123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 |
- #? braces
- #
- #
- # Nim's Runtime Library
- # (c) Copyright 2015 Andreas Rumpf
- #
- # See the file "copying.txt", included in this
- # distribution, for details about the copyright.
- #
- ## This module implements some common generic algorithms.
- type
- SortOrder* = enum { ## sort order
- Descending, Ascending
- }
- type(
- DummyAlias = int
- OtherAlias = distinct char
- SomeObject = object of RootObj { ## declaration here
- fieldA, fieldB: int
- case order: SortOrder {
- of Descending {a: string}
- of Ascending {b: seq[char]}
- }
- }
- MyConcept = concept x {
- x is int
- }
- )
- {.deprecated: [TSortOrder: SortOrder].}
- proc `*`*(x: int, order: SortOrder): int @inline {
- ## flips `x` if ``order == Descending``;
- ## if ``order == Ascending`` then `x` is returned.
- ## `x` is supposed to be the result of a comparator, ie ``< 0`` for
- ## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*.
- var y = order.ord - 1
- result = (x xor y) - y
- }
- proc fill*[T](a: var openArray[T], first, last: Natural, value: T) {
- ## fills the array ``a[first..last]`` with `value`.
- var x = first
- while x <= last {
- a[x] = value
- inc(x)
- }
- }
- proc fill*[T](a: var openArray[T], value: T) {
- ## fills the array `a` with `value`.
- fill(a, 0, a.high, value)
- }
- proc reverse*[T](a: var openArray[T], first, last: Natural) {
- ## reverses the array ``a[first..last]``.
- var x = first
- var y = last
- while x < y {
- swap(a[x], a[y])
- dec(y)
- inc(x)
- }
- }
- proc reverse*[T](a: var openArray[T]) {
- ## reverses the array `a`.
- reverse(a, 0, a.high)
- }
- proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] {
- ## returns the reverse of the array `a[first..last]`.
- assert last >= first-1
- var i = last - first
- var x = first.int
- result = newSeq[T](i + 1)
- while i >= 0 {
- result[i] = a[x]
- dec(i)
- inc(x)
- }
- }
- proc reversed*[T](a: openArray[T]): seq[T] {
- ## returns the reverse of the array `a`.
- reversed(a, 0, a.high)
- }
- proc binarySearch*[T](a: openArray[T], key: T): int {
- ## binary search for `key` in `a`. Returns -1 if not found.
- var b = len(a)
- while result < b {
- var mid = (result + b) div 2
- if a[mid] < key { result = mid + 1 } else { b = mid }
- }
- if result >= len(a) or a[result] != key { result = -1 }
- }
- proc smartBinarySearch*[T](a: openArray[T], key: T): int {
- ## ``a.len`` must be a power of 2 for this to work.
- var step = a.len div 2
- while step > 0 {
- if a[result or step] <= key { result = result or step }
- step = step shr 1
- }
- if a[result] != key { result = -1 }
- }
- const (
- onlySafeCode = true
- )
- proc lowerBound*[T](a: openArray[T], key: T, cmp: proc(x,y: T): int @closure): int {
- ## same as binarySearch except that if key is not in `a` then this
- ## returns the location where `key` would be if it were. In other
- ## words if you have a sorted sequence and you call
- ## insert(thing, elm, lowerBound(thing, elm))
- ## the sequence will still be sorted.
- ##
- ## `cmp` is the comparator function to use, the expected return values are
- ## the same as that of system.cmp.
- ##
- ## example::
- ##
- ## var arr = @[1,2,3,5,6,7,8,9]
- ## arr.insert(4, arr.lowerBound(4))
- ## # after running the above arr is `[1,2,3,4,5,6,7,8,9]`
- result = a.low
- var count = a.high - a.low + 1
- var step, pos: int
- while count != 0 {
- step = count div 2
- pos = result + step
- if cmp(a[pos], key) < 0 {
- result = pos + 1
- count -= step + 1
- } else {
- count = step
- }
- }
- }
- proc lowerBound*[T](a: openArray[T], key: T): int { lowerBound(a, key, cmp[T]) }
- proc merge[T](a, b: var openArray[T], lo, m, hi: int,
- cmp: proc (x, y: T): int @closure, order: SortOrder) {
- template `<-` (a, b) {
- when false {
- a = b
- } elif onlySafeCode {
- shallowCopy(a, b)
- } else {
- copyMem(addr(a), addr(b), sizeof(T))
- }
- }
- # optimization: If max(left) <= min(right) there is nothing to do!
- # 1 2 3 4 ## 5 6 7 8
- # -> O(n) for sorted arrays.
- # On random data this safes up to 40% of merge calls
- if cmp(a[m], a[m+1]) * order <= 0 { return }
- var j = lo
- # copy a[j..m] into b:
- assert j <= m
- when onlySafeCode {
- var bb = 0
- while j <= m {
- b[bb] <- a[j]
- inc(bb)
- inc(j)
- }
- } else {
- copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
- j = m+1
- }
- var i = 0
- var k = lo
- # copy proper element back:
- while k < j and j <= hi {
- if cmp(b[i], a[j]) * order <= 0 {
- a[k] <- b[i]
- inc(i)
- } else {
- a[k] <- a[j]
- inc(j)
- }
- inc(k)
- }
- # copy rest of b:
- when onlySafeCode {
- while k < j {
- a[k] <- b[i]
- inc(k)
- inc(i)
- }
- } else {
- if k < j { copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k)) }
- }
- }
- proc sort*[T](a: var openArray[T],
- cmp: proc (x, y: T): int @closure,
- order = SortOrder.Ascending) {
- ## Default Nim sort (an implementation of merge sort). The sorting
- ## is guaranteed to be stable and the worst case is guaranteed to
- ## be O(n log n).
- ## The current implementation uses an iterative
- ## mergesort to achieve this. It uses a temporary sequence of
- ## length ``a.len div 2``. Currently Nim does not support a
- ## sensible default argument for ``cmp``, so you have to provide one
- ## of your own. However, the ``system.cmp`` procs can be used:
- ##
- ## .. code-block:: nim
- ##
- ## sort(myIntArray, system.cmp[int])
- ##
- ## # do not use cmp[string] here as we want to use the specialized
- ## # overload:
- ## sort(myStrArray, system.cmp)
- ##
- ## You can inline adhoc comparison procs with the `do notation
- ## <manual.html#procedures-do-notation>`_. Example:
- ##
- ## .. code-block:: nim
- ##
- ## people.sort do (x, y: Person) -> int:
- ## result = cmp(x.surname, y.surname)
- ## if result == 0:
- ## result = cmp(x.name, y.name)
- var n = a.len
- var b: seq[T]
- newSeq(b, n div 2)
- var s = 1
- while s < n {
- var m = n-1-s
- while m >= 0 {
- merge(a, b, max(m-s+1, 0), m, m+s, cmp, order)
- dec(m, s*2)
- }
- s = s*2
- }
- }
- proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
- order = SortOrder.Ascending): seq[T] {
- ## returns `a` sorted by `cmp` in the specified `order`.
- result = newSeq[T](a.len)
- for i in 0 .. a.high { result[i] = a[i] }
- sort(result, cmp, order)
- }
- template sortedByIt*(seq1, op: untyped): untyped {
- ## Convenience template around the ``sorted`` proc to reduce typing.
- ##
- ## The template injects the ``it`` variable which you can use directly in an
- ## expression. Example:
- ##
- ## .. code-block:: nim
- ##
- ## type Person = tuple[name: string, age: int]
- ## var
- ## p1: Person = (name: "p1", age: 60)
- ## p2: Person = (name: "p2", age: 20)
- ## p3: Person = (name: "p3", age: 30)
- ## p4: Person = (name: "p4", age: 30)
- ## people = @[p1,p2,p4,p3]
- ##
- ## echo people.sortedByIt(it.name)
- ##
- ## Because the underlying ``cmp()`` is defined for tuples you can do
- ## a nested sort like in the following example:
- ##
- ## .. code-block:: nim
- ##
- ## echo people.sortedByIt((it.age, it.name))
- ##
- var result = sorted(seq1, proc(x, y: type[seq1[0]]): int {
- var it {.inject.} = x
- let a = op
- it = y
- let b = op
- result = cmp(a, b)
- })
- result
- }
- proc isSorted*[T](a: openarray[T],
- cmp: proc(x, y: T): int {.closure.},
- order = SortOrder.Ascending): bool {
- ## Checks to see whether `a` is already sorted in `order`
- ## using `cmp` for the comparison. Parameters identical
- ## to `sort`
- result = true
- for i in 0..<len(a)-1 {
- case cmp(a[i],a[i+1]) * order > 0 {
- of true { return false }
- of false {}
- }
- }
- }
- proc product*[T](x: openArray[seq[T]]): seq[seq[T]] {
- ## produces the Cartesian product of the array. Warning: complexity
- ## may explode.
- result = newSeq[seq[T]]()
- if x.len == 0 { return }
- if x.len == 1 {
- result = @x
- return
- }
- var (
- indexes = newSeq[int](x.len)
- initial = newSeq[int](x.len)
- index = 0
- )
- var next = newSeq[T]()
- next.setLen(x.len)
- for i in 0..(x.len-1) {
- if len(x[i]) == 0 { return }
- initial[i] = len(x[i])-1
- }
- indexes = initial
- while true {
- while indexes[index] == -1 {
- indexes[index] = initial[index]
- index += 1
- if index == x.len { return }
- indexes[index] -= 1
- }
- for ni, i in indexes {
- next[ni] = x[ni][i]
- }
- var res: seq[T]
- shallowCopy(res, next)
- result.add(res)
- index = 0
- indexes[index] -= 1
- }
- }
- proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} {
- ## Calculates the next lexicographic permutation, directly modifying ``x``.
- ## The result is whether a permutation happened, otherwise we have reached
- ## the last-ordered permutation.
- ##
- ## .. code-block:: nim
- ##
- ## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- ## v.nextPermutation()
- ## echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
- if x.len < 2 {
- return false }
- var i = x.high
- while i > 0 and x[i-1] >= x[i] { dec i }
- if i == 0 { return false }
- var j = x.high
- while j >= i and x[j] <= x[i-1] { dec j }
- swap x[j], x[i-1]
- x.reverse(i, x.high)
- result = true
- }
- proc prevPermutation*[T](x: var openarray[T]): bool @discardable {
- ## Calculates the previous lexicographic permutation, directly modifying
- ## ``x``. The result is whether a permutation happened, otherwise we have
- ## reached the first-ordered permutation.
- ##
- ## .. code-block:: nim
- ##
- ## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
- ## v.prevPermutation()
- ## echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- if x.len < 2 { return false }
- var i = x.high
- while i > 0 and x[i-1] <= x[i] {
- dec i
- }
- if i == 0 { return false }
- x.reverse(i, x.high)
- var j = x.high
- while j >= i and x[j-1] < x[i-1] {
- dec j
- }
- swap x[i-1], x[j]
- result = true
- }
- when isMainModule {
- # Tests for lowerBound
- var arr = @[1,2,3,5,6,7,8,9]
- assert arr.lowerBound(0) == 0
- assert arr.lowerBound(4) == 3
- assert arr.lowerBound(5) == 3
- assert arr.lowerBound(10) == 8
- arr = @[1,5,10]
- try {
- assert arr.lowerBound(4) == 1
- assert arr.lowerBound(5) == 1
- assert arr.lowerBound(6) == 2
- } except ValueError {}
- # Tests for isSorted
- var srt1 = [1,2,3,4,4,4,4,5]
- var srt2 = ["iello","hello"]
- var srt3 = [1.0,1.0,1.0]
- var srt4: seq[int] = @[]
- assert srt1.isSorted(cmp) == true
- assert srt2.isSorted(cmp) == false
- assert srt3.isSorted(cmp) == true
- var srtseq = newSeq[int]()
- assert srtseq.isSorted(cmp) == true
- # Tests for reversed
- var arr1 = @[0,1,2,3,4]
- assert arr1.reversed() == @[4,3,2,1,0]
- for i in 0 .. high(arr1) {
- assert arr1.reversed(0, i) == arr1.reversed()[high(arr1) - i .. high(arr1)]
- assert arr1.reversed(i, high(arr1)) == arr1.reversed()[0 .. high(arr1) - i]
- }
- }
|