12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2019 b3liever
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- ## Accurate summation functions.
- runnableExamples:
- import std/math
- template `~=`(x, y: float): bool = abs(x - y) < 1e-4
- let
- n = 1_000_000
- first = 1e10
- small = 0.1
- var data = @[first]
- for _ in 1 .. n:
- data.add(small)
- let result = first + small * n.float
- doAssert abs(sum(data) - result) > 0.3
- doAssert sumKbn(data) ~= result
- doAssert sumPairs(data) ~= result
- ## See also
- ## ========
- ## * `math module <math.html>`_ for a standard `sum proc <math.html#sum,openArray[T]>`_
- func sumKbn*[T](x: openArray[T]): T =
- ## Kahan-Babuška-Neumaier summation: O(1) error growth, at the expense
- ## of a considerable increase in computational cost.
- ##
- ## See:
- ## * https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements
- if len(x) == 0: return
- var sum = x[0]
- var c = T(0)
- for i in 1 ..< len(x):
- let xi = x[i]
- let t = sum + xi
- if abs(sum) >= abs(xi):
- c += (sum - t) + xi
- else:
- c += (xi - t) + sum
- sum = t
- result = sum + c
- func sumPairwise[T](x: openArray[T], i0, n: int): T =
- if n < 128:
- result = x[i0]
- for i in i0 + 1 ..< i0 + n:
- result += x[i]
- else:
- let n2 = n div 2
- result = sumPairwise(x, i0, n2) + sumPairwise(x, i0 + n2, n - n2)
- func sumPairs*[T](x: openArray[T]): T =
- ## Pairwise (cascade) summation of `x[i0:i0+n-1]`, with O(log n) error growth
- ## (vs O(n) for a simple loop) with negligible performance cost if
- ## the base case is large enough.
- ##
- ## See, e.g.:
- ## * https://en.wikipedia.org/wiki/Pairwise_summation
- ## * Higham, Nicholas J. (1993), "The accuracy of floating point
- ## summation", SIAM Journal on Scientific Computing 14 (4): 783–799.
- ##
- ## In fact, the root-mean-square error growth, assuming random roundoff
- ## errors, is only O(sqrt(log n)), which is nearly indistinguishable from O(1)
- ## in practice. See:
- ## * Manfred Tasche and Hansmartin Zeuner, Handbook of
- ## Analytic-Computational Methods in Applied Mathematics (2000).
- let n = len(x)
- if n == 0: T(0) else: sumPairwise(x, 0, n)
|