123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728 |
- #
- #
- # The Nim Compiler
- # (c) Copyright 2013 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- # this module contains routines for accessing and iterating over types
- import
- intsets, ast, astalgo, trees, msgs, strutils, platform, renderer, options,
- lineinfos, int128, modulegraphs, astmsgs
- when defined(nimPreviewSlimSystem):
- import std/[assertions, formatfloat]
- type
- TPreferedDesc* = enum
- preferName, # default
- preferDesc, # probably should become what preferResolved is
- preferExported,
- preferModuleInfo, # fully qualified
- preferGenericArg,
- preferTypeName,
- preferResolved, # fully resolved symbols
- preferMixed,
- # most useful, shows: symbol + resolved symbols if it differs, e.g.:
- # tuple[a: MyInt{int}, b: float]
- TTypeRelation* = enum # order is important!
- isNone, isConvertible,
- isIntConv,
- isSubtype,
- isSubrange, # subrange of the wanted type; no type conversion
- # but apart from that counts as ``isSubtype``
- isBothMetaConvertible # generic proc parameter was matched against
- # generic type, e.g., map(mySeq, x=>x+1),
- # maybe recoverable by rerun if the parameter is
- # the proc's return value
- isInferred, # generic proc was matched against a concrete type
- isInferredConvertible, # same as above, but requiring proc CC conversion
- isGeneric,
- isFromIntLit, # conversion *from* int literal; proven safe
- isEqual
- ProcConvMismatch* = enum
- pcmNoSideEffect
- pcmNotGcSafe
- pcmNotIterator
- pcmDifferentCallConv
- proc typeToString*(typ: PType; prefer: TPreferedDesc = preferName): string
- proc addTypeDeclVerboseMaybe*(result: var string, conf: ConfigRef; typ: PType) =
- if optDeclaredLocs in conf.globalOptions:
- result.add typeToString(typ, preferMixed)
- result.addDeclaredLoc(conf, typ)
- else:
- result.add typeToString(typ)
- template `$`*(typ: PType): string = typeToString(typ)
- proc base*(t: PType): PType =
- result = t[0]
- # ------------------- type iterator: ----------------------------------------
- type
- TTypeIter* = proc (t: PType, closure: RootRef): bool {.nimcall.} # true if iteration should stop
- TTypeMutator* = proc (t: PType, closure: RootRef): PType {.nimcall.} # copy t and mutate it
- TTypePredicate* = proc (t: PType): bool {.nimcall.}
- proc iterOverType*(t: PType, iter: TTypeIter, closure: RootRef): bool
- # Returns result of `iter`.
- proc mutateType*(t: PType, iter: TTypeMutator, closure: RootRef): PType
- # Returns result of `iter`.
- type
- TParamsEquality* = enum # they are equal, but their
- # identifiers or their return
- # type differ (i.e. they cannot be
- # overloaded)
- # this used to provide better error messages
- paramsNotEqual, # parameters are not equal
- paramsEqual, # parameters are equal
- paramsIncompatible
- proc equalParams*(a, b: PNode): TParamsEquality
- # returns whether the parameter lists of the procs a, b are exactly the same
- const
- # TODO: Remove tyTypeDesc from each abstractX and (where necessary)
- # replace with typedescX
- abstractPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyDistinct, tyOrdinal,
- tyTypeDesc, tyAlias, tyInferred, tySink, tyLent, tyOwned}
- abstractVar* = {tyVar, tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc,
- tyAlias, tyInferred, tySink, tyLent, tyOwned}
- abstractRange* = {tyGenericInst, tyRange, tyDistinct, tyOrdinal, tyTypeDesc,
- tyAlias, tyInferred, tySink, tyOwned}
- abstractInstOwned* = abstractInst + {tyOwned}
- skipPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyTypeDesc, tyAlias,
- tyInferred, tySink, tyLent, tyOwned}
- # typedescX is used if we're sure tyTypeDesc should be included (or skipped)
- typedescPtrs* = abstractPtrs + {tyTypeDesc}
- typedescInst* = abstractInst + {tyTypeDesc, tyOwned, tyUserTypeClass}
- proc invalidGenericInst*(f: PType): bool =
- result = f.kind == tyGenericInst and lastSon(f) == nil
- proc isPureObject*(typ: PType): bool =
- var t = typ
- while t.kind == tyObject and t[0] != nil:
- t = t[0].skipTypes(skipPtrs)
- result = t.sym != nil and sfPure in t.sym.flags
- proc isUnsigned*(t: PType): bool =
- t.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}
- proc getOrdValue*(n: PNode; onError = high(Int128)): Int128 =
- var k = n.kind
- if n.typ != nil and n.typ.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}:
- k = nkUIntLit
- case k
- of nkCharLit, nkUIntLit..nkUInt64Lit:
- # XXX: enable this assert
- #assert n.typ == nil or isUnsigned(n.typ), $n.typ
- toInt128(cast[uint64](n.intVal))
- of nkIntLit..nkInt64Lit:
- # XXX: enable this assert
- #assert n.typ == nil or not isUnsigned(n.typ), $n.typ.kind
- toInt128(n.intVal)
- of nkNilLit:
- int128.Zero
- of nkHiddenStdConv: getOrdValue(n[1], onError)
- else:
- # XXX: The idea behind the introduction of int128 was to finally
- # have all calculations numerically far away from any
- # overflows. This command just introduces such overflows and
- # should therefore really be revisited.
- onError
- proc getFloatValue*(n: PNode): BiggestFloat =
- case n.kind
- of nkFloatLiterals: n.floatVal
- of nkHiddenStdConv: getFloatValue(n[1])
- else: NaN
- proc isIntLit*(t: PType): bool {.inline.} =
- result = t.kind == tyInt and t.n != nil and t.n.kind == nkIntLit
- proc isFloatLit*(t: PType): bool {.inline.} =
- result = t.kind == tyFloat and t.n != nil and t.n.kind == nkFloatLit
- proc addTypeHeader*(result: var string, conf: ConfigRef; typ: PType; prefer: TPreferedDesc = preferMixed; getDeclarationPath = true) =
- result.add typeToString(typ, prefer)
- if getDeclarationPath: result.addDeclaredLoc(conf, typ.sym)
- proc getProcHeader*(conf: ConfigRef; sym: PSym; prefer: TPreferedDesc = preferName; getDeclarationPath = true): string =
- assert sym != nil
- # consider using `skipGenericOwner` to avoid fun2.fun2 when fun2 is generic
- result = sym.owner.name.s & '.' & sym.name.s
- if sym.kind in routineKinds:
- result.add '('
- var n = sym.typ.n
- for i in 1..<n.len:
- let p = n[i]
- if p.kind == nkSym:
- result.add(p.sym.name.s)
- result.add(": ")
- result.add(typeToString(p.sym.typ, prefer))
- if i != n.len-1: result.add(", ")
- else:
- result.add renderTree(p)
- result.add(')')
- if n[0].typ != nil:
- result.add(": " & typeToString(n[0].typ, prefer))
- if getDeclarationPath: result.addDeclaredLoc(conf, sym)
- proc elemType*(t: PType): PType =
- assert(t != nil)
- case t.kind
- of tyGenericInst, tyDistinct, tyAlias, tySink: result = elemType(lastSon(t))
- of tyArray: result = t[1]
- of tyError: result = t
- else: result = t.lastSon
- assert(result != nil)
- proc enumHasHoles*(t: PType): bool =
- var b = t.skipTypes({tyRange, tyGenericInst, tyAlias, tySink})
- result = b.kind == tyEnum and tfEnumHasHoles in b.flags
- proc isOrdinalType*(t: PType, allowEnumWithHoles: bool = false): bool =
- assert(t != nil)
- const
- baseKinds = {tyChar, tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyEnum}
- parentKinds = {tyRange, tyOrdinal, tyGenericInst, tyAlias, tySink, tyDistinct}
- result = (t.kind in baseKinds and (not t.enumHasHoles or allowEnumWithHoles)) or
- (t.kind in parentKinds and isOrdinalType(t.lastSon, allowEnumWithHoles))
- proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
- closure: RootRef): bool
- proc iterOverNode(marker: var IntSet, n: PNode, iter: TTypeIter,
- closure: RootRef): bool =
- if n != nil:
- case n.kind
- of nkNone..nkNilLit:
- # a leaf
- result = iterOverTypeAux(marker, n.typ, iter, closure)
- else:
- for i in 0..<n.len:
- result = iterOverNode(marker, n[i], iter, closure)
- if result: return
- proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
- closure: RootRef): bool =
- result = false
- if t == nil: return
- result = iter(t, closure)
- if result: return
- if not containsOrIncl(marker, t.id):
- case t.kind
- of tyGenericInst, tyGenericBody, tyAlias, tySink, tyInferred:
- result = iterOverTypeAux(marker, lastSon(t), iter, closure)
- else:
- for i in 0..<t.len:
- result = iterOverTypeAux(marker, t[i], iter, closure)
- if result: return
- if t.n != nil and t.kind != tyProc: result = iterOverNode(marker, t.n, iter, closure)
- proc iterOverType(t: PType, iter: TTypeIter, closure: RootRef): bool =
- var marker = initIntSet()
- result = iterOverTypeAux(marker, t, iter, closure)
- proc searchTypeForAux(t: PType, predicate: TTypePredicate,
- marker: var IntSet): bool
- proc searchTypeNodeForAux(n: PNode, p: TTypePredicate,
- marker: var IntSet): bool =
- result = false
- case n.kind
- of nkRecList:
- for i in 0..<n.len:
- result = searchTypeNodeForAux(n[i], p, marker)
- if result: return
- of nkRecCase:
- assert(n[0].kind == nkSym)
- result = searchTypeNodeForAux(n[0], p, marker)
- if result: return
- for i in 1..<n.len:
- case n[i].kind
- of nkOfBranch, nkElse:
- result = searchTypeNodeForAux(lastSon(n[i]), p, marker)
- if result: return
- else: discard
- of nkSym:
- result = searchTypeForAux(n.sym.typ, p, marker)
- else: discard
- proc searchTypeForAux(t: PType, predicate: TTypePredicate,
- marker: var IntSet): bool =
- # iterates over VALUE types!
- result = false
- if t == nil: return
- if containsOrIncl(marker, t.id): return
- result = predicate(t)
- if result: return
- case t.kind
- of tyObject:
- if t[0] != nil:
- result = searchTypeForAux(t[0].skipTypes(skipPtrs), predicate, marker)
- if not result: result = searchTypeNodeForAux(t.n, predicate, marker)
- of tyGenericInst, tyDistinct, tyAlias, tySink:
- result = searchTypeForAux(lastSon(t), predicate, marker)
- of tyArray, tySet, tyTuple:
- for i in 0..<t.len:
- result = searchTypeForAux(t[i], predicate, marker)
- if result: return
- else:
- discard
- proc searchTypeFor*(t: PType, predicate: TTypePredicate): bool =
- var marker = initIntSet()
- result = searchTypeForAux(t, predicate, marker)
- proc isObjectPredicate(t: PType): bool =
- result = t.kind == tyObject
- proc containsObject*(t: PType): bool =
- result = searchTypeFor(t, isObjectPredicate)
- proc isObjectWithTypeFieldPredicate(t: PType): bool =
- result = t.kind == tyObject and t[0] == nil and
- not (t.sym != nil and {sfPure, sfInfixCall} * t.sym.flags != {}) and
- tfFinal notin t.flags
- type
- TTypeFieldResult* = enum
- frNone, # type has no object type field
- frHeader, # type has an object type field only in the header
- frEmbedded # type has an object type field somewhere embedded
- proc analyseObjectWithTypeFieldAux(t: PType,
- marker: var IntSet): TTypeFieldResult =
- var res: TTypeFieldResult
- result = frNone
- if t == nil: return
- case t.kind
- of tyObject:
- if t.n != nil:
- if searchTypeNodeForAux(t.n, isObjectWithTypeFieldPredicate, marker):
- return frEmbedded
- for i in 0..<t.len:
- var x = t[i]
- if x != nil: x = x.skipTypes(skipPtrs)
- res = analyseObjectWithTypeFieldAux(x, marker)
- if res == frEmbedded:
- return frEmbedded
- if res == frHeader: result = frHeader
- if result == frNone:
- if isObjectWithTypeFieldPredicate(t): result = frHeader
- of tyGenericInst, tyDistinct, tyAlias, tySink:
- result = analyseObjectWithTypeFieldAux(lastSon(t), marker)
- of tyArray, tyTuple:
- for i in 0..<t.len:
- res = analyseObjectWithTypeFieldAux(t[i], marker)
- if res != frNone:
- return frEmbedded
- else:
- discard
- proc analyseObjectWithTypeField*(t: PType): TTypeFieldResult =
- # this does a complex analysis whether a call to ``objectInit`` needs to be
- # made or initializing of the type field suffices or if there is no type field
- # at all in this type.
- var marker = initIntSet()
- result = analyseObjectWithTypeFieldAux(t, marker)
- proc isGCRef(t: PType): bool =
- result = t.kind in GcTypeKinds or
- (t.kind == tyProc and t.callConv == ccClosure)
- if result and t.kind in {tyString, tySequence} and tfHasAsgn in t.flags:
- result = false
- proc containsGarbageCollectedRef*(typ: PType): bool =
- # returns true if typ contains a reference, sequence or string (all the
- # things that are garbage-collected)
- result = searchTypeFor(typ, isGCRef)
- proc isManagedMemory(t: PType): bool =
- result = t.kind in GcTypeKinds or
- (t.kind == tyProc and t.callConv == ccClosure)
- proc containsManagedMemory*(typ: PType): bool =
- result = searchTypeFor(typ, isManagedMemory)
- proc isTyRef(t: PType): bool =
- result = t.kind == tyRef or (t.kind == tyProc and t.callConv == ccClosure)
- proc containsTyRef*(typ: PType): bool =
- # returns true if typ contains a 'ref'
- result = searchTypeFor(typ, isTyRef)
- proc isHiddenPointer(t: PType): bool =
- result = t.kind in {tyString, tySequence, tyOpenArray, tyVarargs}
- proc containsHiddenPointer*(typ: PType): bool =
- # returns true if typ contains a string, table or sequence (all the things
- # that need to be copied deeply)
- result = searchTypeFor(typ, isHiddenPointer)
- proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool
- proc canFormAcycleNode(marker: var IntSet, n: PNode, startId: int): bool =
- result = false
- if n != nil:
- result = canFormAcycleAux(marker, n.typ, startId)
- if not result:
- case n.kind
- of nkNone..nkNilLit:
- discard
- else:
- for i in 0..<n.len:
- result = canFormAcycleNode(marker, n[i], startId)
- if result: return
- proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool =
- result = false
- if typ == nil: return
- if tfAcyclic in typ.flags: return
- var t = skipTypes(typ, abstractInst+{tyOwned}-{tyTypeDesc})
- if tfAcyclic in t.flags: return
- case t.kind
- of tyTuple, tyObject, tyRef, tySequence, tyArray, tyOpenArray, tyVarargs:
- if t.id == startId:
- result = true
- elif not containsOrIncl(marker, t.id):
- for i in 0..<t.len:
- result = canFormAcycleAux(marker, t[i], startId)
- if result: return
- if t.n != nil: result = canFormAcycleNode(marker, t.n, startId)
- # Inheritance can introduce cyclic types, however this is not relevant
- # as the type that is passed to 'new' is statically known!
- # er but we use it also for the write barrier ...
- if t.kind == tyObject and tfFinal notin t.flags:
- # damn inheritance may introduce cycles:
- result = true
- of tyProc: result = typ.callConv == ccClosure
- else: discard
- proc isFinal*(t: PType): bool =
- let t = t.skipTypes(abstractInst)
- result = t.kind != tyObject or tfFinal in t.flags or isPureObject(t)
- proc canFormAcycle*(typ: PType): bool =
- var marker = initIntSet()
- let t = skipTypes(typ, abstractInst+{tyOwned}-{tyTypeDesc})
- result = canFormAcycleAux(marker, t, t.id)
- proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
- closure: RootRef): PType
- proc mutateNode(marker: var IntSet, n: PNode, iter: TTypeMutator,
- closure: RootRef): PNode =
- result = nil
- if n != nil:
- result = copyNode(n)
- result.typ = mutateTypeAux(marker, n.typ, iter, closure)
- case n.kind
- of nkNone..nkNilLit:
- # a leaf
- discard
- else:
- for i in 0..<n.len:
- result.add mutateNode(marker, n[i], iter, closure)
- proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
- closure: RootRef): PType =
- result = nil
- if t == nil: return
- result = iter(t, closure)
- if not containsOrIncl(marker, t.id):
- for i in 0..<t.len:
- result[i] = mutateTypeAux(marker, result[i], iter, closure)
- if t.n != nil: result.n = mutateNode(marker, t.n, iter, closure)
- assert(result != nil)
- proc mutateType(t: PType, iter: TTypeMutator, closure: RootRef): PType =
- var marker = initIntSet()
- result = mutateTypeAux(marker, t, iter, closure)
- proc valueToString(a: PNode): string =
- case a.kind
- of nkCharLit, nkUIntLit..nkUInt64Lit:
- result = $cast[uint64](a.intVal)
- of nkIntLit..nkInt64Lit:
- result = $a.intVal
- of nkFloatLit..nkFloat128Lit: result = $a.floatVal
- of nkStrLit..nkTripleStrLit: result = a.strVal
- else: result = "<invalid value>"
- proc rangeToStr(n: PNode): string =
- assert(n.kind == nkRange)
- result = valueToString(n[0]) & ".." & valueToString(n[1])
- const
- typeToStr: array[TTypeKind, string] = ["None", "bool", "char", "empty",
- "Alias", "typeof(nil)", "untyped", "typed", "typeDesc",
- # xxx typeDesc=>typedesc: typedesc is declared as such, and is 10x more common.
- "GenericInvocation", "GenericBody", "GenericInst", "GenericParam",
- "distinct $1", "enum", "ordinal[$1]", "array[$1, $2]", "object", "tuple",
- "set[$1]", "range[$1]", "ptr ", "ref ", "var ", "seq[$1]", "proc",
- "pointer", "OpenArray[$1]", "string", "cstring", "Forward",
- "int", "int8", "int16", "int32", "int64",
- "float", "float32", "float64", "float128",
- "uint", "uint8", "uint16", "uint32", "uint64",
- "owned", "sink",
- "lent ", "varargs[$1]", "UncheckedArray[$1]", "Error Type",
- "BuiltInTypeClass", "UserTypeClass",
- "UserTypeClassInst", "CompositeTypeClass", "inferred",
- "and", "or", "not", "any", "static", "TypeFromExpr", "concept", # xxx bugfix
- "void", "iterable"]
- const preferToResolveSymbols = {preferName, preferTypeName, preferModuleInfo,
- preferGenericArg, preferResolved, preferMixed}
- template bindConcreteTypeToUserTypeClass*(tc, concrete: PType) =
- tc.add concrete
- tc.flags.incl tfResolved
- # TODO: It would be a good idea to kill the special state of a resolved
- # concept by switching to tyAlias within the instantiated procs.
- # Currently, tyAlias is always skipped with lastSon, which means that
- # we can store information about the matched concept in another position.
- # Then builtInFieldAccess can be modified to properly read the derived
- # consts and types stored within the concept.
- template isResolvedUserTypeClass*(t: PType): bool =
- tfResolved in t.flags
- proc addTypeFlags(name: var string, typ: PType) {.inline.} =
- if tfNotNil in typ.flags: name.add(" not nil")
- proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
- let preferToplevel = prefer
- proc getPrefer(prefer: TPreferedDesc): TPreferedDesc =
- if preferToplevel in {preferResolved, preferMixed}:
- preferToplevel # sticky option
- else:
- prefer
- proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
- result = ""
- let prefer = getPrefer(prefer)
- let t = typ
- if t == nil: return
- if prefer in preferToResolveSymbols and t.sym != nil and
- sfAnon notin t.sym.flags and t.kind != tySequence:
- if t.kind == tyInt and isIntLit(t):
- result = t.sym.name.s & " literal(" & $t.n.intVal & ")"
- elif t.kind == tyAlias and t[0].kind != tyAlias:
- result = typeToString(t[0])
- elif prefer in {preferResolved, preferMixed}:
- case t.kind
- of IntegralTypes + {tyFloat..tyFloat128} + {tyString, tyCstring}:
- result = typeToStr[t.kind]
- of tyGenericBody:
- result = typeToString(t.lastSon)
- of tyCompositeTypeClass:
- # avoids showing `A[any]` in `proc fun(a: A)` with `A = object[T]`
- result = typeToString(t.lastSon.lastSon)
- else:
- result = t.sym.name.s
- if prefer == preferMixed and result != t.sym.name.s:
- result = t.sym.name.s & "{" & result & "}"
- elif prefer in {preferName, preferTypeName} or t.sym.owner.isNil:
- # note: should probably be: {preferName, preferTypeName, preferGenericArg}
- result = t.sym.name.s
- if t.kind == tyGenericParam and t.len > 0:
- result.add ": "
- var first = true
- for son in t.sons:
- if not first: result.add " or "
- result.add son.typeToString
- first = false
- else:
- result = t.sym.owner.name.s & '.' & t.sym.name.s
- result.addTypeFlags(t)
- return
- case t.kind
- of tyInt:
- if not isIntLit(t) or prefer == preferExported:
- result = typeToStr[t.kind]
- else:
- if prefer == preferGenericArg:
- result = $t.n.intVal
- else:
- result = "int literal(" & $t.n.intVal & ")"
- of tyGenericInst, tyGenericInvocation:
- result = typeToString(t[0]) & '['
- for i in 1..<t.len-ord(t.kind != tyGenericInvocation):
- if i > 1: result.add(", ")
- result.add(typeToString(t[i], preferGenericArg))
- result.add(']')
- of tyGenericBody:
- result = typeToString(t.lastSon) & '['
- for i in 0..<t.len-1:
- if i > 0: result.add(", ")
- result.add(typeToString(t[i], preferTypeName))
- result.add(']')
- of tyTypeDesc:
- if t[0].kind == tyNone: result = "typedesc"
- else: result = "typedesc[" & typeToString(t[0]) & "]"
- of tyStatic:
- if prefer == preferGenericArg and t.n != nil:
- result = t.n.renderTree
- else:
- result = "static[" & (if t.len > 0: typeToString(t[0]) else: "") & "]"
- if t.n != nil: result.add "(" & renderTree(t.n) & ")"
- of tyUserTypeClass:
- if t.sym != nil and t.sym.owner != nil:
- if t.isResolvedUserTypeClass: return typeToString(t.lastSon)
- return t.sym.owner.name.s
- else:
- result = "<invalid tyUserTypeClass>"
- of tyBuiltInTypeClass:
- result = case t.base.kind
- of tyVar: "var"
- of tyRef: "ref"
- of tyPtr: "ptr"
- of tySequence: "seq"
- of tyArray: "array"
- of tySet: "set"
- of tyRange: "range"
- of tyDistinct: "distinct"
- of tyProc: "proc"
- of tyObject: "object"
- of tyTuple: "tuple"
- of tyOpenArray: "openArray"
- else: typeToStr[t.base.kind]
- of tyInferred:
- let concrete = t.previouslyInferred
- if concrete != nil: result = typeToString(concrete)
- else: result = "inferred[" & typeToString(t.base) & "]"
- of tyUserTypeClassInst:
- let body = t.base
- result = body.sym.name.s & "["
- for i in 1..<t.len - 1:
- if i > 1: result.add(", ")
- result.add(typeToString(t[i]))
- result.add "]"
- of tyAnd:
- for i, son in t.sons:
- result.add(typeToString(son))
- if i < t.sons.high:
- result.add(" and ")
- of tyOr:
- for i, son in t.sons:
- result.add(typeToString(son))
- if i < t.sons.high:
- result.add(" or ")
- of tyNot:
- result = "not " & typeToString(t[0])
- of tyUntyped:
- #internalAssert t.len == 0
- result = "untyped"
- of tyFromExpr:
- if t.n == nil:
- result = "unknown"
- else:
- result = "typeof(" & renderTree(t.n) & ")"
- of tyArray:
- result = "array"
- if t.len > 0:
- if t[0].kind == tyRange:
- result &= "[" & rangeToStr(t[0].n) & ", " &
- typeToString(t[1]) & ']'
- else:
- result &= "[" & typeToString(t[0]) & ", " &
- typeToString(t[1]) & ']'
- of tyUncheckedArray:
- result = "UncheckedArray"
- if t.len > 0:
- result &= "[" & typeToString(t[0]) & ']'
- of tySequence:
- if t.sym != nil and prefer != preferResolved:
- result = t.sym.name.s
- else:
- result = "seq"
- if t.len > 0:
- result &= "[" & typeToString(t[0]) & ']'
- of tyOrdinal:
- result = "ordinal"
- if t.len > 0:
- result &= "[" & typeToString(t[0]) & ']'
- of tySet:
- result = "set"
- if t.len > 0:
- result &= "[" & typeToString(t[0]) & ']'
- of tyOpenArray:
- result = "openArray"
- if t.len > 0:
- result &= "[" & typeToString(t[0]) & ']'
- of tyDistinct:
- result = "distinct " & typeToString(t[0],
- if prefer == preferModuleInfo: preferModuleInfo else: preferTypeName)
- of tyIterable:
- # xxx factor this pattern
- result = "iterable"
- if t.len > 0:
- result &= "[" & typeToString(t[0]) & ']'
- of tyTuple:
- # we iterate over t.sons here, because t.n may be nil
- if t.n != nil:
- result = "tuple["
- assert(t.n.len == t.len)
- for i in 0..<t.n.len:
- assert(t.n[i].kind == nkSym)
- result.add(t.n[i].sym.name.s & ": " & typeToString(t[i]))
- if i < t.n.len - 1: result.add(", ")
- result.add(']')
- elif t.len == 0:
- result = "tuple[]"
- else:
- result = "("
- for i in 0..<t.len:
- result.add(typeToString(t[i]))
- if i < t.len - 1: result.add(", ")
- elif t.len == 1: result.add(",")
- result.add(')')
- of tyPtr, tyRef, tyVar, tyLent:
- result = if isOutParam(t): "out " else: typeToStr[t.kind]
- if t.len >= 2:
- setLen(result, result.len-1)
- result.add '['
- for i in 0..<t.len:
- result.add(typeToString(t[i]))
- if i < t.len - 1: result.add(", ")
- result.add ']'
- else:
- result.add typeToString(t[0])
- of tyRange:
- result = "range "
- if t.n != nil and t.n.kind == nkRange:
- result.add rangeToStr(t.n)
- if prefer != preferExported:
- result.add("(" & typeToString(t[0]) & ")")
- of tyProc:
- result = if tfIterator in t.flags: "iterator "
- elif t.owner != nil:
- case t.owner.kind
- of skTemplate: "template "
- of skMacro: "macro "
- of skConverter: "converter "
- else: "proc "
- else:
- "proc "
- if tfUnresolved in t.flags: result.add "[*missing parameters*]"
- result.add "("
- for i in 1..<t.len:
- if t.n != nil and i < t.n.len and t.n[i].kind == nkSym:
- result.add(t.n[i].sym.name.s)
- result.add(": ")
- result.add(typeToString(t[i]))
- if i < t.len - 1: result.add(", ")
- result.add(')')
- if t.len > 0 and t[0] != nil: result.add(": " & typeToString(t[0]))
- var prag = if t.callConv == ccNimCall and tfExplicitCallConv notin t.flags: "" else: $t.callConv
- if tfNoSideEffect in t.flags:
- addSep(prag)
- prag.add("noSideEffect")
- if tfThread in t.flags:
- addSep(prag)
- prag.add("gcsafe")
- if prag.len != 0: result.add("{." & prag & ".}")
- of tyVarargs:
- result = typeToStr[t.kind] % typeToString(t[0])
- of tySink:
- result = "sink " & typeToString(t[0])
- of tyOwned:
- result = "owned " & typeToString(t[0])
- else:
- result = typeToStr[t.kind]
- result.addTypeFlags(t)
- result = typeToString(typ, prefer)
- proc firstOrd*(conf: ConfigRef; t: PType): Int128 =
- case t.kind
- of tyBool, tyChar, tySequence, tyOpenArray, tyString, tyVarargs, tyProxy:
- result = Zero
- of tySet, tyVar: result = firstOrd(conf, t[0])
- of tyArray: result = firstOrd(conf, t[0])
- of tyRange:
- assert(t.n != nil) # range directly given:
- assert(t.n.kind == nkRange)
- result = getOrdValue(t.n[0])
- of tyInt:
- if conf != nil and conf.target.intSize == 4:
- result = toInt128(-2147483648)
- else:
- result = toInt128(0x8000000000000000'i64)
- of tyInt8: result = toInt128(-128)
- of tyInt16: result = toInt128(-32768)
- of tyInt32: result = toInt128(-2147483648)
- of tyInt64: result = toInt128(0x8000000000000000'i64)
- of tyUInt..tyUInt64: result = Zero
- of tyEnum:
- # if basetype <> nil then return firstOrd of basetype
- if t.len > 0 and t[0] != nil:
- result = firstOrd(conf, t[0])
- else:
- if t.n.len > 0:
- assert(t.n[0].kind == nkSym)
- result = toInt128(t.n[0].sym.position)
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses, tyLent:
- result = firstOrd(conf, lastSon(t))
- of tyOrdinal:
- if t.len > 0: result = firstOrd(conf, lastSon(t))
- else: internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
- of tyUncheckedArray, tyCstring:
- result = Zero
- else:
- internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
- result = Zero
- proc firstFloat*(t: PType): BiggestFloat =
- case t.kind
- of tyFloat..tyFloat128: -Inf
- of tyRange:
- assert(t.n != nil) # range directly given:
- assert(t.n.kind == nkRange)
- getFloatValue(t.n[0])
- of tyVar: firstFloat(t[0])
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses:
- firstFloat(lastSon(t))
- else:
- internalError(newPartialConfigRef(), "invalid kind for firstFloat(" & $t.kind & ')')
- NaN
- proc lastOrd*(conf: ConfigRef; t: PType): Int128 =
- case t.kind
- of tyBool: result = toInt128(1'u)
- of tyChar: result = toInt128(255'u)
- of tySet, tyVar: result = lastOrd(conf, t[0])
- of tyArray: result = lastOrd(conf, t[0])
- of tyRange:
- assert(t.n != nil) # range directly given:
- assert(t.n.kind == nkRange)
- result = getOrdValue(t.n[1])
- of tyInt:
- if conf != nil and conf.target.intSize == 4: result = toInt128(0x7FFFFFFF)
- else: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
- of tyInt8: result = toInt128(0x0000007F)
- of tyInt16: result = toInt128(0x00007FFF)
- of tyInt32: result = toInt128(0x7FFFFFFF)
- of tyInt64: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
- of tyUInt:
- if conf != nil and conf.target.intSize == 4:
- result = toInt128(0xFFFFFFFF)
- else:
- result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
- of tyUInt8: result = toInt128(0xFF)
- of tyUInt16: result = toInt128(0xFFFF)
- of tyUInt32: result = toInt128(0xFFFFFFFF)
- of tyUInt64:
- result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
- of tyEnum:
- if t.n.len > 0:
- assert(t.n[^1].kind == nkSym)
- result = toInt128(t.n[^1].sym.position)
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses, tyLent:
- result = lastOrd(conf, lastSon(t))
- of tyProxy: result = Zero
- of tyOrdinal:
- if t.len > 0: result = lastOrd(conf, lastSon(t))
- else: internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
- of tyUncheckedArray:
- result = Zero
- else:
- internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
- result = Zero
- proc lastFloat*(t: PType): BiggestFloat =
- case t.kind
- of tyFloat..tyFloat128: Inf
- of tyVar: lastFloat(t[0])
- of tyRange:
- assert(t.n != nil) # range directly given:
- assert(t.n.kind == nkRange)
- getFloatValue(t.n[1])
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses:
- lastFloat(lastSon(t))
- else:
- internalError(newPartialConfigRef(), "invalid kind for lastFloat(" & $t.kind & ')')
- NaN
- proc floatRangeCheck*(x: BiggestFloat, t: PType): bool =
- case t.kind
- # This needs to be special cased since NaN is never
- # part of firstFloat(t)..lastFloat(t)
- of tyFloat..tyFloat128:
- true
- of tyRange:
- x in firstFloat(t)..lastFloat(t)
- of tyVar:
- floatRangeCheck(x, t[0])
- of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
- tyStatic, tyInferred, tyUserTypeClasses:
- floatRangeCheck(x, lastSon(t))
- else:
- internalError(newPartialConfigRef(), "invalid kind for floatRangeCheck:" & $t.kind)
- false
- proc lengthOrd*(conf: ConfigRef; t: PType): Int128 =
- if t.skipTypes(tyUserTypeClasses).kind == tyDistinct:
- result = lengthOrd(conf, t[0])
- else:
- let last = lastOrd(conf, t)
- let first = firstOrd(conf, t)
- result = last - first + One
- # -------------- type equality -----------------------------------------------
- type
- TDistinctCompare* = enum ## how distinct types are to be compared
- dcEq, ## a and b should be the same type
- dcEqIgnoreDistinct, ## compare symmetrically: (distinct a) == b, a == b
- ## or a == (distinct b)
- dcEqOrDistinctOf ## a equals b or a is distinct of b
- TTypeCmpFlag* = enum
- IgnoreTupleFields ## NOTE: Only set this flag for backends!
- IgnoreCC
- ExactTypeDescValues
- ExactGenericParams
- ExactConstraints
- ExactGcSafety
- AllowCommonBase
- PickyCAliases # be picky about the distinction between 'cint' and 'int32'
- TTypeCmpFlags* = set[TTypeCmpFlag]
- TSameTypeClosure = object
- cmp: TDistinctCompare
- recCheck: int
- flags: TTypeCmpFlags
- s: seq[tuple[a,b: int]] # seq for a set as it's hopefully faster
- # (few elements expected)
- proc initSameTypeClosure: TSameTypeClosure =
- # we do the initialization lazily for performance (avoids memory allocations)
- discard
- proc containsOrIncl(c: var TSameTypeClosure, a, b: PType): bool =
- result = c.s.len > 0 and c.s.contains((a.id, b.id))
- if not result:
- c.s.add((a.id, b.id))
- proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool
- proc sameTypeOrNilAux(a, b: PType, c: var TSameTypeClosure): bool =
- if a == b:
- result = true
- else:
- if a == nil or b == nil: result = false
- else: result = sameTypeAux(a, b, c)
- proc sameType*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
- var c = initSameTypeClosure()
- c.flags = flags
- result = sameTypeAux(a, b, c)
- proc sameTypeOrNil*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
- if a == b:
- result = true
- else:
- if a == nil or b == nil: result = false
- else: result = sameType(a, b, flags)
- proc equalParam(a, b: PSym): TParamsEquality =
- if sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}) and
- exprStructuralEquivalent(a.constraint, b.constraint):
- if a.ast == b.ast:
- result = paramsEqual
- elif a.ast != nil and b.ast != nil:
- if exprStructuralEquivalent(a.ast, b.ast): result = paramsEqual
- else: result = paramsIncompatible
- elif a.ast != nil:
- result = paramsEqual
- elif b.ast != nil:
- result = paramsIncompatible
- else:
- result = paramsNotEqual
- proc sameConstraints(a, b: PNode): bool =
- if isNil(a) and isNil(b): return true
- if a.len != b.len: return false
- for i in 1..<a.len:
- if not exprStructuralEquivalent(a[i].sym.constraint,
- b[i].sym.constraint):
- return false
- return true
- proc equalParams(a, b: PNode): TParamsEquality =
- result = paramsEqual
- if a.len != b.len:
- result = paramsNotEqual
- else:
- for i in 1..<a.len:
- var m = a[i].sym
- var n = b[i].sym
- assert((m.kind == skParam) and (n.kind == skParam))
- case equalParam(m, n)
- of paramsNotEqual:
- return paramsNotEqual
- of paramsEqual:
- discard
- of paramsIncompatible:
- result = paramsIncompatible
- if m.name.id != n.name.id:
- # BUGFIX
- return paramsNotEqual # paramsIncompatible;
- # continue traversal! If not equal, we can return immediately; else
- # it stays incompatible
- if not sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}):
- if (a.typ == nil) or (b.typ == nil):
- result = paramsNotEqual # one proc has a result, the other not is OK
- else:
- result = paramsIncompatible # overloading by different
- # result types does not work
- proc sameTuple(a, b: PType, c: var TSameTypeClosure): bool =
- # two tuples are equivalent iff the names, types and positions are the same;
- # however, both types may not have any field names (t.n may be nil) which
- # complicates the matter a bit.
- if a.len == b.len:
- result = true
- for i in 0..<a.len:
- var x = a[i]
- var y = b[i]
- if IgnoreTupleFields in c.flags:
- x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
- y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
- result = sameTypeAux(x, y, c)
- if not result: return
- if a.n != nil and b.n != nil and IgnoreTupleFields notin c.flags:
- for i in 0..<a.n.len:
- # check field names:
- if a.n[i].kind == nkSym and b.n[i].kind == nkSym:
- var x = a.n[i].sym
- var y = b.n[i].sym
- result = x.name.id == y.name.id
- if not result: break
- else:
- return false
- elif a.n != b.n and (a.n == nil or b.n == nil) and IgnoreTupleFields notin c.flags:
- result = false
- template ifFastObjectTypeCheckFailed(a, b: PType, body: untyped) =
- if tfFromGeneric notin a.flags + b.flags:
- # fast case: id comparison suffices:
- result = a.id == b.id
- else:
- # expensive structural equality test; however due to the way generic and
- # objects work, if one of the types does **not** contain tfFromGeneric,
- # they cannot be equal. The check ``a.sym.id == b.sym.id`` checks
- # for the same origin and is essential because we don't want "pure"
- # structural type equivalence:
- #
- # type
- # TA[T] = object
- # TB[T] = object
- # --> TA[int] != TB[int]
- if tfFromGeneric in a.flags * b.flags and a.sym.id == b.sym.id:
- # ok, we need the expensive structural check
- body
- proc sameObjectTypes*(a, b: PType): bool =
- # specialized for efficiency (sigmatch uses it)
- ifFastObjectTypeCheckFailed(a, b):
- var c = initSameTypeClosure()
- result = sameTypeAux(a, b, c)
- proc sameDistinctTypes*(a, b: PType): bool {.inline.} =
- result = sameObjectTypes(a, b)
- proc sameEnumTypes*(a, b: PType): bool {.inline.} =
- result = a.id == b.id
- proc sameObjectTree(a, b: PNode, c: var TSameTypeClosure): bool =
- if a == b:
- result = true
- elif a != nil and b != nil and a.kind == b.kind:
- var x = a.typ
- var y = b.typ
- if IgnoreTupleFields in c.flags:
- if x != nil: x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
- if y != nil: y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
- if sameTypeOrNilAux(x, y, c):
- case a.kind
- of nkSym:
- # same symbol as string is enough:
- result = a.sym.name.id == b.sym.name.id
- of nkIdent: result = a.ident.id == b.ident.id
- of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
- of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
- of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
- of nkEmpty, nkNilLit, nkType: result = true
- else:
- if a.len == b.len:
- for i in 0..<a.len:
- if not sameObjectTree(a[i], b[i], c): return
- result = true
- proc sameObjectStructures(a, b: PType, c: var TSameTypeClosure): bool =
- # check base types:
- if a.len != b.len: return
- for i in 0..<a.len:
- if not sameTypeOrNilAux(a[i], b[i], c): return
- if not sameObjectTree(a.n, b.n, c): return
- result = true
- proc sameChildrenAux(a, b: PType, c: var TSameTypeClosure): bool =
- if a.len != b.len: return false
- result = true
- for i in 0..<a.len:
- result = sameTypeOrNilAux(a[i], b[i], c)
- if not result: return
- proc isGenericAlias*(t: PType): bool =
- return t.kind == tyGenericInst and t.lastSon.kind == tyGenericInst
- proc skipGenericAlias*(t: PType): PType =
- return if t.isGenericAlias: t.lastSon else: t
- proc sameFlags*(a, b: PType): bool {.inline.} =
- result = eqTypeFlags*a.flags == eqTypeFlags*b.flags
- proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool =
- template cycleCheck() =
- # believe it or not, the direct check for ``containsOrIncl(c, a, b)``
- # increases bootstrapping time from 2.4s to 3.3s on my laptop! So we cheat
- # again: Since the recursion check is only to not get caught in an endless
- # recursion, we use a counter and only if it's value is over some
- # threshold we perform the expensive exact cycle check:
- if c.recCheck < 3:
- inc c.recCheck
- else:
- if containsOrIncl(c, a, b): return true
- if x == y: return true
- var a = skipTypes(x, {tyGenericInst, tyAlias})
- while a.kind == tyUserTypeClass and tfResolved in a.flags:
- a = skipTypes(a[^1], {tyGenericInst, tyAlias})
- var b = skipTypes(y, {tyGenericInst, tyAlias})
- while b.kind == tyUserTypeClass and tfResolved in b.flags:
- b = skipTypes(b[^1], {tyGenericInst, tyAlias})
- assert(a != nil)
- assert(b != nil)
- if a.kind != b.kind:
- case c.cmp
- of dcEq: return false
- of dcEqIgnoreDistinct:
- a = a.skipTypes({tyDistinct, tyGenericInst})
- b = b.skipTypes({tyDistinct, tyGenericInst})
- if a.kind != b.kind: return false
- of dcEqOrDistinctOf:
- a = a.skipTypes({tyDistinct, tyGenericInst})
- if a.kind != b.kind: return false
- #[
- The following code should not run in the case either side is an generic alias,
- but it's not presently possible to distinguish the genericinsts from aliases of
- objects ie `type A[T] = SomeObject`
- ]#
- # this is required by tunique_type but makes no sense really:
- if tyDistinct notin {x.kind, y.kind} and x.kind == tyGenericInst and IgnoreTupleFields notin c.flags:
- let
- lhs = x.skipGenericAlias
- rhs = y.skipGenericAlias
- if rhs.kind != tyGenericInst or lhs.base != rhs.base:
- return false
- for i in 1..<lhs.len - 1:
- let ff = rhs[i]
- let aa = lhs[i]
- if not sameTypeAux(ff, aa, c): return false
- return true
- case a.kind
- of tyEmpty, tyChar, tyBool, tyNil, tyPointer, tyString, tyCstring,
- tyInt..tyUInt64, tyTyped, tyUntyped, tyVoid:
- result = sameFlags(a, b)
- if result and {PickyCAliases, ExactTypeDescValues} <= c.flags:
- # additional requirement for the caching of generics for importc'ed types:
- # the symbols must be identical too:
- let symFlagsA = if a.sym != nil: a.sym.flags else: {}
- let symFlagsB = if b.sym != nil: b.sym.flags else: {}
- if (symFlagsA+symFlagsB) * {sfImportc, sfExportc} != {}:
- result = symFlagsA == symFlagsB
- of tyStatic, tyFromExpr:
- result = exprStructuralEquivalent(a.n, b.n) and sameFlags(a, b)
- if result and a.len == b.len and a.len == 1:
- cycleCheck()
- result = sameTypeAux(a[0], b[0], c)
- of tyObject:
- ifFastObjectTypeCheckFailed(a, b):
- cycleCheck()
- result = sameObjectStructures(a, b, c) and sameFlags(a, b)
- of tyDistinct:
- cycleCheck()
- if c.cmp == dcEq:
- if sameFlags(a, b):
- ifFastObjectTypeCheckFailed(a, b):
- result = sameTypeAux(a[0], b[0], c)
- else:
- result = sameTypeAux(a[0], b[0], c) and sameFlags(a, b)
- of tyEnum, tyForward:
- # XXX generic enums do not make much sense, but require structural checking
- result = a.id == b.id and sameFlags(a, b)
- of tyError:
- result = b.kind == tyError
- of tyTuple:
- cycleCheck()
- result = sameTuple(a, b, c) and sameFlags(a, b)
- of tyTypeDesc:
- if c.cmp == dcEqIgnoreDistinct: result = false
- elif ExactTypeDescValues in c.flags:
- cycleCheck()
- result = sameChildrenAux(x, y, c) and sameFlags(a, b)
- else:
- result = sameFlags(a, b)
- of tyGenericParam:
- result = sameChildrenAux(a, b, c) and sameFlags(a, b)
- if result and {ExactGenericParams, ExactTypeDescValues} * c.flags != {}:
- result = a.sym.position == b.sym.position
- of tyBuiltInTypeClass:
- assert a.len == 1
- assert a[0].len == 0
- assert b.len == 1
- assert b[0].len == 0
- result = a[0].kind == b[0].kind
- of tyGenericInvocation, tyGenericBody, tySequence, tyOpenArray, tySet, tyRef,
- tyPtr, tyVar, tyLent, tySink, tyUncheckedArray, tyArray, tyProc, tyVarargs,
- tyOrdinal, tyCompositeTypeClass, tyUserTypeClass, tyUserTypeClassInst,
- tyAnd, tyOr, tyNot, tyAnything, tyOwned:
- cycleCheck()
- if a.kind == tyUserTypeClass and a.n != nil: return a.n == b.n
- result = sameChildrenAux(a, b, c)
- if result:
- if IgnoreTupleFields in c.flags:
- result = a.flags * {tfVarIsPtr, tfIsOutParam} == b.flags * {tfVarIsPtr, tfIsOutParam}
- else:
- result = sameFlags(a, b)
- if result and ExactGcSafety in c.flags:
- result = a.flags * {tfThread} == b.flags * {tfThread}
- if result and a.kind == tyProc:
- result = ((IgnoreCC in c.flags) or a.callConv == b.callConv) and
- ((ExactConstraints notin c.flags) or sameConstraints(a.n, b.n))
- of tyRange:
- cycleCheck()
- result = sameTypeOrNilAux(a[0], b[0], c) and
- sameValue(a.n[0], b.n[0]) and
- sameValue(a.n[1], b.n[1])
- of tyGenericInst, tyAlias, tyInferred, tyIterable:
- cycleCheck()
- result = sameTypeAux(a.lastSon, b.lastSon, c)
- of tyNone: result = false
- of tyConcept:
- result = exprStructuralEquivalent(a.n, b.n)
- proc sameBackendType*(x, y: PType): bool =
- var c = initSameTypeClosure()
- c.flags.incl IgnoreTupleFields
- c.cmp = dcEqIgnoreDistinct
- result = sameTypeAux(x, y, c)
- proc compareTypes*(x, y: PType,
- cmp: TDistinctCompare = dcEq,
- flags: TTypeCmpFlags = {}): bool =
- ## compares two type for equality (modulo type distinction)
- var c = initSameTypeClosure()
- c.cmp = cmp
- c.flags = flags
- if x == y: result = true
- elif x.isNil or y.isNil: result = false
- else: result = sameTypeAux(x, y, c)
- proc inheritanceDiff*(a, b: PType): int =
- # | returns: 0 iff `a` == `b`
- # | returns: -x iff `a` is the x'th direct superclass of `b`
- # | returns: +x iff `a` is the x'th direct subclass of `b`
- # | returns: `maxint` iff `a` and `b` are not compatible at all
- if a == b or a.kind == tyError or b.kind == tyError: return 0
- assert a.kind in {tyObject} + skipPtrs
- assert b.kind in {tyObject} + skipPtrs
- var x = a
- result = 0
- while x != nil:
- x = skipTypes(x, skipPtrs)
- if sameObjectTypes(x, b): return
- x = x[0]
- dec(result)
- var y = b
- result = 0
- while y != nil:
- y = skipTypes(y, skipPtrs)
- if sameObjectTypes(y, a): return
- y = y[0]
- inc(result)
- result = high(int)
- proc commonSuperclass*(a, b: PType): PType =
- # quick check: are they the same?
- if sameObjectTypes(a, b): return a
- # simple algorithm: we store all ancestors of 'a' in a ID-set and walk 'b'
- # up until the ID is found:
- assert a.kind == tyObject
- assert b.kind == tyObject
- var x = a
- var ancestors = initIntSet()
- while x != nil:
- x = skipTypes(x, skipPtrs)
- ancestors.incl(x.id)
- x = x[0]
- var y = b
- while y != nil:
- var t = y # bug #7818, save type before skip
- y = skipTypes(y, skipPtrs)
- if ancestors.contains(y.id):
- # bug #7818, defer the previous skipTypes
- if t.kind != tyGenericInst: t = y
- return t
- y = y[0]
- proc matchType*(a: PType, pattern: openArray[tuple[k:TTypeKind, i:int]],
- last: TTypeKind): bool =
- var a = a
- for k, i in pattern.items:
- if a.kind != k: return false
- if i >= a.len or a[i] == nil: return false
- a = a[i]
- result = a.kind == last
- include sizealignoffsetimpl
- proc computeSize*(conf: ConfigRef; typ: PType): BiggestInt =
- computeSizeAlign(conf, typ)
- result = typ.size
- proc getReturnType*(s: PSym): PType =
- # Obtains the return type of a iterator/proc/macro/template
- assert s.kind in skProcKinds
- result = s.typ[0]
- proc getAlign*(conf: ConfigRef; typ: PType): BiggestInt =
- computeSizeAlign(conf, typ)
- result = typ.align
- proc getSize*(conf: ConfigRef; typ: PType): BiggestInt =
- computeSizeAlign(conf, typ)
- result = typ.size
- proc containsGenericTypeIter(t: PType, closure: RootRef): bool =
- case t.kind
- of tyStatic:
- return t.n == nil
- of tyTypeDesc:
- if t.base.kind == tyNone: return true
- if containsGenericTypeIter(t.base, closure): return true
- return false
- of GenericTypes + tyTypeClasses + {tyFromExpr}:
- return true
- else:
- return false
- proc containsGenericType*(t: PType): bool =
- result = iterOverType(t, containsGenericTypeIter, nil)
- proc baseOfDistinct*(t: PType; g: ModuleGraph; idgen: IdGenerator): PType =
- if t.kind == tyDistinct:
- result = t[0]
- else:
- result = copyType(t, nextTypeId idgen, t.owner)
- copyTypeProps(g, idgen.module, result, t)
- var parent: PType = nil
- var it = result
- while it.kind in {tyPtr, tyRef, tyOwned}:
- parent = it
- it = it.lastSon
- if it.kind == tyDistinct and parent != nil:
- parent[0] = it[0]
- proc safeInheritanceDiff*(a, b: PType): int =
- # same as inheritanceDiff but checks for tyError:
- if a.kind == tyError or b.kind == tyError:
- result = -1
- else:
- result = inheritanceDiff(a.skipTypes(skipPtrs), b.skipTypes(skipPtrs))
- proc compatibleEffectsAux(se, re: PNode): bool =
- if re.isNil: return false
- for r in items(re):
- block search:
- for s in items(se):
- if safeInheritanceDiff(r.typ, s.typ) <= 0:
- break search
- return false
- result = true
- proc hasIncompatibleEffect(se, re: PNode): bool =
- if re.isNil: return false
- for r in items(re):
- for s in items(se):
- if safeInheritanceDiff(r.typ, s.typ) != high(int):
- return true
- type
- EffectsCompat* = enum
- efCompat
- efRaisesDiffer
- efRaisesUnknown
- efTagsDiffer
- efTagsUnknown
- efEffectsDelayed
- efTagsIllegal
- proc compatibleEffects*(formal, actual: PType): EffectsCompat =
- # for proc type compatibility checking:
- assert formal.kind == tyProc and actual.kind == tyProc
- #if tfEffectSystemWorkaround in actual.flags:
- # return efCompat
- if formal.n[0].kind != nkEffectList or
- actual.n[0].kind != nkEffectList:
- return efTagsUnknown
- var spec = formal.n[0]
- if spec.len != 0:
- var real = actual.n[0]
- let se = spec[exceptionEffects]
- # if 'se.kind == nkArgList' it is no formal type really, but a
- # computed effect and as such no spec:
- # 'r.msgHandler = if isNil(msgHandler): defaultMsgHandler else: msgHandler'
- if not isNil(se) and se.kind != nkArgList:
- # spec requires some exception or tag, but we don't know anything:
- if real.len == 0: return efRaisesUnknown
- let res = compatibleEffectsAux(se, real[exceptionEffects])
- if not res: return efRaisesDiffer
- let st = spec[tagEffects]
- if not isNil(st) and st.kind != nkArgList:
- # spec requires some exception or tag, but we don't know anything:
- if real.len == 0: return efTagsUnknown
- let res = compatibleEffectsAux(st, real[tagEffects])
- if not res:
- #if tfEffectSystemWorkaround notin actual.flags:
- return efTagsDiffer
- let sn = spec[forbiddenEffects]
- if not isNil(sn) and sn.kind != nkArgList:
- if 0 == real.len:
- return efTagsUnknown
- elif hasIncompatibleEffect(sn, real[tagEffects]):
- return efTagsIllegal
- for i in 1 ..< min(formal.n.len, actual.n.len):
- if formal.n[i].sym.flags * {sfEffectsDelayed} != actual.n[i].sym.flags * {sfEffectsDelayed}:
- result = efEffectsDelayed
- break
- result = efCompat
- proc isCompileTimeOnly*(t: PType): bool {.inline.} =
- result = t.kind in {tyTypeDesc, tyStatic}
- proc containsCompileTimeOnly*(t: PType): bool =
- if isCompileTimeOnly(t): return true
- for i in 0..<t.len:
- if t[i] != nil and isCompileTimeOnly(t[i]):
- return true
- return false
- proc safeSkipTypes*(t: PType, kinds: TTypeKinds): PType =
- ## same as 'skipTypes' but with a simple cycle detector.
- result = t
- var seen = initIntSet()
- while result.kind in kinds and not containsOrIncl(seen, result.id):
- result = lastSon(result)
- type
- OrdinalType* = enum
- NoneLike, IntLike, FloatLike
- proc classify*(t: PType): OrdinalType =
- ## for convenient type checking:
- if t == nil:
- result = NoneLike
- else:
- case skipTypes(t, abstractVarRange).kind
- of tyFloat..tyFloat128: result = FloatLike
- of tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyChar, tyEnum:
- result = IntLike
- else: result = NoneLike
- proc skipConv*(n: PNode): PNode =
- result = n
- case n.kind
- of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
- # only skip the conversion if it doesn't lose too important information
- # (see bug #1334)
- if n[0].typ.classify == n.typ.classify:
- result = n[0]
- of nkHiddenStdConv, nkHiddenSubConv, nkConv:
- if n[1].typ.classify == n.typ.classify:
- result = n[1]
- else: discard
- proc skipHidden*(n: PNode): PNode =
- result = n
- while true:
- case result.kind
- of nkHiddenStdConv, nkHiddenSubConv:
- if result[1].typ.classify == result.typ.classify:
- result = result[1]
- else: break
- of nkHiddenDeref, nkHiddenAddr:
- result = result[0]
- else: break
- proc skipConvTakeType*(n: PNode): PNode =
- result = n.skipConv
- result.typ = n.typ
- proc isEmptyContainer*(t: PType): bool =
- case t.kind
- of tyUntyped, tyNil: result = true
- of tyArray: result = t[1].kind == tyEmpty
- of tySet, tySequence, tyOpenArray, tyVarargs:
- result = t[0].kind == tyEmpty
- of tyGenericInst, tyAlias, tySink: result = isEmptyContainer(t.lastSon)
- else: result = false
- proc takeType*(formal, arg: PType; g: ModuleGraph; idgen: IdGenerator): PType =
- # param: openArray[string] = []
- # [] is an array constructor of length 0 of type string!
- if arg.kind == tyNil:
- # and not (formal.kind == tyProc and formal.callConv == ccClosure):
- result = formal
- elif formal.kind in {tyOpenArray, tyVarargs, tySequence} and
- arg.isEmptyContainer:
- let a = copyType(arg.skipTypes({tyGenericInst, tyAlias}), nextTypeId(idgen), arg.owner)
- copyTypeProps(g, idgen.module, a, arg)
- a[ord(arg.kind == tyArray)] = formal[0]
- result = a
- elif formal.kind in {tyTuple, tySet} and arg.kind == formal.kind:
- result = formal
- else:
- result = arg
- proc skipHiddenSubConv*(n: PNode; g: ModuleGraph; idgen: IdGenerator): PNode =
- if n.kind == nkHiddenSubConv:
- # param: openArray[string] = []
- # [] is an array constructor of length 0 of type string!
- let formal = n.typ
- result = n[1]
- let arg = result.typ
- let dest = takeType(formal, arg, g, idgen)
- if dest == arg and formal.kind != tyUntyped:
- #echo n.info, " came here for ", formal.typeToString
- result = n
- else:
- result = copyTree(result)
- result.typ = dest
- else:
- result = n
- proc getProcConvMismatch*(c: ConfigRef, f, a: PType, rel = isNone): (set[ProcConvMismatch], TTypeRelation) =
- ## Returns a set of the reason of mismatch, and the relation for conversion.
- result[1] = rel
- if tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
- # Formal is pure, but actual is not
- result[0].incl pcmNoSideEffect
- result[1] = isNone
- if tfThread in f.flags and a.flags * {tfThread, tfNoSideEffect} == {} and
- optThreadAnalysis in c.globalOptions:
- # noSideEffect implies ``tfThread``!
- result[0].incl pcmNotGcSafe
- result[1] = isNone
- if f.flags * {tfIterator} != a.flags * {tfIterator}:
- # One of them is an iterator so not convertible
- result[0].incl pcmNotIterator
- result[1] = isNone
- if f.callConv != a.callConv:
- # valid to pass a 'nimcall' thingie to 'closure':
- if f.callConv == ccClosure and a.callConv == ccNimCall:
- case result[1]
- of isInferred: result[1] = isInferredConvertible
- of isBothMetaConvertible: result[1] = isBothMetaConvertible
- elif result[1] != isNone: result[1] = isConvertible
- else: result[0].incl pcmDifferentCallConv
- else:
- result[1] = isNone
- result[0].incl pcmDifferentCallConv
- proc addPragmaAndCallConvMismatch*(message: var string, formal, actual: PType, conf: ConfigRef) =
- assert formal.kind == tyProc and actual.kind == tyProc
- let (convMismatch, _) = getProcConvMismatch(conf, formal, actual)
- var
- gotPragmas = ""
- expectedPragmas = ""
- for reason in convMismatch:
- case reason
- of pcmDifferentCallConv:
- message.add "\n Calling convention mismatch: got '{.$1.}', but expected '{.$2.}'." % [$actual.callConv, $formal.callConv]
- of pcmNoSideEffect:
- expectedPragmas.add "noSideEffect, "
- of pcmNotGcSafe:
- expectedPragmas.add "gcsafe, "
- of pcmNotIterator: discard
- if expectedPragmas.len > 0:
- gotPragmas.setLen(max(0, gotPragmas.len - 2)) # Remove ", "
- expectedPragmas.setLen(max(0, expectedPragmas.len - 2)) # Remove ", "
- message.add "\n Pragma mismatch: got '{.$1.}', but expected '{.$2.}'." % [gotPragmas, expectedPragmas]
- proc processPragmaAndCallConvMismatch(msg: var string, formal, actual: PType, conf: ConfigRef) =
- if formal.kind == tyProc and actual.kind == tyProc:
- msg.addPragmaAndCallConvMismatch(formal, actual, conf)
- case compatibleEffects(formal, actual)
- of efCompat: discard
- of efRaisesDiffer:
- msg.add "\n.raise effects differ"
- of efRaisesUnknown:
- msg.add "\n.raise effect is 'can raise any'"
- of efTagsDiffer:
- msg.add "\n.tag effects differ"
- of efTagsUnknown:
- msg.add "\n.tag effect is 'any tag allowed'"
- of efEffectsDelayed:
- msg.add "\n.effectsOf annotations differ"
- of efTagsIllegal:
- msg.add "\n.notTag catched an illegal effect"
- proc typeMismatch*(conf: ConfigRef; info: TLineInfo, formal, actual: PType, n: PNode) =
- if formal.kind != tyError and actual.kind != tyError:
- let actualStr = typeToString(actual)
- let formalStr = typeToString(formal)
- let desc = typeToString(formal, preferDesc)
- let x = if formalStr == desc: formalStr else: formalStr & " = " & desc
- let verbose = actualStr == formalStr or optDeclaredLocs in conf.globalOptions
- var msg = "type mismatch:"
- if verbose: msg.add "\n"
- if conf.isDefined("nimLegacyTypeMismatch"):
- msg.add " got <$1>" % actualStr
- else:
- msg.add " got '$1' for '$2'" % [actualStr, n.renderTree]
- if verbose:
- msg.addDeclaredLoc(conf, actual)
- msg.add "\n"
- msg.add " but expected '$1'" % x
- if verbose: msg.addDeclaredLoc(conf, formal)
- var a = formal
- var b = actual
- if formal.kind == tyArray and actual.kind == tyArray:
- a = formal[1]
- b = actual[1]
- processPragmaAndCallConvMismatch(msg, a, b, conf)
- elif formal.kind == tySequence and actual.kind == tySequence:
- a = formal[0]
- b = actual[0]
- processPragmaAndCallConvMismatch(msg, a, b, conf)
- else:
- processPragmaAndCallConvMismatch(msg, a, b, conf)
- localError(conf, info, msg)
- proc isTupleRecursive(t: PType, cycleDetector: var IntSet): bool =
- if t == nil:
- return false
- if cycleDetector.containsOrIncl(t.id):
- return true
- case t.kind
- of tyTuple:
- var cycleDetectorCopy: IntSet
- for i in 0..<t.len:
- assign(cycleDetectorCopy, cycleDetector)
- if isTupleRecursive(t[i], cycleDetectorCopy):
- return true
- of tyAlias, tyRef, tyPtr, tyGenericInst, tyVar, tyLent, tySink,
- tyArray, tyUncheckedArray, tySequence, tyDistinct:
- return isTupleRecursive(t.lastSon, cycleDetector)
- else:
- return false
- proc isTupleRecursive*(t: PType): bool =
- var cycleDetector = initIntSet()
- isTupleRecursive(t, cycleDetector)
- proc isException*(t: PType): bool =
- # check if `y` is object type and it inherits from Exception
- assert(t != nil)
- var t = t.skipTypes(abstractInst)
- while t.kind == tyObject:
- if t.sym != nil and t.sym.magic == mException: return true
- if t[0] == nil: break
- t = skipTypes(t[0], abstractPtrs)
- return false
- proc isDefectException*(t: PType): bool =
- var t = t.skipTypes(abstractPtrs)
- while t.kind == tyObject:
- if t.sym != nil and t.sym.owner != nil and
- sfSystemModule in t.sym.owner.flags and
- t.sym.name.s == "Defect":
- return true
- if t[0] == nil: break
- t = skipTypes(t[0], abstractPtrs)
- return false
- proc isSinkTypeForParam*(t: PType): bool =
- # a parameter like 'seq[owned T]' must not be used only once, but its
- # elements must, so we detect this case here:
- result = t.skipTypes({tyGenericInst, tyAlias}).kind in {tySink, tyOwned}
- when false:
- if isSinkType(t):
- if t.skipTypes({tyGenericInst, tyAlias}).kind in {tyArray, tyVarargs, tyOpenArray, tySequence}:
- result = false
- else:
- result = true
- proc lookupFieldAgain*(ty: PType; field: PSym): PSym =
- var ty = ty
- while ty != nil:
- ty = ty.skipTypes(skipPtrs)
- assert(ty.kind in {tyTuple, tyObject})
- result = lookupInRecord(ty.n, field.name)
- if result != nil: break
- ty = ty[0]
- if result == nil: result = field
- proc isCharArrayPtr*(t: PType; allowPointerToChar: bool): bool =
- let t = t.skipTypes(abstractInst)
- if t.kind == tyPtr:
- let pointsTo = t[0].skipTypes(abstractInst)
- case pointsTo.kind
- of tyUncheckedArray:
- result = pointsTo[0].kind == tyChar
- of tyArray:
- result = pointsTo[1].kind == tyChar and firstOrd(nil, pointsTo[0]) == 0 and
- skipTypes(pointsTo[0], {tyRange}).kind in {tyInt..tyInt64}
- of tyChar:
- result = allowPointerToChar
- else:
- discard
- proc lacksMTypeField*(typ: PType): bool {.inline.} =
- (typ.sym != nil and sfPure in typ.sym.flags) or tfFinal in typ.flags
|