123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2010 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements complex numbers.
- {.push checks:off, line_dir:off, stack_trace:off, debugger:off.}
- # the user does not want to trace a part
- # of the standard library!
- import
- math
- const
- EPS = 1.0e-7 ## Epsilon used for float comparisons.
- type
- Complex* = tuple[re, im: float]
- ## a complex number, consisting of a real and an imaginary part
- const
- im*: Complex = (re: 0.0, im: 1.0)
- ## The imaginary unit. √-1.
- proc toComplex*(x: SomeInteger): Complex =
- ## Convert some integer ``x`` to a complex number.
- result.re = x
- result.im = 0
- proc `==` *(x, y: Complex): bool =
- ## Compare two complex numbers `x` and `y` for equality.
- result = x.re == y.re and x.im == y.im
- proc `=~` *(x, y: Complex): bool =
- ## Compare two complex numbers `x` and `y` approximately.
- result = abs(x.re-y.re)<EPS and abs(x.im-y.im)<EPS
- proc `+` *(x, y: Complex): Complex =
- ## Add two complex numbers.
- result.re = x.re + y.re
- result.im = x.im + y.im
- proc `+` *(x: Complex, y: float): Complex =
- ## Add complex `x` to float `y`.
- result.re = x.re + y
- result.im = x.im
- proc `+` *(x: float, y: Complex): Complex =
- ## Add float `x` to complex `y`.
- result.re = x + y.re
- result.im = y.im
- proc `-` *(z: Complex): Complex =
- ## Unary minus for complex numbers.
- result.re = -z.re
- result.im = -z.im
- proc `-` *(x, y: Complex): Complex =
- ## Subtract two complex numbers.
- result.re = x.re - y.re
- result.im = x.im - y.im
- proc `-` *(x: Complex, y: float): Complex =
- ## Subtracts float `y` from complex `x`.
- result = x + (-y)
- proc `-` *(x: float, y: Complex): Complex =
- ## Subtracts complex `y` from float `x`.
- result = x + (-y)
- proc `/` *(x, y: Complex): Complex =
- ## Divide `x` by `y`.
- var
- r, den: float
- if abs(y.re) < abs(y.im):
- r = y.re / y.im
- den = y.im + r * y.re
- result.re = (x.re * r + x.im) / den
- result.im = (x.im * r - x.re) / den
- else:
- r = y.im / y.re
- den = y.re + r * y.im
- result.re = (x.re + r * x.im) / den
- result.im = (x.im - r * x.re) / den
- proc `/` *(x : Complex, y: float ): Complex =
- ## Divide complex `x` by float `y`.
- result.re = x.re/y
- result.im = x.im/y
- proc `/` *(x : float, y: Complex ): Complex =
- ## Divide float `x` by complex `y`.
- var num : Complex = (x, 0.0)
- result = num/y
- proc `*` *(x, y: Complex): Complex =
- ## Multiply `x` with `y`.
- result.re = x.re * y.re - x.im * y.im
- result.im = x.im * y.re + x.re * y.im
- proc `*` *(x: float, y: Complex): Complex =
- ## Multiply float `x` with complex `y`.
- result.re = x * y.re
- result.im = x * y.im
- proc `*` *(x: Complex, y: float): Complex =
- ## Multiply complex `x` with float `y`.
- result.re = x.re * y
- result.im = x.im * y
- proc `+=` *(x: var Complex, y: Complex) =
- ## Add `y` to `x`.
- x.re += y.re
- x.im += y.im
- proc `+=` *(x: var Complex, y: float) =
- ## Add `y` to the complex number `x`.
- x.re += y
- proc `-=` *(x: var Complex, y: Complex) =
- ## Subtract `y` from `x`.
- x.re -= y.re
- x.im -= y.im
- proc `-=` *(x: var Complex, y: float) =
- ## Subtract `y` from the complex number `x`.
- x.re -= y
- proc `*=` *(x: var Complex, y: Complex) =
- ## Multiply `y` to `x`.
- let im = x.im * y.re + x.re * y.im
- x.re = x.re * y.re - x.im * y.im
- x.im = im
- proc `*=` *(x: var Complex, y: float) =
- ## Multiply `y` to the complex number `x`.
- x.re *= y
- x.im *= y
- proc `/=` *(x: var Complex, y: Complex) =
- ## Divide `x` by `y` in place.
- x = x / y
- proc `/=` *(x : var Complex, y: float) =
- ## Divide complex `x` by float `y` in place.
- x.re /= y
- x.im /= y
- proc abs*(z: Complex): float =
- ## Return the distance from (0,0) to `z`.
- # optimized by checking special cases (sqrt is expensive)
- var x, y, temp: float
- x = abs(z.re)
- y = abs(z.im)
- if x == 0.0:
- result = y
- elif y == 0.0:
- result = x
- elif x > y:
- temp = y / x
- result = x * sqrt(1.0 + temp * temp)
- else:
- temp = x / y
- result = y * sqrt(1.0 + temp * temp)
- proc conjugate*(z: Complex): Complex =
- ## Conjugate of complex number `z`.
- result.re = z.re
- result.im = -z.im
- proc sqrt*(z: Complex): Complex =
- ## Square root for a complex number `z`.
- var x, y, w, r: float
- if z.re == 0.0 and z.im == 0.0:
- result = z
- else:
- x = abs(z.re)
- y = abs(z.im)
- if x >= y:
- r = y / x
- w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
- else:
- r = x / y
- w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
- if z.re >= 0.0:
- result.re = w
- result.im = z.im / (w * 2.0)
- else:
- if z.im >= 0.0: result.im = w
- else: result.im = -w
- result.re = z.im / (result.im + result.im)
- proc exp*(z: Complex): Complex =
- ## e raised to the power `z`.
- var rho = exp(z.re)
- var theta = z.im
- result.re = rho*cos(theta)
- result.im = rho*sin(theta)
- proc ln*(z: Complex): Complex =
- ## Returns the natural log of `z`.
- result.re = ln(abs(z))
- result.im = arctan2(z.im,z.re)
- proc log10*(z: Complex): Complex =
- ## Returns the log base 10 of `z`.
- result = ln(z)/ln(10.0)
- proc log2*(z: Complex): Complex =
- ## Returns the log base 2 of `z`.
- result = ln(z)/ln(2.0)
- proc pow*(x, y: Complex): Complex =
- ## `x` raised to the power `y`.
- if x.re == 0.0 and x.im == 0.0:
- if y.re == 0.0 and y.im == 0.0:
- result.re = 1.0
- result.im = 0.0
- else:
- result.re = 0.0
- result.im = 0.0
- elif y.re == 1.0 and y.im == 0.0:
- result = x
- elif y.re == -1.0 and y.im == 0.0:
- result = 1.0/x
- else:
- var rho = sqrt(x.re*x.re + x.im*x.im)
- var theta = arctan2(x.im,x.re)
- var s = pow(rho,y.re) * exp(-y.im*theta)
- var r = y.re*theta + y.im*ln(rho)
- result.re = s*cos(r)
- result.im = s*sin(r)
- proc sin*(z: Complex): Complex =
- ## Returns the sine of `z`.
- result.re = sin(z.re)*cosh(z.im)
- result.im = cos(z.re)*sinh(z.im)
- proc arcsin*(z: Complex): Complex =
- ## Returns the inverse sine of `z`.
- var i: Complex = (0.0,1.0)
- result = -i*ln(i*z + sqrt(1.0-z*z))
- proc cos*(z: Complex): Complex =
- ## Returns the cosine of `z`.
- result.re = cos(z.re)*cosh(z.im)
- result.im = -sin(z.re)*sinh(z.im)
- proc arccos*(z: Complex): Complex =
- ## Returns the inverse cosine of `z`.
- var i: Complex = (0.0,1.0)
- result = -i*ln(z + sqrt(z*z-1.0))
- proc tan*(z: Complex): Complex =
- ## Returns the tangent of `z`.
- result = sin(z)/cos(z)
- proc arctan*(z: Complex): Complex =
- ## Returns the inverse tangent of `z`.
- var i: Complex = (0.0,1.0)
- result = 0.5*i*(ln(1-i*z)-ln(1+i*z))
- proc cot*(z: Complex): Complex =
- ## Returns the cotangent of `z`.
- result = cos(z)/sin(z)
- proc arccot*(z: Complex): Complex =
- ## Returns the inverse cotangent of `z`.
- var i: Complex = (0.0,1.0)
- result = 0.5*i*(ln(1-i/z)-ln(1+i/z))
- proc sec*(z: Complex): Complex =
- ## Returns the secant of `z`.
- result = 1.0/cos(z)
- proc arcsec*(z: Complex): Complex =
- ## Returns the inverse secant of `z`.
- var i: Complex = (0.0,1.0)
- result = -i*ln(i*sqrt(1-1/(z*z))+1/z)
- proc csc*(z: Complex): Complex =
- ## Returns the cosecant of `z`.
- result = 1.0/sin(z)
- proc arccsc*(z: Complex): Complex =
- ## Returns the inverse cosecant of `z`.
- var i: Complex = (0.0,1.0)
- result = -i*ln(sqrt(1-1/(z*z))+i/z)
- proc sinh*(z: Complex): Complex =
- ## Returns the hyperbolic sine of `z`.
- result = 0.5*(exp(z)-exp(-z))
- proc arcsinh*(z: Complex): Complex =
- ## Returns the inverse hyperbolic sine of `z`.
- result = ln(z+sqrt(z*z+1))
- proc cosh*(z: Complex): Complex =
- ## Returns the hyperbolic cosine of `z`.
- result = 0.5*(exp(z)+exp(-z))
- proc arccosh*(z: Complex): Complex =
- ## Returns the inverse hyperbolic cosine of `z`.
- result = ln(z+sqrt(z*z-1))
- proc tanh*(z: Complex): Complex =
- ## Returns the hyperbolic tangent of `z`.
- result = sinh(z)/cosh(z)
- proc arctanh*(z: Complex): Complex =
- ## Returns the inverse hyperbolic tangent of `z`.
- result = 0.5*(ln((1+z)/(1-z)))
- proc sech*(z: Complex): Complex =
- ## Returns the hyperbolic secant of `z`.
- result = 2/(exp(z)+exp(-z))
- proc arcsech*(z: Complex): Complex =
- ## Returns the inverse hyperbolic secant of `z`.
- result = ln(1/z+sqrt(1/z+1)*sqrt(1/z-1))
- proc csch*(z: Complex): Complex =
- ## Returns the hyperbolic cosecant of `z`.
- result = 2/(exp(z)-exp(-z))
- proc arccsch*(z: Complex): Complex =
- ## Returns the inverse hyperbolic cosecant of `z`.
- result = ln(1/z+sqrt(1/(z*z)+1))
- proc coth*(z: Complex): Complex =
- ## Returns the hyperbolic cotangent of `z`.
- result = cosh(z)/sinh(z)
- proc arccoth*(z: Complex): Complex =
- ## Returns the inverse hyperbolic cotangent of `z`.
- result = 0.5*(ln(1+1/z)-ln(1-1/z))
- proc phase*(z: Complex): float =
- ## Returns the phase of `z`.
- arctan2(z.im, z.re)
- proc polar*(z: Complex): tuple[r, phi: float] =
- ## Returns `z` in polar coordinates.
- result.r = abs(z)
- result.phi = phase(z)
- proc rect*(r: float, phi: float): Complex =
- ## Returns the complex number with polar coordinates `r` and `phi`.
- result.re = r * cos(phi)
- result.im = r * sin(phi)
- proc `$`*(z: Complex): string =
- ## Returns `z`'s string representation as ``"(re, im)"``.
- result = "(" & $z.re & ", " & $z.im & ")"
- {.pop.}
- when isMainModule:
- var z = (0.0, 0.0)
- var oo = (1.0,1.0)
- var a = (1.0, 2.0)
- var b = (-1.0, -2.0)
- var m1 = (-1.0, 0.0)
- var i = (0.0,1.0)
- var one = (1.0,0.0)
- var tt = (10.0, 20.0)
- var ipi = (0.0, -PI)
- assert( a == a )
- assert( (a-a) == z )
- assert( (a+b) == z )
- assert( (a/b) == m1 )
- assert( (1.0/a) == (0.2, -0.4) )
- assert( (a*b) == (3.0, -4.0) )
- assert( 10.0*a == tt )
- assert( a*10.0 == tt )
- assert( tt/10.0 == a )
- assert( oo+(-1.0) == i )
- assert( (-1.0)+oo == i )
- assert( abs(oo) == sqrt(2.0) )
- assert( conjugate(a) == (1.0, -2.0) )
- assert( sqrt(m1) == i )
- assert( exp(ipi) =~ m1 )
- assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) )
- assert( pow(z,a) =~ (0.0, 0.0) )
- assert( pow(z,z) =~ (1.0, 0.0) )
- assert( pow(a,one) =~ a )
- assert( pow(a,m1) =~ (0.2, -0.4) )
- assert( ln(a) =~ (0.804718956217050, 1.107148717794090) )
- assert( log10(a) =~ (0.349485002168009, 0.480828578784234) )
- assert( log2(a) =~ (1.16096404744368, 1.59727796468811) )
- assert( sin(a) =~ (3.16577851321617, 1.95960104142161) )
- assert( cos(a) =~ (2.03272300701967, -3.05189779915180) )
- assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) )
- assert( cot(a) =~ 1.0/tan(a) )
- assert( sec(a) =~ 1.0/cos(a) )
- assert( csc(a) =~ 1.0/sin(a) )
- assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) )
- assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) )
- assert( arctan(a) =~ (1.338972522294494, 0.402359478108525) )
- assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) )
- assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) )
- assert( tanh(a) =~ (1.1667362572409199,-0.243458201185725) )
- assert( sech(a) =~ 1/cosh(a) )
- assert( csch(a) =~ 1/sinh(a) )
- assert( coth(a) =~ 1/tanh(a) )
- assert( arccosh(a) =~ (1.528570919480998, 1.14371774040242) )
- assert( arcsinh(a) =~ (1.469351744368185, 1.06344002357775) )
- assert( arctanh(a) =~ (0.173286795139986, 1.17809724509617) )
- assert( arcsech(a) =~ arccosh(1/a) )
- assert( arccsch(a) =~ arcsinh(1/a) )
- assert( arccoth(a) =~ arctanh(1/a) )
- assert( phase(a) == 1.1071487177940904 )
- var t = polar(a)
- assert( rect(t.r, t.phi) =~ a )
- assert( rect(1.0, 2.0) =~ (-0.4161468365471424, 0.9092974268256817) )
|