLinkedList[T] =
- ## Creates a new singly linked list that is empty.
- ##
- ## Singly linked lists are initialized by default, so it is not necessary to
- ## call this function explicitly.
- runnableExamples:
- let a = initSinglyLinkedList[int]()
- discard
- proc initDoublyLinkedList*[T](): DoublyLinkedList[T] =
- ## Creates a new doubly linked list that is empty.
- ##
- ## Doubly linked lists are initialized by default, so it is not necessary to
- ## call this function explicitly.
- runnableExamples:
- let a = initDoublyLinkedList[int]()
- discard
- proc initSinglyLinkedRing*[T](): SinglyLinkedRing[T] =
- ## Creates a new singly linked ring that is empty.
- ##
- ## Singly linked rings are initialized by default, so it is not necessary to
- ## call this function explicitly.
- runnableExamples:
- let a = initSinglyLinkedRing[int]()
- discard
- proc initDoublyLinkedRing*[T](): DoublyLinkedRing[T] =
- ## Creates a new doubly linked ring that is empty.
- ##
- ## Doubly linked rings are initialized by default, so it is not necessary to
- ## call this function explicitly.
- runnableExamples:
- let a = initDoublyLinkedRing[int]()
- discard
- proc newDoublyLinkedNode*[T](value: T): DoublyLinkedNode[T] =
- ## Creates a new doubly linked node with the given `value`.
- runnableExamples:
- let n = newDoublyLinkedNode[int](5)
- assert n.value == 5
- new(result)
- result.value = value
- proc newSinglyLinkedNode*[T](value: T): SinglyLinkedNode[T] =
- ## Creates a new singly linked node with the given `value`.
- runnableExamples:
- let n = newSinglyLinkedNode[int](5)
- assert n.value == 5
- new(result)
- result.value = value
- template itemsListImpl() {.dirty.} =
- var it {.cursor.} = L.head
- while it != nil:
- yield it.value
- it = it.next
- template itemsRingImpl() {.dirty.} =
- var it {.cursor.} = L.head
- if it != nil:
- while true:
- yield it.value
- it = it.next
- if it == L.head: break
- iterator items*[T](L: SomeLinkedList[T]): T =
- ## Yields every value of `L`.
- ##
- ## **See also:**
- ## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_
- ## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_
- runnableExamples:
- from std/sugar import collect
- from std/sequtils import toSeq
- let a = collect(initSinglyLinkedList):
- for i in 1..3: 10 * i
- assert toSeq(items(a)) == toSeq(a)
- assert toSeq(a) == @[10, 20, 30]
- itemsListImpl()
- iterator items*[T](L: SomeLinkedRing[T]): T =
- ## Yields every value of `L`.
- ##
- ## **See also:**
- ## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_
- ## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_
- runnableExamples:
- from std/sugar import collect
- from std/sequtils import toSeq
- let a = collect(initSinglyLinkedRing):
- for i in 1..3: 10 * i
- assert toSeq(items(a)) == toSeq(a)
- assert toSeq(a) == @[10, 20, 30]
- itemsRingImpl()
- iterator mitems*[T](L: var SomeLinkedList[T]): var T =
- ## Yields every value of `L` so that you can modify it.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,SomeLinkedList[T]>`_
- ## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- for i in 1..5:
- a.add(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- for x in mitems(a):
- x = 5 * x - 1
- assert $a == "[49, 99, 149, 199, 249]"
- itemsListImpl()
- iterator mitems*[T](L: var SomeLinkedRing[T]): var T =
- ## Yields every value of `L` so that you can modify it.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,SomeLinkedRing[T]>`_
- ## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- for i in 1..5:
- a.add(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- for x in mitems(a):
- x = 5 * x - 1
- assert $a == "[49, 99, 149, 199, 249]"
- itemsRingImpl()
- iterator nodes*[T](L: SomeLinkedList[T]): SomeLinkedNode[T] =
- ## Iterates over every node of `x`. Removing the current node from the
- ## list during traversal is supported.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,SomeLinkedList[T]>`_
- ## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- for i in 1..5:
- a.add(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- for x in nodes(a):
- if x.value == 30:
- a.remove(x)
- else:
- x.value = 5 * x.value - 1
- assert $a == "[49, 99, 199, 249]"
- var it {.cursor.} = L.head
- while it != nil:
- let nxt = it.next
- yield it
- it = nxt
- iterator nodes*[T](L: SomeLinkedRing[T]): SomeLinkedNode[T] =
- ## Iterates over every node of `x`. Removing the current node from the
- ## list during traversal is supported.
- ##
- ## **See also:**
- ## * `items iterator <#items.i,SomeLinkedRing[T]>`_
- ## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- for i in 1..5:
- a.add(10 * i)
- assert $a == "[10, 20, 30, 40, 50]"
- for x in nodes(a):
- if x.value == 30:
- a.remove(x)
- else:
- x.value = 5 * x.value - 1
- assert $a == "[49, 99, 199, 249]"
- var it {.cursor.} = L.head
- if it != nil:
- while true:
- let nxt = it.next
- yield it
- it = nxt
- if it == L.head: break
- proc `$`*[T](L: SomeLinkedCollection[T]): string =
- ## Turns a list into its string representation for logging and printing.
- runnableExamples:
- let a = [1, 2, 3, 4].toSinglyLinkedList
- assert $a == "[1, 2, 3, 4]"
- result = "["
- for x in nodes(L):
- if result.len > 1: result.add(", ")
- result.addQuoted(x.value)
- result.add("]")
- proc find*[T](L: SomeLinkedCollection[T], value: T): SomeLinkedNode[T] =
- ## Searches in the list for a value. Returns `nil` if the value does not
- ## exist.
- ##
- ## **See also:**
- ## * `contains proc <#contains,SomeLinkedCollection[T],T>`_
- runnableExamples:
- let a = [9, 8].toSinglyLinkedList
- assert a.find(9).value == 9
- assert a.find(1) == nil
- for x in nodes(L):
- if x.value == value: return x
- proc contains*[T](L: SomeLinkedCollection[T], value: T): bool {.inline.} =
- ## Searches in the list for a value. Returns `false` if the value does not
- ## exist, `true` otherwise. This allows the usage of the `in` and `notin`
- ## operators.
- ##
- ## **See also:**
- ## * `find proc <#find,SomeLinkedCollection[T],T>`_
- runnableExamples:
- let a = [9, 8].toSinglyLinkedList
- assert a.contains(9)
- assert 8 in a
- assert(not a.contains(1))
- assert 2 notin a
- result = find(L, value) != nil
- proc prepend*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} =
- ## Prepends a shallow copy of `b` to the beginning of `a`.
- ##
- ## **See also:**
- ## * `prependMoved proc <#prependMoved,T,T>`_
- ## for moving the second list instead of copying
- runnableExamples:
- from std/sequtils import toSeq
- var a = [4, 5].toSinglyLinkedList
- let b = [1, 2, 3].toSinglyLinkedList
- a.prepend(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == [1, 2, 3]
- a.prepend(a)
- assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
- var tmp = b.copy
- tmp.addMoved(a)
- a = tmp
- proc prependMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} =
- ## Moves `b` before the head of `a`. Efficiency: O(1).
- ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
- ## Self-prepending results in a cycle.
- ##
- ## **See also:**
- ## * `prepend proc <#prepend,T,T>`_
- ## for prepending a copy of a list
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var
- a = [4, 5].toSinglyLinkedList
- b = [1, 2, 3].toSinglyLinkedList
- c = [0, 1].toSinglyLinkedList
- a.prependMoved(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == []
- c.prependMoved(c)
- let s = collect:
- for i, ci in enumerate(c):
- if i == 6: break
- ci
- assert s == [0, 1, 0, 1, 0, 1]
- b.addMoved(a)
- when defined(js): # XXX: swap broken in js; bug #16771
- (b, a) = (a, b)
- else: swap a, b
- proc add*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]) {.inline.} =
- ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- let n = newSinglyLinkedNode[int](9)
- a.add(n)
- assert a.contains(9)
- n.next = nil
- if L.tail != nil:
- assert(L.tail.next == nil)
- L.tail.next = n
- L.tail = n
- if L.head == nil: L.head = n
- proc add*[T](L: var SinglyLinkedList[T], value: T) {.inline.} =
- ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- a.add(9)
- a.add(8)
- assert a.contains(9)
- add(L, newSinglyLinkedNode(value))
- proc prepend*[T](L: var SinglyLinkedList[T],
- n: SinglyLinkedNode[T]) {.inline.} =
- ## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- let n = newSinglyLinkedNode[int](9)
- a.prepend(n)
- assert a.contains(9)
- n.next = L.head
- L.head = n
- if L.tail == nil: L.tail = n
- proc prepend*[T](L: var SinglyLinkedList[T], value: T) {.inline.} =
- ## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- runnableExamples:
- var a = initSinglyLinkedList[int]()
- a.prepend(9)
- a.prepend(8)
- assert a.contains(9)
- prepend(L, newSinglyLinkedNode(value))
- func copy*[T](a: SinglyLinkedList[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} =
- ## Creates a shallow copy of `a`.
- runnableExamples:
- from std/sequtils import toSeq
- type Foo = ref object
- x: int
- var
- f = Foo(x: 1)
- a = [f].toSinglyLinkedList
- let b = a.copy
- a.add([f].toSinglyLinkedList)
- assert a.toSeq == [f, f]
- assert b.toSeq == [f] # b isn't modified...
- f.x = 42
- assert a.head.value.x == 42
- assert b.head.value.x == 42 # ... but the elements are not deep copied
- let c = [1, 2, 3].toSinglyLinkedList
- assert $c == $c.copy
- result = initSinglyLinkedList[T]()
- for x in a.items:
- result.add(x)
- proc addMoved*[T](a, b: var SinglyLinkedList[T]) {.since: (1, 5, 1).} =
- ## Moves `b` to the end of `a`. Efficiency: O(1).
- ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
- ## Self-adding results in a cycle.
- ##
- ## **See also:**
- ## * `add proc <#add,T,T>`_ for adding a copy of a list
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var
- a = [1, 2, 3].toSinglyLinkedList
- b = [4, 5].toSinglyLinkedList
- c = [0, 1].toSinglyLinkedList
- a.addMoved(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == []
- c.addMoved(c)
- let s = collect:
- for i, ci in enumerate(c):
- if i == 6: break
- ci
- assert s == [0, 1, 0, 1, 0, 1]
- if b.head != nil:
- if a.head == nil:
- a.head = b.head
- else:
- a.tail.next = b.head
- a.tail = b.tail
- if a.addr != b.addr:
- b.head = nil
- b.tail = nil
- proc add*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
- ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- let n = newDoublyLinkedNode[int](9)
- a.add(n)
- assert a.contains(9)
- n.next = nil
- n.prev = L.tail
- if L.tail != nil:
- assert(L.tail.next == nil)
- L.tail.next = n
- L.tail = n
- if L.head == nil: L.head = n
- proc add*[T](L: var DoublyLinkedList[T], value: T) =
- ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- a.add(9)
- a.add(8)
- assert a.contains(9)
- add(L, newDoublyLinkedNode(value))
- proc prepend*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
- ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- let n = newDoublyLinkedNode[int](9)
- a.prepend(n)
- assert a.contains(9)
- n.prev = nil
- n.next = L.head
- if L.head != nil:
- assert(L.head.prev == nil)
- L.head.prev = n
- L.head = n
- if L.tail == nil: L.tail = n
- proc prepend*[T](L: var DoublyLinkedList[T], value: T) =
- ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedList[int]()
- a.prepend(9)
- a.prepend(8)
- assert a.contains(9)
- prepend(L, newDoublyLinkedNode(value))
- func copy*[T](a: DoublyLinkedList[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} =
- ## Creates a shallow copy of `a`.
- runnableExamples:
- from std/sequtils import toSeq
- type Foo = ref object
- x: int
- var
- f = Foo(x: 1)
- a = [f].toDoublyLinkedList
- let b = a.copy
- a.add([f].toDoublyLinkedList)
- assert a.toSeq == [f, f]
- assert b.toSeq == [f] # b isn't modified...
- f.x = 42
- assert a.head.value.x == 42
- assert b.head.value.x == 42 # ... but the elements are not deep copied
- let c = [1, 2, 3].toDoublyLinkedList
- assert $c == $c.copy
- result = initDoublyLinkedList[T]()
- for x in a.items:
- result.add(x)
- proc addMoved*[T](a, b: var DoublyLinkedList[T]) {.since: (1, 5, 1).} =
- ## Moves `b` to the end of `a`. Efficiency: O(1).
- ## Note that `b` becomes empty after the operation unless it has the same address as `a`.
- ## Self-adding results in a cycle.
- ##
- ## **See also:**
- ## * `add proc <#add,T,T>`_
- ## for adding a copy of a list
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var
- a = [1, 2, 3].toDoublyLinkedList
- b = [4, 5].toDoublyLinkedList
- c = [0, 1].toDoublyLinkedList
- a.addMoved(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == []
- c.addMoved(c)
- let s = collect:
- for i, ci in enumerate(c):
- if i == 6: break
- ci
- assert s == [0, 1, 0, 1, 0, 1]
- if b.head != nil:
- if a.head == nil:
- a.head = b.head
- else:
- b.head.prev = a.tail
- a.tail.next = b.head
- a.tail = b.tail
- if a.addr != b.addr:
- b.head = nil
- b.tail = nil
- proc add*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} =
- ## Appends a shallow copy of `b` to the end of `a`.
- ##
- ## **See also:**
- ## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_
- ## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_
- ## for moving the second list instead of copying
- runnableExamples:
- from std/sequtils import toSeq
- var a = [1, 2, 3].toSinglyLinkedList
- let b = [4, 5].toSinglyLinkedList
- a.add(b)
- assert a.toSeq == [1, 2, 3, 4, 5]
- assert b.toSeq == [4, 5]
- a.add(a)
- assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
- var tmp = b.copy
- a.addMoved(tmp)
- proc remove*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]): bool {.discardable.} =
- ## Removes a node `n` from `L`.
- ## Returns `true` if `n` was found in `L`.
- ## Efficiency: O(n); the list is traversed until `n` is found.
- ## Attempting to remove an element not contained in the list is a no-op.
- ## When the list is cyclic, the cycle is preserved after removal.
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var a = [0, 1, 2].toSinglyLinkedList
- let n = a.head.next
- assert n.value == 1
- assert a.remove(n) == true
- assert a.toSeq == [0, 2]
- assert a.remove(n) == false
- assert a.toSeq == [0, 2]
- a.addMoved(a) # cycle: [0, 2, 0, 2, ...]
- a.remove(a.head)
- let s = collect:
- for i, ai in enumerate(a):
- if i == 4: break
- ai
- assert s == [2, 2, 2, 2]
- if n == L.head:
- L.head = n.next
- if L.tail.next == n:
- L.tail.next = L.head # restore cycle
- else:
- var prev {.cursor.} = L.head
- while prev.next != n and prev.next != nil:
- prev = prev.next
- if prev.next == nil:
- return false
- prev.next = n.next
- if L.tail == n:
- L.tail = prev # update tail if we removed the last node
- true
- proc remove*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
- ## Removes a node `n` from `L`. Efficiency: O(1).
- ## This function assumes, for the sake of efficiency, that `n` is contained in `L`,
- ## otherwise the effects are undefined.
- ## When the list is cyclic, the cycle is preserved after removal.
- runnableExamples:
- import std/[sequtils, enumerate, sugar]
- var a = [0, 1, 2].toSinglyLinkedList
- let n = a.head.next
- assert n.value == 1
- a.remove(n)
- assert a.toSeq == [0, 2]
- a.remove(n)
- assert a.toSeq == [0, 2]
- a.addMoved(a) # cycle: [0, 2, 0, 2, ...]
- a.remove(a.head)
- let s = collect:
- for i, ai in enumerate(a):
- if i == 4: break
- ai
- assert s == [2, 2, 2, 2]
- if n == L.tail: L.tail = n.prev
- if n == L.head: L.head = n.next
- if n.next != nil: n.next.prev = n.prev
- if n.prev != nil: n.prev.next = n.next
- proc add*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) =
- ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- let n = newSinglyLinkedNode[int](9)
- a.add(n)
- assert a.contains(9)
- if L.head != nil:
- n.next = L.head
- assert(L.tail != nil)
- L.tail.next = n
- else:
- n.next = n
- L.head = n
- L.tail = n
- proc add*[T](L: var SinglyLinkedRing[T], value: T) =
- ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- a.add(9)
- a.add(8)
- assert a.contains(9)
- add(L, newSinglyLinkedNode(value))
- proc prepend*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) =
- ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- let n = newSinglyLinkedNode[int](9)
- a.prepend(n)
- assert a.contains(9)
- if L.head != nil:
- n.next = L.head
- assert(L.tail != nil)
- L.tail.next = n
- else:
- n.next = n
- L.tail = n
- L.head = n
- proc prepend*[T](L: var SinglyLinkedRing[T], value: T) =
- ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
- ## for prepending a node
- runnableExamples:
- var a = initSinglyLinkedRing[int]()
- a.prepend(9)
- a.prepend(8)
- assert a.contains(9)
- prepend(L, newSinglyLinkedNode(value))
- proc add*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
- ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- let n = newDoublyLinkedNode[int](9)
- a.add(n)
- assert a.contains(9)
- if L.head != nil:
- n.next = L.head
- n.prev = L.head.prev
- L.head.prev.next = n
- L.head.prev = n
- else:
- n.prev = n
- n.next = n
- L.head = n
- proc add*[T](L: var DoublyLinkedRing[T], value: T) =
- ## Appends (adds to the end) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- a.add(9)
- a.add(8)
- assert a.contains(9)
- add(L, newDoublyLinkedNode(value))
- proc prepend*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
- ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
- ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- let n = newDoublyLinkedNode[int](9)
- a.prepend(n)
- assert a.contains(9)
- if L.head != nil:
- n.next = L.head
- n.prev = L.head.prev
- L.head.prev.next = n
- L.head.prev = n
- else:
- n.prev = n
- n.next = n
- L.head = n
- proc prepend*[T](L: var DoublyLinkedRing[T], value: T) =
- ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for appending a node
- ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
- ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for prepending a node
- ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
- ## for removing a node
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- a.prepend(9)
- a.prepend(8)
- assert a.contains(9)
- prepend(L, newDoublyLinkedNode(value))
- proc remove*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
- ## Removes `n` from `L`. Efficiency: O(1).
- ## This function assumes, for the sake of efficiency, that `n` is contained in `L`,
- ## otherwise the effects are undefined.
- runnableExamples:
- var a = initDoublyLinkedRing[int]()
- let n = newDoublyLinkedNode[int](5)
- a.add(n)
- assert 5 in a
- a.remove(n)
- assert 5 notin a
- n.next.prev = n.prev
- n.prev.next = n.next
- if n == L.head:
- let p = L.head.prev
- if p == L.head:
- # only one element left:
- L.head = nil
- else:
- L.head = p
- proc append*[T](a: var (SinglyLinkedList[T] | SinglyLinkedRing[T]),
- b: SinglyLinkedList[T] | SinglyLinkedNode[T] | T) =
- ## Alias for `a.add(b)`.
- ##
- ## **See also:**
- ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
- ## * `add proc <#add,SinglyLinkedList[T],T>`_
- ## * `add proc <#add,T,T>`_
- a.add(b)
- proc append*[T](a: var (DoublyLinkedList[T] | DoublyLinkedRing[T]),
- b: DoublyLinkedList[T] | DoublyLinkedNode[T] | T) =
- ## Alias for `a.add(b)`.
- ##
- ## **See also:**
- ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
- ## * `add proc <#add,DoublyLinkedList[T],T>`_
- ## * `add proc <#add,T,T>`_
- a.add(b)
- proc appendMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} =
- ## Alias for `a.addMoved(b)`.
- ##
- ## **See also:**
- ## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_
- ## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_
- a.addMoved(b)
- func toSinglyLinkedList*[T](elems: openArray[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} =
- ## Creates a new `SinglyLinkedList` from the members of `elems`.
- runnableExamples:
- from std/sequtils import toSeq
- let a = [1, 2, 3, 4, 5].toSinglyLinkedList
- assert a.toSeq == [1, 2, 3, 4, 5]
- result = initSinglyLinkedList[T]()
- for elem in elems.items:
- result.add(elem)
- func toDoublyLinkedList*[T](elems: openArray[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} =
- ## Creates a new `DoublyLinkedList` from the members of `elems`.
- runnableExamples:
- from std/sequtils import toSeq
- let a = [1, 2, 3, 4, 5].toDoublyLinkedList
- assert a.toSeq == [1, 2, 3, 4, 5]
- result = initDoublyLinkedList[T]()
- for elem in elems.items:
- result.add(elem)
|