123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2020 Nim Contributors
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module adds functionality for the built-in `set` type.
- ##
- ## See also
- ## ========
- ## * `std/packedsets <packedsets.html>`_
- ## * `std/sets <sets.html>`_
- import std/[typetraits, macros]
- #[
- type SetElement* = char|byte|bool|int16|uint16|enum|uint8|int8
- ## The allowed types of a built-in set.
- ]#
- template toSet*(iter: untyped): untyped =
- ## Returns a built-in set from the elements of the iterable `iter`.
- runnableExamples:
- assert "helloWorld".toSet == {'W', 'd', 'e', 'h', 'l', 'o', 'r'}
- assert toSet([10u16, 20, 30]) == {10u16, 20, 30}
- assert [30u8, 100, 10].toSet == {10u8, 30, 100}
- assert toSet(@[1321i16, 321, 90]) == {90i16, 321, 1321}
- assert toSet([false]) == {false}
- assert toSet(0u8..10) == {0u8..10}
- var result: set[elementType(iter)]
- for x in iter:
- incl(result, x)
- result
- macro enumElementsAsSet(enm: typed): untyped = result = newNimNode(nnkCurly).add(enm.getType[1][1..^1])
- # func fullSet*(T: typedesc): set[T] {.inline.} = # xxx would give: Error: ordinal type expected
- func fullSet*[T](U: typedesc[T]): set[T] {.inline.} =
- ## Returns a set containing all elements in `U`.
- runnableExamples:
- assert bool.fullSet == {true, false}
- type A = range[1..3]
- assert A.fullSet == {1.A, 2, 3}
- assert int8.fullSet.len == 256
- when T is Ordinal:
- {T.low..T.high}
- else: # Hole filled enum
- enumElementsAsSet(T)
- func complement*[T](s: set[T]): set[T] {.inline.} =
- ## Returns the set complement of `a`.
- runnableExamples:
- type Colors = enum
- red, green = 3, blue
- assert complement({red, blue}) == {green}
- assert complement({red, green, blue}).card == 0
- assert complement({range[0..10](0), 1, 2, 3}) == {range[0..10](4), 5, 6, 7, 8, 9, 10}
- assert complement({'0'..'9'}) == {0.char..255.char} - {'0'..'9'}
- fullSet(T) - s
- func `[]=`*[T](t: var set[T], key: T, val: bool) {.inline.} =
- ## Syntax sugar for `if val: t.incl key else: t.excl key`
- runnableExamples:
- type A = enum
- a0, a1, a2, a3
- var s = {a0, a3}
- s[a0] = false
- s[a1] = false
- assert s == {a3}
- s[a2] = true
- s[a3] = true
- assert s == {a2, a3}
- if val: t.incl key else: t.excl key
- when defined(nimHasXorSet):
- func symmetricDifference*[T](x, y: set[T]): set[T] {.magic: "XorSet".} =
- ## This operator computes the symmetric difference of two sets,
- ## equivalent to but more efficient than `x + y - x * y` or
- ## `(x - y) + (y - x)`.
- runnableExamples:
- assert symmetricDifference({1, 2, 3}, {2, 3, 4}) == {1, 4}
- else:
- func symmetricDifference*[T](x, y: set[T]): set[T] {.inline.} =
- result = x + y - (x * y)
- proc `-+-`*[T](x, y: set[T]): set[T] {.inline.} =
- ## Operator alias for `symmetricDifference`.
- runnableExamples:
- assert {1, 2, 3} -+- {2, 3, 4} == {1, 4}
- result = symmetricDifference(x, y)
- proc toggle*[T](x: var set[T], y: set[T]) {.inline.} =
- ## Toggles the existence of each value of `y` in `x`.
- ## If any element in `y` is also in `x`, it is excluded from `x`;
- ## otherwise it is included.
- ## Equivalent to `x = symmetricDifference(x, y)`.
- runnableExamples:
- var x = {1, 2, 3}
- x.toggle({2, 3, 4})
- assert x == {1, 4}
- x = symmetricDifference(x, y)
|