123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- discard """
- action: run
- output: '''[Suite] random int
- [Suite] random float
- [Suite] cumsum
- [Suite] random sample
- [Suite] ^
- '''
- """
- import math, random, os
- import unittest
- import sets, tables
- suite "random int":
- test "there might be some randomness":
- var set = initHashSet[int](128)
- for i in 1..1000:
- incl(set, rand(high(int)))
- check len(set) == 1000
- test "single number bounds work":
- var rand: int
- for i in 1..1000:
- rand = rand(1000)
- check rand < 1000
- check rand > -1
- test "slice bounds work":
- var rand: int
- for i in 1..1000:
- rand = rand(100..1000)
- check rand < 1000
- check rand >= 100
- test " again gives new numbers":
- var rand1 = rand(1000000)
- os.sleep(200)
- var rand2 = rand(1000000)
- check rand1 != rand2
- suite "random float":
- test "there might be some randomness":
- var set = initHashSet[float](128)
- for i in 1..100:
- incl(set, rand(1.0))
- check len(set) == 100
- test "single number bounds work":
- var rand: float
- for i in 1..1000:
- rand = rand(1000.0)
- check rand < 1000.0
- check rand > -1.0
- test "slice bounds work":
- var rand: float
- for i in 1..1000:
- rand = rand(100.0..1000.0)
- check rand < 1000.0
- check rand >= 100.0
- test " again gives new numbers":
- var rand1:float = rand(1000000.0)
- os.sleep(200)
- var rand2:float = rand(1000000.0)
- check rand1 != rand2
- suite "cumsum":
- test "cumsum int seq return":
- let counts = [ 1, 2, 3, 4 ]
- check counts.cumsummed == [ 1, 3, 6, 10 ]
- test "cumsum float seq return":
- let counts = [ 1.0, 2.0, 3.0, 4.0 ]
- check counts.cumsummed == [ 1.0, 3.0, 6.0, 10.0 ]
- test "cumsum int in-place":
- var counts = [ 1, 2, 3, 4 ]
- counts.cumsum
- check counts == [ 1, 3, 6, 10 ]
- test "cumsum float in-place":
- var counts = [ 1.0, 2.0, 3.0, 4.0 ]
- counts.cumsum
- check counts == [ 1.0, 3.0, 6.0, 10.0 ]
- suite "random sample":
- test "non-uniform array sample unnormalized int CDF":
- let values = [ 10, 20, 30, 40, 50 ] # values
- let counts = [ 4, 3, 2, 1, 0 ] # weights aka unnormalized probabilities
- var histo = initCountTable[int]()
- let cdf = counts.cumsummed # unnormalized CDF
- for i in 0 ..< 5000:
- histo.inc(sample(values, cdf))
- check histo.len == 4 # number of non-zero in `counts`
- # Any one bin is a binomial random var for n samples, each with prob p of
- # adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for
- # big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while
- # P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01.
- for i, c in counts:
- if c == 0:
- check values[i] notin histo
- continue
- let p = float(c) / float(cdf[^1])
- let n = 5000.0
- let expected = p * n
- let stdDev = sqrt(n * p * (1.0 - p))
- check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
- test "non-uniform array sample normalized float CDF":
- let values = [ 10, 20, 30, 40, 50 ] # values
- let counts = [ 0.4, 0.3, 0.2, 0.1, 0 ] # probabilities
- var histo = initCountTable[int]()
- let cdf = counts.cumsummed # normalized CDF
- for i in 0 ..< 5000:
- histo.inc(sample(values, cdf))
- check histo.len == 4 # number of non-zero in ``counts``
- for i, c in counts:
- if c == 0:
- check values[i] notin histo
- continue
- let p = float(c) / float(cdf[^1])
- let n = 5000.0
- let expected = p * n
- let stdDev = sqrt(n * p * (1.0 - p))
- # NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01.
- check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
- suite "^":
- test "compiles for valid types":
- check: compiles(5 ^ 2)
- check: compiles(5.5 ^ 2)
- check: compiles(5.5 ^ 2.int8)
- check: compiles(5.5 ^ 2.uint)
- check: compiles(5.5 ^ 2.uint8)
- check: not compiles(5.5 ^ 2.2)
|