123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2010 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements complex numbers
- ## and basic mathematical operations on them.
- ##
- ## Complex numbers are currently generic over 64-bit or 32-bit floats.
- runnableExamples:
- from std/math import almostEqual, sqrt
- let
- z1 = complex(1.0, 2.0)
- z2 = complex(3.0, -4.0)
- assert almostEqual(z1 + z2, complex(4.0, -2.0))
- assert almostEqual(z1 - z2, complex(-2.0, 6.0))
- assert almostEqual(z1 * z2, complex(11.0, 2.0))
- assert almostEqual(z1 / z2, complex(-0.2, 0.4))
- assert almostEqual(abs(z1), sqrt(5.0))
- assert almostEqual(conjugate(z1), complex(1.0, -2.0))
- let (r, phi) = z1.polar
- assert almostEqual(rect(r, phi), z1)
- {.push checks: off, line_dir: off, stack_trace: off, debugger: off.}
- # the user does not want to trace a part of the standard library!
- import std/[math, strformat]
- type
- Complex*[T: SomeFloat] = object
- ## A complex number, consisting of a real and an imaginary part.
- re*, im*: T
- Complex64* = Complex[float64]
- ## Alias for a complex number using 64-bit floats.
- Complex32* = Complex[float32]
- ## Alias for a complex number using 32-bit floats.
- func complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] =
- ## Returns a `Complex[T]` with real part `re` and imaginary part `im`.
- result.re = re
- result.im = im
- func complex32*(re: float32; im: float32 = 0.0): Complex32 =
- ## Returns a `Complex32` with real part `re` and imaginary part `im`.
- result.re = re
- result.im = im
- func complex64*(re: float64; im: float64 = 0.0): Complex64 =
- ## Returns a `Complex64` with real part `re` and imaginary part `im`.
- result.re = re
- result.im = im
- template im*(arg: typedesc[float32]): Complex32 = complex32(0, 1)
- ## Returns the imaginary unit (`complex32(0, 1)`).
- template im*(arg: typedesc[float64]): Complex64 = complex64(0, 1)
- ## Returns the imaginary unit (`complex64(0, 1)`).
- template im*(arg: float32): Complex32 = complex32(0, arg)
- ## Returns `arg` as an imaginary number (`complex32(0, arg)`).
- template im*(arg: float64): Complex64 = complex64(0, arg)
- ## Returns `arg` as an imaginary number (`complex64(0, arg)`).
- func abs*[T](z: Complex[T]): T =
- ## Returns the absolute value of `z`,
- ## that is the distance from (0, 0) to `z`.
- result = hypot(z.re, z.im)
- func abs2*[T](z: Complex[T]): T =
- ## Returns the squared absolute value of `z`,
- ## that is the squared distance from (0, 0) to `z`.
- ## This is more efficient than `abs(z) ^ 2`.
- result = z.re * z.re + z.im * z.im
- func sgn*[T](z: Complex[T]): Complex[T] =
- ## Returns the phase of `z` as a unit complex number,
- ## or 0 if `z` is 0.
- let a = abs(z)
- if a != 0:
- result = z / a
- func conjugate*[T](z: Complex[T]): Complex[T] =
- ## Returns the complex conjugate of `z` (`complex(z.re, -z.im)`).
- result.re = z.re
- result.im = -z.im
- func inv*[T](z: Complex[T]): Complex[T] =
- ## Returns the multiplicative inverse of `z` (`1/z`).
- conjugate(z) / abs2(z)
- func `==`*[T](x, y: Complex[T]): bool =
- ## Compares two complex numbers for equality.
- result = x.re == y.re and x.im == y.im
- func `+`*[T](x: T; y: Complex[T]): Complex[T] =
- ## Adds a real number to a complex number.
- result.re = x + y.re
- result.im = y.im
- func `+`*[T](x: Complex[T]; y: T): Complex[T] =
- ## Adds a complex number to a real number.
- result.re = x.re + y
- result.im = x.im
- func `+`*[T](x, y: Complex[T]): Complex[T] =
- ## Adds two complex numbers.
- result.re = x.re + y.re
- result.im = x.im + y.im
- func `-`*[T](z: Complex[T]): Complex[T] =
- ## Unary minus for complex numbers.
- result.re = -z.re
- result.im = -z.im
- func `-`*[T](x: T; y: Complex[T]): Complex[T] =
- ## Subtracts a complex number from a real number.
- result.re = x - y.re
- result.im = -y.im
- func `-`*[T](x: Complex[T]; y: T): Complex[T] =
- ## Subtracts a real number from a complex number.
- result.re = x.re - y
- result.im = x.im
- func `-`*[T](x, y: Complex[T]): Complex[T] =
- ## Subtracts two complex numbers.
- result.re = x.re - y.re
- result.im = x.im - y.im
- func `*`*[T](x: T; y: Complex[T]): Complex[T] =
- ## Multiplies a real number with a complex number.
- result.re = x * y.re
- result.im = x * y.im
- func `*`*[T](x: Complex[T]; y: T): Complex[T] =
- ## Multiplies a complex number with a real number.
- result.re = x.re * y
- result.im = x.im * y
- func `*`*[T](x, y: Complex[T]): Complex[T] =
- ## Multiplies two complex numbers.
- result.re = x.re * y.re - x.im * y.im
- result.im = x.im * y.re + x.re * y.im
- func `/`*[T](x: Complex[T]; y: T): Complex[T] =
- ## Divides a complex number by a real number.
- result.re = x.re / y
- result.im = x.im / y
- func `/`*[T](x: T; y: Complex[T]): Complex[T] =
- ## Divides a real number by a complex number.
- result = x * inv(y)
- func `/`*[T](x, y: Complex[T]): Complex[T] =
- ## Divides two complex numbers.
- x * conjugate(y) / abs2(y)
- func `+=`*[T](x: var Complex[T]; y: Complex[T]) =
- ## Adds `y` to `x`.
- x.re += y.re
- x.im += y.im
- func `-=`*[T](x: var Complex[T]; y: Complex[T]) =
- ## Subtracts `y` from `x`.
- x.re -= y.re
- x.im -= y.im
- func `*=`*[T](x: var Complex[T]; y: Complex[T]) =
- ## Multiplies `x` by `y`.
- let im = x.im * y.re + x.re * y.im
- x.re = x.re * y.re - x.im * y.im
- x.im = im
- func `/=`*[T](x: var Complex[T]; y: Complex[T]) =
- ## Divides `x` by `y` in place.
- x = x / y
- func sqrt*[T](z: Complex[T]): Complex[T] =
- ## Computes the
- ## ([principal](https://en.wikipedia.org/wiki/Square_root#Principal_square_root_of_a_complex_number))
- ## square root of a complex number `z`.
- var x, y, w, r: T
- if z.re == 0.0 and z.im == 0.0:
- result = z
- else:
- x = abs(z.re)
- y = abs(z.im)
- if x >= y:
- r = y / x
- w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
- else:
- r = x / y
- w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
- if z.re >= 0.0:
- result.re = w
- result.im = z.im / (w * 2.0)
- else:
- result.im = if z.im >= 0.0: w else: -w
- result.re = z.im / (result.im + result.im)
- func exp*[T](z: Complex[T]): Complex[T] =
- ## Computes the exponential function (`e^z`).
- let
- rho = exp(z.re)
- theta = z.im
- result.re = rho * cos(theta)
- result.im = rho * sin(theta)
- func ln*[T](z: Complex[T]): Complex[T] =
- ## Returns the
- ## ([principal value](https://en.wikipedia.org/wiki/Complex_logarithm#Principal_value)
- ## of the) natural logarithm of `z`.
- result.re = ln(abs(z))
- result.im = arctan2(z.im, z.re)
- func log10*[T](z: Complex[T]): Complex[T] =
- ## Returns the logarithm base 10 of `z`.
- ##
- ## **See also:**
- ## * `ln func<#ln,Complex[T]>`_
- result = ln(z) / ln(10.0)
- func log2*[T](z: Complex[T]): Complex[T] =
- ## Returns the logarithm base 2 of `z`.
- ##
- ## **See also:**
- ## * `ln func<#ln,Complex[T]>`_
- result = ln(z) / ln(2.0)
- func pow*[T](x, y: Complex[T]): Complex[T] =
- ## `x` raised to the power of `y`.
- if x.re == 0.0 and x.im == 0.0:
- if y.re == 0.0 and y.im == 0.0:
- result.re = 1.0
- result.im = 0.0
- else:
- result.re = 0.0
- result.im = 0.0
- elif y.im == 0.0:
- if y.re == 1.0:
- result = x
- elif y.re == -1.0:
- result = T(1.0) / x
- elif y.re == 2.0:
- result = x * x
- elif y.re == 0.5:
- result = sqrt(x)
- elif x.im == 0.0:
- # Revert to real pow when both base and exponent are real
- result.re = pow(x.re, y.re)
- result.im = 0.0
- else:
- # Special case when the exponent is real
- let
- rho = abs(x)
- theta = arctan2(x.im, x.re)
- s = pow(rho, y.re)
- r = y.re * theta
- result.re = s * cos(r)
- result.im = s * sin(r)
- elif x.im == 0.0 and x.re == E:
- # Special case Euler's formula
- result = exp(y)
- else:
- let
- rho = abs(x)
- theta = arctan2(x.im, x.re)
- s = pow(rho, y.re) * exp(-y.im * theta)
- r = y.re * theta + y.im * ln(rho)
- result.re = s * cos(r)
- result.im = s * sin(r)
- func pow*[T](x: Complex[T]; y: T): Complex[T] =
- ## The complex number `x` raised to the power of the real number `y`.
- pow(x, complex[T](y))
- func sin*[T](z: Complex[T]): Complex[T] =
- ## Returns the sine of `z`.
- result.re = sin(z.re) * cosh(z.im)
- result.im = cos(z.re) * sinh(z.im)
- func arcsin*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse sine of `z`.
- result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z))
- func cos*[T](z: Complex[T]): Complex[T] =
- ## Returns the cosine of `z`.
- result.re = cos(z.re) * cosh(z.im)
- result.im = -sin(z.re) * sinh(z.im)
- func arccos*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse cosine of `z`.
- result = -im(T) * ln(z + sqrt(z*z - T(1.0)))
- func tan*[T](z: Complex[T]): Complex[T] =
- ## Returns the tangent of `z`.
- result = sin(z) / cos(z)
- func arctan*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse tangent of `z`.
- result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z))
- func cot*[T](z: Complex[T]): Complex[T] =
- ## Returns the cotangent of `z`.
- result = cos(z)/sin(z)
- func arccot*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse cotangent of `z`.
- result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z))
- func sec*[T](z: Complex[T]): Complex[T] =
- ## Returns the secant of `z`.
- result = T(1.0) / cos(z)
- func arcsec*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse secant of `z`.
- result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z)
- func csc*[T](z: Complex[T]): Complex[T] =
- ## Returns the cosecant of `z`.
- result = T(1.0) / sin(z)
- func arccsc*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse cosecant of `z`.
- result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z)
- func sinh*[T](z: Complex[T]): Complex[T] =
- ## Returns the hyperbolic sine of `z`.
- result = T(0.5) * (exp(z) - exp(-z))
- func arcsinh*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse hyperbolic sine of `z`.
- result = ln(z + sqrt(z*z + 1.0))
- func cosh*[T](z: Complex[T]): Complex[T] =
- ## Returns the hyperbolic cosine of `z`.
- result = T(0.5) * (exp(z) + exp(-z))
- func arccosh*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse hyperbolic cosine of `z`.
- result = ln(z + sqrt(z*z - T(1.0)))
- func tanh*[T](z: Complex[T]): Complex[T] =
- ## Returns the hyperbolic tangent of `z`.
- result = sinh(z) / cosh(z)
- func arctanh*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse hyperbolic tangent of `z`.
- result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z)))
- func coth*[T](z: Complex[T]): Complex[T] =
- ## Returns the hyperbolic cotangent of `z`.
- result = cosh(z) / sinh(z)
- func arccoth*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse hyperbolic cotangent of `z`.
- result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z))
- func sech*[T](z: Complex[T]): Complex[T] =
- ## Returns the hyperbolic secant of `z`.
- result = T(2.0) / (exp(z) + exp(-z))
- func arcsech*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse hyperbolic secant of `z`.
- result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0)))
- func csch*[T](z: Complex[T]): Complex[T] =
- ## Returns the hyperbolic cosecant of `z`.
- result = T(2.0) / (exp(z) - exp(-z))
- func arccsch*[T](z: Complex[T]): Complex[T] =
- ## Returns the inverse hyperbolic cosecant of `z`.
- result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0)))
- func phase*[T](z: Complex[T]): T =
- ## Returns the phase (or argument) of `z`, that is the angle in polar representation.
- ##
- ## | `result = arctan2(z.im, z.re)`
- arctan2(z.im, z.re)
- func polar*[T](z: Complex[T]): tuple[r, phi: T] =
- ## Returns `z` in polar coordinates.
- ##
- ## | `result.r = abs(z)`
- ## | `result.phi = phase(z)`
- ##
- ## **See also:**
- ## * `rect func<#rect,T,T>`_ for the inverse operation
- (r: abs(z), phi: phase(z))
- func rect*[T](r, phi: T): Complex[T] =
- ## Returns the complex number with polar coordinates `r` and `phi`.
- ##
- ## | `result.re = r * cos(phi)`
- ## | `result.im = r * sin(phi)`
- ##
- ## **See also:**
- ## * `polar func<#polar,Complex[T]>`_ for the inverse operation
- complex(r * cos(phi), r * sin(phi))
- func almostEqual*[T: SomeFloat](x, y: Complex[T]; unitsInLastPlace: Natural = 4): bool =
- ## Checks if two complex values are almost equal, using the
- ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
- ##
- ## Two complex values are considered almost equal if their real and imaginary
- ## components are almost equal.
- ##
- ## `unitsInLastPlace` is the max number of
- ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
- ## difference tolerated when comparing two numbers. The larger the value, the
- ## more error is allowed. A `0` value means that two numbers must be exactly the
- ## same to be considered equal.
- ##
- ## The machine epsilon has to be scaled to the magnitude of the values used
- ## and multiplied by the desired precision in ULPs unless the difference is
- ## subnormal.
- almostEqual(x.re, y.re, unitsInLastPlace = unitsInLastPlace) and
- almostEqual(x.im, y.im, unitsInLastPlace = unitsInLastPlace)
- func `$`*(z: Complex): string =
- ## Returns `z`'s string representation as `"(re, im)"`.
- runnableExamples:
- doAssert $complex(1.0, 2.0) == "(1.0, 2.0)"
- result = "(" & $z.re & ", " & $z.im & ")"
- proc formatValueAsTuple(result: var string; value: Complex; specifier: string) =
- ## Format implementation for `Complex` representing the value as a (real, imaginary) tuple.
- result.add "("
- formatValue(result, value.re, specifier)
- result.add ", "
- formatValue(result, value.im, specifier)
- result.add ")"
- proc formatValueAsComplexNumber(result: var string; value: Complex; specifier: string) =
- ## Format implementation for `Complex` representing the value as a (RE+IMj) number
- ## By default, the real and imaginary parts are formatted using the general ('g') format
- let specifier = if specifier.contains({'e', 'E', 'f', 'F', 'g', 'G'}):
- specifier.replace("j")
- else:
- specifier.replace('j', 'g')
- result.add "("
- formatValue(result, value.re, specifier)
- if value.im >= 0 and not specifier.contains({'+', '-'}):
- result.add "+"
- formatValue(result, value.im, specifier)
- result.add "j)"
- proc formatValue*(result: var string; value: Complex; specifier: string) =
- ## Standard format implementation for `Complex`. It makes little
- ## sense to call this directly, but it is required to exist
- ## by the `&` macro.
- ## For complex numbers, we add a specific 'j' specifier, which formats
- ## the value as (A+Bj) like in mathematics.
- if specifier.len == 0:
- result.add $value
- elif 'j' in specifier:
- formatValueAsComplexNumber(result, value, specifier)
- else:
- formatValueAsTuple(result, value, specifier)
- {.pop.}
|