123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2018 Nim contributors
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements an algorithm to compute the
- ## `diff`:idx: between two sequences of lines.
- ##
- ## - To learn more see `Diff on Wikipedia. <http://wikipedia.org/wiki/Diff>`_
- runnableExamples:
- assert diffInt(
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [-1, 1, 2, 3, 4, 5, 666, 7, 42]) ==
- @[Item(startA: 0, startB: 0, deletedA: 1, insertedB: 1),
- Item(startA: 6, startB: 6, deletedA: 1, insertedB: 1),
- Item(startA: 8, startB: 8, deletedA: 1, insertedB: 1)]
- runnableExamples:
- # 2 samples of text (from "The Call of Cthulhu" by Lovecraft)
- let txt0 = """
- abc
- def ghi
- jkl2"""
- let txt1 = """
- bacx
- abc
- def ghi
- jkl"""
- assert diffText(txt0, txt1) ==
- @[Item(startA: 0, startB: 0, deletedA: 0, insertedB: 1),
- Item(startA: 2, startB: 3, deletedA: 1, insertedB: 1)]
- # code owner: Arne Döring
- #
- # This is based on C# code written by Matthias Hertel, http://www.mathertel.de
- #
- # This Class implements the Difference Algorithm published in
- # "An O(ND) Difference Algorithm and its Variations" by Eugene Myers
- # Algorithmica Vol. 1 No. 2, 1986, p 251.
- import tables, strutils
- type
- Item* = object ## An Item in the list of differences.
- startA*: int ## Start Line number in Data A.
- startB*: int ## Start Line number in Data B.
- deletedA*: int ## Number of changes in Data A.
- insertedB*: int ## Number of changes in Data B.
- DiffData = object ## Data on one input file being compared.
- data: seq[int] ## Buffer of numbers that will be compared.
- modified: seq[bool] ## Array of booleans that flag for modified
- ## data. This is the result of the diff.
- ## This means deletedA in the first Data or
- ## inserted in the second Data.
- Smsrd = object
- x, y: int
- # template to avoid a seq copy. Required until `sink` parameters are ready.
- template newDiffData(initData: seq[int]; L: int): DiffData =
- DiffData(
- data: initData,
- modified: newSeq[bool](L + 2)
- )
- proc len(d: DiffData): int {.inline.} = d.data.len
- proc diffCodes(aText: string; h: var Table[string, int]): DiffData =
- ## This function converts all textlines of the text into unique numbers for every unique textline
- ## so further work can work only with simple numbers.
- ## `aText` the input text
- ## `h` This extern initialized hashtable is used for storing all ever used textlines.
- ## `trimSpace` ignore leading and trailing space characters
- ## Returns a array of integers.
- var lastUsedCode = h.len
- result.data = newSeq[int]()
- for s in aText.splitLines:
- if h.contains s:
- result.data.add h[s]
- else:
- inc lastUsedCode
- h[s] = lastUsedCode
- result.data.add lastUsedCode
- result.modified = newSeq[bool](result.data.len + 2)
- proc optimize(data: var DiffData) =
- ## If a sequence of modified lines starts with a line that contains the same content
- ## as the line that appends the changes, the difference sequence is modified so that the
- ## appended line and not the starting line is marked as modified.
- ## This leads to more readable diff sequences when comparing text files.
- var startPos = 0
- while startPos < data.len:
- while startPos < data.len and not data.modified[startPos]:
- inc startPos
- var endPos = startPos
- while endPos < data.len and data.modified[endPos]:
- inc endPos
- if endPos < data.len and data.data[startPos] == data.data[endPos]:
- data.modified[startPos] = false
- data.modified[endPos] = true
- else:
- startPos = endPos
- proc sms(dataA: var DiffData; lowerA, upperA: int; dataB: DiffData; lowerB, upperB: int;
- downVector, upVector: var openArray[int]): Smsrd =
- ## This is the algorithm to find the Shortest Middle Snake (sms).
- ## `dataA` sequence A
- ## `lowerA` lower bound of the actual range in dataA
- ## `upperA` upper bound of the actual range in dataA (exclusive)
- ## `dataB` sequence B
- ## `lowerB` lower bound of the actual range in dataB
- ## `upperB` upper bound of the actual range in dataB (exclusive)
- ## `downVector` a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.
- ## `upVector` a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.
- ## Returns a MiddleSnakeData record containing x,y and u,v.
- let max = dataA.len + dataB.len + 1
- let downK = lowerA - lowerB # the k-line to start the forward search
- let upK = upperA - upperB # the k-line to start the reverse search
- let delta = (upperA - lowerA) - (upperB - lowerB)
- let oddDelta = (delta and 1) != 0
- # The vectors in the publication accepts negative indexes. the vectors implemented here are 0-based
- # and are access using a specific offset: upOffset upVector and downOffset for downVector
- let downOffset = max - downK
- let upOffset = max - upK
- let maxD = ((upperA - lowerA + upperB - lowerB) div 2) + 1
- downVector[downOffset + downK + 1] = lowerA
- upVector[upOffset + upK - 1] = upperA
- for D in 0 .. maxD:
- # Extend the forward path.
- for k in countup(downK - D, downK + D, 2):
- # find the only or better starting point
- var x: int
- if k == downK - D:
- x = downVector[downOffset + k + 1] # down
- else:
- x = downVector[downOffset + k - 1] + 1 # a step to the right
- if k < downK + D and downVector[downOffset + k + 1] >= x:
- x = downVector[downOffset + k + 1] # down
- var y = x - k
- # find the end of the furthest reaching forward D-path in diagonal k.
- while x < upperA and y < upperB and dataA.data[x] == dataB.data[y]:
- inc x
- inc y
- downVector[downOffset + k] = x
- # overlap ?
- if oddDelta and upK - D < k and k < upK + D:
- if upVector[upOffset + k] <= downVector[downOffset + k]:
- return Smsrd(x: downVector[downOffset + k],
- y: downVector[downOffset + k] - k)
- # Extend the reverse path.
- for k in countup(upK - D, upK + D, 2):
- # find the only or better starting point
- var x: int
- if k == upK + D:
- x = upVector[upOffset + k - 1] # up
- else:
- x = upVector[upOffset + k + 1] - 1 # left
- if k > upK - D and upVector[upOffset + k - 1] < x:
- x = upVector[upOffset + k - 1] # up
- var y = x - k
- while x > lowerA and y > lowerB and dataA.data[x - 1] == dataB.data[y - 1]:
- dec x
- dec y
- upVector[upOffset + k] = x
- # overlap ?
- if not oddDelta and downK-D <= k and k <= downK+D:
- if upVector[upOffset + k] <= downVector[downOffset + k]:
- return Smsrd(x: downVector[downOffset + k],
- y: downVector[downOffset + k] - k)
- assert false, "the algorithm should never come here."
- proc lcs(dataA: var DiffData; lowerA, upperA: int; dataB: var DiffData; lowerB, upperB: int;
- downVector, upVector: var openArray[int]) =
- ## This is the divide-and-conquer implementation of the longes common-subsequence (lcs)
- ## algorithm.
- ## The published algorithm passes recursively parts of the A and B sequences.
- ## To avoid copying these arrays the lower and upper bounds are passed while the sequences stay constant.
- ## `dataA` sequence A
- ## `lowerA` lower bound of the actual range in dataA
- ## `upperA` upper bound of the actual range in dataA (exclusive)
- ## `dataB` sequence B
- ## `lowerB` lower bound of the actual range in dataB
- ## `upperB` upper bound of the actual range in dataB (exclusive)
- ## `downVector` a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.
- ## `upVector` a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.
- # make mutable copy:
- var lowerA = lowerA
- var lowerB = lowerB
- var upperA = upperA
- var upperB = upperB
- # Fast walkthrough equal lines at the start
- while lowerA < upperA and lowerB < upperB and dataA.data[lowerA] == dataB.data[lowerB]:
- inc lowerA
- inc lowerB
- # Fast walkthrough equal lines at the end
- while lowerA < upperA and lowerB < upperB and dataA.data[upperA - 1] == dataB.data[upperB - 1]:
- dec upperA
- dec upperB
- if lowerA == upperA:
- # mark as inserted lines.
- while lowerB < upperB:
- dataB.modified[lowerB] = true
- inc lowerB
- elif lowerB == upperB:
- # mark as deleted lines.
- while lowerA < upperA:
- dataA.modified[lowerA] = true
- inc lowerA
- else:
- # Find the middle snake and length of an optimal path for A and B
- let smsrd = sms(dataA, lowerA, upperA, dataB, lowerB, upperB, downVector, upVector)
- # Debug.Write(2, "MiddleSnakeData", String.Format("{0},{1}", smsrd.x, smsrd.y))
- # The path is from LowerX to (x,y) and (x,y) to UpperX
- lcs(dataA, lowerA, smsrd.x, dataB, lowerB, smsrd.y, downVector, upVector)
- lcs(dataA, smsrd.x, upperA, dataB, smsrd.y, upperB, downVector, upVector) # 2002.09.20: no need for 2 points
- proc createDiffs(dataA, dataB: DiffData): seq[Item] =
- ## Scan the tables of which lines are inserted and deleted,
- ## producing an edit script in forward order.
- var startA = 0
- var startB = 0
- var lineA = 0
- var lineB = 0
- while lineA < dataA.len or lineB < dataB.len:
- if lineA < dataA.len and not dataA.modified[lineA] and
- lineB < dataB.len and not dataB.modified[lineB]:
- # equal lines
- inc lineA
- inc lineB
- else:
- # maybe deleted and/or inserted lines
- startA = lineA
- startB = lineB
- while lineA < dataA.len and (lineB >= dataB.len or dataA.modified[lineA]):
- inc lineA
- while lineB < dataB.len and (lineA >= dataA.len or dataB.modified[lineB]):
- inc lineB
- if (startA < lineA) or (startB < lineB):
- result.add Item(startA: startA,
- startB: startB,
- deletedA: lineA - startA,
- insertedB: lineB - startB)
- proc diffInt*(arrayA, arrayB: openArray[int]): seq[Item] =
- ## Find the difference in 2 arrays of integers.
- ##
- ## `arrayA` A-version of the numbers (usually the old one)
- ##
- ## `arrayB` B-version of the numbers (usually the new one)
- ##
- ## Returns a sequence of Items that describe the differences.
- # The A-Version of the data (original data) to be compared.
- var dataA = newDiffData(@arrayA, arrayA.len)
- # The B-Version of the data (modified data) to be compared.
- var dataB = newDiffData(@arrayB, arrayB.len)
- let max = dataA.len + dataB.len + 1
- # vector for the (0,0) to (x,y) search
- var downVector = newSeq[int](2 * max + 2)
- # vector for the (u,v) to (N,M) search
- var upVector = newSeq[int](2 * max + 2)
- lcs(dataA, 0, dataA.len, dataB, 0, dataB.len, downVector, upVector)
- result = createDiffs(dataA, dataB)
- proc diffText*(textA, textB: string): seq[Item] =
- ## Find the difference in 2 text documents, comparing by textlines.
- ##
- ## The algorithm itself is comparing 2 arrays of numbers so when comparing 2 text documents
- ## each line is converted into a (hash) number. This hash-value is computed by storing all
- ## textlines into a common hashtable so i can find duplicates in there, and generating a
- ## new number each time a new textline is inserted.
- ##
- ## `textA` A-version of the text (usually the old one)
- ##
- ## `textB` B-version of the text (usually the new one)
- ##
- ## Returns a seq of Items that describe the differences.
- # See also `gitutils.diffStrings`.
- # prepare the input-text and convert to comparable numbers.
- var h = initTable[string, int]() # TextA.len + TextB.len <- probably wrong initial size
- # The A-Version of the data (original data) to be compared.
- var dataA = diffCodes(textA, h)
- # The B-Version of the data (modified data) to be compared.
- var dataB = diffCodes(textB, h)
- h.clear # free up hashtable memory (maybe)
- let max = dataA.len + dataB.len + 1
- # vector for the (0,0) to (x,y) search
- var downVector = newSeq[int](2 * max + 2)
- # vector for the (u,v) to (N,M) search
- var upVector = newSeq[int](2 * max + 2)
- lcs(dataA, 0, dataA.len, dataB, 0, dataB.len, downVector, upVector)
- optimize(dataA)
- optimize(dataB)
- result = createDiffs(dataA, dataB)
|