12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- discard """
- matrix: "--mm:refc"
- output: '''
- '''
- """
- # parallel convex hull for Nim bigbreak
- # nim c --threads:on -d:release pconvex_hull.nim
- import algorithm, sequtils, threadpool
- type Point = tuple[x, y: float]
- proc cmpPoint(a, b: Point): int =
- result = cmp(a.x, b.x)
- if result == 0:
- result = cmp(a.y, b.y)
- template cross[T](o, a, b: T): untyped =
- (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x)
- template pro(): untyped =
- while lr1 > 0 and cross(result[lr1 - 1], result[lr1], p[i]) <= 0:
- discard result.pop
- lr1 -= 1
- result.add(p[i])
- lr1 += 1
- proc half[T](p: seq[T]; upper: bool): seq[T] =
- var i, lr1: int
- result = @[]
- lr1 = -1
- if upper:
- i = 0
- while i <= high(p):
- pro()
- i += 1
- else:
- i = high(p)
- while i >= low(p):
- pro()
- i -= 1
- discard result.pop
- proc convex_hull[T](points: var seq[T], cmp: proc(x, y: T): int {.closure.}) : seq[T] =
- if len(points) < 2: return points
- points.sort(cmp)
- var ul: array[2, FlowVar[seq[T]]]
- parallel:
- for k in 0..ul.high:
- ul[k] = spawn half[T](points, k == 0)
- result = concat(^ul[0], ^ul[1])
- var s = map(toSeq(0..9999), proc(x: int): Point = (float(x div 100), float(x mod 100)))
- # On some runs, this pool size reduction will set the "shutdown" attribute on the
- # worker thread that executes our spawned task, before we can read the flowvars.
- setMaxPoolSize 2
- for i in 0..2:
- doAssert convex_hull[Point](s, cmpPoint) ==
- @[(0.0, 0.0), (99.0, 0.0), (99.0, 99.0), (0.0, 99.0)]
|